

Project Number: 215219
Project Acronym: SOA4ALL
Project Title: Service Oriented Architectures for All
Instrument: Integrated Project
Thematic
Priority:

Information and Communication
Technologies

D2.7.2 - Recommender System
Second Prototype

Activity: Activity 1 - Fundamental & Integration activities

Work Package: WP2 - Service Deployment and Use

Due Date: 31/08/2010

Submission Date: 31/08/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: CEFRIEL

Revision: 1.0

Author(s): Daniele Dell’Aglio
Irene Celino
Dario Cerizza
Liwei Liu
Freddy Lecue

CEFRIEL
CEFRIEL
CEFRIEL
UNIMAN
UNIMAN

Reviewer(s): Sven Abels
Nikolay Mehandjiev

TIE
UNIMAN

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 2 of 29

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 13/07/2010 Document Initialized Irene Celino

0.2 20/07/2010 Revised table of contents Irene Celino

0.3 30/07/2010 Executive summary, introduction,
chapter 1 and chapter 2

Irene Celino and Daniele
Dell’Aglio

0.4 02/08/2010 Contribution to chapter 3 Irene Celino and Daniele
Dell’Aglio

0.5 03/08/2010 Contribution to chapter 2, references
and draft of conclusions

Irene Celino and Daniele
Dell’Aglio

0.6 04/08/2010 Contribution to Chapter 3 Liwei Liu and Freddy Lecue

0.7 04/08/2010 Contribution to Chapter 4 Daniele Dell’Aglio

0.8 05/08/2010 Contribution to Chapter 4 Freddy Lecue and Liwei Liu

0.9 06/08/2010 Finalization of Chapter 4 and check of
the whole document

Daniele Dell’Aglio and Irene
Celino

0.91 23/08/2010 Integration of comments from reviewer:
Sven Abels (TIE) Irene Celino

0.92 23/08/2010 Integration of comments from reviewer:
Nikolay Mehandjiev (UNIMAN) Irene Celino, Liwei Liu

1.0 31/08/2010 Finalization and delivery of the
document to the EC

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 3 of 29

Table of Contents

VERSION HISTORY ___ 2
TABLE OF CONTENTS___ 3
EXECUTIVE SUMMARY __ 7
1. INTRODUCTION __ 8

1.1 PURPOSE AND SCOPE __ 8
1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 8

2. OVERVIEW OF THE RECOMMENDER SYSTEM IN SOA4ALL _________________ 9
2.1 RELATION WITH THE SOA4ALL ARCHITECTURE _______________________ 9
2.2 RS API ___ 10

3. INSIDE THE RECOMMENDER SYSTEM __________________________________ 12
3.1 ADOPTED APPROACH __ 12
3.2 THE COLLABORATIVE FILTERING RS _______________________________ 13
3.3 THE SEMANTIC WEB ENABLED KNOWLEDGE-BASED RS ______________ 14

3.3.1 Linked Data-driven Recommendations_____________________________ 14
3.3.2 Our Semantic Web-enabled Recommender system___________________ 16

3.4 THE SEMANTIC CONTENT-BASED RS WITH CONTEXT CONSIDERATION _ 17
3.4.1 Background__ 17
3.4.2 Recommendation Generation____________________________________ 19

4. ARCHITECTURE, INSTALLATION AND CONFIGURATION___________________ 23
4.1 ARCHITECTURE OF THE WHOLE RECOMMENDER SYSTEM AND
INSTALLATION OF THE RS COMPONENT __________________________________ 23
4.2 INSTALLATION AND CONFIGURATION OF THE RS COMPONENT ________ 24
4.3 INSTALLATION AND CONFIGURATION OF THE COLLABORATIVE FILTERING
RECOMMENDER SYSTEM ___ 24
4.4 INSTALLATION AND CONFIGURATION OF THE SEMANTIC WEB ENABLED
KNOWLEDGE-BASED RECOMMENDER SYSTEM ____________________________ 24
4.5 INSTALLATION AND CONFIGURATION OF THE SEMANTIC CONTENT-BASED
RECOMMENDER SYSTEM ___ 25

5. CONCLUSIONS__ 26
REFERENCES___ 27
ANNEX A. LIST OF PAPERS __ 29

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 4 of 29

List of Figures
Figure 1 – Relation between the RS and the Consumption Platform.......................................9
Figure 2 – Components of the recommender system ..12
Figure 3 – Architecture of Collaborative Filtering and Semantic Web-enabled RS................14
Figure 4 – General architecture our Semantic Web-enabled Recommender System15
Figure 5 - Part of an ALE TBox...18
Figure 6 - Context Taxonomy...21
Figure 7 – Recommender System Architecture and its integration in SOA4All......................23
Figure 8 – Semantic Web enabled Recommender System architecture................................24

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 5 of 29

List of Tables
Table 2.1 – Batch-time RS API methods..10
Table 2.2 – Run-time RS API methods. ...10
Table 2.3 – The RecommendedService class returned by the RS API..................................11

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 6 of 29

Glossary of Acronyms
Acronym Definition

AP Analysis Platform

API Application Programming Interface

CP Consumption Platform

DL Description Logic

FOAF Friend Of A Friend

GUI Graphical User Interface

LarKC Large Knowledge Collider

LOD Linking Open Dataset

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

QoS Quality of Service

RDF Resource Description Framework

REST Representational State Transfer

RIF Rule Interchange Format

RS Recommender System

RSC Recommender System Component

SA-WSDL Semantic Annotations for WSDL

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SPICES Semantic Platform for the Interaction and Consumption of Enriched
Services

SWRL Semantic Web Rule Language

SWS Semantic Web Service

TF-IDF Term Frequency–Inverse Document Frequency

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 7 of 29

Executive summary
This document complements the release of the second Recommender System (RS)
prototype by accompanying the software prototype of the Recommender System, as the
result of the activities performed in the scope of T2.7. The software release contains the
source code, the installation and configuration facilities.

The second version of RS aims to support SOA4All users by providing suggestions (a.k.a.
recommendations) about services that they may be interested in. The RS is based on a set
of different algorithms and techniques that exploit the available information about services,
users and their behaviour within SOA4All. Details on those techniques are given in this
document.

The body of this document follows the project guidelines for prototype releases, thus it
reports the description of the component and the installation and configuration activities. This
deliverable provides also an overview of the approach adopted, the architecture defined and
the integration performed to provide a recommender system in SOA4All. More details on the
scientific contributions are also provided in the form of papers submitted/accepted to relevant
conferences.

The structure of the document follows the table of contents of the previous deliverable
D2.7.1, but each chapter has been revised to add the up-to-date information. In particular,
Chapter 2 refines the role of the RS in the general SOA4All architecture and details the
updated API; Chapter 3 refines the overall approach by adding the new algorithms and
techniques added in the second prototype; Chapter 4 integrates the previous installation
instructions by explaining the differences and the novelties introduced in the second
prototype.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 8 of 29

1. Introduction
1.1 Purpose and Scope
This deliverable illustrates the Recommender System (RS) integrated within the SOA4All
Consumption Platform. This system aims to improve the user experience by providing users
with suggestions about relevant services that may be of their interest. In order to provide
recommendations, the RS analyzes different kinds of data: service descriptions, user profiles
and user behaviour in interacting with the platform.

M30 release constitutes the final release of the RS component and extends the first version
released at M18 by adding new algorithms to compute recommendations. In particular, we
explored the possibilities to leverage the semantic descriptions of services and users in order
to improve the recommendations.

The goal of this deliverable is to complement the Recommender System software prototype.

1.2 Structure of the document
In Chapter 2 we position the RS within the SOA4All architecture (Section 2.1) and we detail
the RS API through which the SOA4All Consumption Platform can invoke the RS
functionalities (Section 2.2).

Chapter 3 is devoted to explain how the RS works. In Section 3.1 we illustrate the general
approach and why we decided to explore more than one algorithm/technique to compute
recommendations; the following Sections 3.2-3.4 contain a description of each of the
employed approaches, in order to let the reader understand the different ways we compute
recommendations.

Chapter 4 presents the instructions to install and configure the RS within the SOA4All
Consumption Platform; this is because the developed code is released under an open source
licence to let people outside the SOA4All consortium experiment with our scientific and
technical results.

Finally, Chapter 5 reports some conclusions and Annex A lists a set of scientific papers
accepted or under review at different conferences that prove the value of our work.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 9 of 29

2. Overview of the Recommender System in SOA4All
The objective of this chapter is to illustrate the role of the Recommender System in SOA4All.
In particular, we describe the relation between the Recommender System and the other main
components of the Consumption Platform.

2.1 Relation with the SOA4All Architecture
Interacting with services in a service world as the one envisaged by SOA4All requires
implementing several mechanisms in order to enhance the user experience within the vast
number of services expected. In particular, enabling ways to help end-users to interact with
the most suitable services for them is a challenge, for while it is obviously an advantage to
have many services to choose from, there is a need to enable methods to find the most
appropriate ones. Recommendations will be one of these mechanisms that will permit users
to be aware of items (i.e. services, specifically for SOA4All) that can be helpful for them.

The Recommender System is the key component responsible for providing useful
recommendations for users. These recommendations actually take place in the Consumption
Platform, thus there is a strong relation of the RS component with that platform, which will
query the RS for relevant recommendations.

It is worth noting that the recommendations will be useful not only for helping users to find
relevant services by itself, but also because these recommendations take place in an active
mode, and this is expected to improve the user experience within the platform, hence making
them more bound to engage within SOA4All.

It is also important to point out that the relation of the RS with the Consumption Platform is
not only mono-directional (the outcomes of the RS benefiting the platform), but it is bi-
directional: the RS needs to know the interactions of users within the platform and the basic
description of services and users available in the platform and in other SOA4All components.

SPICES (Consumption Platform)

Recommender SystemRecommender System

Current User
Current Service

R
ecom

m
endations

U
se

r B
eh

av
io

ur

Lo
gs

 (R
D

F)

Analysis Platform

Service Availability
Service Response Time

Semantic Spaces

LOD Cloud
iServe

LOD Cloud
iServe

Service Descriptions
Users Descriptions

Figure 1 – Relation between the RS and the Consumption Platform

Figure 1 depicts the relation between the Recommender System and the other SOA4All
components.

The RS receives as inputs a number of information about services (their semantic description
from iServe, the availability/response time statistics from the Analysis Platform) and about
users (some profile data from the Consumption Platform itself, the logs of users’ interactions
with SOA4All from the Semantic Spaces and some additional data from the “Linking Open

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 10 of 29

Data dataset cloud" or simply “LOD Cloud”1). Based on those inputs, the RS is able to
compute recommendations, which are stored in some internal dedicated data structures;
whenever some more information is added (e.g. additional user logs), the RS processes the
new input and updates the recommendations.

The RS provides recommendations to the Consumption Platform whenever requested;
SPICES passes the user id and/or the service id to the RS, which accordingly returns a list of
suggested services together with a score representing the “confidence” of each
recommendation and, in the case of Semantic Web-based suggestions, an explanation of the
recommended service.

2.2 RS API
The RS exposes its functionalities through a well-defined API, which hides the complexity
and the different algorithms adoption inside the component. The API is constituted by a
batch-time part and by a run-time part.

The batch-time API refers to the operations of the RS performed prior to the actual
proposition of service recommendations to the user. The batch-time interface is included in
the it.cefriel.swa.rs.api.RecommenderSystemBatchTime class; its main methods
are listed in Table 2.1.

public abstract void start();

public abstract void reset();

public abstract Date getLastLogEntryDateAdded();

public abstract void addLogEntrySet(URI logEntrySetUri, Date creationDate,
String creator, Set<LogEntry> logEntrySet);

Table 2.1 – Batch-time RS API methods.

Apart from the start() and reset() methods, which respectively starts the batch time of
the RS and resets all the tables, the addLogEntrySet() method allows to insert a log entry
set into the RS to let it compute new recommendations, while the
getLastLogEntryDateAdded() method returns the date on which the last log entry set
was inserted (in order to retrieve from the Semantic Spaces only the new log entries, when
re-computing the recommendations).

The run-time API refers to the functionalities offered by the RS to retrieve service
recommendations; the Consumption Platform invokes the RS to get and then display the
recommendations to the user. The run-time methods, listed in Table 2.2, are included in the
it.cefriel.swa.rs.api.RecommenderSystemRunTime class:

List<RecommendedService> getRecommendationByService(URI service, int num);

List<RecommendedService> getRecommendationByUser(URI user, int num);

List<RecommendedService> getRecommendationByUserAndService(URI user, URI
service, int num);

Table 2.2 – Run-time RS API methods.

1 Cf. http://richard.cyganiak.de/2007/10/lod/.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 11 of 29

The three methods above hide the different algorithms (described in the following Chapter 3)
behind the same interface. There are three different ways the Consumption Platform can ask
the RS for recommendations:

• when a user is not logged in but he/she is analyzing a specific service, the RS can
provide recommendations only on the basis of the description of the current service; in this
case the getRecommendationByService() method is invoked;

• when a user is logged in but he/she is not analyzing any specific service, the RS can
provide recommendations only on the basis of the profile of the current user; in this case
the getRecommendationByUser() method is invoked;

• when a user is logged in and he/she is analyzing a specific service, the RS can provide
recommendations on the basis of both the description of the current service and the profile
of the current user; in this case the getRecommendationByUserAndService() method
is invoked.

Finally, to complete the overview of the RS API, we describe the characteristics of the
recommendations returned by the RS run-time under the form of objects belonging to the
it.cefriel.swa.rs.api.RecommendedService class in Table 2.3.

public class RecommendedService extends WeightedObject<URI, Float>

{

 // fields inherited from WeightedObject

 private URI object;

 private Float_strength;

 // own fields

 private String proof;

}

Table 2.3 – The RecommendedService class returned by the RS API.

A RecommendedService object points to the URI of the service to be recommended, gives
a float number which represents the score, the “utility value” of the recommendation and, in
case of knowledge-based recommendations, provides also a proof, i.e. a textual explanation
of the reason why that service is suggested to the user.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 12 of 29

3. Inside the Recommender System
The Recommender System (RS) in SOA4All aims to provide users with recommendations
about services (the recommended items) that could be of their interested. This functionality
acts as an additional feature to support users in discovering services that meet their needs.

This chapter describes the RS in SOA4All from a functional perspective, starting with the
general approach adopted, the various algorithm and techniques adopted and the different
recommender implemented and integrated within the RS component.

3.1 Adopted approach
Recommender systems are becoming more and more commonly used to help users
serendipitously find items they were (implicitly or explicitly) looking for. From a user's point of
view, recommendations are seen as suggestions that are proactively provided by the system,
in a timely fashion. In order to be effectively useful, the recommendations should be
accurate, as to “foresee” a user's needs.

Recommender systems are usually classified by the recommendation technique they use
[16]:

• Collaborative Filtering Recommender Systems [17]: given a user, they find users with
similar behavior to predict items of interest;

• Knowledge-based Recommender Systems [5]: they build a knowledge base with a
model of the users and/or items in order to apply inference techniques and find matches
between users' need and items' features;

• Content-based Recommender Systems [18]: they usually employ a classifier to predict
items' similarity.

Additionally, another category of systems, the Hybrid Recommender Systems [16], tries to
join the advantages of two or more techniques described above.

The approach we followed in the SOA4All project consists in building a Hybrid
Recommender System (see Figure 2), composed by a number of different recommenders,
which explored the various possibilities enabled by the distinct algorithms and techniques.

Figure 2 – Components of the recommender system

In Sections 3.2-3.3-3.4, we therefore illustrate the individual recommenders we built on top of

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 13 of 29

the available information provided by SOA4All (service descriptions, user profiles, execution
logs, etc.): respectively the Collaborative Filtering RS, the Semantic Web enabled and the
Semantic Content Based RS. For each recommender, we explain the algorithm and the
employed information and we illustrates the benefits brought to the Recommender System in
the whole.

In the following of this section, we briefly explain the approach followed to integrate them into
a single Hybrid Recommender System.

As detailed in Section 2.2, the RS component as a whole exposes a well-defined API to the
rest of SOA4All components. Such an API was designed to provide the recommendation
functionalities transparently with respect to the specific algorithm adopted. This is the reason
why the first prototype of the RS component, illustrated in D2.7.1 [1], included a collaborative
filtering approach, while the second prototype combines three distinct techniques, providing
however the same consistent API.

As such, the Hybrid Recommender System built on top of those distinct recommenders
“hides” its complexity to the other components. In this way, we were able to combine the
strength points of each recommender in order to improve the overall behaviour of the RS
component.

For example, while the Collaborative Filtering Recommender (detailed in D2.7.1 [1] and
summarized in Section 3.2) is able to implement all the three methods listed in Table 2.2, the
Semantic Web-enabled Recommender (illustrated in Section 3.3) leverages on the user
profiles and therefore can provide a valuable contribution to the user-based methods. The
approach presented in Section 3.4 is able to implement the first method of Table 2.2, namely
getRecommendationByService, focusing then on context and service description to
recommend services. Similarly, the recommendation “proof” (as described in Table 2.3) is
provided only by the Semantic Web-enabled Recommender, since it is the only technique
able to grant such explanation of its suggestions.

3.2 The Collaborative Filtering RS
The first algorithm that we employed in the RS component follows a Collaborative Filtering
approach. The details about this technique are fully described in deliverable D2.7.1 [1] and in
the paper [2], to which the reader should refer for further information.

With regards to Figure 3, the collaborative filtering algorithm leverages the User Behaviour
Analyzer which processes the user logs stored in the Semantic Spaces every time a SOA4All
user interacts with the platform.

A thorough evaluation of the Collaborative Filtering Recommender System component was
also performed and the results are illustrated in [3] and [4].

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 14 of 29

SPICES

Recommender System
Recommender Engine

(Run-Time)

Current User Current Service
R

ecom
m

endations

User Behaviour Analyzer
(Batch-Time)

Recommendation
ManagerLogger

User Behaviour Logs (RDF)

Analysis Platform

Service Availability
and Response Time

Completed at M24

Semantic Web-enabled
Recommender

Collaborative-Filtering
Recommender

Ranker

Completed at M18

Completed at M30

LOD Cloud

Semantic Space Log
Entries Importer

Semantic Web-enabled
User/Service Profiler

(Batch-Time)

Sem
antic Spaces

iServe

Service Descriptions
Users Descriptions

Figure 3 – Architecture of Collaborative Filtering and Semantic Web-enabled RS

3.3 The Semantic Web enabled Knowledge-based RS
As introduced above, within the second version of the Recommender System component
includes also a different recommender based on a knowledge-oriented approach that
employs Semantic Web technologies.

With regards to Figure 3, this second recommender derives semantic descriptions of users
and service by interacting with a number of components, both internal to SOA4All (the
Consumption Platform, iServe, the Analysis Platform) and external to it (like the open linked
data Web, namely the LOD Cloud).

In the following, we explain the basic ideas and we give some details about the
implementation of such a component.

3.3.1 Linked Data-driven Recommendations
Knowledge-based recommender systems [5] are systems that select items of interest for
users, by analyzing items' features (and optionally users' profiles) stored in a knowledge-
base. The advantages of this kind of recommender systems are mainly: (1) minimal amount
of users: unlike collaborative recommender systems, this kind of systems does not require a
huge amount of users to compute recommendations; (2) no cold start: when a new user/item
is added with its description, the system does not suffer of the cold start problem: it is
immediately able to compute recommendations for the new user/item; (3) proof-generation
for the recommendations: it is possible to explain the motivation behind an item proposal.

One of the main problems of this category of recommender systems is that the knowledge
base has to be created and maintained. The creation requires several steps: the domain
should be modelled; each user and item should be described according to the model; a set of
policies should be defined to compute recommendations. The knowledge base also requires
to be maintained over time: the domain could change, requiring the modification of the
model; the recommendation policies could be revised and so on. Usually these operations
require a lot of effort, with a heavy human intervention.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 15 of 29

We believe that the Web of Data should be considered as an interesting source of
information to be used by Knowledge-based Recommender Systems. The LOD Cloud is a
huge public source where information can be found to describe several kinds of items, users
and domains. Accessing the Web of Data and exploiting Semantic Web technologies can
allow for the partial automation of the knowledge base creation and maintenance, simplifying
the modelling and profiling of items and users. Furthermore, the computation tasks to
generate recommendations, operating on the knowledge base, can be performed and
enhanced by the use of Semantic Web tools, such as reasoners or rule-based systems,
exploiting the potentialities of standard languages like SPARQL, RIF and so on.

In Figure 4, we represent our concept of Semantic Web-enabled Knowledge-based
Recommender System.

Recommendation
Engine

Model
of users
and
items

Recommendations

Users
Items

Semantic Web‐enabled Recommender System

Private
data

Web Public data

User Profiler

Linker
Item Profiler

Model Builder

Figure 4 – General architecture our Semantic Web-enabled Recommender System

The Model Builder is the sub-system devoted to build the Recommender System knowledge
base by reconstructing a description of items and users; it takes information both from the
application “private data” (e.g. items list with some characteristics, users identifiers) and the
public Web, in particular the Web of Data.

Within the Model Builder, an Item Profiler component is included to get additional information
to describe the items of interest; for example, it tries to retrieve classifications or
categorizations from the Web of Data that can enrich the available private data. In order to
do this, it queries Semantic Web search engines (like Sindice [6] or Watson [7]) and look for
additional data from the LOD Cloud, for example from DBpedia [8].

Similarly, a User Profiler component enriches the users profiles by retrieving additional
information about their interests and preferences, both from the Social Web (e.g. from social
networks) and from the LOD Cloud, in particular by getting FOAF descriptions [9].

Finally, after the reconstruction of users and items profiles, a Linker component finds
information about how users (and their interests) are related to items (and their features). To
do so, it queries the LOD Cloud by looking for “semantic paths” that connect the data
included in the user profiles to the data describing the items, i.e. it tries to put in relation the
outputs of the two Profilers; this is possible because the Web of Data – like the Web of
Documents – has a graph structure that can be traversed to find connections.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 16 of 29

During the course of the SOA4all prototype, the query connectors to the following Semantic
Web SPARQL endpoints or search engines have been setup: Sindice2, DBpedia3, OpenLink
endpoint4 and FactForge endpoint5.

But Semantic Web technologies can be employed also to compute recommendations. This is
why also the final component in Figure 4 – the Recommendation Engine – leverages the
potentialities of the Semantic Web. Operating on the knowledge base created by the Model
Builder, it computes all the possible paths connecting a user to an item, and it “evaluates”
those paths to give them a utility value; the assumption is that, if a user profile can be
connected to an item description by a set of semantic links, this means that that item is a
good candidate for recommendation. The Recommendation Engine evaluation is aimed to
assess the “meaningfulness” of such connections; by the employment of Semantic Web tools
like SPARQL processors [10] or rule systems using SWRL [11] or RIF [12], it verifies a set of
constraints within the computed path; e.g. it looks for semantic links expressing interest,
liking or importance (e.g. the user likes a topic which is related to the item) or, on the
contrary, for expressions of disapproval or distaste (e.g. the user dislikes a subject to which
the item refers).

