

Project Number: 215219
Project Acronym: SOA4All
Project Title: Service Oriented Architectures for All
Instrument: Integrated Project
Thematic
Priority:

Information and Communication
Technologies

SOA4All Analysis Platform
D2.3.3 Service Monitoring and Management Tool

Suite Second Prototype

 - Prototype Documentation -

Activity N: Activity 1

Work Package: WP2 – SOA4All Studio
T2.3 – SOA4All Analysis Platform

Due Date: M18

Submission Date: 04/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: INRIA

Revision: 1.0

Author(s):

Adrian Mos
Carlos Pedrinaci
Guillermo Álvaro Rey
Iván Martínez
Christophe Hamerling
Dong Liu
Samuel Quaireau
Fy Ravoajanahary

INRIA
OU
ISOCO
ISOCO
EBM
OU
INRIA
INRIA

Internal Reviewers Sven Abels
Patrick Un

TIE
SAP

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 2 of 26

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 21.07.2010 Kick-Off Version INRIA

0.2 03.08.2010 Added content from first drafts from
INRIA, OU and ISOCO.

INRIA, OU, ISOCO

0.3 04.08.2010 Added info on Monitoring Configuration
and basic Installation procedure

INRIA

0.4 10.08.2010 Knowledge Analytics section added ISOCO

0.5 11.08.2010 DSB Monitoring Console section EBM

0.6 13.08.2010 Overall cleanup and conclusions INRIA

0.7 27.08.2010 Integrated Reviewers’ comments INRIA

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 3 of 26

Table of Contents

EXECUTIVE SUMMARY __ 6	
1.	 INTRODUCTION___ 7	

1.1	 PURPOSE AND SCOPE __ 7	
1.2	 STRUCTURE OF THE DOCUMENT_____________________________________ 7	

2.	 ARCHITECTURAL CONSIDERATIONS ____________________________________ 8	
2.1	 SCALABILITY OVERVIEW __ 8	
2.2	 RESTFUL SERVICES __ 9	
2.3	 DECOUPLING FROM STUDIO CORE __________________________________ 10	
2.4	 STORAGE IN ANALYSIS WAREHOUSE ________________________________ 10	

2.4.1	 SDMX-RDF ___ 11	
2.4.2	 Analytical Data as SDMX-RDF ____________________________________ 12	
2.4.3	 Architecture and Implementation ___________________________________ 14	
2.4.4	 RESTful API ___ 14	

3.	 NEW PROTOTYPE FUNCTIONALITY IN THE STUDIO _______________________ 16	
3.1	 MONITORING CONFIGURATION PAGE ________________________________ 16	
3.2	 UPDATED PROCESS OVERVIEW WIDGET _____________________________ 16	
3.3	 SPARQL QUERIES WIDGETS __ 17	
3.4	 NEW FUNCTIONALITY: KNOWLEDGE ANALYTICS VISUALISATION ________ 18	

3.4.1	 K-Analytics Data Sources __ 18	
3.4.2	 K-Analytics Access to the Sources by SPARQL _______________________ 19	
3.4.3	 K-Analytics Examples of Use ______________________________________ 19	
3.4.4	 K-Analytics Public Deployed Version ________________________________ 21	
3.4.5	 K-Analytics Limitations ___ 22	

3.5	 DSB MONITORING CONSOLE__ 22	
3.6	 PERSISTENT CUSTOM DASHBOARDS ________________________________ 23	

4.	 INSTALLATION & SETUP __ 24	
5.	 CONCLUSIONS __ 25	
6.	 REFERENCES ___ 26	

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 4 of 26

List of Figures
Figure 1. Scalability Considerations... 8	
Figure 2. Overall Architecture of Analysis Warehouse .. 11	
Figure 3. Key Concepts of SDMX-RDF ... 12	
Figure 4. Dataset definition for Analysis Warehouse ... 13	
Figure 5. Architecture of Analytical Data Publication Component ... 14	
Figure 6. Monitoring Configuration Page ... 16	
Figure 7. Updated Process Overview Widget .. 17	
Figure 8. Basic SPARQL Query Widget .. 17	
Figure 9. Displaying Results of a SPARQL Query... 18	
Figure 10: k-Analytics example without metrics... 20	
Figure 11: k-Analytics example showcasing metrics ... 21	
Figure 12. High-Level DSB Monitoring Architecture .. 22	
Figure 13. Raw Message Exchanges List.. 23	