3.3.2 Our Semantic Web-enabled Recommender system
On the basis of the general architecture of the Semantic Web-enabled Recommender
System presented in the previous section, we developed a prototype of the above concept to
recommend Web services (the items of interest) to SOA4All developers (final users).

The application was developed over the LarKC platform [13][14]: this means that we
designed our recommender system as a LarKC “workflow”, i.e. a set of software plug-ins with
Semantic Web capabilities, executed in a certain order and passing data among them. This
let us reuse existing plug-ins and realize modular code.

Regarding the users, our prototype receives as input a user identifier and then retrieves his
interests from the Web. Since in the SOA4All environment a user is identified by his OpenID,
our system looks for sources pointing to such identifier, e.g. an available FOAF profile [9].
When such a profile is retrieved, our system tries to extract further information from the Web,
in order to collect useful hints to identify users' preferences. It is worth noting that, since the
Web sources can employ different schemata to describe the user, we employed ontology
mappings to re-conduct the collected data into a common format, using FOAF and the
Weighted Interest ontology6.

A similar approach was followed to profile the services, in order to retrieve useful information
for the recommendation computation (service categorization, information about QoS, etc.)
and to build a uniform description of services. Starting from the semantic description of
services retrieved from iServe [15], the service profiler analyzes its categorizations and tries
to find further links to linked data resources, e.g. to DBpedia categories and topics.

Finally, elaborating the collected knowledge, our system looks for paths between users and
services and the Recommendation Engine component evaluates them by attributing a “utility
value” based on their content. The found path will also serve as “proof”/explanation of the

2 Cf. http://sindice.com/.
3 Cf. http://dbpedia.org/.
4 Cf. http://lod.openlinksw.com/.
5 Cf. http://ldsr.ontotext.com/.
6 Cf. http://xmlns.notu.be/wi/.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 17 of 29

recommendation: when the suggestion is displayed to the user, he can visualize such an
explanation to understand why he got the specific service suggestion. This in turn enables a
direct evaluation of the Recommender System results, since the user can explicitly say if he
likes/dislikes the recommendation and he can complement/improve his profile or the service
description, in order to let the system produce more effective and meaningful suggestions.

The interest reader can refer to the papers cited in Annex A for further details.

3.4 The Semantic Content-based RS with Context Consideration
Currently, web service marketplaces and search portals such as XMLMethods, BindingPoint,
and WebServiceList, are immature and do not provide the wealth of user feedback, reviews
and rankings which characterize their mature counterparts focused on products (i.e.
PriceRunner, Amazon) or even conventional services (i.e. TripAdvisor, epinions). This lack of
user feedback is also known as the “cold-start problem”. Our approach aims at proposing a
content-based recommendation technique using semantic similarity measures to solve this
problem. In more details, we use semantic content based approach based on semantic
similarity and context based information.

3.4.1 Background
3.4.1.1 Content-based Approach

This approach is based on one of the classical approach in recommender system area,
which is content-based approach. Generally, content-based approach recommends those
items which are similar to the ones the user preferred in the past. To do this, it describes the
items that may be recommended, and creates a profile of the user that describes the types of
items the user likes, and then compares items to the user profile to determine what to
recommend [18]. The item can be described through the same set of attributes, or by some
attributes with a set of restricted values and some free-text fields when the domain is semi-
structured, or in a text-based area, by using TF-IDF etc techniques [18]. On the other hand,
the user can be modelled either through the description of themselves, or by collecting user’s
view history.

Here, the “item description” will be semantic web service description, while user model is
built based on the user’s view history.

3.4.1.2 Semantic Web Service Description

As semantic specifications of Web services are used in our content-based RS. Here we
review i) service descriptions, and ii) a non standard DL (Description Logic) reasoning
techniques we used to infer the commonality and differences in service descriptions.

3.4.1.2.1 Semantic Web Services Descriptions.

The formal model required to represent semantics of a web service s is defined as a set of
semantic attributes:

– its functional category ()F s ;

– its functional parameters i.e., inputs ()In s and outputs ()Out s ;

– its requirements i.e., preconditions ()P s and effects ()sE ;

All are provided by a domain ontology T through semantic annotations. The particular
ontology T is based on the DL ALE [19], mainly defined by T its Terminological Box (or
TBox i.e., intentional knowledge) in DL systems. In the following, the TBox T i) is used to
annotate service descriptions, and ii) supports inference on these descriptions by means of

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 18 of 29

DL reasoning. Fig. 3 shows a fragment of an example TBox T .

According to this model, semantic web services require input parameters to be processed
and preconditions to be satisfied and return some output parameters with some effects. In
addition a (meta) semantic description related to its functional category is attached to each
service, enabling to reason on its functionality and disambiguating services with similar
functional parameters. From a semantic web service implementation view, the Minimal
Service Model (http://cms-wg.sti2.org/TR/d12/v0.1/) is used to describe them.

Figure 5 - Part of an ALE TBox

3.4.1.2.2 Common and Missing Description

Given the definition of semantic web service, RSs may suggest services, which have been
consumed by similar end-users, based on their semantic similarity e.g., in terms of their
functional parameters, categories and requirements. In this direction, the semantic
similarities between two semantic descriptions isd , jsd (referring to any attribute of service
descriptions), encoded using the same TBox T , can be judged using a matchmaking
function. This function enables finding some (basic) levels of semantic compatibilities
[30][25][29] (i.e., Exact, PlugIn, Subsume, Intersection) and incompatibilities (i.e., Disjoint)
among services, based on subsumption relationships.

Computing such basic semantic similarities can be completed with more detailed information
i.e., the DL concept descriptions: Missing and Common Descriptions (first defined as the
Extra and Common Descriptions in [24].

On the one hand the computation of Missing Descriptions is done by exploiting a non-
standard DL reasoning: the difference or subtraction operation [20] for comparing ALE DL-
based descriptions, thus obtaining a compact representation of the metric:

(i) the Missing Description \j isd sd

\ min{ | }j i i j id
sd sd E E sd sd sd≡

°
ó ó . (1)

which refers, with respect to the subdescription ordering d° [23], to information required by
isd to be semantically closer to jsd . This defines all information which is a part of the

description jsd but not a part of the description isd . In case i jT sd sd‘ õ , (1) refers to
information which is required by isd to be similar jsd . The Missing Description (1) is not only
necessary to explain how two descriptions are different, but also why they are different and

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 19 of 29

how to make them (semantically) closer and even similar.

On the other hand, the Common Description of isd and jsd is defined as:

(ii) their Least Common Subsumer [22] lcs as a DL concept description i.e.,

(,)

{ | : }
i j

i j i j

lcs sd sd

F sd F sd F F sd F sd F F F′ ′ ′ ′∧ ∀ ∧ ⇒ô ô ô ô ô
. (2)

which refers to information shared by isd and jsd .

3.4.1.3 Context Factor

Context pays an important role in making decisions, and the recommendation covering
context is more precise and more personalized than recommendation without context.
Researchers hold different opinions about the definition of context. In this part, we are
introducing the definition provided by Mostefaoui and Hirsbrunner [28]. They propose a
formal definition of web service context based on Dey’s context definition. Context is ‘any
information that can be used to define the situation of an entity in a service-oriented
environment’. And the entity here means ‘a person, a sensor, a computing device, a service
or any other object that can be considered relevant to the interaction between a user and a
service’.

Maamar et al [27] classify context into three types, user context, web service context and
resource context. User context is about user’s location, previous activities and preferences.
Web service context is about locations of execution, times of execution, and constraints
during execution, by aggregating of its simultaneous participants in composite services.
Resource context is referred as resource’s current status, periods of non-availability, and
capacities of meeting the execution requirements of web services. These three types related
to each other [27].

In this work, we focus on web service context, since user’s selection is decided by web
services functions, which connect to the execution environment tightly. Although different
web services can have different contexts, there are still some general ones which can cover
the overall contexts. Here, we mainly focus on three contexts. They are: intended use
(directly use; for composition), use frequency (high; median; low) and type of use (leisure;
business/work; others). These three can affect the user’s selection. For example, usage
frequency, if it is used by a company, the handling data is potentially much larger than it used
by an individual. Thus, the requirements on execution time and capacity are higher. Intended
use is another context dimension. Directly use and used for composition may have different
levels of requirements on availability.

3.4.2 Recommendation Generation
We extend Content-based approach to semantic content-based by introducing semantic
similarity of web services. And context information is also modeled within our approach
through measuring the similarity of contexts.

3.4.2.1 Semantic Similarity

One generic measure is considered for evaluating semantic similarity between services
descriptions: their Common Description rate.

Definition 1 (Common Description rate):

Given two ALE semantic description isd and jsd , the Common Description rate (0,1]cdq ∈
provides one possible measure for the degree of similarity between isd and jsd . This rate is

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 20 of 29

computed using:

(,)
(,)

\ (,)
i j

cd i j
j i i j

lcs sd sd
q sd sd

sd sd lcs sd sd
=

+
. (3)

This rate estimates the proportion of description in isd and jsd which are in common. The
higher the better is the similarity. The expressions in between | refer to the size of
ALE concept descriptions ([23] p.17) i.e., T , ⊥ , A , A¬ and r∃ is 1; C D C D+ó ; .r C∀ and

.r C∃ is 1 C+ . For instance |ProductData| is 22 with respect to Fig.3. The common description
rate is pre-computed and provided through DL reasoning by [24].

Given the above quality criteria, the semantic similarity of two semantic descriptions
isd and jsd can be defined by equation (3) where isd and jsd can be respectively any semantic

attribute of service descriptions i.e., ()iIn s and ()jIn s ; ()iOut s and ()jOut s ; 1()sE and 2()sE ; ()iP s and
()jP s ; ()iF s and ()jF s of services 1s and 2s . By considering this quality model, we aim at

evaluating the level of semantic similarity between two different services descriptions.

In case some semantic attributes of services are defined by multiple semantic descriptions,
the value of each quality criterion is retrieved by computing their average. In more complex
cases, where the number of semantic descriptions are different between attributes of
services, only comparable (in term of subsumption) pairwise of descriptions are considered.

The quality model (3) for semantic similarity can be generalized to any pair of services 1s and
2s rather than to any pair of semantic descriptions (or services attributes) as following:

{ , , , , }
(,) ((), ())i j l i j

l F In Out P
q s s q l s l s

∈

×∑ ω
E

. (4)

Where [0,1]l ∈ω is the weight assigned to the thl service description attribute and

{ , , , , } 1ll F In Out P∈
=∑ ωE . In this way preferences on quality one some desired service attribute can be

done by simply adjusting lω e.g., the functional category of a service could be weighted
higher. Finally, the results returned by (4) is a pair of values in (0,1] (0,1]× referring to the
common description rate between service 1s and 2s .

The quality of semantic similarity between services can be then compared by analysing q i.e.,
their cdq elements. For instance (,) (,)i j i kq s s q s s> , if the common description rate of (,)i jq s s is
higher than (,)i kq s s .

3.4.2.2 Context Similarity

3.4.2.2.1 Context Modeling

Besides the semantic-based functional description of web services, context information is
required. Several contexts are given as mentioned before. When a user downloads a web
service, he will be asked to choose his situation under these contexts provided. Context
information then is modeled as a hierarchy tree which can help aggregating ratings in the
sparse situation. When the data are very sparse under one context, we assume that the
prediction is more accurate by using the data under similar contexts than using those under
remote contexts. This assumption is detailed explained and proved in [26]. The hierarchy
tree of the contexts is modeled as below:

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 21 of 29

Figure 6 - Context Taxonomy

In order to find similar contexts, the similarity between two contexts needs to be computed.
Two situations are covered in the following. The first one is within one context, the similarity
between any context dimensions, the other one is cross contexts, the similarity between any
two context cells. In this work, a context dimension is one of the contexts, such as usage
frequency or intended use. A context cell includes the values cross context dimensions, for
example, High Usage Frequency, Used for Composition, and work is the usage purpose,
these three values together is seen as a context cell.

3.4.2.2.2 Single Context Dimension

In general, contexts are classified into three types, scale, ordinal and categorical in [26][21].
Different types have their own similarity computation ways. As in our work, only categorical
context type is involved, thus we use semantic context similarity here.

First of all, context needs to be modeled in a DL ontology. The similarity between two context
values under each context dimension C will be computed by measuring the semantic
similarity from an active context value jc to a substitute context value jc ′ using their Common
Description rate, as described above, using equation (3). It also can be simplified as:

| (,c) |
q(c ,c) :

| | | (,c) |
j j

j j

j j

lcs c

H lcs c

′
′ =

′+

(5)

wherein the Extra Description H is a solution of the Concept Abduction problem , , ,L C D O , as
\j isd sd in equation (3). Once the semantic similarity is measured, the similarity of categorical

context types converts to numerical data, formula (5) can be used for predicting ratings of
active categorical context.

3.4.2.2.3 Cross Context Dimension

After getting the similarities between any two context values within one context, then the
similarities between any two context cells can be computed.

The distance between two context cells E and E′ can be computed through Euclidean
Distance as below:

2

1

1(,) (,)
N

j j
i

sim E E q c c
N =

′′ = ∑ (6)

N is the number of values in the context cell, while i is the context dimension, and

Context

Usage Frequency Intended Use Type of Use

High Medium Low

for Composition Directly Use

Leisure Work Other

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 22 of 29

(,)j jq c c ′ is the similarity between two context values jc and jc ′ under context dimension i .

3.4.2.3 Proposed Approach

In the case of insufficient user feedback, semantic content-based approach will be applied to
solve this ‘cold-start’ problem (when there is lack of rating data, recommendation cannot be
made before a considerable history has been collected). When the user is clicking around to
search for specific web services, he will be asked for the intended web service execution
environment, which is the context information we presented above. Then the system collects
his viewing history, and recommends him the services under the context he has provided. If
there are very few services under that context, then the web services under its similar
context will be recommended. Detailed are described in the following.

Stage 1. Semantic Content-based Approach. Starting from the cold start problem, our content-
based approach is considered based on the semantic representation of web services. First of
all, services are described along their semantic attributes, as mentioned in Section 3.4.1.2
i.e., at functional level. Then the similarity of any two semantic described web services can
be computed through formulas (3) and (4), and the detailed process is described in Section
3.4.2.1. When the user clicks to view one service, he will be asked to input his context
information by selecting from the given context values. Then the top N of its most similar
services under this specific context can be listed.

Based on this initial stage recommendation, we then collect users’ interactions both implicitly
and explicitly. One of the advantages of this approach is the semantic similarity between one
web service and other services are computed offline, which can save lots of time for the real-
time recommendation.

Stage 2. Context Segments. With the assumption that the prediction for data under a specific
context is more accurate by using its similar context than remote context, our first choice is
do prediction under its own context. We first group data under each context cell. And then
when the user provides his context information, we match it with our context cell, and then
compute the similarity of web services under this context cell. If there are not enough web
services, then we use data under the similar context. The similarity between context cells
E and E′ are computed through equations (5) and (6). Then the services similarity will be
computed as:

{ , , , , }
(,) (,) ((), ())i j l i j

l F In Out P
q s s sim E E q l s l s

∈

′ × ×∑ ω
E

 (7)

To initialize context usage, we need to some knowledge to suggest which context cells the
web services belong to. These tabs can be changed with viewing the users’ histories.

Stage 3: Recommendation Generation. The recommendation generated based on the
assumption that the most similar web services will get more chance to be viewed or
downloaded. Top N services with highest similarities are recommending to the user. All
users’ download histories are stored with their context for further grouping web services into
their context cells.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 23 of 29

4. Architecture, Installation and Configuration
This section illustrates how to install and configure the RS Component. Since the software is
composed by a set of subsystems, each with its peculiarities and requirements, we firstly
explain the general software architecture and the installation of the RS Component within the
Consumption Platform and then we give the instructions to complement them with the
specific recommenders explained in Chapter 3.

It is worth noting that we do not provide any test dataset together with the software. The data
needed to use this component shall be provided or generated in the global SOA4All system;
for example, the logs needed by the collaborative filtering approach are automatically created
by the interaction of the users with the SOA4All Consumption Platform.

4.1 Architecture of the whole Recommender System and
installation of the RS Component
In Section 3.1 we explained that our Recommender System is a hybrid recommender system
with a set of recommenders orchestrated by an additional component that integrates the
results of each of them.

Figure 7 – Recommender System Architecture and its integration in SOA4All

In Figure 7 we represent the Recommender System by an architectural and deployment
point of view: each recommendation technique was exposed as a REST service. Each
service provides an interface with methods similar to the RS API described in Section 2.2 (it
means that it’s possible to invoke the services for both batch time and run time tasks).

The orchestration of the recommenders is done by the Recommender System Component
(RSC), a library used to supply the Recommender System features hiding the complexity of
the inner components.

The figure shows also how the Recommender System works in SOA4All: while the three
REST services are exposed on remote locations, the RSC library is used internally by the
Consumption Platform in order to interact with the Recommender System, e.g. asking for
recommendations.

The instructions included in this section are also available on line on the project wiki at
http://soa4all-wp1.sti2.at/index.php/RecommenderSystem; that page will be updated
whenever needed, thus the interested reader is suggested to take the wiki as reference for
installation and configuration of the RS Component.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 24 of 29

4.2 Installation and configuration of the RS Component
The RS Component consists of a library to be used by the Consumption Platform. The jar file
is available on Nexus repository at:
http://coconut.tie.nl:8080/nexus-webapp-1.3.1/content/repositories/3rdparty/it/cefriel/swa/rs/

It also has a configuration file, to be filled with the correct locations of the internal local and
remote components as explained above and depicted in Figure 7.

Requirements for a complete installation of the RS Component are:

• Java JDK 1.5 or greater.

• MySQL Server 5.1 or greater. For installation instruction, see
http://dev.mysql.com/doc/refman/5.1/en/installing.html.

4.3 Installation and configuration of the Collaborative Filtering
Recommender System
The installation instructions were already available in deliverable D2.7.1 [1].

4.4 Installation and configuration of the Semantic Web enabled
Knowledge-based Recommender System
As reported above, the Semantic Web enabled Recommender System is built over the
LarKC platform [13][14], an application able to run sequences of plug-ins, named workflows;
a plug-in is a software component that can execute some tasks.

Figure 8 – Semantic Web enabled Recommender System architecture

In order to install the Semantic Web enabled Recommender System the following
components are required (see Figure 8):

• the LarKC platform v1.0, available at http://sourceforge.net/projects/larkc/. The
installation instruction are available in the same Web site [14];

• the plug-ins required in the workflows that compute the recommendations are available at

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 25 of 29

a dedicated SourceForge project https://sourceforge.net/projects/larkc-answers/. The
instruction to deploy them are available in the LarKC platform documentation [14];

• the REST interface of the Semantic Web enabled Recommender System is available at
the same dedicated SourceForge project https://sourceforge.net/projects/larkc-answers/
(with the instruction for the configuration). The service is a Java web application and it
should be deployed in a servlet container like Apache Tomcat.

Please note that in order to work this recommender system requires an available Web
connection to retrieve all the required data: the users/services from the Semantic Spaces,
the services’ descriptions from iServe and the Analysis Platform and so on.

4.5 Installation and configuration of the Semantic Content-based
Recommender System
The code of the Semantic Content-based Recommender System is on the SOA4All project
SVN versioning system at https://svn.sti2.at/soa4all/trunk/soa4all-studio-decoupled/content-
based-service-recommendation.

In order to interact with the Semantic Content-based Recommender System the following
components are required:

• a pool of (SA-WSDL) semantic-based services (based on the Minimal Service Model -
http://cms-wg.sti2.org/TR/d12/v0.1/) are stored in a RDF repository [31]. Their
descriptions need to be based on an ALE TBox in order to evaluate semantic similarity
between services.

• a Semantic Reasoning module (DL reasoner Fact++ [32]) responsible for specific DL
inferences such as subsumption (e.g., matching quality), difference (Common description
rate).

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 26 of 29

5. Conclusions
This document illustrated the RS component developed for the SOA4All Studio. It reported
about the architecture and API of the component and its relation with other SOA4All
components, it detailed the different algorithms and techniques employed and the instruction
on how to use the component.

The component is integrated within the SOA4All Studio and leverages the information
provided by the other SOA4All components, like service semantic descriptions, user profiles,
logs of user interactions with the platform and of service execution, service monitoring
information, etc. The component also makes use of external linked data sources to
complement the internal data with further details to improve recommendations.

The component offers its functionalities to the SOA4All Studio via a well-defined API which
enables the display of service recommendations to the SOA4All users in a dedicated “box”
which lists the RS component suggestions together with a score and/or a recommendation
explanation when available.

This second prototype of the RS component not only shows the implementation progresses
with regards to the first version described in D2.7.1, but it also demonstrates the advances in
the realization of novel and beyond state-of-the-art recommenders and their integration into a
unique and comprehensive Hybrid Recommender System.

This deliverable is complemented by a set of papers accepted (or still under review at the
time of writing) at major conferences, both in the area of Recommender Systems and in the
field of Semantic Systems.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 27 of 29

References
[1] Guillermo Álvaro Rey, Dario Cerizza, Giovanni Di Matteo, Gianluca Ripa, Andrea

Turati, Matteo Villa: “D2.7.1 – Recommender System First Prototype”, SOA4All project
deliverable, available at http://www.soa4all.eu/file-upload.html?func=startdown&id=142,
August 2009.

[2] Andrea Turati, Dario Cerizza, Irene Celino and Emanuele Della Valle: “A Collaborative
Filtering System for Recommending Web Services through the Analysis of User Actions
within a Web 2.0 Portal”, In Proceedings of the 3rd Workshop on Web Personalization,
Reputation and Recommender Systems (WPRRS 2009) at the 2009 IEEE/WIC/ACM
International Conference on Web Intelligence, Milano, Italy, September 2009.

[3] Daniele Dell'Aglio, Irene Celino, Dario Cerizza, Emanuele Della Valle, Andrea Turati:
“D5.3 – User and Service Clustering Research Report – Version 2” Service-Finder project
deliverable, available at http://www.service-finder.eu/attachments/D5.3.pdf, December
2009.

[4] Saartje Brockmans, Irene Celino, Dario Cerizza, Daniele Dell'Aglio, Emanuele Della
Valle, Michael Erdmann, Adam Funk, Holger Lausen, Nathalie Steinmetz: “D7.5 – Final
Report on Assessment of Tests for Beta Release”, Service-Finder project deliverable,
available at http://www.service-finder.eu/attachments/D7.5.pdf, December 2009.

[5] Robin Burke: “Knowledge-Based Recommender Systems”. Encyclopedia of Library and
Information Science, 69(32), 2000.

[6] Eyal Oren, Ronald Delbru, Michele Catasta, Richard Cyganiak, Holger Stenzhorn, and
Giovanni Tummarello: “Sindice.com: a document-oriented lookup index for open linked
data”. International Journal of Metadata, Semantics and Ontologies, 3(1):37-52, 2008.

[7] Mathieu d'Aquin, Claudio Baldassarre, Laurian Gridinoc, Sofia Angeletou, Marta Sabou,
and Enrico Motta. “Characterizing Knowledge on the Semantic Web with Watson”. In
Proceedings of the 5th International Workshop on Evaluation of Ontologies and
Ontology-based Tools (EON2007), co-located with the ISWC2007, pages 1-10, Busan,
Korea, 2007.

[8] Chris Bizer, Jens Lehmann, Georgi Kobilarov, Soren Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. “DBpedia – A Crystallization Point for the Web of
Data”. Journal of Web Semantics: Science, Services and Agents on the World Wide
Web, 7:154-165, 2009.

[9] Dan Brickley and Libby Miller. “FOAF Vocabulary Specification 0.97”. Available on line
at http://xmlns.com/foaf/spec/, January 1st, 2010.

[10] Andy Seaborne and Eric Prud'hommeaux. “SPARQL Query Language for RDF - W3C
Recommendation”. Available at http://www.w3.org/TR/rdf-sparql-query/, January 15th,
2008.

[11] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. “SWRL: A Semantic Web Rule Language Combining OWL and RuleML”.
Available on line at http://www.w3.org/Submission/SWRL/, 2004.

[12] Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, and Dave
Reynold. “RIF Core Dialect - W3C Recommendation”. Available on line at
http://www.w3.org/TR/rif-core/, June 22th, 2010.

[13] Dieter Fensel, Frank van Harmelen, Bo Andersson, Paul Brennan, Hamish
Cunningham, Emanuele Della Valle, et al. “Towards LarKC: A Platform for Web-Scale

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 28 of 29

Reasoning”, In: Proceedings of the 2008 IEEE international Conference on Semantic
Computing ICSC, pp. 524--529, IEEE Computer Society (2008).

[14] Georgina Gallizo, Alexey Cheptsov, Matthias Assel, Luka Bradesko, Vassil Momtchev:
"LarKC Platform Manual – V1.0", April 2010, Available on line at
http://sourceforge.net/projects/larkc/files/Release-1.0/LarKC_PlatformManual_V1_0.pdf.

[15] Carlos Pedrinaci, Dong Liu, M. Maleshkova, David Lambert, Jacek Kopecky and John
Domingue: “iServe: a Linked Services Publishing Platform”, Workshop: Ontology
Repositories and Editors for the Semantic Web at 7th Extended Semantic Web
Conference (2010).

[16] Robin Burke: “Hybrid Recommender Systems: Survey and Experiments”. User
Modeling and User-Adapted Interaction, 12(4):331-370, 2002.

[17] Xiaoyuan Su and Taghi M. Khoshgoftaar: “A Survey of Collaborative Filtering
Techniques”. Advances in Artificial Intelligence, vol. 2009(Article ID 421425), 2009.

[18] Michael J. Pazzani and Daniel Billsus: “Content-Based Recommendation Systems”.
The Adaptive Web, pages 325-341, 2007.

[19] Baader, F. and W. Nutt (2003). The Description Logic Handbook: Theory,
Implementation, and Applications.

[20] Brandt, S., R. Küsters, et al. (2002). Approximation and difference in description logics.
KR: 203-214.

[21] Chen, A. (2005). Context-Aware Collaborative Filtering System: Predicting the User’s
Preference in the Ubiquitous Computing Environment. Location- and Context-Awareness,
Springer Berlin / Heidelberg. 3479/2005: 244-253.

[22] Cohen, W. W., A. Borgida, et al. (1992). Computing Least Common Subsumers in
Description Logics. AAAI: 754-760.

[23] Küsters, R. (2001). Non-Standard Inferences in Description Logics, Springer.

[24] Lecue, F. and A. Delteil (2007). Making the Difference in Semantic Web Service
Composition. AAAI: 1383-1388.

[25] Li, L. and I. Horrocks (2003). A Software Framework for Matchmaking Based on
Semantic Web Technology. WWW: 331-339.

[26] Liu, L., F. Lecue, et al. (2010). Using Context Similarity for Service Recommendation.
Fourth IEEE International Conference on Semantic Computing.

[27] Maamar, Z., S. K. Mostefaoui, et al. (2005). Context for Personalized Web Services.
Proceedings of the 38th Hawaii International Conference on System Sciences.

[28] Mostefaoui, S. K. and B. Hirsbrunner (2004). Context Aware Service Provisioning.
IEEE/ACS International Conference on Pervasive Services (ICPS'04): 71-80.

[29] Noia, T. D., E. D. Sciascio, et al. (2003). A System for Principled Matchmaking in an
Electronic Marketplace. WWW: 321-330.

[30] Paolucci, M., T. Kawamura, et al. (2002). Semantic Matching of Web Services
Capabilities. ISWC: 333-347.

[31] C. Pedrinaci, D. Lambert, M. Maleshkova, D. Liu, J. Domingue, and R. Krummenacher,
“Adaptive Service Binding with Lightweight Semantic Web Services”, 2010, ch. Service
Engineering: European Research Results.

[32] I. Horrocks, “Using an expressive description logic: Fact or fiction?” in KR, 1998, pp.
636–649.

 FP7 – 215219 D2.7.2 – Recommender System Second Prototype

© SOA4All consortium Page 29 of 29

Annex A. List of papers
In this annex, we list the relevant scientific papers concerning the components illustrated in
this document. For the interested readers, the accepted papers are attached to the
deliverable.

Accepted papers:

• Andrea Turati, Dario Cerizza, Irene Celino and Emanuele Della Valle:
“A Collaborative Filtering System for Recommending Web Services through
the Analysis of User Actions within a Web 2.0 Portal”, In Proceedings of the 3rd
Workshop on Web Personalization, Reputation and Recommender Systems
(WPRRS 2009) at the 2009 IEEE/WIC/ACM International Conference on Web
Intelligence, Milano, Italy, September 2009.

• Liwei Liu, Freddy Lecue, Nikolay Mehandjiev and Ling Xu: “Using Context
Similarity for Service Recommendation”, in Proceedings of the Fourth IEEE
International Conference on Semantic Computing (ICSC 2010), September 2010.

• Freddy Lecue: “Combining Collaborative Filtering and Semantic Content-based
Approaches to Recommend Web Services”, in Proceedings of the Fourth IEEE
International Conference on Semantic Computing (ICSC 2010), September 2010

• Liwei Liu, Nikolay Mehandjiev and Ling Xu: “Using Contextual Information for
Service Recommendation”, in Proceedings of Hawaii International Conference on
System Sciences-44 (HCISS-44), January 2011.

Papers submitted but still under review at the time of writing:

• Daniele Dell’Aglio, Irene Celino: “anSWERS – a novel Semantic Web-enabled
Recommender System”, Submitted to the 9th International Semantic Web
Conference 2010.

• Liwei Liu, Freddy Lecue and Nikolay Mehandjiev: “A Hybrid Approach for
Software Service Recommendation”, Submitted in ECOWS 2010.

A Collaborative Filtering System for Recommending Web Services through the
Analysis of User Actions within a Web 2.0 Portal

Andrea Turati, Dario Cerizza, Irene Celino
CEFRIEL – ICT Institute Politecnico di Milano

Via Fucini 2, 20133 Milano, Italy
{andrea.turati, dario.cerizza, irene.celino}@cefriel.it

Emanuele Della Valle
Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
{emanuele.dellavalle}@polimi.it

Abstract

The current Web manifests the problem of information
overload, especially due to the success of the Web 2.0
paradigm, in which users provide new contents quickly. To
help people to find the most valuable information, many
Web sites includes a recommendation system based on a
rating mechanism. However, such approach cannot be used
when a rating mechanism is not present and, in addition, it
does not take into account all the actions performed by the
users. We propose an extension of the collaborative filtering
approach to design a more effective recommendation system
that overcomes those limitations.

1. Introduction

The term information explosion describes the rapidly
increasing amount of published information. Many persons
use that term to describe the current situation of the Internet.
Indeed, every day new data appear on the Web, especially
due to the proliferation of blogs, wikis and the so called
social communities in which people can share photos, com-
ments and other contents. The “information explosion” can
lead to the “information overload”, that is the situation where
there is far too much information at people disposal so that
useful information could be “hidden from view” by other
data. Thus, techniques to retrieve useful information become
more and more important.

A special kind of information retrieval techniques that
focuses on this issue is named information filtering [15].
As the name suggests, starting from a big set of information
this technique identifies a small subset which should include
the useful/interesting information (i.e. it discards redundant,
unwanted or irrelevant information).

Information filtering is applied to many areas and many
tools implementing such techniques exist (e.g. anti-SPAM
systems). Recommendation systems are a specific type of
information filtering technique that attempts to present in-
formation items (e.g. movies, songs, books, news, images,
Web pages) that are likely of interest to the user.

Recommendation systems come from the observation that
people tend to ask friends for advises or to read/listen to
expert help when presented with a number of unfamiliar al-
ternatives [25]. The first recommendation systems appeared
at the end of 1990s [8], [18], [24] and since then it has been
an active research area both in the industry and academia.
Many examples of such applications were developed [22]
by Amazon.com [11], MovieLens [12], NetFlix [2], Pandora
and Last.fm [9], and many others.

The majority of the successful Web sites including rec-
ommendation systems usually implements a mechanism
that allows users to explicitly assign ratings to the items.
However, this method cannot be adopted in context where
users are not allowed to leave an explicit evidence about their
preference. Furthermore, even if such a mechanism exists,
this approach does not take into account many aspects of
the user behavior that might be relevant.

In this paper we inspect how it is possible to analyze
the users’ behavior in order to improve the quality of the
recommendations and we describe a project named Service-
Finder [5] where we implemented the approach presented in
this paper, which we aim to extend in the SOA4All project1.

Section 2 provides a brief description of the current
state of the art of the recommendation systems. Section 3
proposes an approach that enriches the “standard” collab-
orative filtering technique in order to improve the quality
of the recommendations by trying to understand the real
preferences of the users. It also describes a real use-case
where such approach has been implemented, focusing on
the architecture of the component responsible for making
recommendations. The paper ends with a description of
some ways that can be followed to improve the approach.

2. State of the Art

Information filtering systems decide to select or discard
items taking into account the user that will get the results.
This is done by comparing the user’s profile (i.e. a represen-
tation of his interests or tastes) to some reference character-

1. http://www.soa4all.eu/

istics. A user’s profile can be created and maintained either
explicitly (i.e. the user specifies it by stating his preferences)
or implicitly (i.e. the system monitors his behavior and
makes deductions). The characteristics that are compared
to the user’s profile depend on the algorithm implemented
into the information filtering system (or the recommendation
system). In literature, two different approaches exist [1]: the
content-based approach extracts such characteristics directly
from the information items while the collaborative filtering
approach derives them from the user’s social environment.

Given a user, a content-based recommendation system
suggests those items having the highest correlation between
their contents and the user’s profile (i.e. the user will be
recommended items similar to the ones the user preferred
in the past). Given a user, a collaborative recommendation
system suggests those items preferred by people with a
profile most similar to the user’s one (i.e. the user will
be recommended items that people with similar tastes and
preferences liked in the past). In the following sections we
describe the two approaches.

2.1. Content-based Filtering

From the assumption that users that liked certain items
will like similar items too, such algorithms compare pairs
of items in order to understand their similarities. Therefore,
given an item that a user liked very much in the past (i.e.
the user assigned it a high rating), they can suggest the most
similar items being confident that the user will like it.

The item-to-item similarity is computed comparing their
contents or properties ([22] calls this approach “item-to-item
correlation”). For example, in a music application, in order
to recommend songs to a given user, the similarities among
the songs the user prefers are evaluated by inspecting their
features (e.g. artists, genres, etc), and then the songs that
have a high degree of similarity to the user’s preferences are
recommended. Therefore, a content-based recommendation
system learns a profile of the user’s interests based on the
features present in items the user has rated.

There exist several ways to compare user’s preferences
to item features. A technique represents both user prefer-
ences and item features by means of vectors in the same
multidimensional space (e.g. through the term frequency
indexing [19]) and uses the cosine similarity measure [13]
as an estimation of the probability that an item is liked by
the user. Another technique exploits Boolean indexes [4].
Other techniques implement probabilistic approaches [7],
like Bayesian classifiers [17], [14], natural language algo-
rithms [10], decision trees, artificial neural networks and
many other.

2.2. Collaborative Filtering

Collaborative filtering aims to learn user preferences and
make recommendations based on user and community data.

It assumes that every user rates some items to reflect his
satisfaction about them. The item ratings of a user represent
the user profile, which consists of a set of items associated
with a value reflecting the user opinion about them. Then,
user profiles are compared in order to identify groups of
similar user profiles. Such user profile clusters are used to
come up with recommendations: given a user, the system
may suggest to him those items that he has not yet seen
while other users – whose profiles belong to the same cluster
of the given user profile – appreciated a lot.

Mathematically, the problem can be modeled through a
matrix, where users and items intersect. Let U be the set
of all n users that use the system and I the set of all m
items managed by the system. A generic user uj ∈ U can
express his opinion about an item ik ∈ I by assigning a
rating ruj ,ik

, which is normally in a binary or numerical
scale. Thus, a matrix R containing ratings can be sketched
as in equation 1.

R =

ru1,i1 ru1,i2 · · · ru1,im

ru2,i1 ru2,i2 · · · ru2,im

...
...

. . .
...

run,i1 run,i2 · · · run,im

 (1)

The ratings that user uj assigned to items represent his
preferences, so the user profile used for computing recom-
mendations can be formulated as {ruj ,i|i ∈ I}, which is the
row corresponding to user uj in the matrix R. Analogously, a
column of the matrix R corresponds to an item and contains
the ratings that users gave to that item – it is a sort of “item
profile” which reflects the overall satisfaction on that item.

Accordingly to [3], there are two general classes of
collaborative filtering algorithms, which differ in the use
of the matrix R: memory-based and model-based. Both
make recommendations by computing rating predictions:
they estimate the ratings that the given user would assign
to the items he has not yet seen and suggest him the ones
with the highest estimated ratings. The following sections
provide an overview of those approaches.

2.2.1. Memory-based Collaborative Filtering. These algo-
rithms are heuristics that make rating predictions based on
the entire collection of the rated items. Basically, through
the analysis of the matrix R, the rating that a given user
would assign to a specific item is estimated taking into
consideration the user similarities computed before.

The similarity between two users is computed by com-
paring their profiles. Given a user the algorithm identifies
his profile (i.e. a row in the matrix R) and compares it
with all the other user profiles (i.e. other rows of the matrix
R). In this way, user profiles that are most similar to the
given one (i.e. their corresponding two rows in the matrix
contain similar values, which means that the users gave
similar ratings to the same items) are marked as neighbors

of the given user. Finally, the ratings of the neighbors are
used to estimate the rating that the target user would give
to a specific unseen item.

One of the most used equation to measure the similarity
between users is the Pearson correlation coefficient [18],
[24]. Another one is the cosine-based approach [20], [3],
where two users are represented by two different vectors in
a multidimensional space and their similarity is computed
as the cosine of the angle between them. Another method is
to use the mean squared difference [24].

A variation of the memory-based approach described so
far has been named item-based or item-to-item collaborative
filtering [11], [20], [6]. The difference with the method
described above is the objects of the similarity measure.
In the standard memory-based approach the similarity is
calculated for each pair of users, while in the item-based
approach the similarity is calculated for the items. In other
words, the former compares the rows of the matrix R, while
the latter compares its columns.

Rather than matching the user to other similar users, item-
based collaborative filtering matches each of the user’s rated
items to other “related” items. Such “relatedness” between
two items reflects the fact that those two items have been
consumed together or rated equally.

2.2.2. Model-based Collaborative Filtering. This approach
aims at compiling a mathematical model reflecting user
preferences. This can be done by first compiling (off-line)
the complete data set into a descriptive model of users,
items and ratings and then computing recommendations by
consulting the model.

Early research on this approach evaluated two probabilis-
tic models: Bayesian clustering and Bayesian networks [3].
These models are used to estimate the probability that a
user will give a particular rating to an item given the user’s
ratings of the previously rated items.

They use the matrix R to learn some internal parameters
and exploit clustering techniques to group the users. Due to
internal limitations, they do not work well in domains where
users assume different positions because they cannot cluster
a user into several categories at once.

Many other model-based collaborative filtering ap-
proaches appeared in the literature: statistical models based
on standard algorithms coming from data mining (e.g. K-
means) [26], linear regressions [20], entropy models [16],
stochastic techniques like Markov decision processes [23],
rule-based approaches [21] and many other.

3. Designing a Recommendation System for a
Web 2.0 portal

Service-Finder is a portal2 that allows users to search for
Web services. It adopts the Web 2.0 paradigm, where users

2. http://demo.service-finder.eu/

can add tags, assign ratings, manage their bookmarks and
so on. Beside the three standard search functionalities (i.e.
free-text search string, a category tree and a tag cloud), it
suggests Web services through a recommendation system.
SOA4All is another project that goes beyond Service-Finder
by providing users with the possibility to semantically
describe and execute both services and processes that involve
them. It also includes a recommendation system to suggest
semantically annotated services and other entities.

In this section we provide an overview of the the way
that we followed in Service-Finder (and that we are going
to extend in SOA4All) to design and implement a system
that exploit rich information to make recommendations. In
particular, Section 3.1 describes how to exploit the whole
information coming from a Web 2.0 portal to improve the
quality of recommendations, with a special focus on Service-
Finder. Section 3.2 shows the architecture of the component
implementing the approach described before in the context
of Service-Finder.

3.1. The Approach for Making Recommendations

Every approach described in Section 2 assumes to have a
set of users, a set of items and the ratings that users assigned
to items, and uses them in order to identify several items that
a given user might appreciate. In the context of Service-
Finder, from the point of view of the recommendation
process the services that users can browse through represent
the so-called “items”.

In addition, Service-Finder allows users to rate services.
The ratings that users assign to services can be used by the
recommendation process to evaluate user profiles and make
recommendations. However, we believe that the quality of
recommendations would be improved by taking into account
other information rather than only the ratings. It is true that a
rating explicitly reflects the opinion of a user about a service,
but the fact that a user prefers a service can be inferred by the
observation of the user behavior with respect to the service.
Indeed, within the Service-Finder portal users perform many
actions with respect to the services – and not only assigning
ratings – and, for example, if a user views the details of
a specific service many times and spends a lot of time in
editing the service details, then it is possible to say with
confidence that the user is addicted to that service.

While interacting with the Service-Finder portal, users
perform many actions: they select some services from the
search results, they rate services, they insert services into
their bookmarks, they view some service details, they try
to invoke some service operations, and so on. In general,
we can say that every user establishes some kind of relation
with a set of services.

Comparing the relations relating to two different users, it
is possible to estimate the degree of similarity between the
two users: if the set of services tight connected to a user

overlaps considerably the set of services tight connected to
the other one, then the two users are somehow similar. In
this way, similarities between all users are computed. Then,
given a specific user, it is possible to suggest services that he
might be interested in, because those services are appreciated
by other users that are similar to him.

The recommendation process is analogous to the ones
already described in Section 2, except for the relations
between users and items. In literature users and items are
related by means of ratings, while here users and services
are related by means of generic relations, whose strength is
evaluated by inspecting actions that users perform.

Not all actions can be used in evidence for increasing
the user opinion about the service involved. Furthermore,
not all actions have the same importance in establishing
the relation between user and service. For this reason, we
decided to associate a weight to each action that a user may
perform while visiting the Service-Finder portal. By properly
combining all weighted actions that a user did related to a
specific service, the system identifies a number reflecting the
strength of the relation between the user and the service. A
strong relation between a user and a service means that the
user really appreciates the service and would recommend it.
A weak relation means that the user is not interested in the
service or dislikes it, so it is not worth recommending it. The
numbers representing the strength of the relations represent
the values included in the user-item matrix described in
Section 2, which a standard recommendation system (i.e.
coming from the literature) uses to make recommendations.

Table 1 lists all the actions that a user may perform on
a service: the first one is the most relevant action in estab-
lishing a connection between the user and the service while
the last one has the lowest impact on that connection. The
table also shows the actions that have a negative influence
on relations between users and services. This means that
the strength of the relation between a user and a service is
reduced whenever one of those actions occurs.

Action Weight
Assign a high/positive rating with a comment to a service 10
Assign a high/positive rating without a comment to a service 8
Add into bookmarks 7
Assign a tag to a service 6
Edit a service 5
Try to invoke a service 4
Click a link related to a service to go to an external document 3
Compare a set of services 3
View the details of a service 2
Select a service (e.g. from the search results) 1
Remove the service from bookmarks -2
Assign a low/negative rating with a comment to service -5
Assign a low/negative rating without a comment to service -10

Table 1. The initial weights of the user actions

There is no rule that can be used to assign the right values
of such weights, because they depend on the context where

the system is used. Initially, we set the weights listed in
Table 1. Higher positive weights are associated to actions
giving a clear evidence of the high appreciation of the item,
while lower positive weights are associated to actions where
the appreciation is not so evident or is lower. On the other
hand, the actions giving a clear evidence of the rejection of
the item are associated with negative weights.

We are conscious that the weights are fundamental to
produce significant recommendations, so we are going to
fine-tune them based on the inspection of the goodness of
the retrieved recommendations.

3.2. Architecture and Implementation of the Rec-
ommendation Component

Figure 1 shows the internal architecture of the recom-
mendation component (the arrows represents data flow).
The Parser is responsible for getting log files produced by
the Service-Finder portal and extracting information from
them. The extracted information is temporarily inserted into
a database, named User History, which represents the history
of all user actions done in the portal. In addition, the User-
Service Correlation Analyzer accesses the information stored
in the User History and calculates the relations between
users and services. The result of the analysis is a matrix,
named User-Service Matrix, where each row represents a
user and each column represents a service; the cell where a
service intersects with a user stores a value that represents
how much that service is related to the user3. Starting from
the matrix that contains values representing the intensity of
the relations between users and services, the Recommender
makes recommendations, that is given a user it returns a list
of recommended services.

The tasks performed by the whole component can be
represented as two distinct conceptual parts. One is respon-
sible for information extraction and analysis and the other is
responsible for making recommendations. The former task is
the result of the batch execution of Parser and User-Service
Correlation Analyzer, while the latter is done on-line by the
Recommender.

The two conceptual tasks run independently. From the
implementation point of view, the first conceptual task is
executed as a single thread in which the execution of
Parser and User-Service Correlation Analyzer are properly
synchronized.

The synchronization between those components is needed
to avoid typical problems that arise when different com-
ponents work on the same data structure. One problem
might be due to the concurrent execution of both User-
Service Correlation Analyzer and Parser, which continuously

3. The User-Service Matrix has the same structure of the matrix than
standard recommendation algorithms use as input (i.e. equal to the one
depicted in Equation 1).