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 5 of 26

Glossary of Acronyms

Acronym Definition
AP Analysis Platform

API Application Programming Interface

BEP Basic Event Processor

D Deliverable

DSB Distributed Service Bus

EC European Commission

EVO Events Ontology

GUI Graphical User Interface

KOPE Knowledge-Oriented Provenance Environment

REST Representational State Transfer

SENTINEL SEmaNTic busINess procEsses monitoring tooL

SOA Service-Oriented Architecture

SUPER Semantics Utilized for Process Management within and between
Enterprises

WP Work Package

WSDM Web Services Distributed Management

XML Extensible Markup Language

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 6 of 26

Executive summary
This document accompanies the software deliverable D2.3.3 of the second prototype of the
SOA4All Analysis Platform. It describes the functionality of the prototype and places the
implementation in the architectural context described by the previous deliverables D2.3.1 and
D2.3.2.

The main additions to the first prototype include updated user-interaction functionality,
scalability improvements and better integration with other SOA4All infrastructure
components. Long-term storage of analysis data using RDF is an important addition to the
current set of functionalities and it enhances both scalability (through better data
management strategies) and integration (through better data-usage opportunities by third
parties).

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 7 of 26

1. Introduction

1.1 Purpose and Scope
The SOA4All Analysis Platform (AP) aims to provide the SOA4All users with information that
would help them understand the performance characteristics and usage patterns of the
services and processes they use. Such information must be presented at different levels of
abstraction in order to be adapted to the different stakeholders that may require analyzing
processes and service executions, as well as to the different types of problems or
opportunities that may appear. That is why the AP provides a wide array of widgets in its
graphical views, organized according to their potential use. Furthermore, as presented in the
document, the AP offers a completely customizable approach to data visualization so as to
correspond precisely to the expectations and needs that more advanced users have.

This document complements the previous T2.3 deliverable, D2.3.1, which presented in detail
the different building blocks of the AP, their integration into the overall architecture, as well as
their underlining concepts; and D2.3.2 which presented the functionality of the first prototype
of the AP. Therefore, this document focuses on the new developments since D2.3.2 as well
as changes to the architecture due in particular to scalability considerations. The document is
to be used in conjunction with D2.4.3 as the Analysis Platform is implemented as part of the
Studio. In fact the actual software of the prototype is part of the entire Studio codebase while
the actual deployment of the AP is distributed, with a common Studio core component and
an AP-only component running on different sites.

1.2 Structure of the Document
The rest of the document is structured as follows:

- Section 2 presents some architectural considerations to better place the prototype
implementation in the context of the updated AP architecture. It discusses the
scalability and data warehouse topics and presents a set of RESTful APIs made
available to developers. However, Section 2 does not go into details about such APIs
as such details can easily be obtained from associated documents that will be made
available with the software packages.

- Section 3 provides a description of the functional improvements in the AP since the
first prototype. Older functionality, which is still available in the new prototype, is not
described and readers can refer to D2.3.2 for information on the variety of widgets
and views available in the AP.

- Section 4 describes the changes to the installation and execution procedures in the
new prototype. These changes are due to the fact that the Studio is now decoupled
which assumes separate installations on remote machines of each of the Studio
components. A separate, complete document will be made available containing
installation instructions for the entire Studio, so this section simply highlights the main
points related to the AP.

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 8 of 26

2. Architectural Considerations
As a natural evolution from the first Analysis Prototype, the second prototype has been
enhanced with a focus on scalability and integration, in addition to new functionality. The
additional functionality is presented in Section 3, while this section presents the main
architectural differences.

Scalability requirements are addressed primarily by carefully choosing appropriate data-
handling strategies to process data coming from the various data sources. The
implementation of an Analysis Warehouse is of major importance in this regard.
Integration refers mainly to the fact that, owing to the more advanced maturity of the various
runtime components, we can now extract data being produced by remote DSB nodes and
remote execution engines. So by integration here we mean better connection to the actual
SOA4All runtime components.

2.1 Scalability Overview
This section briefly discusses scalability aspects that are being addressed in the current
Analysis Platform prototype. The discussion is based on a simple example illustrated in
Figure 1.