Parser

User-Service
Correlation
Analyzer

Recommender

Log files

User
History

User-Service
Matrix

Recommendations

Figure 1. The internal architecture

monitors the file system and reacts after the appearance of a
new log file. In that situation, the User-Service Correlation
Analyzer would need to repeatedly retrieve data from the
User History during its internal computation, while at the
same time the Parser would need to insert new data into the
same database (e.g. because a new log file is available). In
that case, the computation of the User-Service Correlation
Analyzer might encounter some problems due to unexpected
new data in the database. This issue can be solved by running
a single thread in which the two components are executed
one by one.

Since on the one hand it takes a while for User-Service
Correlation Analyzer to update all the matrix cells and on
the other hand the Recommender has to provide recommen-
dations on demand, another synchronization problem might
arise due to concurrent accesses to the User-Service Matrix
on behalf of both User-Service Correlation Analyzer and
Recommender. For this reason, we use two copies of the
User-Service Matrix. One matrix is used by Recommender
to provide on-line recommendations while the other one is
updated by User-Service Correlation Analyzer. When the
User-Service Correlation Analyzer finishes to update the off-
line matrix, then the two matrices are swapped: the one that
was on-line (and was used by Recommender) becomes off-
line (ready to be used by User-Service Correlation Analyzer)
and the one that was off-line (just updated by the User-
Service Correlation Analyzer) becomes on-line (ready to be
used by Recommender). After each swap, the updates made
on the “new” on-line matrix are copied into the “new” off-
line matrix, to keep their content consistent.

For this reason, we add a new component named User-
Service Matrix Access Synchronizer to the architecture
which is responsible for granting access to the right matrix.

User-Service Matrix
Access

Synchronizer

Un-Normalized
User-Service

Matrix

Normalized
User-Service Matrices

Parser

User-Service
Correlation
Analyzer

Recommender

Log files

User
History

Recommendations

Figure 2. The refined internal architecture

In Figure 2, a third matrix also appears beside the two copies
of the User-Service Matrix: it differs from them by the fact
that it is not normalized (this issue will be discussed later).

In the following sections we detail the implementation
of the core of our approach in details. For the sake of the
simplicity, henceforth we do not distinguish between the two
copies of the User-Service Matrix.

3.2.1. User-Service Correlation Analyzer. This component
is responsible for estimating the strength of the relations
between users and services, which means to fill in the matrix
that expresses user interests for the services. In other words,
it examines the User History in order to produce the User-
Service Matrix (see Figure 2).

User-Service Correlation Analyzer considers every user
separately. Firstly, it collects all actions made by a specific
user. Then, for each action, it gets the reference to the service
related to that action and updates the cell of the matrix that
corresponds to the intersection between the row of the user
and the column of the service by adding the action weight.

Formally, the User-Service Correlation Analyzer runs the
algorithm in Figure 3, which is described using a pseudo-
code. R represents the User-Service Matrix, which at the
beginning is initialized with null values. R(u, s) represents
the cell of the matrix R corresponding to user u and service
s. max(u) and min(u) are respectively the maximum
and minimum values in the relations between user u and
all services, while MAX and MIN are respectively the
maximum and minimum value used to express the strength
of any relations between users and services in the matrix
R. Given an action a, a.weight denotes the weight of the
action, a.timestamp denotes the instant at which the action

occurred, a.user identifies the user that performed the action
and a.service identifies the service related to the action (e.g.
if a user rated a service, then the service related to that action
is the one rated by the user). lastExecutionT imestamp
stores the instant of the last execution of this algorithm.

1: for all user u do
2: updatedStrengths← ∅
3: minOrMaxChanged← false
4: for all action a ∈ UserHistory such that a.user =

u and a.timestamp > lastExecutionT imestamp
do

5: s← a.service
6:
7: {Update the value of relation between u and s}
8: R(u, s)← R(u, s) + a.weight
9: updatedStrengths← updatedStrengths ∪ {s}

10:
11: if R(u, s) > max(u) then
12: max(u) = R(u, s)
13: minOrMaxChanged← true
14: end if
15: if R(u, s) < min(u) then
16: min(u) = R(u, s)
17: minOrMaxChanged← true
18: end if
19: end for
20:
21: {Normalization of the values of the user’s relations}
22: if minOrMaxChanged then
23: for all service s do
24: if R(u, s) 6= NULL then

25: R(u, s) ←
R(u, s)−min(u)
max(u)−min(u)

× (MAX −
MIN) + MIN

26: end if
27: end for
28: else
29: for all service s ∈ updatedStrengths do
30: if R(u, s) 6= NULL then

31: R(u, s) ←
R(u, s)−min(u)
max(u)−min(u)

× (MAX −
MIN) + MIN

32: end if
33: end for
34: end if
35: end for

Figure 3. Evaluation of the strength of the relations
between users and services

The first time this algorithm is executed, the User-Service
Matrix contains only null values. When the algorithm is
executed, for each user it extracts from the User History
all actions that the algorithm has not yet taken into consid-

eration. Then, every action implies to update the value of a
cell of the matrix: the weight of the action is summed to the
value already stored in that cell. Finally, a normalization step
is executed to spread the values of a user over a common
numerical scale in order to make user profile (i.e. the rows
of the matrix) comparable. To do that, it is necessary to keep
track of both the maximum and the minimum values of the
cells corresponding to the user (i.e. max(u) and min(u))
and compare them with the maximum and minimum values
allowed in the final matrix (i.e. MAX and MIN).

In the calculation of relation values the action weights
are summed, so a value will be very high for the users that
performed many actions related to the corresponding service,
while a value will be very low for users that performed few
actions related to the corresponding service. Since the users
perform different numbers of actions, the values contained in
the matrix will vary on different scales. To allow comparison
between any users (irrespective of the number of actions they
performed), it is necessary to shift the values of every user
to a common scale (normalization step).

After the normalization of all values, the values in all
the rows of the matrix can be used to make recommen-
dations. However, if the algorithm is executed once more
(for example, because the User-Service Matrix needs to be
updated taking into account new actions performed by the
users within the portal), the action weights cannot be simply
summed to the value included in the cells because the value
has been normalized while the weights have not.

For this reason, a User-Service Matrix containing values
computed by the algorithm in Figure 3 without the normal-
ization step is maintained and managed by the User-Service
Matrix Access Synchronizer (in Figure 2 is represented as
Un-Normalized User-Service Matrix).

3.2.2. Recommender. Recommender is responsible for
making recommendations. Our implementation is based on
Taste4, an extensible framework that implements many col-
laborative filtering algorithms available in literature.

Firstly, it compares the rows of the user-service matrix
– representing the users’ profiles – in order to calculate
the similarity between users. The most similar users to the
given one form the user’s neighborhood. At run-time, given
a specific user, the profiles of his neighbors are taken into
account jointly in order to identify the most appreciated
services (i.e. the matrix cells containing the highest values).
From that set of services, the ones that the given user has
not yet seen are recommended.

4. Conclusion and Future Works

In this paper we proposed an extension of the collabo-
rative filtering approach for making recommendations. It is

4. http://taste.sourceforge.net

designed to exploit all the information coming from a Web
2.0 portal – rather than merely the ratings explicitly assigned
by users – in order to build more accurate users’ profiles, so
that more effective recommendations are provided. In addi-
tion, we described a real use-case (Service-Finder) where the
approach has been implemented and we cited another project
(SOA4All) where we are going to improve the approach.
Below we outline our evaluation plan and in the following
paragraphs we provide a list of some of the improvements
that can be implemented in the future.

4.1. Evaluation

We would like to have both some data that demonstrate
the goodness of the recommendations provided with our
approach, and some guidelines that help developer in setting
appropriate action weights. To evaluate our approach we are
setting up a way to understand if a user appreciated a recom-
mendation or not, through the analysis of the user feedbacks.
The user feedbacks can be explicit (e.g. two buttons, “like”
and “dislike”) or implicit (which means that the system will
analyze the log file in order to understand how much a user
appreciated a recommended service, i.e. by analyzing how
many and which actions the user performed related to the
recommended services). To evaluate the action weights, we
are setting up a closed testbed, which will allow us to execute
the following steps: (i) select a small set of users with well-
defined different profiles (i.e. users that performed quite
different actions), (ii) pass the log files including the user
actions to the recommendation component and inspect the
suggested services for the previously selected users, then (iii)
change or adjust the action weights and repeat the second
step; at the end, compare the recommendations in order to
evaluate the different choices.

4.2. Content-Based Extension for Matrix Sparsity

One of the well known problems of the collaborative
filtering approach is that the user-items matrix can be very
sparse [20], which reduces the quality of the recommenda-
tions. This is also valid for Service-Finder and SOA4All,
where we can realistically think that a typical active user
will interact with at most few hundreds of services, which
represents about 1% out of the total5. This implies that every
row of the matrix – representing a user profile – contains few
values and consequently the user-service matrix is sparse.

Suppose that a given user interacts with two services.
In this case, the collaborative approach fills in two cells
of the row associated to the user with the values of the
weights assigned to the performed actions. Then, the system
compares the user profile with other user profiles, but the
probability to successfully find a matching profile is low

5. At this moment, Service-Finder includes about 27.000 services

(the probability that another user has interacted with the
same two services out of several thousands is low). However,
a content-based approach might be used to increase such
probability, by discovering other services similar to the ones
the user interacted with. Then it would be possible to assess
a value representing the relation between the user and the
services identified as similar, even if the user has never seen
them. That value might be inserted in the corresponding
cell of the matrix, reducing its sparsity and increasing the
probability of finding users with an overlapping profile.

Especially in SOA4All, we are going to implement this
content-based approach by exploiting the semantic annota-
tions available for services.

4.3. Action Weights Decrease with Time

If a user performs exactly the same action on a specific
service twice then, during the estimation of the strength of
the relation between the user and the service, the current
algorithm simply sums the effects of the action twice. Each
time the algorithm uses the same weight assigned to that
action (see line 8 of the algorithm in Figure 3), that is two
executions of the same action influence equally the user-
service relation: an action performed one year ago has the
same weight of the same action performed five minutes ago.
However, recommendations should be influenced more by
recent actions rather than the old ones. For this reason, it
would be better to decrease the value of the weight of an
action based on the distance between the current time and the
instant when the action occurred. This can be done adjusting
the algorithm in Figure 3 and the way the Not-Normalized
User-Service Matrix is used.

4.4. Item Popularity Influences User Similarity

The similarity between two users is calculated by taking
into account the set of items rated by both users. Every item
included in the set increases the similarity value: if the two
users assigned the same rating to the item then the similarity
is incremented a lot, while if the two users assigned opposite
ratings then the increment of similarity is low or zero.

Even if this measure seems reasonable, it does not take
into account the total number of users that rated a specific
service. If a service has been rated by two users solely, then
those two users are very related. On the contrary, if a service
has been rated by almost all users, then that fact is not very
significant to compute user similarities.

For this reason, the computation of user similarities might
be improved by weighting the contribution that each item
brings on the similarity between two users.

Acknowledgment

This research has been partially supported by the EU
co-funded projects named Service-Finder (FP7-IST-215876)

and SOA4All (FP7-215219).

References

[1] Gediminas Adomavicius and Er Tuzhilin. Toward the Next
Generation of Recommender Systems: A Survey of the State-
of-the-Art and Possible Extensions. IEEE Transactions on
Knowledge and Data Engineering, 17:734–749, 2005.

[2] Robert M. Bell and Yehuda Koren. Lessons from the Netflix
prize challenge. SIGKDD Explor. Newsl., 9(2):75–79, 2007.

[3] John S. Breese, David Heckerman, and Carl Kadie. Empirical
Analysis of Predictive Algorithms for Collaborative Filtering.
pages 43–52. Morgan Kaufmann, 1998.

[4] Cyril Cleverdon. The Cranfield tests on index language
devices. pages 47–59, 1997.

[5] Emanuele Della Valle, Dario Cerizza, Irene Celino, Andrea
Turati, Holger Lausen, Nathalie Steinmetz, Michael Erdmann,
and Adam Funk. Service-Finder: realizing Web Service
Discovery at Web Scale. In European Semantic Technology
Conference (ESTC 2008), September, 2008.

[6] Mukund Deshpande and George Karypis. Item-Based Top-
N Recommendation Algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, 2004.

[7] Norbert Fuhr, Th Darmstadt, and Chris Buckley. A prob-
abilistic learning approach for document indexing. ACM
Transactions on Information Systems, 9:223–248, 1991.

[8] Will Hill, Larry Stead, Mark Rosenstein, and George Fur-
nas. Recommending and evaluating choices in a virtual
community of use. In CHI ’95: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
194–201, New York, NY, USA, 1995. ACM Press/Addison-
Wesley Publishing Co.

[9] Nicolas Jones and Pearl Pu. User Technology Adoption Issues
in Recommender Systems. In Networking and Electronic
Commerce Research Conference, pages 379–394, Riva del
Garda, Italy, 2007.

[10] David D. Lewis and Karen Spärck Jones. Natural Lan-
guage Processing for Information Retrieval. Commun. ACM,
39(1):92–101, 1996.

[11] Greg Linden, Brent Smith, and Jeremy York. Ama-
zon.com Recommendations: Item-to-Item Collaborative Fil-
tering. IEEE Internet Computing, 7(1):76–80, January 2003.

[12] Bradley N. Miller, Istvan Albert, Shyong K. Lam, Joseph A.
Konstan, and John Riedl. Movielens unplugged: experiences
with an occasionally connected recommender system. In
IUI ’03: Proceedings of the 8th international conference on
Intelligent user interfaces, pages 263–266, New York, NY,
USA, 2003. ACM.

[13] Sepideh Miralaei and Ali A. Ghorbani. Category-based
Similarity Algorithm for Semantic Similarity in Multi-agent
Information Sharing Systems. In IAT ’05: Proceedings of
the IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, pages 242–245, Washington, DC, USA,
2005. IEEE Computer Society.

[14] Raymond J. Mooney, Paul N. Bennett, and Loriene Roy.
Book recommending using text categorization with extracted
information. In In Recommender Systems. Papers from 1998
Workshop, pages 49–54. AAAI Press, 1998.

[15] Jacob Palme. Information Filtering. In International Telecom-
munications Symposium (ITS’98), 9-13 Aug 1998.

[16] Dmitry Y. Pavlov and David M. Pennock. A Maximum
Entropy Approach to Collaborative Filtering in Dynamic,
Sparse, High-Dimensional Domains. In In Proceedings of
Neural Information Processing Systems, pages 1441–1448.
MIT Press, 2002.

[17] Michael Pazzani and Daniel Billsus. Learning and Revising
User Profiles: The Identification of Interesting Web Sites.
Mach. Learn., 27(3):313–331, 1997.

[18] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter
Bergstrom, and John Riedl. Grouplens: An open architecture
for collaborative filtering of netnews. pages 175–186. ACM
Press, 1994.

[19] Gerard Salton and Christopher Buckley. Term-weighting
approaches in automatic text retrieval. In Information Pro-
cessing and Management, pages 513–523, 1988.

[20] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Reidl. Item-Based Collaborative Filtering Recommendation
Algorithms. In WWW ’01: Proceedings of the 10th interna-
tional conference on World Wide Web, pages 285–295, New
York, NY, USA, 2001. ACM.

[21] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Riedl. Analysis of Recommendation Algorithms for E-
Commerce. In EC ’00: Proceedings of the 2nd ACM con-
ference on Electronic commerce, pages 158–167, New York,
NY, USA, 2000. ACM.

[22] J. Ben Schafer, Joseph Konstan, and John Riedi. Recom-
mender systems in e-commerce. In EC ’99: Proceedings of
the 1st ACM conference on Electronic commerce, pages 158–
166, New York, NY, USA, 1999. ACM.

[23] Guy Shani, David Heckerman, and Ronen I. Brafman. An
MDP-Based Recommender System. J. Mach. Learn. Res.,
6:1265–1295, 2005.

[24] Upendra Shardanand and Patti Maes. Social Information
Filtering: Algorithms for Automating “Word of Mouth”. In
Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems, volume 1, pages 210–217, 1995.

[25] Kirsten Swearingen and Rashmi Sinha. Interaction design for
recommender systems. In In Designing Interactive Systems
2002. ACM, 2002.

[26] L. Ungar and D. Foster. Clustering Methods For Collaborative
Filtering. In Proceedings of the Workshop on Recommenda-
tion Systems. AAAI Press, Menlo Park California., 1998.

Using Context Similarity for Service
Recommendation

Liwei Liu, Freddy Lecue, Nikolay Mehandjiev, Ling Xu
Centre for Service Research

The University of Manchester
Manchester, UK

Abstract—Recommender systems have been successfully used to
address the problem of information overload, where consumers of
goods and services have too many choices and overwhelming amount
of information about each choice. Here we focus on service
recommendation and demonstrate the need for using multiple criteria
regarding service qualities, and the need to consider multiple
contextual dimensions regarding the expected use of that service.
Existing service recommenders, however, fail to consider both
multiple criteria and multiple context dimensions. A further problem
arises since we need a reliable scalar measure for context similarity
when dealing with categorical context dimensions. This need
underpins the main contribution of this paper – demonstrating that
concept abduction provides such a reliable measure for context
similarity when the categories of a context dimension are defined as
concepts in an ontology. We position this contribution within a
proposed multi-context and multi-criteria approach for service
recommendation based on collaborative filtering. Using experiments
over a real-world dataset, we demonstrate how the concept
abduction-based context similarity measure can be used to address
the sparsity of data within a single context segment by allowing us to
use rankings from context segments nearby.

Keywords- context similarity, concept abduction, recommender
system; multicriteria recommender system; multidimensional
recommender system

I. INTRODUCTION
 Recommender systems (RS) have been an effective

solution to information overload problem, under which
customers can’t find what they want because of the sheer
volume of available information and number of alternatives. A
Recommender System is defined as “any system that produces
individualized recommendations as output or has the effect of
guiding the user in a personalized way to interesting or useful
objects in a large space of possible options” [1]. They are
routinely used by e-commerce websites to help consumers
make a purchasing decision.

With the development of recommender systems, the
recommended objects range widely, from books, movies,
music to TV programs, web pages and so on. The
recommendation methods are evolved and improved in two
directions: (a) covering context of use by moving from the
traditional two dimensions (user & item) to multiple
dimensions, considering context-specific dimensions of data

such as use {personal or business}, and (b) covering multiple
criteria by providing multiple ratings for each item.

Unexpectedly, existing work in the area of service
recommenders fails to integrate both multiple context
dimensions and multiple criteria, whilst both are clearly
needed, because of the more personalized nature of service
consumption and hence selection.

The context in which a service will be consumed plays an
important role for making accurate recommendations.
Adomavicius et al [4] state that a more accurate prediction of
user’ preference depends on the degrees of incorporation of
contextual information into a recommender system [4]. This
statement is based on the research of Lilien et al [5] on
consumer decision making, “consumers vary in their decision-
making rules because of the usage situation, the use of the good
or service (for family, for gift, for self) and purchase situation
(catalog sale, in-store shelf selection, salesperson aided
purchase)” [5]. For instance, when recommending a vacation
package, the time of the travelling, with whom the user plans to
travel, stay duration, restrictions at that time and some other
contextual information should be considered [2].

Dimensions of context of service use can range from scalar
(ambient temperature or humidity) to categorical (using a
service for work or for leisure). It is possible to provide
context-aware recommendation by considering available
rankings within a single context segment only, however this
approach often suffers from lack of sufficient recommendations
within the context segment. We can also use data from adjunct
context segments, but for this we need a reliable measure of
similarity (and inversely distance) between different context
segments. When the context dimension is scalar, this is not a
problem, yet the problem arises when we use categorical data.

Having identified the need, we propose an approach to
provide such measure in a reliable and computationally
efficient way. In our approach, context is modeled with a
Description Logics (DLs) based ontology, to facilitate
reasoning compared to other context models [6]. To calculate
similarity between context segments when they are defined
with categorical data using concepts from the ontology, we
consider semantic similarity to evaluate the distance between
these concepts. To this end we adapt the definition of Concept
Abduction [7] in the context of service recommendation in

order to evaluate the rate of common description between two
DL concepts.

Our method of providing reliable measure of context
similarity is presented within a multi-dimensional and multi-
criteria recommendation approach based on collaborative
filtering (CF). It not only takes the multiple criteria and of
services and also the context in which they are expected to be
used into account, but also uses contextual information to
reduce the sparsity problem, and use context similarity to
improve the prediction. The sparsity problem is one of the
classical recommendation problems [2], and we believe it will
be more acute and relevant in the area of service selection,
because the personalized nature of services means less
feedback for a larger number of services. We demonstrate the
utility of using ontology context information for better
predictions, and for handling the sparsity problem by two
rounds of experiments using real data on hotel service rankings
under multiple contexts.

The remainder of the paper is organized as follows: we
begin with introducing the relevant semantic reasoning and
recommendation background in Section II. Then in Section III,
the proposed approach is presented. Two rounds of
experiments are implemented to evaluate the approach in
Section IV. Related work is discussed in Section V, and finally
we end with concluding the current work and discussing the
future work.

II. B ACKGROUND AND RELATED WORK

A. Semantic Similarity
In this work, we will consider semantic similarity to

evaluate distance between contexts and more specially
concepts, all described in a DLs- based ontology. To this end
we adapt the definition of Concept Abduction [7] (Definition
1)in the context of service recommendation in order to
evaluate the rate of common description between two DL
concepts. In this work, we focus on comparing any concept
defined in ALN DL.

Definition 1. (Concept Abduction)

Let L be a DL, C , D be two concepts in L , and O be a
set of axioms in L . A Concept Abduction Problem (CAP),
denoted as ODCL ,,, is finding a concept LH ∈ such that

DHCO ⊆∩=| .

This produces a compact representation of the "difference"
i.e., Extra Description H between descriptions C and D . In
other words H refers to information required by C to
be D and then obtain an exact semantic similarity between C
and D . The Common Description of C and D , defining as
their Least Common Subsumer lcs [8], refers to information
shared by C and D .

Example 1. (Extra & Common Description)

Let Fig. 1 be a sample of an ALN DL (E-Tourism)
terminology O According to Definition 1 and the latter Figure,
the Extra Description H required by concept “Man” to be

(semantically) similar to concept “Traveller” is formalized as
the Concept Abduction Problem: OTraveller, Person, L, i.e.,

TopngIsTravelli .∃ . In the other hand the Common Description
defined by the Least Common Subsumer of concepts
“Traveller” and “Person” is referred by the information shared
by both concepts, i.e., Person)ler,lcs(Travel i.e., Person.

Figure 1. Sample of an ALN Terminology T

B. Recommender Systems
Traditionally, recommender systems are based on a single

criterion, which is usually a numerical rating that presents
user’s preference of the whole item. Two types of entities,
users and items are used for the recommendation, this giving it
its two classical dimensions. This is presented as

:R Users Items Ratings× →

The system is initialized by user’s ratings that are either
explicitly or implicitly collected. Then it tries to estimate the
utility function R of the item based on these two dimensions,
user and items:

, arg max (,)u
i Items

u Users i R u i
∈

′∀ ∈ = (1)

Only the items which can maximize the utility will be
chosen [4]. For example, in the traditional way of
recommending movies, the users are asked to rate the movies
they have watched before. The recommender system predicts
unknown ratings and recommends those movies with highest
ratings. The recommendation approaches are usually classified
into three categories: collaborative filtering, content-based and
hybrid approaches [9], [4], [2], [10], [11]. Burke extends the
classification and adds another three methods: demographic,
utility-based and knowledge-based approaches [1]. Among
them, the knowledge-based approach is quite popular [12].

C. Collaborative Filtering Approach
Among these approaches, the content-based and the

Collaborative Filtering (CF) approaches are the two most
famous recommendation approaches. The content-based
approach recommends items similar to those the user liked in
the past, based on the item’s characteristics such as content for
books, descriptions for consumer goods, etc., while the CF
approach recommends to users the items liked by other users,

identified to be similar, say because of similar past rankings
[10]. In the CF approach, users are asked to provide ratings as
their feedback. And the historical feedback is used to find other
users who have provided similar feedback on the assumption
that users who had common interests in the past, tend to have
similar tastes in the future [13]. GoupLens, Ringo,
Amazon.com et al are all successful CF approach for prediction
[14, 15]. According to [16], CF can be grouped into two
classes: memory-based and model-based. For the memory-
based algorithm, which is also used in this paper, prediction is
computed by aggregating the ratings of other users for the same
item, such as:

, ,(,) ()u i u u i u
u U

r r k sim u u r r′ ′
′∈

′= + × −∑ (2)

Where U denotes the set of user u and his similar u′ who
have rated the same item i , ,u ir presents the rating of user u on
item i , ur is defined as the average ratings of user u , and

1/ (,)k sim u u
u U

′= ∑
′∈

 [2].

Another key issue in the CF approach is how to locate the
‘neighbors’ of the active user, those users who have similar
taste to the active user in the past. Pearson correlation and
cosine-based approach are the two mostly used. The value of
any of the two approaches ranges from -1 to +1. The greater
value it is, the more similar these two users are. Thus, -1 means
that the two users have exact opposite taste, and +1 means they
have exact the same taste. The value is presented as (,)sim u u′ in
(2).

As CF approach is based on the customer dimension, thus it
can work very well on complex items, such as music and
movies. But it suffers when new items and new users appear
(the New Item problem and the New User problem) and needs
a large amount of initializing data before producing valuable
results. Above all these, the data it gets is quite small
comparing with what it needs to predict, so sparsity of data
also becomes an acute problem [2].

D. Need for Multi-Dimensional Recommender Systems
Recommender systems are usually classified by the
recommendation approaches and techniques they use, yet here
we will consider the number of context dimensions and the
number of criteria (ratings) they use. Most of the existing
recommender systems on the market focus on a single criterion
(user ranking or purchasing decision), and on two dimensions
only (user and item). We call these traditional RS. Within the
recommender systems research community, a significant
volume of further work has been done, producing extended
recommender systems, covering either multiple criteria or
context dependent recommendations. However, to the best of
our knowledge, the area of recommender systems which cover
both in the area of service recommendation is not developed
yet. However, we expect that it will be a trend to be developed
because of the accuracy and personalization requirements for
current service recommender systems.

E. Reduction-based Approach
One of the approaches than handle multiple contextual

dimensions in recommender systems is called reduction-based
approach, proposed by Adomavicius et al [4]. They argue that
many traditional recommendation methods cannot be directly
extend to multidimensional ones. A reduction-based approach
can be used to estimate multidimensional ratings. It reduces
multidimensional recommendations problem to the traditional
two-dimensional problem. For example, in a three dimensional
space TimeContentUserS ××= , the prediction function can be
expressed by a two-dimensional one as follows [4]:

),(),,(R

 ,),,(
),,]([D

TimeCotentUser cuRtcu

TCUtcu
RatingsContentUsertTimeD

ContentUser
=

××× =

××∈∀
 (3)

Thus the three dimensions are converted into traditional
two dimensions on a particular time.

Given the sparsity problem in two-dimensional
recommender system, the reduction-based approach will make
the sparsity problem worse, since it groups data according to
particular contextual segment. Adomavicius et al [4] use multi-
level aggregation and combining with CF to reduce sparsity
problem. Here, in this paper, we propose an approach based on
using the ratings under similar context to predict for the active
context dimensions, which at the same time will reduce sparsity
problem. We assume that the more similar two contextual
dimensions are, the more accurate the prediction will be.

III. PROPOSED APPROACH
As stated before, our approach not only covers multiple

criteria of items but also various contextual dimensions. Since
multiple criteria ratings expressed user’s opinions from
different aspects, which are accurate than one single total rating
of the item, while contextual information describes their usage
situation. Let’s start with contextual description.

A. Context Concepts
Researchers hold different definitions about context. Schilit

et al [27] claim that context has three important aspects, where
you are, who you are with and what resources are nearby. Then
they entail context including ‘lighting, noise level, network
connectivity, communication costs, communication bandwidth,
and even the social situation’ [27]. Lieberman and Selker [28]
interpret context for computer systems as ‘everything affects
the computation except the explicit input and output’, including
the state of user, physical environment, computational
environment, and history of user-computer environment
interaction. The history here is about what the user has done,
and how it will affect the future [28]. One of the most
referenced context definitions is defined by Dey and Abowd
[29].. They define context as “any information that can be used
to characterize the situation of an entity”, and the entity he
defines as “a person, place, or object that is considered relevant
to the interaction between a user and an application, including
the user and applications themselves” [29].

B. Similarity of Context
Similar to the assumption of CF approach, we calculate the

context similarity to show how relevant the other context
dimension is to the current one. Chen states that for different
context types, various quantifiable measures of the similarity
between two context values are needed [24]. In this paper, we
classify context into three types, scale, ordinal and categorical.

For scale and ordinal context types, the closer context
values are, the more similar these two context dimensions are.
For example, under the contextual dimension temperature of
25 degrees Celsius, the ratings under 20 degrees are more
similar than the ratings under 35 degrees Celsius. The inverse
of the numerical distance between two context values is used to
compare which “candidate” context is more similar to the
“active” context (we use “active” to refer to the context which
our target user is considering for the use of the service we are
currently recommending). Then use the weighted average
formula below to predict the ratings under active context by
using its related context dimensions.

/
1/
c c

p
c

r d
r

d
= ∑

∑
 (4)

pr is the predicted ratings under active context, while cd is
the distance between the active context and the candidate
context. c presents the c th candidate context. In our example,
the active context will be the 25 degrees, and the similarity
between 20 degrees context and the active context is 0.2 (the
inverse of context distance), and the similarity between 35
degrees context and the active context is 0.1. The similarity is
better with a bigger value.

For the third type of context, i.e., categorical, we model the
context types in a DL ontology. The similarity will be
computed by measuring the semantic similarity from an active
context C to a candidate context D using their Common
Description rate. Such a rate is defined as following:

()
|),(|||

|,C|
 : D)(C,qcd DClcsH

Dlcs
+

= (5)

wherein the Extra Description H is a solution of the
Concept Abduction problem , , ,L C D O (Definition 1): the
difference between semantic description of active and
candidate contexts C and D . In other words cdq estimates the
rate of descriptions which is shared by active and candidate
contexts in the ontology, the higher the better is the similarity.
In more details |.| refers to the size of ALN concept descriptions
[30] i.e., |T|, |⊥|, |A|, |¬A|, |∃r| are 1; |C⊓ D| := |C|+|D|; |∀r.C| is
1 + |C|; |(nr≥)| and |(nr≤)| are 2+log(n+1) (binary
encoding of n). For instance |WithOthers| is 3+(2+log(2))+
6+2+2 i.e. 15+log(2) in Fig. 1.

Once the semantic similarity is measured, the similarity of
categorical context types converts to numerical data, formula

(5) can be used for predicting ratings of active categorical
context.

Example 4. (Quality of Semantic Links)
Suppose concepts “SoloTraveller” and “Person” in Fig. 1,

the common description rate of the latter concepts i.e.,
 Person)ller,(SoloTraveqcd
 is defined by:

()
|),(|||

|,lerSoloTravel|

PersonlerSoloTravellcsH
Personlcs

+
 (6)

wherein |Person) aveller,lcs(SoloTr| is 1 |Person| = .
log(2)5|H| += . So the common description rate of these

concepts Person)ller,(SoloTraveqcd is defined by: 0.18.

C. Proposed Approach
In this paper, we also assume that context has effect on

users’ ratings. Our approach extended CF approach with
multiple criteria of ratings, while keeping in mind of reducing
the side effect of sparsity problem. The approach comes
following the steps below:

Firstly, determine which context dimensions have
significant effect on the total rating. From the direct impression
of an observer, many contextual dimensions may seem to have
an effect on user’s ratings, but this needs to be tested through a
statistical method. If the context dimension is Scale or Ordinal,
then t-test should be used. If the context dimension is
Categorical, then chi-square test tends to be used. Only the
contextual dimensions which have significant effect on total
ratings will be taken into consideration in the further
computation.

Secondly, for contextual information, select a specific
context for the computation, denoted by mT , m for the number
of the specific context. For example, context of Date, it can be
aggregated into four seasons, Spring, Summer, Autumn and
Winter, 4m = . We do recommendation under Summer this
specific context. The number of this kind of specific context is
the combination of those context dimensions, which have
significant affect on ratings. We assume that a particular
hierarchy tree for each context dimension exists (if it can be
hierarchy structured).

If the data under certain contextual dimension are very
sparse, then the data of its similar context dimensions will be
introduced. The similarity between two context dimensions is
calculated through the ways expressed in Section C.

Thirdly, for multi-criteria dimensions, Euclidean distance is
used to compute the distance between any two users who have
rated the same item. The inverse of the distance is used as the
similarity between these two users, such as mentioned in [21].
The distance between user u and u′ on item i is:

2(,) ()
0

n
d u u r ri j jj

′ ′∑= −
=

 (7)

n is the total number of the criteria, while jr is the rating of
user u on criterion j . Then the distance between user u and
u′ can be denoted as:

1(,) (,)i
i I

d u u d u u
I ∈

′ ′= ∑ (8)

I is the number of items that are rated by both user u and u′ .
The similarity is denoted as the inverse of the distance:

1(,)
1 (,)

sim u u
d u u

′ =
′+

 (9)

Fourthly, predict the rankings which user u would give to
the item i based on aggregating his similar users’ ratings on
the other items by using extended collaborative filtering
prediction function in (2).

, (,)u i u u p
u U

r r k sim u u r ′
′∈

′= + ×∑ (10)

And

() /
1/

u i u c
u p

c

r r d
r

d
′ ′

′

−
= ∑

∑
u pr ′ presents the predicted rating of active context by using

the candidate contexts, and 1 / cd is the similarity between the
active context c and the candidate context. 1 / cd∑ is the sum
of those contexts which are used to do the prediction. And it is
computed by using (4) or (5) according to its context type. In
the other way, the similarities of those contexts which are not
used for the prediction, will not be included in the sum.

Finally, generate recommendations on the principle that the
higher overall rating, the higher chance for this service to be
selected. Once the context of use is determined (automatically
or through user input), since all users’ ratings are stored with
their context. Thus the system will match this current context
with the historically computed ones, and use the data stored
under that context. Then, predict the overall ratings of the
items. After that, the top N items from highest score are
recommended to the user.

IV. EXPERIMENTS
Two rounds of experiments are reported. The first round

tests whether the prediction is better when “borrowing” ratings
from a similar context dimension, compared with “borrowing”
ratings from a dissimilar dimension. And the second round of
experiments tests whether calculating context similarity and
using it to incorporate data from all context segments with an
appropriate weight (further segments still get included but with
a very small weight) will produce better prediction than when
not considering the weights.

In our experiments, context similarity is computed by
semantic similarity functions. All the experiments were
implemented using MatLab 2007b. All the experiments were

run based on a XP Professional based PC with Intel
Pentium(R) 4, CPU 3.20GHz, and a 1 GB of RAM.

A. Dataset
A feedback and use ratings data for an example service

domain (hotel stays) is collected from tripadvisor.com. The
data is suitable since a large number of feedback rankings are
available from a variety of sources, and our particular set had
ratings of five individual criteria, one total rating and
information about the context of use. The five criteria are from
Value, Rooms, Location, Cleanliness and Service. All the
individual criteria ratings and the total ratings ranged from 1 to
5, with 5 as the excellent.

Apart from criteria dimensions, there are also three context
dimensions, DateofStay, VisitWasFor, and TraveledWith. Two
values for VisitWasFor, leisure and business, while there are
eight values for TraveledWith: “with spouse”, “with friends”,
etc. Since the raw data is too sparse to compute, we aggregate
ratings of all the hotels from the same brand with the same
number of stars, using the assumed equality between the levels
of service and the similarity of furnishing standards of such
hotels. After aggregating, there are 250,899 records, with
51,855 hotels and 109,296 users.

B. Contextual Structure
As mentioned above, when considering context, it is

important to test which context dimension really affects rating
estimations significantly. All the context dimensions in our
dataset are categorical, so chi-square tests were applied for
each context dimension and total ratings. After testing, on our
data set, VisitWasFor and TraveledWith context dimensions
showed the significant difference in estimating total ratings.
Thus in the rest experiments, VisitWasFor and TraveledWith
were considered as our context dimensions.

Figure 2. TraveledWith context structure

Then we used specialization taxonomy to build the
structure of the two context dimensions. Fig. 2 shows the
hierarchical specialization structure of TraveledWith context.

The eight circles with Bold and Italic characters are
TraveledWith context values.

C. Experiment Design
The raw records were cleaned for further computation, as

there were 74,066 users who only rated one hotel of the total
109,296 users. In the following experiments, users who had
rated more than 3 hotels were considered. In order to get a less
sparse user-hotel matrix, for the rest each record, which is
defined by a user and a hotel, we calculated sum of the number
of ratings for this user, and the number of ratings for this hotel.
The sum was denoted as “survival score” of that record for the
further selection. We experimented with different “survival
score” thresholds to balance the number of remaining records
whilst achieving a tolerable level of sparsity.

1) Effect of Similar Context Prediction: In the first round
of experiments we tested whether data from similar context
can be “borrowed” to predict ratings from an “active” context
with insufficient number of ratings, and more importantly, if
these predictions are more accurate when compared to
“borrowing” data from dissimilar context.

In our dataset the VisitWasFor value of “for Business” only
had records covering the TravelledWith segments of “Others”
and “Solo”, whilst the VisitWasFor value of Leisure had data
under the TraveledWith segments of Others, Tour, Friend,
Spouse, ExtendedFamily, and Solo. Therefore we used the data
under “VisitWasFor” value of “Leisure” to conduct our further
tests. In the dataset, the number of records under WithSpouse
(4,567 records) is far more than the number of other contexts.
Then WithFriend (979 records) and WithOthers (219 records)
follow. Solo (131 records) and ExtendedFamily (83 records)
have a few records.

According to the features of our dataset and with limited
number of data, in these experiments, we choose the data under
ExtendedFamily as our test set. From the TraveledWith
hierarchy tree above, we can see that ExtendedFamily is close
to WithSpouse, but far from WithOthers, and Solo. For the
purpose of testing if the distance between context concepts on
the tree affect the prediction, WithFriend dataset was not
considered because it is in the middle, and it may make the
results obscure. Thus we choose WithSpouse as one of the
training set, WithOthers and Solo as another training set. Then
we compare the recommendation prediction by using different
training sets to show which context predict more accurate.

Since the records in Spouse training set (4,567 records) are
much more than those in Solo and Others training set (350
records), thus to keep the experiments reasonable, only 350
records should be left in Spouse training set.

2) Effect of Prediction considering Context Similarity.
This round of experiment will focus on testing the whether the
cross context prediction is better with the consideration of
weight. The weight is computed by the way stated in the
proposed approach section.

Following the basic experiment setting in the first round of
experiments, only TraveledWith context is considered, which is
a categorical context type, and as structured in Fig. 2. And data
under ExtendedFamily are used for testing. The semantic

similarity between the five other contexts and ExtendedFamily
was computed separately according to (5). Normalized context
similarity is used as the weight of this context in the prediction
process. For example, the similarity between Solo context and
ExtendedFamily is 0.25, while the similarity between Others
and ExtendedFamily is 0.5. If one record in the test set can only
be predicted by one of the training sets, Solo or Others, then it
is predicted based on the only one training set, without context
weight consideration. However, if it can be predicted by both
Solo and Others dataset, then the prediction needs to combine
both predictions under the two training datasets by multiplying
context weight. The context weight is the normalized context
similarity, and the denominator is the sum of the similarities of
the two contexts, Solo and Others, both of which can predict
this record. Thus, the weight of Solo context is 0.33, and the
weight of Others is 0.67.

3) Evaluation Metric: Mean Absolute Error (MAE) is used
as the evaluation metric in this paper. MAE is a measure of the
average absolute deviation between a predicted rating and the
user’s true rating.

1

N
p qi iiMAE
N

−∑
== (11)

N is the number of pairs of real ratings and
predictions ,i ip q< > . The lower MAE, the more accurate
predictions are [31].

D. Experiments Results
1) Impact of Closer Context. We ran our experiments on

the assumption that closer context can provide better
prediction. The proposed method to used to predict the score
for each user on the hotel(s) in the test set using different
training sets. Then MAE was computed for these data sets.

Figure 3. Closer Context Experiment Results

As shown in Fig. 3 above, we can see that when both the
numbers of the two training sets, MAE of Spouse training set is
smaller, with a value of 0.8354, which means Spouse training
set provides a better prediction for the test set. From Fig. 2, the
contextual hierarchy tree, we can see that Spouse is closer to
ExtendedFamily, than Solo and Others. The experiments
support our assumption that the closer the two context
dimensions are, the better prediction is. The MAEs are not very
small due to the limited size of the training dataset. Then we
extended the prediction on Spouse training set from 350
records to its original size, with 4567 records, a smaller MAE
is obtained, which is reasonable in a very sparse level. 0.9896

in for the original spouse dataset. And sparsity level is defined
as 1 / *totalrecords userNum hotelNum− .

2) Impact of Context Weight. This experiments aim to see
whether the consideration of context weight provide a better
result in cross contexts prediciton.

TABLE I. CONTEXT WEIGHT EXPERIMENT RESULTS

Dataset
No. Of

Records

Correlation MAE

Whole 6192 0.3012 0.7912

WholeWeighed 6192 0.3316 0.7908
Experiments are first applied on whole dataset, which is

quite sparse, with a sparsity level of 0.9877. The prediction on
the whole dataset with the consideration of categorical context
similarity is 0.7908, which is smaller than the prediction.
without context weight is 0.7912. And the correlation between
predicted value and test value in considering context weight is
also better than it in the prediction without involving context
weight. The results show that the consideration of context
weight can provide a better prediction for cross contexts. We
believe that in a larger dataset, with less sparsity level, the
accuracy will be more obvious. Currently we are collecting
more data, and this assumption will be tested in future work.

V. RELATED WORK
There is some work in extended recommender systems. In

multidimensional recommender systems, the recommendation
space is extended from traditional two dimensions
S Users Items= × to multiple dimensions 1 2 nS D D D= × × ×L .
The ratings become a set of all possible ratings values, and then
the rating function R is 1 2: nR D D D Ratings× × × →L , and
under this rating function, RS is also called multidimensional
RS [4]. In the example of recommending movies, contextual
information such as time, place, and accompany persons will
be considered. Because the movie the user wants to see with
their partner or friend in a theater at the weekend will be
different from the one watched at home with his/her parents on
a weekday. Then the recommendation space will from the
original two dimensions to become
S User Movies Time Place Accompany= × × × × [4]. Recommendation
Query Language (RQL) [17] and reduction-based approach [4]
are two approaches used for estimating the unknown ratings in
a multidimensional space. Anand and Mobasher [18] define a
recommendation process using context-based retrieval cues for
the preference information inspired by human memory model
in psychology.

One of the earliest papers on multi-criteria recommender
system area is DIVA, which is initialized by a collaborative
filtering database. For recommendation, it computes the
distance between active user and the cases in the database and
provides a ranking for users [19]. Lee and Teng [20] use
collaborative filtering approach to compute the similarity of
each of them separately. Subsequently, they utilized skyline
queries method to identify a few good items among numerous
candidates. Adomavicius and Kwon [21] believe new
techniques for recommendation are needed to take full
advantages of multi-criteria ratings, and they describe two

approaches: a similarity-based approach and an aggregation-
function-based approach. Some researchers use UTASTAR
algorithm to incorporate MCDA techniques to recommendation
process to provide a ranking for recommendation [22],[23].
Manouselis and Costopoulou describe and classify multi-
criteria recommender systems on the basis of analyzing MCDA
methods and recommendation process [3].

Up to the best of our knowledge, there are two papers that
are similar to our work. Chen presented a context-aware
collaborative filtering recommender system to predict a user’s
preferences in different context situations. He defined a method
to calculate the similarity of context types which has one of
three properties, categorical, continuous and hierarchical. The
method uses Pearson Correlation to compute the relevance of
two context values, and then the similarity returned will be
used as weight for recommendation prediction [24]. This
method requires the ratings of users who have rated the same
hotels under different context dimensions. Thus it does not suit
some datasets, such as our hotel rating dataset, because it is
very rare that a user stayed at the same hotel under different
contextual dimensions, such as under both for Business and
Leisure. Chapphannarungsri and Maneeroj developed a multi-
criteria and multi-dimensional recommender system for movie
selection. They use Multiple Linear Regression for the multiple
context modeling [25]. They claim that they are using multiple
criteria approach, but they actually only ask user to provide an
overall rating and then distribute this rating into every criterion
as their value. There are some papers which are using multiple
elements in the presentation vectors of items and users, such as
[4], [26]. But these recommendations are actually not multi-
criteria recommendation. We believe that one of the major
differences between multi-criteria recommendation and single
criteria recommendation is on user’s feedback. Thus, do they
ask the user only rate the item itself or they ask user to rate
multiple criteria of the item? What Chapphannarungsri and
Maneeroj do is a good way to compute the weight, but not
multiple criteria recommendation.

VI. CONCLUSION AND FUTURE WORK
We conclude that we can use concept abduction to provide

a reliable measure of context similarity, which can be
incorporated in a service recommender system, allowing us to
include data from nearby context segments with an appropriate
weight, thus overcoming the data sparcity problem associated
with the reduction approach to context-aware recommendation
systems. Concept specialization taxonomy is used to structure
these context dimensions, and help us establish the distance and
similarity between categorical context segments. Indeed, we
need different similarity calculations for different types of
context. For scale and ordinal types, we use the inverse of the
normalized distance, so that the closer the values are, the higher
the similarity measure and the more similar are the two
contexts. For the categorical type, the specialization hierarchy
tree will allow us to establish the metric, the size of the concept
difference (in description logic). Then the metric is used to
compute semantic context similarity, which is used as weight
of context. The semantic based approach ensures accuracy of
predictions.