Figure 1. Scalability Considerations

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 9 of 26

In the scenarios envisaged by SOA4All, the Analysis Platform, together with other Studio
components, will potentially be deployed on many nodes, each administered by an
organisation that wants to provide SOA4All functionality to its users. However, the invisible
SOA4All infrastructure based on the distributed service bus can be seen as transcending
individual providers and offering a pervasive infrastructure base that is accesible from any
SOA4All-enabled node. This is also true for the RDF storage support available as a
pervasive service for SOA4All nodes. This pervasive aspect is realised through different
federation techniques that are described in various deliverables of WP1.

This architecture however has important implications with regard to scalability of the Analysis
Platform. In order to cope with the extremely large numbers of users envisaged by SOA4All
as a whole, as well as potentially massive amounts of data, we leverage the natural
distribution provided by the infrastructure and optimize data processing and storage to
achieve a good compromise in terms of performance and scalability. Figure 1 shows a
sample instance of the Studio called example.eu. This Studio instance runs its own individual
Analysis Platform instance, separated from other instances available with other providers.
Users connecting to example.eu’s Studio will access this version of the Analysis Platform
and will be interested, as a group, in a relatively limited number of services and processes
(that are relevant to example.eu’s business). This implies that all the processing that this
instance of the Analysis Platform will perform will relate to these services (illustrated in the
image as S1, S2 and S3). Its internal operational database will contain detailed analysis data
for these items. This prevents this instance from processing data for services that are not of
interest to its users (in effect, only services that at least one user of the domain is interested
in, will be analyzed).

Naturally, example.eu, as all the other SOA4All-enabled nodes running the Studio, will
connect to the DSB and will leverage the highly-distributed RDF storage. This enables the
collection of data for any service or process executing anywhere in the world, when such
data is required. We envisage that even for services/processes that no user has expressed
interest in yet (in any domain instance), the DSB will collect basic data such as moving
averages for execution times and availability information, and store it in the RDF storage, in
order to have minimum bootstrap information ready when users become interested in the
particular service/process. As soon as they have become interested, data collection
becomes much more significant as it is driven by the Analysis Platform instance, and detailed
analysis data can be stored in the individual operational databases. In short, detailed
analysis for selected entities is performed “locally” in the same domain as the user, and basic
analysis and long-term storage is performed on the distributed infrastructure for all entities.

2.2 RESTful Services
In order to expose Analysis Platform functionality to any user, we have created a number of
RESTful services that are annotated and registered in the iServe repository. This enables
any interested party to invoke the functionality of the AP and obtain analysis information
about different services used by SOA4All users.

The table below presents the list of RESTful APIs currently available.

Operation	 Name	 Input	 Output	
AverageResponseTime	
Average	 Response	 Time	 service	 name	 Average	 Response	 Time	
Availability	
Availability	 since	 the	 given	 service	 name	 +	 start	 date	

Availability	 since	 the	 given	
date	

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 10 of 26

date	
Availability	
Last	 availability	 status	 service	 name	 +	 LAST	 Last	 availability	 status	
Availability	
Availability	 between	 two	
dates	

service	 name	 +	 start	 date	 and	 end	
date	

Availability	 between	 two	
dates	

Information	 about	 a	 service	 service	 name	 Information	 about	 a	 service	
Availability	
Global	 availability	 service	 name	 Global	 availability	

The RESTful invocation pattern is the following:

http://soa4all.inrialpes.fr/monitoring/services/serviceName/OperationName/Parameters
Ex1:
When calling just http://soa4all.inrialpes.fr/monitoring/services/serviceName we obtain basic
information about the service.

Ex2:
When calling
http://soa4all.inrialpes.fr/monitoring/services/serviceName/Availability/20091013232354/20
11.10.20 we obtain the availability between the 2 given dates expressed in 2 different
formats.

2.3 Decoupling from Studio Core
The Analysis Platform has been completely decoupled from the main Studio code-base. This
is part of an effort to distribute and manage the different components of the SOA4All Studio
more effectively and the details of this approach and its advantages over the previous
prototype are explained in detail in the Second Studio Prototype Deliverable D2.4.3. The
implications of the decoupling primarily relate to the way the AP is installed, since it does not
come as integral part of the Studio anymore. Functionality-wise, it has preserved all the
characteristics of the previous prototype detailed in D2.3.2. Section 4 outlines some of the
installation implications of this decoupled approach, but a full installation guide for the Studio
will be made available by the SOA4All Consortium as a separate document.