We incorporate this mechanism in a novel service
recommendation approach which considers a number of user-
oriented criteria and multiple context dimensions. Euclidean
Distance is used to compute the multiple criteria ratings of
users on each item. The ontology-based context modeling can
keep abundant raw contextual information and also makes
semantic reasoning and sharing easier, which is helpful to
compute context similarity in order to make a more accurate
prediction.

We have used experiments to establish that the proposal is
sound, and that the recommendation is more accurate using the
data under a very similar context than it using data from a
remote context. The second experiment validated the
consideration of semantic context similarity will provide a
better prediction than the prediction on cross contexts, without
taking context weight into account. One weakness of this paper
is only one context dimension is considered. In the future, we
will work on combining different context dimensions in one
prediction.

This area of multi-criteria and multidimensional
recommender system research is to be developed further, and
the way in which these models and processes are integrated
within the recommender systems should be carefully
considered within our further research plans.

REFERENCES

[1] Burke, R., Hybrid Recommender Systems: survey and experiments. User
Modeling and User-Adapted Interaction, 2002. Volume 12(Number 4):
p. 331-370.

[2] Adomavicius, G. and A. Tuzhilin, Toward the next generation of
Recommender Systems: A Survey of the State-of-the-Art and Possible
Extensions. IEEE transactions on knowledge and data engineering, 2005.
17(6).

[3] Manouselis, N. and C. Costopoulou, Analysis and classification of
Multi-Criteria Recommender Systems World Wide Web, 2007. 10: p.
415-441.

[4] Adomavicius, G., et al., Incorporating contextual information in
recommender systems using a multidimensional approach. ACM
Transactions on Information Systems (TOIS), 2005. 23 (1): p. 103 - 145

[5] Lilien, G.L., P. Kotler, and S.K. Moonrthy, Marketing Models. 1992:
Prentice Hall.

[6] Strang, T. and C. Linnhoff-Popien. A Context modeling survey. in 1st
International Workshop on Advanced Context Modelling Reasoning and
Management. 2004.

[7] Colucci, S., et al., Concept abduction and contraction for semantic-
based discovery of matches and negotiation spaces in an e-marketplace,
in ECRA. 2005. p. 41- 50.

[8] Baader, F., B. Sertkaya, and A.-Y. Turhan, Computing the least common
subsumer w.r.t. a background terminology, in DL. 2004.

[9] Karta, K., An investigation on personalized Collaborative Filtering for
Web Service selection. 2005.

[10] Balabanović, M. and Y. Shoham, Fab: content-based, collaborative
recommendation, in Communications of the ACM. 1997. p. 66 - 72

[11] Leimstoll, U. and H. Stormer. collaborative recommender systems for
online shops. in Proceedings or the 13th Americas Conference on
Information Systems. 2007.

[12] Huang, Z., W. Chung, and H. Chen, A graph model for e-commerce
Recommender Systems. Journal of The American Society for
Information Science and Techonology, 2004. 55(3): p. 16.

[13] Anand, S.S. and B. Mobasher, Intelligent techniques for web
personalization in Intelligent Techniques for Web Personalization 2005,
Springer Berlin / Heidelberg. p. 1-36.

[14] Resnick, P., et al. GroupLens: An Open Architecture for collaborative
filtering of Netnews. in Proceedings of ACM 1994 Conference on
Computer Supported Cooperative Work. 1994.

[15] Shardanand, U. and P. Maes. Social information filtering: algorithms for
automating “word of mouth”. in Proceedings of the SIGCHI conference
on Human factors in computing systems. 1995.

[16] Breese, J.S., D. Heckerman, and C. Kadie. Empirical analysis of
predictive algorithms for Collaborative Filtering. in Proceedings of the
14th Conference on Uncertainty in Artificial Intelligence. 1998.

[17] Adomavicius, G. and A. Tuzhilin, Multidimensional Recommender
Systems: A Data Warehousing approach in electronic commerce. 2001,
Springer Berlin / Heidelberg. p. 180-192.

[18] Anand, S.S. and B. Mobasher, Contextual recommendation in From Web
to Social Web: Discovering and Deploying User and Content Profiles.
2007, Springer Berlin / Heidelberg. p. 142-160.

[19] Nguyen, H. and P. Haddawy. DIVA: applying Decision Theory to
Collaborative Filtering. in Proceedings of the Conference on Artificial
Intelligence for Electric Commerce. 1999.

[20] Lee, H.-H. and W.-G. Teng, Incorporating Multi-criteria ratings in
Recommendation Systems, in IEEE International Conference on
Information Reuse and Integration, 2007. 2007. p. 273-278.

[21] Adomavicius, G. and Y. Kwon, New Recommendation techniques for
multicriteria rating systems, in IEEE Intelligent Systems. 2007. p. 48-55.

[22] Matsatsinis, N.F., K. Lakiotaki, and P. Delia. A system based on multiple
criteria analysis for scientific paper recommendation. in Proceedings of
the 11th Panhellenic Conference on Informatics. 2007.

[23] Lakiotaki, K., S. Tsafarakis, and N. Matsatsinis, UTA-Rec: A
Recommender System based on multiple criteria analysis, in The 2nd
ACM conference of Recommender Systems. 2008. p. 219-225.

[24] Chen, A., Context-Aware Collaborative Filtering System: Predicting the
User’s Preference in the Ubiquitous Computing Environment, in
Location- and Context-Awareness. 2005, Springer Berlin / Heidelberg.
p. 244-253.

[25] Chapphannarungsri, K. and S. Maneeroj. Combining Multiple Criteria
and Multidimension for movie Recommender System. in Proceedings of
the International Multiconference of Engineers and Computer Scientists.
2009.

[26] Palmisano, C., A. Tuzhilin, and M. Gorgoglione, Using context to
improve predictive modeling of customers in Personalization
Applications. IEEE transactions on knowledge and data engineering,
2008. 20(11): p. 1535-1549.

[27] Schilit, B., N. Adams, and R. Want, Context-aware computing
applications, in 1st International Workshop on Mobile Computing
Systems and Applications. 1994. p. 85-90.

[28] Lieberman, H. and T. Selker, Out of context: computer systems that
adapt to, and learn from, context. IBM Systems Journal, 2000. 39: p.
617-632.

[29] Dey, A.K., Understanding and using context personal and Ubiquitous
Computing, 2001. 5(1): p. 4-7.

[30] Kusters, R., Non-Standard Inferences in Description Logu ics, in volume
2100 of Lecture Notes in Computer Science. 2001, Springer.

[31] Sarwar, B., et al. Item-based collaborative filtering recommendation
algorithms. 2001. Proceedings of the 10th international conference on
World Wide Web.

Combining Collaborative Filtering and Semantic Content-based Approaches to
Recommend Web Services

Freddy Lécué1

1The University of Manchester
Booth Street East, Manchester, UK

{(firstname.lastname)@manchester.ac.uk}

Abstract—As the abundance of web services on the World
Wide Web increase, designing effective approaches for web
service selection and recommendation has become more and
more important. In this paper we focus on an approach
dynamically offering services that fit the end-users’ interests.
To this end, we present a hybrid approach, coupling pure
and classic collaborative-filtering methods and a semantic
content-based method. On the one hand the former methods
are used to automatically recommend services depending
on other similar users, based on profiles, preferences and
historical experience. On the other hand our semantic
content-based approach performs Description Logic based
reasoning on semantic descriptions of services, in order
to analysis semantic similarity of services. This approach
further restricts the potential results and then ensuring a
semantic recommendation of services. Finally we discuss its
advantages and weaknesses.

I. INTRODUCTION

The Semantic Web [1], where the semantic content
of the information is tagged using machine-processable
languages such as the Web Ontology Language (OWL) [2],
is considered to provide many advantages over the current
”formatting only” version of the World-Wide-Web. OWL
is based on concepts from Description Logics (DLs) [3]
and ontologies, formal conceptualization of a particular
domain. This allows us to describe the semantics of web
services, e.g., their functionality in terms of input and
output parameters, preconditions, effects and invariants.
Such descriptions can then be used for automatic reasoning
about services and automating their use to accomplish
goals specified by the end-users including “intelligent”
tasks such as selection, discovery and recommendation.

Due to an increasing presence and adoption of web
services in the Semantic Web, appropriate and effective
approaches for discovering, selecting and recommending
services are required and key to satisfy the end-users’
interests [4] in a personalised way. We focus on Ser-
vice recommendation, defined by [5] as the process to
automatically identify the usefulness of service categories
in a given situation, and then proactively discover and
recommend services to the end-user. Here, Service recom-
mendation is viewed as the process of Service selection
augmented with end-user behaviour analysis to achieve
relevant and accurate service suggestion. There are three
main and distinct approaches for recommending services
(or any other item): collaborative filtering [6], content-
based [7] approaches, and their hybrid-based version.

On the one hand collaborative filtering-based recom-
mender systems suggest to end-users services that other
(similar) end-users interacted with and appreciated in the
past. Therefore, the recommendation is depending on the
similarity between their profiles, preferences, interest and
past rankings (or ratings). Such approaches have the posi-
tive effect to increase the serendipity in the sense that they
may recommend completely different services with respect
to the services the end-user has already interact with in the
past. However, such a behaviour could be inappropriate in
some contexts, for instance, where the end-users are not
inclined to interact with services achieving total different
functionalities they used to interact with. In addition,
collaborative filtering-based approaches have the drawback
(also called Cold Start problem [8]) of requiring to gather
and to analyze a considerable set of end-user’s interactions
before being able to infer the implicit similarities among
users and to provide recommendations.

On the other hand, content-based approaches reduce
both latter drawbacks by analyzing the content of services,
actually their characteristics such as their functionalities.
The recommendation is then based on this analysis which
aims at inferring similarities among services. In this direc-
tion, different levels of similarity among services’ descrip-
tions have been studied i.e., from syntactic to basic seman-
tic based methods. While syntactic-based approaches have
limitations to suggest high quality of recommendations
[9], most of the semantic based-approaches [10] recom-
mend services on basic subsumption-based ordering of
their functionalities. However, the latter approaches focus
only on standard semantic reasoning (i.e., subsumption)
to infer semantic similarity, then reducing the accuracy of
the recommendation. In addition, similarity between other
main parts of services’ descriptions (e.g., their precondi-
tions and effects) are partially, or even not considered.

In this work, we suggest to unify pure collaborative
filtering-based techniques with a semantic content-based
approach to both i) reduce the impact of the cold start
problem and ii) improve the semantic accuracy of services’
recommendations. To this end, we exploit a semantic
similarity measure, introduced by [11], and already applied
to address different tasks such as services selection for
their composition [12] by comparing services descriptions.
Contrary to the latter work, a complete specification
of services description has been considered to address
possible different levels of recommendations. In more

detail, the semantic similarity of services’ contents are
computed through a non standard DL reasoning, aiming at
evaluating the common descriptions rate of their functional
categories, functional (input and output) parameters and
requirements (preconditions and effects), all described as
DL concepts in a domain ontology. This will ensure
to provide end-users with recommendations which are
semantically similar to services previously used.

The rest of the paper is organized as follows. In Section
II we briefly review i) semantic web services, ii) semantic
matching types and iii) DL-based common description.
Section III introduces the semantic similarity measure for
content-based web services recommendation. Section IV
presents a prototype implementation of the unification
of pure collaborative filtering-based techniques with our
approach to recommend services, Section V discusses
related work, and Section VI draws some conclusions.

II. BACKGROUND

In this section we focus on semantics of web service
(we will assume without loss of generality that each
service refers to a single operation) by reviewing i) their
descriptions, ii) the basic semantic matching types used
to compare them, and iii) a non standard DL reasoning to
infer their common descriptions and differences.

A. Semantic Web Services Descriptions

The formal model required to represent semantics of a
web service s is defined as a set of semantic attributes: i)
its functional category F(s), ii) its functional parameters
i.e., inputs In(s), outputs Out(s) and iii) its requirements
i.e., preconditions P(s), effects E(s), all provided by a
domain ontology T through semantic annotations.

The particular ontology T , which is based on the
DL ALE [3], is part from a larger pair 〈T ,A〉. T and
A refer respectively to a Terminological Box (or TBox
i.e., intentional knowledge) and an Assertional Box (or
ABox i.e., extensional knowledge) in DL systems. In the
following, we will focus on the TBox T , that i) is used
to annotate service descriptions, and ii) supports inference
on these descriptions by means of DL reasoning. Fig. 1
shows a fragment of an example TBox T .

According to this model, semantic web services require
input parameters to be processed and preconditions to be
satisfied and return some output parameters with some
effects. In addition a (meta) semantic description related to
its functional category is attached to each service, enabling
to reason on its functionality and disambiguating services
with similar functional parameters. The OWL-S profile
[13], WSMO capability [14] or SA-WSDL [15] can be
used to describe such services.

Example 1. (A Semantic Web Service)
Suppose a service s1 with its semantic description
in the TBox T (Fig. 1). s1 is defined with the
NetworkEligibility as functional category , which,
starting from a Phone Number, a French Postcode
and an EMail address (as inputs), returns the Network
Connection (as an output) of the desired zone. Such

AdslEligbility ≡ NetworkEligibility u

∀hasAdslElgibility.Adsl1M u

∃hasAdslElgibility.Adsl1M

NetworkConnection ≡ ∀netPro.Provider u

∀netSpeed.Speed u∃netSpeed.Speed

SlowNetworkConnection ≡ NetworkConnection u

∀netSpeed.Adsl1M u

∃netSpeed.Adsl1M

Speed ≡ ∀mBytes.NoNilSpeed u ∃mBytes.NoNilSpeed

Adsl1M ≡ Speed u ∀mBytes.1M u ∃mBytes.1M

1M v NoNilSpeed, Postcode-FR @ Postcode-EU

PhoneNumber ≡ ∀hasDigit.FranceType u

∃hasDigit.FranceType u

∀hasAttachedNC.NetworkConnection u

∃hasAttachedNC.NetworkConnection

Owner ≡ ∀hasEmail.Email u ∃hasEmail.Email u

∀hasPhoneNum.PhoneNum u

∃hasPhoneNum.PhoneNum

Email @ >, PhoneNum @ >, NetworkEligibility @ >

Figure 1. Part of an ALE TBox.

a service required, as a precondition, the owner of the
Phone Number and the EMail address to be the
same. Finally, the service joins the returned Network
Connection to the Phone Number as effect.

B. Basic Semantic Matching Types

Given the definition of semantic web service, recom-
mendation systems may suggest services, which have been
consumed and well rated by similar end-users, based on
their semantic similarity e.g., in terms of their functional
parameters, categories and requirements. Such semantic
similarities can be judged using a matchmaking func-
tion SimT (sdi, sdj) between two semantic descriptions
sdi, sdj (referring to any attribute of service descriptions)
encoded using the same TBox T . The matchmaking
function SimT goes beyond the commonly used Exact
matching type and covers the four well known matching
types [16] plus the extra matching type Intersection [17]:
• Exact (≡) If the concepts sdi and sdj are equivalent

concepts; formally, T |= sdi ≡ sdj .
• PlugIn (v) If sdi is sub-concept of sdj ; formally,
T |= sdi v sdj .

• Subsume (w) If sdi is super-concept of sdj ; for-
mally, T |= sdi w sdj .

• Intersection (u) If the intersection of sdi and sdj is
satisfiable; T 6|= sdi u sdj v ⊥;

• Disjoint (⊥) Otherwise sdi and sdj are incompatible
i.e., T |= sdi u sdj v ⊥;

Example 2. (Matching Type)
Consider the service s1 in Example 1 as one of the top
rated service of a given end-user. Consider another ser-
vice s2 (see Table I) with SlowNetworkConnection
as the semantic description of its output. The semantic
similarity of their outputs can be valued by a Subsume

matching type since T |= NetworkConnection w
SlowNetworkConnection with respect to the TBox T
in Fig. 1. Therefore, the service s2, with a more specific
output, can be recommend to this end-user.

The function SimT enables finding some levels of
semantic compatibilities (i.e., Exact, PlugIn, Subsume,
Intersection) and incompatibilities (i.e., Disjoint) among
any independently defined service descriptions.

C. Common and Missing Description

Computing the matching type between semantic de-
scriptions can be completed with a more detailed infor-
mation: the DL Missing and Common Descriptions [12].

On the one hand the computation of Missing Descrip-
tions is done by exploiting a non-standard DL reasoning:
the difference or subtraction operation [11] for comparing
ALE DL-based descriptions, thus obtaining a compact
representation of the metric:

(i) the Missing Description sdj\sdi

sdj\sdi
.= min
�d

{E|E u sdi ≡ sdj u sdi} (1)

which refers, with respect to the subdescription ordering
�d [18], to information required by sdi to be semantically
closer to sdj . This defines all information which is a part
of the description sdj but not a part of the description sdi.
In case T |= sdi w sdj , (1) refers to information which is
required by sdi to be similar sdj . The Missing Description
(1) is not only necessary to explain how two descriptions
are different, but also why they are different and how to
make them (semantically) closer and even similar. On the
other hand, the DL Common Description of sdi, sdj is:

(ii) their Least Common Subsumer [19] lcs i.e.,

lcs(sdi, sdj)
.=

{F |sdi v F ∧ sdj v F ∧
∀F ′ : sdi v F ′ ∧ sdj v F ′ ⇒ F v F ′} (2)

which refers to information shared by sdi and sdj .

∃netSpeed.Adsl1Mu

Connection

Network
Connection

Sloww Network

Under Specified
Description

Over Specified
Description

≡ ≡

∀netPro.P rovider∀netPro.P rovider
u ∀netSpeed.Adsl1M∀netSpeed.Speedu
u∃netSpeed.Speed

Figure 2. Missing and Common Description.

Example 3. (Common and Missing Description)
The description missing in NetworkConnection to
be similar to SlowNetworkConnection is referred
by SlowNetworkConnection\NetworkConnection
(due to subsumption) i.e., ∀netSpeed.Adsl1M u
∃netSpeed.Adsl1M (Figure 2).

The Common Description of the latter descriptions is
defined by their Least Common Subsumer, which refers
to the information shared by SlowNetworkConnection
and the description NetworkConnection i.e.,
lcs(SlowNetworkConnection, NetworkConnection)

i.e., NetworkConnection. In other words both
descriptions are NetworkConnection.

The DL intersection between the description
NetworkConnection and the Missing Description
SlowNetworkConnection\NetworkConnection i.e.,
∀netSpeed.Adsl1M u ∃netSpeed.Adsl1M is of Exact
matching type with SlowNetworkConnection i.e.,
perfect semantic similarity.

III. SEMANTIC CONTENT-BASED RECOMMENDATION

We consider two generic measures for evaluating se-
mantic similarity between services descriptions: their i)
Common Description rate, and ii) Matching Quality.

A. Common Description Rate

Definition 1. (Common Description rate)
Given two ALE semantic description sdi and sdj , the
Common Description rate qcd ∈ (0, 1] provides one
possible measure for the degree of similarity between sdi

and sdj . This rate is computed using:

qcd(sdi, sdj) =
|lcs(sdi, sdj)|

|sdj\sdi| + |lcs(sdi, sdj)|
(3)

This rate estimates the proportion of descriptions in sdi

and sdj which are in common. The higher the better is the
similarity. The expressions in between | refer to the size of
ALE concept descriptions ([18] p.17) i.e., |>|, |⊥|, |A|,
|¬A| and |∃r| is 1; |C u D| .= |C| + |D|; |∀r.C| and
|∃r.C| is 1 + |C|. For instance |∀netSpeed.Adsl1M u
∃netSpeed.Adsl1M | is 18 with respect to Fig. 1.

Example 4. (Common Description rate)
Suppose services s1 and s2 in Table I. According to
(3), the common description rate of the output pa-
rameters of s1 and s2 i.e., qcd(Out(s1), Out(s2)) i.e.,
qcd(NC, SlowNC) is defined by:

|lcs(NC, SlowNC)|
|SlowNC\NC| + |lcs(NC, SlowNC)| i.e.,

2

5
(4)

where NC stands for NetworkConnection.
Semantic

s1 s2Web Service si

Functional NetworkEligibility AdslEligbilityCategory
Phone Number Phone Number

Functional In(si) Postcode-FR Postcode-EU
Parameters EMail EMail
F(si) Out(si)

Network Slow Network
Connection Connection

P(si) Owner Owner

Requirements Network Slow Network

E(si)
Connection Connection
attached to attached to

Phone Number Phone Number

Table I
SEMANTIC SERVICES DESCRIPTIONS.

B. Matching Quality

Definition 2. (Matching Quality)
The Matching Quality qm between two semantic de-
scriptions sdi and sdj is a value in (0, 1] defined by
SimT (sdi, sdj) i.e., either 1 (Exact), 3

4 (PlugIn), 1
2 (Sub-

sume), 1
4 (Intersection) or 0 (Disjoint).

The discretization of the matching types follows a
partial ordering [20] to compare and value the semantic
similarity of services descriptions at matching level. Such
an ordering is based on the binary and logical implication
relation of Intersection from i) PlugIn and Exact and also
ii) Subsume and Exact. These matching types are not all
mutually exclusive, but our focus is on measuring the best
achievable quality. Therefore, we assign the first matching
type which is satisfied e.g., Exact rather than Plugin.

Example 5. (Matching Quality)
According to the Example 2 and Definition 2, we have
qm(Out(s1), Out(s2)) i.e., qm(NC, SlowNC) is 1

2 .

Contrary to qcd, qm does not estimate similarity between
two descriptions but gives a more general overview and
level (discretized values) of their semantic relationships
by means of the subsumption relationship. We focus on a
more abstract view of semantic valuation by introducing
this criterion. As the common description rate, our system
advertises the matching quality of different descriptions of
services by pre-computing them [12].

C. A Combined Quality Model for Semantic Similarity

Given the above quality criteria, the semantic similarity
of semantic descriptions sdi and sdj can be defined by:

q(sdi, sdj)
.=
(

qcd(sdi, sdj), qm(sdi, sdj)
)

(5)

where sdi and sdj can be respectively any semantic
attribute of service descriptions i.e., In(si) and In(sj);
Out(si) and Out(sj); E(si) and E(sj); P(si) and P(sj);
F(si) and F(sj) of services si and sj . By considering this
quality model, we aim at evaluating the level of semantic
similarity between two different services descriptions.

In case some semantic attributes of services are defined
by multiple semantic descriptions e.g., In(s1) and In(s2)
in Table I, the value of each quality criterion is retrieved
by computing their average. This average is computing
independently along each dimension of the quality model.

Example 6. (Multiplicity in Attributes Description)
Suppose the input parameters of s1 and s2 in Table I. The
semantic similarity of In(s1) and In(s2) is defined by the
quality vector q(In(s1), In(s2)):

1

3
×
(3∑

k=1

qcd(Ink(s1), Ink(s2)),

3∑
k=1

qm(Ink(s1), Ink(s2))

)
i.e., (1,

11

12
) (6)

Ink(si) refers to the kth input parameter of si,i∈{1,2}.

In case the number of semantic descriptions are different
between attributes of services, only comparable (in term
of subsumption) pairwise of descriptions are considered.

The quality (5) for semantic similarity can be gener-
alised to any pair of services si and sj rather than to any
pair of semantic descriptions (or services attributes) as:
∗
q (si, sj)

.=
∑

l∈{F,In,Out,P,E}

ωl × q
(
l(si), l(sj)

)
(7)

where ωl ∈ [0, 1] is the weight assigned to the lth service
description attribute and

∑
l∈{F,In,Out,P,E} ωl = 1. In

this way preferences on quality one some desired service
attribute can be done by simply adjusting ωl e.g., the
functional category of a service could be weighted higher.
Finally, the results returned by (7) is a pair of values in
[0, 1]× [0, 1] referring to the common description rate and
matching quality between services si and sj .

Example 7. (Semantic Similarity of services)
Suppose services s1 and s2 in Table I. Accord-
ing to Examples 4, 5 and 6, we obtained re-
spectively qm(Out(s1), Out(s2)), qcd(Out(s1), Out(s2)),
qm(In(s1), In(s2)) and qcd(In(s1), In(s2)). The other
quality of services descriptions attributes are computed
using the same process along F , P , and E (see Table II).
Finally, by means of (7), we obtain:

∗
q (s1, s2)

.= (
69
100

,
47
60

) (8)

where the weight ωl is 1
5 for each attribute.

The quality of semantic similarity between services can
be then compared by analysing

∗
q i.e., their qcd and qm

elements. For instance
∗
q (si, sj) >

∗
q (si, sk) if both the

common description rate and matching quality of
∗
q (si, sj)

are higher than
∗
q (si, sk). Alternatively, in case of conflicts

e.g., the value of the first element of
∗
q (si, sj) is better

than the first element of
∗
q (si, sk) but worse for the second

element, we compare a weighted average (with a weight
of 1

2) of their normalised components.

q(l(si), l(sj)) qcd(l(si), l(sj)) qm(l(si), l(sj))

q(F(s1),F(s2)) 1
20

1
2

q(In(s1), In(s2)) 1 11
12

q(Out(s1), Out(s2)) 2
5

1
2

q(P(s1),P(s2)) 1 1
q(E(s1), E(s2)) 1 1

Table II
QUALITY ALONG DIFFERENT ATTRIBUTES.

IV. ARCHITECTURE AND IMPLEMENTATION

Our technique of “semantic content-based recommen-
dation” is implemented and integrated with state-of-the-
art filtering techniques-based approaches. We describe the
prototype architecture and discuss the extension of the
basic collaborative filtering techniques we have suggested
to deal with semantic similarity of services descriptions.

A. General Overview

The prototype architecture (Figure 3) consists of four
main state-of-the-art modules, namely i) the Collabo-
rative Filtering module1 (based on Taste, an extensible
framework that implements many recommendation algo-
rithms available in literature) which is the core of the
recommendation system, ii) a Monitoring and Manage-
ment infrastructure (using Active BPEL2) responsible for

1http://taste.sourceforge.net
2http://sourceforge.net/projects/activebpel/

tracking logs and behaviours of end-users, iii) an End-
User Behaviour Correlation Analyser which estimates the
relations between users and services by examining the end-
user rates (on services), history e.g., actions performed by
end-users (through analysis of logs), and iv) a Semantic
Reasoning module (DL reasoner Fact++ [21]) responsible
for specific DL inferences such as subsumption (e.g.,
matching quality), difference (Common description rate).

In addition, a pool of (SA-WSDL) semantic-based ser-
vices (based on the Minimal Service Model3) are stored in
a RDF4 repository [22]. Their descriptions are based on an
ALE TBox (formally defined by 1100 concepts and 390
properties). The users profiles, required to evaluate sim-
ilarity between end-users, and preferences (e.g., ranking
about services) are described with RDF based FOAF5.

Finally, our architecture is extended by our Semantic
Content-based approach, responsible for computing and
ranking semantic similarities between services using (7).

B. Limitation of Pure Collaborative Filtering Approaches

In a nutshell, the pure collaborative filtering-based ap-
proaches aim at producing personal recommendations of
web services by computing the similarity between profiles,
behaviours and preferences of different end-users. To this
end, they simply requires the reference to an active end-
user (i.e., end-user expecting services recommendations)
and the latter personal information as inputs. Then, the
personal information of active end-users’ neighbours are
jointly considered in order to identify the most appreciated
services (using a ranking). From this set of services, the
ones that the active end-user has not yet interact with are
recommended. Most of recommendation systems exploits
such end-users similarities in terms of their personal in-
formation to select and then recommend relevant services.
However, as mentioned in Section I, such systems may
recommend completely different services (in term of their
functionality) with respect to the ones the active end-user
has already interact with in the past.

C. Our Integrated Approach

Towards the latter issue we suggest to extend the
previous approach by also recommending services based
on the semantic similarities between their descriptions
and the services used by similar end-users. To this end,
our recommendation system requires the reference of an
active end-user (and its personal information) and some
services she used to interact with in the past as inputs.
Firstly, our approach considers the neighbours of the active
end-user by computing similarities between different end-
users personal information. Then, services manipulated
by similar end-users, except the services already used
by the active end-user, are ranked depending on their
semantic similarity (by means of the Semantic Content-
based Approach introduced in Section III) with services
the active end-user used to interact with. Finally, the top

3http://cms-wg.sti2.org/TR/d12/v0.1/
4http://www.w3.org/RDF/
5http://www.foaf-project.org/

Semantic

Approach

Content−based

Monitoring and

Management

Infrastructure

Semantic

Reasoning

Relevant

Services
Relevant

End−Users Profile

End−User

Behaviour

Correlation

Analyser

Some

Services

Collaborative

Filtering Approach

Semantic−based Services Description

Ontologies

Web Services

Recommendations

(http://taste.sourceforge.net)

(Java API)

[22])

Processing

Execution Platform

(Active BPEL)

(Fact++)

Starting Point

End Point

Users Behaviour Logs

Execution Logs

Service

Services in Use
Semantic Web

Active End−Users

Profile

End−Users
Profiles

and
Preferences

State−Of−The−Art Tools

(Impl) := Implementation used

(RDF Repository

(FOAF)

Caption

Figure 3. Core Architecture.

k services are then recommended to the active end-user.
Therefore, the active end-user of our platform will receive
simple and intuitive indications about potentially useful
services, without having to deal with any configuration or
data request. Our system analyses the end-user actions and
interests, giving back the most suitable suggestions.

Even if we focused on coupling both collaborative filter-
ing techniques and semantic similarities for recommending
services, it is straightforward to adapt our approach in
order to consider only one of the previous approaches.

V. RELATED WORK

The recommendation approaches [23] are usually clas-
sified into three categories: collaborative filtering [6],
content-based [7] and hybrid approaches. [24] extended
this classification by introducing demographic, utility-
based and knowledge-based approaches.

Among these approaches, the content-based and the
collaborative filtering approaches are the two most famous
recommendation approaches. The content-based approach
recommends items (or services in our context) similar to
those the end-users appreciates (or used to interact with)
with in the past, based on the item’s characteristics such
as their content while the collaborative filtering (or end-
user based) approaches recommend to end-users the items
liked by other users, identified to be similar, say because of
similar profiles, preferences, interest and past rankings (or
even ratings). Our work presents a comprehensive study
of how to provide accurate recommendation by systemati-
cally combining the (semantic) content-based method and
a classic collaborative filtering-based method.

There is limited work in the literature which employs
semantic content-based methods for web service recom-
mendation. Indeed, there is no real semantic analysis of
similar contents but rather enhanced syntactic comparison
of contents [9]. However, the recommendation systems
should benefit of recent results in the research area of

semantic computing such as DL reasoning [21], [18], [19]
and semantic similarity measures [25].

Thus, we suggested to enhance the recommendation
systems with non standard DL reasoning on services con-
tents i.e., DL difference [11]. However, other approaches
such as the i) difference operator [26] or ii) Concept
Abduction [27] can be used to compute from a given
description all the information different (and so similar) in
another description. On the one hand (1) is a refinement
of [26]’s difference that considers the syntactic minimum
(�d) between incomparable ALE descriptions instead of
a semantic maximum (ordering according to the subsump-
tion operator). The result of the former does not contain re-
dundancies and its result is more readable by a human user.
On the other hand concept abduction considersALN DLs.
[26] and (1) perform an equivalence between two concept
descriptions (T |= E u sdi ≡ sdj or E u sdi ≡ sdj u sdi)
whereas the concept abduction computes a subsumption
of concept descriptions (T |= E u sdi v sdj).

VI. CONCLUSION

We introduced a semantic content-based recommenda-
tion system that provides end-users with recommendations
about semantic web services that could be of their interest.
To this end our approach suggests recommendations of
services by combining state-of-the-art collaborative fil-
tering approaches (based on similarity in the services’
usage) and a semantic content-based approach (based on
the semantic similarity of services’ contents).

Even if our approach is appropriate to recommend
services in an accurate way with high level of semantic
descriptions, there are some issues regarding its scalability.
Indeed, the DL reasoning part is the most time consuming
process in our architecture. This is caused by the critical
complexity of qcd computation through DL Difference,
LCS and subsumption (even in ALE DL). Indeed, decid-
ing subsumption in ALE is NP-complete. There is a trade-
off between semantic expressivity of services descriptions
and quality/relevance of recommendation.

As future work, we expect to perform experimentations
on real-world applications to consider complexity vs.
usability, and to optimise DL reasoning to scale up the
overall process of recommendation. We also plan compar-
ative experiments with other discovery and matchmaking
approaches [28] to evaluate services similarity. It would
be also interesting to further explore more refined recom-
mendations by considering i) specific tasks and goals the
end-users expect to achieve, and ii) the current context.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic
web,” Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[2] M. K. Smith, C. Welty, and D. L. McGuinness, “Owl web
ontology language guide,” W3C Recommendation, 2004.

[3] F. Baader and W. Nutt, “Basic description logics,” in The
Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[4] T. M. Eap, M. Hatala, and D. Gasevic, “Enabling user
control with personal identity management,” in IEEE SCC,
2007, pp. 60–67.

[5] A. Moon, Y.-M. Park, and Y.-I. Choi, “Ontology based
knowledge modeling for the two-step personalized services
in next generation networks,” in ICSOFT (2), 2009, pp.
332–337.

[6] H. Ma, I. King, and M. R. Lyu, “Effective missing data
prediction for collaborative filtering,” in SIGIR, 2007, pp.
39–46.

[7] M. J. Pazzani and D. Billsus, “Content-based recommen-
dation systems,” in The Adaptive Web, 2007, pp. 325–341.

[8] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock,
“Methods and metrics for cold-start recommendations,” in
SIGIR, 2002, pp. 253–260.

[9] M. B. Blake and M. F. Nowlan, “A web service recom-
mender system using enhanced syntactical matching,” in
ICWS, 2007, pp. 575–582.

[10] H. Xia and T. Yoshida, “Web service recommendation with
ontology-based similarity measure,” in ICICIC. Washing-
ton, DC, USA: IEEE Computer Society, 2007, p. 412.

[11] S. Brandt, R. Küsters, and A.-Y. Turhan, “Approximation
and difference in description logics,” in KR, 2002, pp. 203–
214.

[12] F. Lécué and A. Delteil, “Making the difference in semantic
web service composition.” in AAAI, 2007, pp. 1383–1388.

[13] A. Ankolenkar, M. Paolucci, N. Srinivasan, and K. Sycara,
“The owl services coalition, owl-s 1.1 beta release,” Tech.
Rep., July 2004.

[14] D. Fensel, M. Kifer, J. de Bruijn, and J. Domingue, “Wsmo
submission, w3c member submission,” 2005.

[15] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller,
“Adding semantics to web services standards,” in ISWC,
2003, pp. 395–401.

[16] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara,
“Semantic matching of web services capabilities,” in ISWC,
june 2002, pp. 333–347.

[17] L. Li and I. Horrocks, “A software framework for match-
making based on semantic web technology,” in WWW,
2003, pp. 331–339.

[18] R. Küsters, Non-Standard Inferences in Description Logics,
ser. Lecture Notes in Computer Science. Springer, 2001.

[19] W. W. Cohen, A. Borgida, and H. Hirsh, “Computing least
common subsumers in description logics,” in AAAI, 1992,
pp. 754–760.

[20] F. Lécué, O. Boissier, A. Delteil, , and A. Léger, “Web
service composition as a composition of valid and robust
semantic links,” IJCIS, vol. 18, no. 1, March 2009.

[21] I. Horrocks, “Using an expressive description logic: Fact
or fiction?” in KR, 1998, pp. 636–649.

[22] C. Pedrinaci, D. Lambert, M. Maleshkova, D. Liu,
J. Domingue, and R. Krummenacher, Adaptive Service
Binding with Lightweight Semantic Web Services, 2010, ch.
Service Engineering: European Research Results.

[23] G. Adomavicius and A. Tuzhilin, “Toward the next gener-
ation of recommender systems: A survey of the state-of-
the-art and possible extensions,” IEEE Trans. Knowl. Data
Eng., vol. 17, no. 6, pp. 734–749, 2005.

[24] R. Burke, “Hybrid recommender systems: Survey and ex-
periments,” User Modeling and User-Adapted Interaction,
vol. 12, no. 4, pp. 331–370, 2002.

[25] V. Cordı̀, P. Lombardi, M. Martelli, and V. Mascardi, “An
ontology-based similarity between sets of concepts,” in
WOA, 2005, pp. 16–21.

[26] G. Teege, “Making the difference: A subtraction operation
for description logics,” in KR, 1994, pp. 540–550.

[27] S. Colucci, T. D. Noia, E. D. Sciascio, F. M. Donini,
and M. Mongiello, “Concept abduction and contraction
for semantic-based discovery of matches and negotiation
spaces in an e-marketplace,” Electronic Commerce Re-
search and Applications, vol. 4, no. 4, pp. 345–361, 2005.

[28] M. Klusch, P. Kapahnke, and I. Zinnikus, “Sawsdl-mx2:
A machine-learning approach for integrating semantic web
service matchmaking variants,” in ICWS, 2009, pp. 335–
342.

Using Contextual Information for Service Recommendation

Abstract

Recommender systems have successfully
supported the effective and efficient selection of one
product out of the many which meet consumer’s
needs. Our work extends this work to the area of
service recommendation, where we demonstrate the
need for using multiple criteria regarding service
qualities, and the need to consider multiple
contextual dimensions regarding the expected use of
that service. This motivates our proposed approach,
which uses collaborative filtering and considers both
multiple ranking criteria and a number of different
context dimensions. The expected sparsity of ranking
is dealt with when handling the contextual
information by introducing the metric of concept
similarity for different context types, and showing
how this metric can help reuse data between contexts.
At the end of the paper, two rounds of experiments
are described. The first shows that considering
context produces better predictions, and the second
round is used to test our approach for handling
sparsity by reusing data between contexts using the
similarity metric.

1. Introduction

The exponential growth of the World-Wide-Web
and the emergence of e-commerce sites has caused
information overload problem, under which
customers can’t find what they wanted in a short time
and are often lost during the searching process, and
also the sheer volume of available information also
make it hard to judge its reliability and
trustworthiness for customers. Recommender systems
(RS) have been an effective solution to this problem.
A Recommender System is defined as “any system
that produces individualized recommendations as
output or has the effect of guiding the user in a
personalized way to interesting or useful objects in a
large space of possible options” [1]. They are
routinely used by e-commerce websites to help
consumers make a purchasing decision. Their use can
increase e-commerce sales in three ways: by
converting browsers into buyers, increasing cross-sell
by suggesting additional products and building

customer loyalty through “creating a value-added
relationship between the site and the customer” [2].

With the development of recommender systems,
the recommended objects range widely, from books,
movies, music to TV programs, web pages and so on.
And generally the recommendation methods also
develop in two ways. In the first way, the
recommendation space converts from the traditional
two dimensions (user & item) to multiple
dimensions, considering context-specific dimensions
of data such as use{personal or business}. In the
second way, the ratings change from only one rating
per item to multiple criteria ratings.

In this paper, we show that both these
developments are necessary for selecting services, yet
existing work in the area fails to integrate both
multiple context dimensions and multiple criteria.
Having identified the need, we propose a
recommendation method for the selection of services.
Indeed, from a broad perspective, service
recommendation can be considered identical to
product selection, yet service recommendation needs
to be more personalized, with both context and
criteria considerations playing an important role. For
example, when recommending a vacation package,
the time of the travelling, with whom the user plans
to travel, stay duration, restrictions at that time and
some other contextual information should be
considered [3]. In recommending a restaurant, the
food and service, environment should be taken into
consideration as the multiple criteria. Manouselis and
Costopoulou point out that Multiple Criteria Decision
Making (MCDM) methods can facilitate the
recommendation process [4]. MCDM approaches are
aligned with situations where the decision is high-
value, and users have significant time to select
criteria weights and rank products according to their
criteria. This suggests that effective RS support
would need innovative combination of speed and
multiple criteria based selection. And our work
strives to deliver better recommendations for service
by taking into account both multiple criteria of
services and also the context in which they are
expected to be used.

Based on collaborative filtering (CF) approach,
we propose a novel approach which not only takes
the multiple criteria and context of use into account,
but also uses contextual information to reduce the

sparsity problem. The sparsity problem is one of the
classical recommendation problems [3], and we
believe it will be more acute and relevant in the area
of service selection, because the personalized nature
of services means less feedback for a larger number
of services. We demonstrate the utility of using
context information for better predictions, and for
handling the sparsity problem by two rounds of
experiments using real data on hotel service rankings
under multiple contexts.

The remainder of the paper is organized as
follows: we begin with introducing the
recommendation backgrounds and related work in
Section 2. Then in Section 3, the proposed approach
is presented. Two rounds of experiments are
implemented to evaluate the approach in Section 4,
and finally we conclude the current work and discuss
the future work in Section 5.

2. Background and related work

2.1 Recommender systems

Recommender systems have become an important
research area since mid-1990s. Traditionally,
recommender systems are based on a single criterion,
which is usually a numerical rating that presents
user’s preference of the whole item. Two types of
entities, users and items are used for the
recommendation, this giving it its two classical
dimensions. This is presented by the following:

 :R Users Items Ratings× → (1)
The system is initialized by user’s ratings that are

either explicitly or implicitly collected. Then it tries
to estimate the utility function R of the item based on
these two dimensions, user and items:

, arg max (,)
u

i Items

u Users i R u i
∈

′∀ ∈ =

(2)

Only the items which can maximize the utility
will be chosen [5]. For example, in the traditional
way of recommending movies, the users are asked to
rate the movies they have watched before. The
recommender system predicts unknown ratings and
recommends those movies with highest ratings. The
recommendation approaches are usually classified
into three categories: collaborative filtering, content-
based and hybrid approaches [6], [5], [3], [7], [8].
Burke extends the classification and adds another
three methods: demographic, utility-based and
knowledge-based approaches [1]. Among them, the
knowledge-based approach is quite popular [9].

2.2 Collaborative filtering approach

Among these approaches, the content-based and
the Collaborative Filtering (CF) approaches are the

two most famous recommendation approaches. The
content-based approach recommends items similar to
those the user liked in the past, based on the item’s
characteristics such as content for books, descriptions
for consumer goods, etc., while the CF approach
recommends to users the items liked by other users,
identified to be similar, say because of similar past
rankings [7]. In the CF approach, users are asked to
provide ratings as their feedback. And the historical
feedback is used to find other users who have
provided similar feedback on the assumption that
users who had common interests in the past, tend to
have similar tastes in the future [10]. GoupLens,
Ringo, Amazon.com et al are all successful CF
approach for prediction [11, 12]. According to [13],
CF can be grouped into two classes: memory-based
and model-based. For the memory-based algorithm,
which is also used in this paper, prediction is
computed by aggregating the ratings of other users
for the same item, such as:

, ,(,) ()u i u u i u
u U

r r k sim u u r r′ ′
′∈

′= + × −∑

(3)

Where U denotes the set of user u and his similar
u′who have rated the same item i ,

,u ir presents the

rating of user u on item i , ur is defined as the

average ratings of user u , and 1/ (,)k sim u u
u U

′= ∑
′∈

[3].
Another key issue in the CF approach is how to

locate the ‘neighbors’ of the active user, those users
who have similar taste to the active user in the past.
Pearson correlation and cosine-based approach are
the two mostly used. The value of any of the two
approaches ranges from -1 to +1. The greater value it
is, the more similar these two users are. Thus, -1
means that the two users have exact opposite taste,
and +1 means they have exact the same taste. The
value is presented as (,)′sim u u in function (3).

As CF approach is based on the customer
dimension, thus it can work very well on complex
items, such as music and movies. But it suffers when
new items and new users appear (the New Item
problem and the New User problem) and needs a
large amount of initializing data before producing
valuable results. Above all these, the data it gets is
quite small comparing with what it needs to predict,
so sparsity of data also becomes an accute problem
[3].

2.3 Classification of recommender systems

Recommender systems are usually classified by
the recommendation approaches and techniques they
use. We propose an alternative novel framework,

where we classify recommender systems into four
types according to the number of decision criteria and
number of (context) dimensions they consider as
shown in Figure 1. Criteria in recommender system
are usually presented as the users’ ratings of different
features (or properties) of the items. Criteria are thus
about the item itself. This contrasts with Context
Dimensions, which represent different type of context
parameters relevant to the selection.

Figure 1. Recommender systems

The four types of recommender systems are
1C2D (single-criterion 2-dimensional systems, or
“ traditional” systems), 1CmD (single-criterion multi-
dimensional systems), mC2D (multi-criteria 2-
dimensional systems) and mCmD (multi-criteria
multi-dimensional) recommender systems. Most of
the existing recommender systems on the market are
1C2D recommender systems, though within the
recommender systems research community, a
significant volume of further work has been done. In
this paper, 1C2D recommender systems are also
referred to as traditional, while the other three are
extended systems, considering the current
applications in e-commerce. However, to the best of
our knowledge, the area of mCmD recommender
systems is not developed yet. We expect that it will
be a trend to be developed because of the accuracy
and personalization requirements for current
recommender systems.