2.4 Storage in Analysis Warehouse
As shown in Figure 2, the analysis warehouse is made up of two parts: analytical data
storage and analytical data publication. The former offers a persistence mechanism for the
data, events and logs that are collected from the DSB, whereas the latter publishes analysis
results as Linked Data.

In short, what the storage component of analysis warehouse does is translating raw data into
RDF triples conformant to the COBRA and EVO ontologies [1], and saving to the RDF
repository. RDF2Go [2] is used to make it easy for analysis warehouse to access the RDF
repository. Accordingly, RDFReactor [3], a new code generation tool, replaces Elmo, which is
previously employed to integrate with SENTINEL. [D2.3.2]

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 11 of 26

Figure 2. Overall Architecture of Analysis Warehouse

In the rest of this subsection, we focus on how to publish analysis results as Linked Data, i.e.
the publication component of analysis warehouse. First, we describe the conceptual model
and organization of analytical data, and then detail the architecture and implementation of
analysis warehouse as well as its RESTful API.

2.4.1 SDMX-RDF
Statistical Data and Metadata eXchange (SDMX) [4] is an ISO standard for exchanging and
sharing statistical data and metadata among organizations. It consists of an abstract
information model (SDMX-IM) and concrete XML- and UN/EDIFACT- based syntaxes. SDMX
was however not devised having the Web in mind and as a consequence concepts, datasets
or observations cannot be uniquely identified on the Web through URIs nor can this data be
easily manipulated by Web browsers. This fact prevents the discovery, combination and
correlation of SDMX data over the Web in a convenient manner. These requirements are
particularly important notably to our use cases and in inter-organisational scenarios such as
those envisioned in SOA4All use cases.

SDMX-RDF [5] is an ongoing effort trying to adapt SDMX to publish statistical data and
metadata in RDF following Linked Data principles. By publishing statistical data in RDF,
SDMX-RDF provides URIs to the metadata and data hold within SDMX warehouses for their
linking, combination but also more advanced analysis paving the way for the application of
provenance analysis techniques.

SDMX-RDF employs a hypercube for statistical data representation. Essentially, statistical
data provides a collection of observations made about certain aspects considered relevant
and along a number of dimensions. Dimensions identify what the observations apply to (e.g.,
individual, geographical region, etc). Additionally metadata is provided to describe what has
been observed (e.g., unemployment rate, economic growth, etc) as well as how it was
measured (e.g., estimation, unit of measure used, etc).

On the basis of this hypercube, data analysts can slice and dice the information in a large
number of ways allowing them to detect correlations, or better assess the situation at
different levels of granularity across dimensions and groups of observations.

Although at a relatively early stage, SDMX-RDF already defines means to structure statistical
data as a hypercube in RDF. In a nutshell, SDMX defines DataSets that hold Observations
(see Figure 3). All these observations conform to the DataSet specification, a
DataStructureDefinition defined in terms of Components. These components can be
Dimensions (i.e., what the observations apply to), Measures (i.e., what has been observed),
and Attributes (i.e., additional metadata about the observations like the method used).

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 12 of 26

Figure 3. Key Concepts of SDMX-RDF

In order to dereference statistical data on the Web, a draft of URL structure is presented at
[6]. Starting from it, we come up with several URL templates for retrieving analytical data
stored in the warehouse, which are listed in the table below.

URL	 Template	 Description	
/dsd/{id}	 A	 Data	 Set	 Description	
/dsd/{id}/dimension	 Dimensions	 within	 a	 DSD	
/dsd/{id}/measure	 Measurements	 within	 a	 DSD	

/dsd/{id}/dimension/{did}	 A	 dimension	 in	 a	 DSD	

/dsd/{id}/measure/{mid}	 A	 measurement	 in	 a	 DSD	

/dataset/{id}	 A	 data	 flow	 or	 a	 dataset	

/dataset/{id}/observation/{oid}	 An	 observation	 of	 a	 data	 set	

2.4.2 Analytical Data as SDMX-RDF
The analysis warehouse is defined based on SDMX-RDF in order to capture statistical
information concerning services, processes and operations in a way that better supports its
publication on the Web and its automated processing. For the current version we have
defined a number of DataSets holding individual, daily, weekly and monthly Observations.
The Observations are captured along two Dimensions: the service Operation concerned, and
the temporal properties, i.e. the Time Instant at which it was observed or Time Interval it
spans. Here, Time Instant and Time Interval are both concept defined by the OWL-Time
ontology [7].

Depending on the DataSet two different groups of Measures are captured which are subsets
of the typical measures used for service monitoring [8]. For the individual analysis DataSet,
we capture the Response Time, the Invocation Response, and the Invocation Result for each
invocation carried out. The Response Time measures the time elapsed during the execution
of an operation. The Invocation Response captures whether the operation responded or not.
The Invocation Result captures what the result of the invocation was in order to detect

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 13 of 26

whether there is an error.

The other DataSets use the finer grain DataSet to derive average results for the following
measures: Response Time, Availability and Reliability. The former has the exact same
meaning as earlier although it is here an average value rather than a direct Observation.
Availability and Reliability are understood as per the formulas below:

Availability =

Reliability =

Over time the analysis warehouse will capture large amounts of data that will be very
valuable for analyzing the behaviour of services, for better ranking services according to
certain performance measures, etc. We must however maintain a certain control over the
size of the warehouse to avoid an information overload while retaining the sufficient level of
granularity desired.

Figure 4. Dataset definition for Analysis Warehouse

The datasets defined for the analysis results are as follows (detailed overview in Figure 4):

• Invocation Analysis DataSet: This DataSet will hold Observations for every single
invocation carried out over the last 2 days.

• Daily Analysis DataSet: This DataSet will hold daily aggregated data based on the
Invocation Analysis DataSet. The data hold will be kept for the last 90 days.

• Weekly Analysis DataSet: This DataSet will hold weekly aggregated data based on
the Daily Analysis DataSet for the last year, i.e., 52 weeks.

• Monthly Analysis DataSet: This DataSet will hold monthly aggregated data for the

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 14 of 26

last 5 years, i.e., 60 months.

2.4.3 Architecture and Implementation

Figure 5. Architecture of Analytical Data Publication Component

Figure 5 depicts the overall architecture of the analysis warehouse. OWLim [9] serve as the
repository for the RDF triples of analytical data. RDF2Go [2] provides an unified interface to
various triple (and quad) stores. Here, RDFReactor [3] goes through it to get the access to
the repository. RDFReactor performs two important functions: at design time, it automatically
generates Java classes from RDFS ontololgies; at runtime, it bridges Java objects and RDF
triples as well as literal values. On top of the Java API Linked Data is built upon the Java
codes generated by RDFReactor. It serves as the provider and publisher of analytical data
on the Web of Data. The RESTful service of analysis warehouse is realized under the
framework of Jersey [10], which is a reference implementation of JSR-311 [11].

2.4.4 RESTful API
In this subsection, we document the RESTful interface of the analysis warehouse, which
allows manipulating data sets and observations. In principal, Data Structure Definitions
(DSDs) have already been well defined (refer to section 2.4.2), before the running of analysis
warehouse. On the other hand, only system administrators can update the DSDs whenever
necessary. Therefore, to ensure the consistency of analytical data at runtime, the analysis
warehouse does not expose API for adding, modifying or deleting DSDs.

URL	
HTTP	
Method	

Parameter	 Description	

/dataset	 POST	
{dsd}:	 Mandatory.	 The	 URI	 of	 Data	
Structure	 Definition	

Add	 a	 dataset	

/dataset/{id}	 DELETE	 None	 Delete	 a	 dataset	

/dataset/{id}/observation	 POST	
{value}	 Mandatory.	 The	 observed	
value.	
{dataTypeURI}:	 Optional.	 The	 type	

Add	 an	 observation	
to	 a	 dataset	

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 15 of 26

of	 observed	 value,	 by	 default	
xsd:decimal.	
{measure}:	 Mandatory.	 The	 URI	 of	
measurement.	
{dimensionURI}:	 At	 least	 one.	 The	
parameter	 name	 specifying	 the	
URI	 of	 dimension,	 is	 variable.	
{at}	 or	 {begin}	 and	 {end}:	 Time	
point	 or	 time	 period.	 A	 request	
must	 contain	 either	 an	 {at}	
parameter	 or	 both	 the	 {begin}	 and	
{end}	 parameters.	 To	 avoid	 time	
format	 issues,	 the	 time	 value	 must	
be	 in	 milliseconds.	

/dataset/{id}/observation/{oid}	 DELETE	 None	
Delete	 an	
observation	

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 16 of 26

3. New Prototype Functionality in the Studio
3.1 Monitoring Configuration Page
In order to better control the external data sources as well as the internal and external
storage for monitoring data, a configuration page has been created. It is illustrated in

Figure 6. Monitoring Configuration Page

This page is currently accessible at:

http://soa4all.inrialpes.fr/monitoring-event-listener/config.jsp

However, for any new installation of the Analysis Platform instance, there will be such a
corresponding page (see Section 4).

3.2 Updated Process Overview Widget
The Process Overview Widget shown in Figure 7 has been completely rewritten and
improved from the previous version. The new version uses a table-view that is much clearer
from a visual point of view and which can be ordered by different headers. The new version
also has much better performance and uses less bandwidth as it significantly optimizes the

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 17 of 26

amount of data being transferred via COMET from the BEP.

Figure 7. Updated Process Overview Widget

3.3 SPARQL Queries Widgets
We have developed widgets for invoking and displaying results of SPARQL Queries, in order
to enable an “arbitrary” integration with data sources. The goal is to allow Analysis Platform
users to connect to analysis information sources (or other data sources) and display different
views. Figure 8 shows the Query Widget that can be used to write any SPARQL query and
send it to the appropriate endpoint. The result is displayed in a new widget made available
when the result has been retrieved and which is shown in Figure 9.

Figure 8. Basic SPARQL Query Widget

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 18 of 26

Figure 9. Displaying Results of a SPARQL Query

3.4 New Functionality: Knowledge Analytics Visualisation
The previous version of the Knowledge Analytics (k-Analytics, formerly known as KOPE*)
module of the Analysis Platform, described in D2.3.2, dealt with the visualization of three
different high-level metrics (Frequency, Performance and User Perception) over time, by
making use of a visualization widget with the time in the x-axis and the values of each metric
in the y-axis.

The evolution of the k-Analytics module into the second prototype described in this document
stresses the importance of the semantic relations of services and concepts, combining them
with the previously addressed metrics. The component is able to represent, through a node-
based graph visualization, the main characteristics of any service (the concepts related to the
service, its operations, and the input and output messages for each of those) stored in iServe
[12], for it makes use of its SPARQL endpoint to retrieve the desired information.

Therefore, what the k-Analytics component is primarily providing now is an efficient
visualization of Linked Data services by making use of its internal semantic relations, which
permits end-users better understand by a simple glimpse the annotations of a service.

In the next subsections, more details are given about the data sources used (3.4.1), the way
the desired information is retrieved (3.4.2), as well as examples of use of the module (3.4.3),
public online prototype information (3.4.4) and the current limitations of the component
(3.4.5).

3.4.1 K-Analytics Data Sources
As advanced, this version of the k-Analytics module combines information from two different
sources:

• iServe: The repository of semantic annotations on services provides the necessary
information about the relations amongst any service, its operations, and the input and
output messages related to those.

• The SOA4All Studio Storage Services: The aggregated metrics are available as
RDF and linked to the different services as well as to the concepts related through the
sawsdl:modelReferences.

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 19 of 26

It is worth noting that thanks to the Linked Data access through the SPARQL endpoint of
iServe, the k-Analytics component can be continuously updated with any new service
annotations (i.e., when a service is annotated, it is automatically made available in this
module for its visualization), at least in terms of the semantic relations.

3.4.2 K-Analytics Access to the Sources by SPARQL
Both the Storage Services and iServe expose its data through a SPARQL endpoint, which
makes it easy for the k-Analytics component retrieve the desired information from them. We
illustrate below the kind of information retrieved from the repositories with a query performed
to each of those.

Example 1. Query to iServe: Operations related to a particular Service

The following listing depicts a query to iServe (endpoint at
http://iserve.kmi.open.ac.uk/data/execute-query) used to obtain the operations that
belong to a given service (in the example, a particular Last.fm service with its unique URI),
and the label associated of the operation, if any:

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX msm:<http://cms-wg.sti2.org/ns/minimal-service-model#>
SELECT DISTINCT ?op ?labelOp
WHERE {
 <http://iserve.kmi.open.ac.uk/resource/services/ebed628d-ce25-46dd-a690-
96ee4003bf2c#LastFmEvents> msm:hasOperation ?op .
 OPTIONAL { ?op rdfs:label ?labelOp. }
}

Example 2. Query to the Storage Services: Aggregated metrics for a particular Service

The following listing contains a query to the Storage Services (endpoint at
http://coconut.tie.nl:8080/storage/repositories/KAnalyticsRepository) to retrieve the
different aggregated metrics (as explained in the previous deliverable, two for Frequency,
two for Performance, and two for Perception) for a particular concept:

PREFIX an:<http://www.soa4all.eu/analysis#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?visFreq ?invFreq ?timPerf ?relPerf ?ratPerc ?revPerc
WHERE {
 ?analysis rdf:type
 <http://www.soa4all.eu/analysis#conceptAggregatedAnalysis> .
 ?analysis an:hasConcept
 <http://www.service-finder.eu/ontologies/ServiceOntology#Free> .
 ?analysis an:hasVisibilityFrequency ?visFreq .
 ?analysis an:hasInvocationFrequency ?invFreq .
 ?analysis an:hasTimePerformance ?timPerf .
 ?analysis an:hasReliabilityPerformance ?relPerf .
 ?analysis an:hasRatingsPerception?ratPerc .
 ?analysis an:hasReviewsPerception ?revPerc .
}

3.4.3 K-Analytics Examples of Use
To use the k-Analytics component, an end-user can search for iServe services through the
input form located at the upper left corner. Once the list of relevant services is retrieved, the

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 20 of 26

user can select one of them and it will be displayed in the main dashboard area.

The service annotations will be used to represent the relations amongst the service and its
related concepts (via sawsdl:modelReference in the annotations of the service), along with
its operations, and the input and output messages that each of those have.

In this line, we first illustrate the display of a service in the node-based graph without mixing
the semantic relations with the metrics (which we will show in the next example). Figure 10
depicts the display of the annotations of a “Multimap” service (S), which has six related
concepts (C), as well as an operation (O), which in turns has associated input and output
messages (M), with four and two input and output concepts (C), respectively.

Figure 10: k-Analytics example without metrics

Of course, as we have explained, in addition to the semantic relations retrieved from the
service repository, the metrics for each service and aggregated for each concept are shown
in the same graph. This is done by giving different sizes to each relevant node according to
the metric selected (Frequency, Performance and User Perception) on the bottom left drop-
down menu.

In the following example, depicted in Figure 11, annotations of a Last.fm events service are
displayed in the usual node-based graph (the service with five related concepts, one
operation, the two input/output messages, etc.), combining the results for Performance in the
sizes of each node. In this case, an end-user is able to inspect further characteristics of a
service by comparing the sizes of the nodes of each of the related concepts. For instance,
because of the small size of the “Free” node, one could argue that services that are related
to the “Free” concept usually have a lower Performance.

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 21 of 26

Figure 11: k-Analytics example showcasing metrics

This last example also showcases other characteristic of the node-based visualization, which
is the ability to visually discover shared relations in the annotations. In this case, both the
service itself and one of the outputs are related to the “MusicalEvent” concept. It can be
argued that an end-user would be able to find this fact by inspecting the RDF annotations,
but obviously this component gives a much more direct way of doing so with a simple
glimpse to the visualization.

3.4.4 K-Analytics Public Deployed Version
Currently, there is an online version of the k-Analytics second prototype running at the
following location: http://soa4all.isoco.net/kAnalytics, as a completely
decoupled module, even when it can be also accessed through the complete Analysis
Platform bundle.

Along with the online running prototype, there is a public description of the component and its
main characteristics, which can be accessed at:
http://soa4all.isoco.net/kAnalytics/about.

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 22 of 26

3.4.5 K-Analytics Limitations
Due to the visualization libraries used to create the draggable node-based graphs, and the
fact that the module is bundled into an applet, it is only guaranteed that this prototype version
will be accessible with the Windows operating system and a Java version higher than
1.6.0_20. It is expected that this limitation will be lifted as soon as the different JVMs running
on different platforms and browsers address the library elements in a uniform manner.

3.5 DSB Monitoring Console
The DSB monitoring console is used to display monitoring data produced by message
exchanges between service consumers and providers. As described in various deliverable of
WP1 and WP2, the DSB monitoring architecture is based on state of the art monitoring
specifications such as WS-Notification exchange data encapsulated within WSDM format.
Figure 12 gives a high level view of the DSB monitoring architecture.

Figure 12. High-Level DSB Monitoring Architecture

In Figure 12, the WSN Subscriber module is able to store data received from the DSB
monitoring layer into the ‘data-collector’ introduced in 2.1. The SOA4All DSB monitoring and
management console is able to retrieve and display technical monitoring data as shown in
Figure 13 or to display this monitoring data into the Analysis Platform interface.

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 23 of 26

Figure 13. Raw Message Exchanges List

3.6 Persistent Custom Dashboards
The Analysis Platform offers a view that can be customized to contain different widgets
according to user needs (see Section 3.5 in D2.3.2). The second prototype of the AP now
enables the storage of individual user configurations using the identifier of the user currently
logged-on. Upon subsequent connections of the same user, the appropriate monitoring
dashboard configuration will be automatically restored.

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 24 of 26

4. Installation & Setup
Each Analysis Platform instance is composed of 5 components:

• A local database (HSQL or MySQL) storing monitoring events

• A monitoring console (integrated into the dashboard), reading events form the DB in
“real-time” – in soa4all-monitoring.war

• A webapp to expose monitoring services through a REST API - in monitoring.war

• A webapp to set monitoring configuration parameters (DB connection, EVO
server/topic, RDF storage) – in monitoring-event-listener.war

• A webapp to expose the k-Analytics module – in kAnalytics.war

To install an Analysis platform instance, one has to deploy the local DB and the 4 WARs on a
Tomcat server).

For “clients” of monitoring data (console and REST API, reading data from the DB), the DB
connection parameters are set through a “connection.properties” file included in WAR files
before deployment (in an internal JAR called monitoring-bep-client).

For “servers” generating monitoring data (EVO and WSDM handlers writing data into the
DB), the DB connection parameters are set through the third webapp after deployment.

A detailed installation procedure for the entire Studio will be submitted by the Consortium at
a later date.

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 25 of 26

5. Conclusions
This document presented the software deliverable of the second prototype of the Analysis
Platform.

The main challenges addressed by the second prototype are related to scalability, integration
and improvements in user interaction. By better tackling data storage through long-term and
short-term storage strategies, we have achieved improved scalability and usability of
monitoring data for third parties.

We believe that in its current version, the Analysis Platform prototype provides a significant
set of functionalities that demonstrate how large scale monitoring data can be obtained and
used in the scenarios envisaged by SOA4All.

FP7 – 215219 – Prototype Documentation – D2.3.3 Service Monitoring and Management Tool Suite 2nd Prototype

© SOA4All consortium Page 26 of 26

6. References
[1] Pedrinaci, C., Domingue, J., and Medeiros, A. (2008) A Core Ontology for Business
Process Analysis, 5th European Semantic Web Conference 2008, Tenerife, Spain, eds.
Sean Bechhofer, Manfred Hauswirth, Joerg Hoffmann, Manolis Koubarakis

[2] RDF2Go. http://rdf2go.semweb4j.org

[3] RDFReactor. http://rdfreactor.semweb4j.org

[4] Statistical Data and Metadata eXchange (SDMX): http://sdmx.org/

[5] RDF vocabulary, specs and design patterns for publishing open linked statistics using
RDF. http://publishing-statistical-data.googlecode.com

[6] Draft URL Structure for Accessing SDMX Repository:
http://groups.google.com/group/publishing-statistical-data/web/draft-url-structure

[7] Time Ontology in OWL. http://www.w3.org/TR/owl-time/

 [9] OWLim. http://www.ontotext.com/owlim/

[10] Jersey. https://jersey.dev.java.net/

[11] JSR-311. https://jsr311.dev.java.net/nonav/releases/1.1/index.html

[12] Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., and Domingue, J.
(2010) iServe: a Linked Services Publishing Platform, Workshop: Ontology Repositories and
Editors for the Semantic Web at 7th Extended Semantic Web Conference