2.4 Existing Extended RS

In multidimensional recommender systems, the
recommendation space is extended from traditional
two dimensions S Users Items= × to multiple
dimensions

1 2 nS D D D= × × ×⋯ . The ratings become a

set of all possible ratings values, and then the rating
function R is

1 2: nR D D D Ratings× × × →⋯ , and

under this rating function, RS is also called
multidimensional RS [5]. Anand and Mobasher [14]
define a recommendation process using context-
based retrieval cues for the preference information
inspired by human memory model in psychology. In
the example of recommending movies, contextual

information such as time, place, and accompany
persons will be considered. Because the movie the
user wants to see with their partner or friend in a
theater at the weekend will be different from the one
watched at home with his/her parents on a weekday.
Then the recommendation space will become
S User Movies Time Place Accompany= × × × × from the
original two dimensions [5]. Recommendation Query
Language (RQL) [15] and reduction-based approach
[5] are two approaches used for estimating the
unknown ratings in a multidimensional space.
Reduction-based approach reduces multidimensional
recommendations problem to the traditional two-
dimensional problem. For example, in a three
dimensional space S User Content Time= × × , the
prediction function can be expressed as the prediction
in a two dimensional spaceS User Content′ = × when

Time t= [5].
One of the earliest papers on multi-criteria

recommender system area is DIVA, which is
initialized by a collaborative filtering database. For
recommendation, it computes the distance between
active user and the cases in the database and provides
a ranking for users [16]. Lee and Teng [17] use
collaborative filtering approach to compute the
similarity of each of them separately. Subsequently,
they utilized skyline queries method to identify a few
good items among numerous candidates.
Adomavicius and Kwon [18] believe new techniques
for recommendation are needed to take full
advantages of multi-criteria ratings, and they describe
two approaches: a similarity-based approach and an
aggregation-function-based approach. Some
researchers use UTASTAR algorithm to incorporate
MCDA techniques to recommendation process to
provide a ranking for recommendation [19],[20].
Manouselis and Costopoulou describe and classify
multi-criteria recommender systems on the basis of
analyzing MCDA methods and recommendation
process [4].

Up to the best of our knowledge, there are two
papers that are similar to our work. Chen presented a
context-aware collaborative filtering recommender
system to predict a user’s preferences in different
context situations. He defined a method to calculate
the similarity of context types which has one of three
properties, categorical, continuous and hierarchical.
The method uses Pearson Correlation to compute the
relevance of two context values, and then the
similarity returned will be used as weight for
recommendation prediction [21]. This method
requires the ratings of users who have rated the same
hotels under different context dimensions. Thus it
does not suit to some dataset, such as our hotel rating
dataset, because it is very rare that a user stayed at

the same hotel under different contextual dimensions.
For instance, under both for Business and Leisure.
Chapphannarungsri and Maneeroj developed a multi-
criteria and multi-dimensional recommender system
for movie selection. They use Multiple Linear
Regression for the multiple context modeling [22].
They claim that they are using multiple criteria
approach, but they actually only ask user to provide
an overall rating and then distribute this rating into
every criterion as their value. There are some papers
which are using multiple elements in the presentation
vectors of items and users, such as [5], [23]. But
these recommendations are actually not multi-criteria
recommendation. We believe that one of the major
differences between multi-criteria recommendation
and single criteria recommendation is on user’s
feedback. Thus, do they ask the user only rate the
item itself or they ask user to rate multiple criteria of
the item? What Chapphannarungsri and Maneeroj do
is a good way to compute the weight, but not multiple
criteria recommendation.

3. Recommendation based on context
similarity

As stated before, our approach not only covers
multiple criteria of items but also various contextual
dimensions. Since multiple criteria ratings expressed
user’s opinions from different aspects, which are
accurate than one single total rating of the item, while
contextual information describes their usage
situation. Let’s start with contextual description.

3.1 Context concepts

Researchers hold different definitions about
context. Schilit et al [24] claim that context has three
important aspects, where you are, who you are with
and what resources are nearby. Then they entail
context including ‘lighting, noise level, network
connectivity, communication costs, communication
bandwidth, and even the social situation’ [24].
Lieberman and Selker [25] interpret context for
computer systems as ‘everything affects the
computation except the explicit input and output’,
including the state of user, physical environment,
computational environment, and history of user-
computer environment interaction. The history here is
about what the user has done, and how it will affect
the future [25]. One of the most referenced context
definitions is defined by Dey and Abowd [26].. They
define context as “any information that can be used to
characterize the situation of an entity”, and the entity
he defines as “a person, place, or object that is

considered relevant to the interaction between a user
and an application, including the user and
applications themselves” [26].

Context plays an important role to make more
accurate recommendation prediction. Adomavicius et
al [5] state that a more accurate prediction of user’
preference depends on the degrees of incorporation of
contextual information into a recommender system
[5]. This statement is based on the research of Lilien
et al [27] on consumer decision making, “consumers
vary in their decision-making rules because of the
usage situation, the use of the good or service (for
family, for gift, for self) and purchase situation
(catalog sale, in-store shelf selection, salesperson
aided purchase)” [27].

3.2 Similarity of Context

Similar to the assumption of CF approach, we

calculate the context similarity to show how relevant
the other context dimension is to the current one.
Chen states that for different context types, various
quantifiable measures of the similarity between two
context values are needed [21]. In this paper, we
classify context into three types, scale, ordinal and
categorical.

For scale and ordinal context types, the closer
context values are, the more similar these two context
dimensions are. For example, under the contextual
dimension temperature of 25 degrees Celsius, the
ratings under 20 degrees are more similar than the
ratings under 35 degrees Celsius. The inverse of the
numerical distance between two context values is
used to compare which “candidate” context is more
similar to the “active” context (we use “active” to
refer to the context which our target user is
considering for the use of the service we are currently
recommending). Then use the weighted average
formula below to predict the ratings under active
context by using its related context dimensions.

/

1/
c c

p

c

r d
r

d
= ∑
∑

(4)

pr is the predicted ratings under active context,

while
cd is the distance between the active context and

the candidate context. c presents the c th candidate
context. The bigger distance is, the less similar of
these two contexts. In our example, the active context
will be the 25 degrees, and the similarity between 20
degrees context and the active context is 0.2, and the
similarity between 35 degrees context and the active
context is 0.1. Opposite to the context distance, the
context similarity is better with a bigger value.

For the third type of context, the categorical type,
we can model the different context types in a

specialization taxonomy, or an ontology. This will
contain a hierarchical tree of domain concepts and
the way they specialize one another, and an attribute-
value mechanism to describe crucial properties of
each concept [28]. After establishing the hierarchical
structure (assume the structure is established under
the aim of finding similar contexts), the similar
contextual dimensions stay in a closer level in the
hierarchy tree. The similarity will be computed by
measuring the distance (say by counting the number
of the specialization links, or graph edges) from
active context to candidate context. Then the
similarity of categorical context types converts to
numerical data, the formula (4) can be used for
predicting ratings of active categorical context.

3.3 Proposed Approach

In this paper, we also assume that context has

effect on users’ ratings. Our approach extended CF
approach with multiple criteria of ratings, while
keeping in mind of reducing the side effect of
sparsity problem. The approach comes following the
steps below:

Firstly, determine which context dimensions have
significant effect on the total rating. From the direct
impression of an observer, many contextual
dimensions may seem to have an effect on user’s
ratings, but this needs to be tested through a
statistical method. If the context dimension is Scale
or Ordinal, then t-test should be used. If the context
dimension is Categorical, then chi-square test tends
to be used. Only contextual dimensions which have
significant effect on total ratings will be taken into
consideration in the further computation.

Secondly, for contextual information, select a
specific context for the computation, denoted bymT ,

m for the number of the specific context. For
example, context of Date, it can be aggregated into
four seasons, Spring/Summer/Autumn/Winter,4m = .
We do recommendation under Summer this specific
context. The number of this kind of specific context
is the combination of those context dimensions,
which have significant affect on ratings. We assume
that a particular hierarchy tree for each context
dimension exists (if it can be hierarchy structured).

Given the sparsity problem in two-dimensional
recommender system, the reduction-based approach
will make the sparsity problem worse, since it groups
data according to particular contextual segment.
Referring to the sparsity problem, we use the ratings
under similar context to predict for the active context
dimensions based on the assumption that the more
similar two contextual dimensions are, the more
accurate the prediction will be. The similarity

between two context dimensions is calculated
through the ways expressed in Section 3.2, and then
will be combined in the recommendation prediction.

Thirdly, for multi-criteria dimensions, Euclidean
distance is used to compute the distance between any
two users who have rated the same item. The inverse
of the distance is used as the similarity between these
two users, such as mentioned in [18]. The distance
between useru and u′ on itemi is:

2
(,) ()

0

n
d u u r ri j jj

′ ′∑= −
=

(5)

n is the total number of the criteria, while jr is the

rating of user u on criterion j .
Then the distance between user u and u′ can be

denoted as:
1

(,) (,)i
i I

d u u d u u
I ∈

′ ′= ∑

(6)

I is the number of items that are rated by both
user u and u′ .

The similarity is denoted as the inverse of the
distance:

1
(,)

1 (,)
sim u u

d u u
′ =

′+
(7)

Fourthly, predict the rankings which user
u would give to the item i based on aggregating his
similar users’ ratings on the other items, and those
ratings under closer context will have a higher weight
in prediction, by using extended collaborative
filtering prediction function as follows.

, (,)u i u u p
u U

r r k sim u u r ′
′∈

′= + ×∑
 (8)

And

() /

1/
u i u c

u p

c

r r d
r

d
′ ′

′

−
= ∑

∑

u pr ′ presents the predicted rating of active context

by using the candidate contexts,
cd is the distance

between the active context and the candidate context,
as expressed in Section 3.2. Thus the bigger the
distance of between active and candidate contexts is,
the less consideration when using that candidate
context to predict for active context.

Finally, generate recommendations on the
principle that the higher overall rating, the higher
chance for this service to be selected. Once the
context of use is determined (automatically or
through user input), since all users’ ratings are stored
with their context. Thus the system will match this
current context with the historically computed ones,
and use the data stored under that context. Then,
predict the overall ratings of the items. After that, the
top N items from highest score are recommended to
the user.

4. EXPERIMENTS

Two rounds of experiments are reported. The first
round of experiments tests whether the prediction is
better when context is considered compared to the
prediction without considering context. And the
second round of experiments tests whether the
prediction is better when “borrowing” ratings from a
similar context dimension, compared with
“borrowing” ratings from a dissimilar dimension. Our
experiments were implemented using MatLab 2007b.
All the experiments were run based on a XP
Professional based PC with Intel Pentium(R) 4, CPU
3.20GHz, and a 1 GB of RAM.

4.1 Dataset

A feedback and use ratings data for an example

service domain (hotel stays) is collected from a well-
known rankings site. The data is suitable since a large
number of feedback rankings are available from a
variety of sources, and our particular set had ratings
of five individual criteria, one total rating and
information about the context of use. The five
criteria are from Value, Rooms, Location,
Cleanliness and Service. All the individual criteria
ratings and the total ratings ranged from 1 to 5, with
5 as the excellent.

Apart from criteria dimensions, there are also
three context dimensions, DateofStay, VisitWasFor,
and TraveledWith. Two values for VisitWasFor,
leisure and business, while there are eight values for
TraveledWith: “with spouse”, “with friends”, etc.
Since the raw data is too sparse to compute, we
aggregate ratings of all the hotels from the same
brand with the same number of stars, using the
assumed equality between the levels of service and
the similarity of furnishing standards of such hotels.
After aggregating, there are 225,991 records, with
8934 hotels and 178,863 users.

4.2 Contextual Structure

As mentioned in Section 3.4, when considering

context, it is important to test which context
dimension really affects rating estimations
significantly. All the context dimensions in our
dataset are categorical, so chi-square tests were
applied for each context dimension and total ratings.
After testing, on our data set, VisitWasFor and
TraveledWith context dimensions showed the
significant difference in estimating total ratings. Thus
in the rest experiments, VisitWasFor and

TraveledWith were considered as our context
dimensions.

Then we used specialization taxonomy to build
the structure of the two context dimensions. Figure 2
shows the hierarchical specialization structure of
TraveledWith context. The eight circles with Bold
and Italic characters are TraveledWith context values.

Figure 2. TraveledWith context structure

4.3 Experimental Design

The raw records were cleaned for further

computation, as there were 151,964 users who only
rated one hotel of the total 178,863 users. In the
following experiments, users who had rated more
than 3 hotels were considered. In order to get a less
sparse user-hotel matrix, for the rest each record,
which is defined by a user and a hotel, we calculated
sum of the number of ratings for this user, and the
number of ratings for this hotel. The sum was
denoted as “survival score” of that record for the
further selection. We experimented with different
“survival score” thresholds to balance the number of
remaining records whilst achieving a tolerable level
of sparsity.

4.3.1 Effect of context consideration. In this first
round of experiments we tested whether considering
the context of use would produce better
recommendation than recommendation without
considering the context of use. In this first round we
do experiments on two datasets. The first dataset is
within one context entirely, and the other dataset
spans different context. If the prediction result of the
first dataset is better than the second dataset, then it

proves that context consideration will improve the
prediction accuracy.

We use the context of VisitWasFor, with two
main values “for Business” and “for Leisure”. In our
final dataset, the data under visiting for Business is
far more than visiting for Leisure. To reduce the
problems that can be caused by one context
domination, we set two data sets with even number of
records. 319 records with the highest survival scores
are selected from context Business, stored in Dataset
1. Then for Dataset 2, all the 155 records from
context Leisure are selected. And the other 164
records were selected from Dataset 1.

Then we divided our datasets into a training set
and a test set. 90% of the data was used as training
set, and 10% of the data was used as test set. The
approach proposed in the paper was applied in the
training set, and did the prediction for the users in the
test set.

4.3.2 Effect of similar context prediction. In the
second round of experiments we tested whether data
from similar context can be “borrowed” to predict
ratings from an “active” context with insufficient
number of ratings, and more importantly, if these
predictions are more accurate when compared to
“borrowing” data from dissimilar context.

The dataset used in the second round of
experiments demonstrated an expected issue where
different context dimensions influence each other. In
our example the VisitWasFor value of “for Business”
only had records covering the TravelledWith
segments of “Others” and “Solo”, whilst the
VisitWasFor value of Leisure had data under the
TraveledWith segments of Others, Friend, Spouse,
ExtendedFamily, and Solo. Therefore we used the
data under “VisitWasFor” value of “Leisure” to
conduct our further tests. In the dataset, the number
of records under WithSpouse (856 records) is far
more the number of other contexts. Then WithOthers
(222 records) and WithFriend (147 records) follow.
Solo (53 records) and ExtendedFamily (50 records)
have a few records.

According to the features of our dataset and with
limited number of data, in these experiments, we
choose the data under ExtendedFamily as our test set.
From the TraveledWith hierarchy tree above, we can
see that ExtendedFamily is close to WithSpouse, but
far from WithOthers, and Solo. For the purpose of
testing if the distance between context concepts on
the tree affect the prediction, WithFriend dataset was
not considered because it is in the middle, and it may
make the results obscure. Thus we choose
WithSpouse as one of the training set, WithOthers
and Solo as another training set. Then we compare

the recommendation prediction by using different
training sets to show which context predict more
accurate.

Since the records in Spouse training set (856
records) are much more than those in Solo and Others
training set (275 records), thus to keep the
experiments reasonable, only 275 records should be
left in Spouse training set. Under the principle, to
keep the sparsity level of two training sets similar to
each other, 275 records are left with a sparsity level
0.9606, while the sparsity level in Solo and Others
training set is 0.9650. Sparsity level is defined as
1 / *totalrecords userNum hotelNum− .

4.3.3 Evaluation metric. Mean Absolute Error
(MAE) is used as the evaluation metric in this paper.
MAE is a measure of the average absolute deviation
between a predicted rating and the user’s true rating.

1

N
p qi iiMAE
N

−∑
== (9)

N is the number of pairs of real ratings and
predictions ,

i i
p q< > . The lower MAE, the more

accurate predictions are [29].

4.4 Experiment Results

4.4.1 Impact of Context Dimensions. We ran our
experiments on the proposed method in Section 3.4
using the setup detailed in Section 4.3.1, and
predicted the score for each user on the hotel(s) in the
test set. Then MAE was computed for both data sets.
Figure 3 shows part of the total rating matrix. Rows
are for hotels, while columns are for users.

Figure 3. Part of total rating matrix under

context Business
The experimental results are shown in Table 1.

From the table, MAE within only one context
dimension 0.6768, is significantly smaller than MAE
across both context dimensions which is 0.8806. The
result on Dataset 1 is a reasonable prediction within
the constraints of the limited amount of data. In the
future, we will experiment on a larger data set. The
results prove our assumption that context affects
users’ ratings, and that the prediction within only one
context dimension is better than the prediction across
context dimensions. Therefore RS predictions which

consider context would be in the general case more
accurate than predictions on the whole data set
without considering the context information.

Table 1. MAE of both datasets
 DataSet 1 DataSet 2
No. of

Records
319 319

MAE 0.6768 0.8806
Context

Dimension
Business

Business &
Leisure

4.4.2 Impact of similar context. We ran our
experiments on the proposed method in Section 3.4,
using the setup detailed in Section 4.3.2, and
predicted the score for each user on the hotel(s) in the
test set using different training sets. Then MAE was
computed for these data sets.

Table 2. Experiment Results
Training
Set

Records
Num

Sparsity
Level MAE

Solo+Others 275 0.965 1.083

Spouse 275 0.9606 0.8543

Spouse 856 0.9769 0.3434

From the table above, we can see that when both

the numbers of the two training sets and the sparsity
level are similar, MAE of Spouse training set is
smaller, with a value of 0.8543, which means Spouse
training set provides a better prediction for the test
set. From Figure 2, the contextual hierarchy tree, we
can see that Spouse is closer to ExtendedFamily, than
Solo and Others. The experiments support our
assumption that the closer the two context
dimensions are, the better prediction is. However, the
values of MAE for both training sets are not
impressive.

When we did the prediction on the original data
set of Spouse, with 856 records, we obtained a very
small MAE, 0.3434, which is much smaller than the
prediction result under 275 records. The comparison
indicates that the relatively high MAE of Spouse with
275 records is caused by the very limited number of
records within each training set.

5. Conclusion & future work

We conclude that a service recommender system
should consider a number of user-oriented criteria
and multiple context dimensions, and that the field of
multi-criteria decision analysis can offer useful
ranking models and processes.

Our approach developed a method which covers
both criteria and context dimensions. Euclidean

Distance is used to compute the multiple criteria
ratings of users on each item. For contextual
information, reduction-based approach is introduced.
However, for the sparsity problem caused by
reduction-based approach, we use similar context to
reduce its side effect. Concept specialization
taxonomy is used to structure these context
dimensions, and help us establish the distance and
similarity between categorical context segments.
Indeed, we need different similarity calculations for
different types of context. For scale and ordinal
types, we use the inverse of the normalized distance,
so that the closer the values are, the higher the
similarity measure and the more similar are the two
contexts. For the categorical type, the specialization
hierarchy tree will allow us to establish simple
metrics such as the number of specialization links
between the concepts, or the size of the concept
difference (in description logic).

We have used experiments to establish that the
proposal is sound, and that the recommendation using
context segment information is better than
recommendation which does not use context
information. The second experiment validated the
mechanism for tackling intra-context sparsity, by
demonstrating that the “borrowing” of data from a
very similar context produces better predictions than
using the data from a remote context.

One of the weaknesses of the paper is that the
similarity of categorical context is estimated using
the simple measure of counting specialization edges,
and is thus dependent on the degree of granularity of
the concept taxonomy. However, we are planning to
measure the similarity of two categorical context
dimensions by using semantic reasoning in the future.
Then the similarity will be used as weight for a better
recommendation prediction. This area of multi-
criteria and multidimensional recommender system
research is to be developed further, and the way in
which these models and processes are integrated
within the recommender systems should be carefully
considered within our further research plans.

6. References

[1] Burke, R., Hybrid Recommender Systems: Survey and
Experiments. User Modeling and User-Adapted Interaction,
2002. Volume 12(Number 4): p. 331-370.
[2] Schafer, J.B., J.A. Konstan, and J. Riedl. Recommender
Systems in E-Commerce. in Proceedings of the 1st ACM
conference on Electronic commerce 1999.
[3] Adomavicius, G. and A. Tuzhilin, Toward the Next
Generation of Recommender Systems: A Survey of the
State-of-the-Art and Possible Extensions. IEEE transactions
on knowledge and data engineering, 2005. 17(6).

[4] Manouselis, N. and C. Costopoulou, Analysis and
Classification of Multi-Criteria Recommender Systems
World Wide Web, 2007. 10: p. 415-441.
[5] Adomavicius, G., et al., Incorporating contextual
information in recommender systems using a
multidimensional approach. ACM Transactions on
Information Systems (TOIS), 2005. 23 (1): p. 103 - 145
[6] Karta, K., An Investigation on Personalized
Collaborative Filtering for Web Service Selection. 2005.
[7] Balabanović, M. and Y. Shoham, Fab: content-based,
collaborative recommendation, in Communications of the
ACM. 1997. p. 66 - 72
[8] Leimstoll, U. and H. Stormer. collaborative
recommender systems for online shops. in Proceedings or
the 13th Americas Conference on Information Systems.
2007.
[9] Huang, Z., W. Chung, and H. Chen, A Graph Model for
E-Commerce Recommender Systems. Journal of The
American Society for Information Science and
Techonology, 2004. 55(3): p. 16.
[10] Anand, S.S. and B. Mobasher, Intelligent Techniques
for Web Personalization in Intelligent Techniques for Web
Personalization 2005, Springer Berlin / Heidelberg. p. 1-36.
[11] Resnick, P., et al. GroupLens: An Open Architecture
for Collaborative Filtering of Netnews. in Proceedings of
ACM 1994 Conference on Computer Supported
Cooperative Work. 1994.
[12] Shardanand, U. and P. Maes. Social information
filtering: algorithms for automating “word of mouth”. in
Proceedings of the SIGCHI conference on Human factors
in computing systems. 1995.
[13] Breese, J.S., D. Heckerman, and C. Kadie. Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering. in Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence. 1998.
 [14] Anand, S.S. and B. Mobasher, Contextual
Recommendation in From Web to Social Web: Discovering
and Deploying User and Content Profiles. 2007, Springer
Berlin / Heidelberg. p. 142-160.
[15] Adomavicius, G. and A. Tuzhilin, Multidimensional
Recommender Systems: A Data Warehousing Approach in
Electronic Commerce. 2001, Springer Berlin / Heidelberg.
p. 180-192.
[16] Nguyen, H. and P. Haddawy. DIVA: Applying
Decision Theory to Collaborative Filtering. in Proceedings
of the Conference on Artificial Intelligence for Electric
Commerce. 1999.

[17] Lee, H.-H. and W.-G. Teng, Incorporating Multi-
Criteria Ratings in Recommendation Systems, in IEEE
International Conference on Information Reuse and
Integration, 2007. 2007. p. 273-278.
[18] Adomavicius, G. and Y. Kwon, New
Recommendation Techniques for Multicriteria Rating
Systems, in IEEE Intelligent Systems. 2007. p. 48-55.
[19] Matsatsinis, N.F., K. Lakiotaki, and P. Delia. A system
based on multiple criteria analysis for scientific paper
recommendation. in Proceedings of the 11th Panhellenic
Conference on Informatics. 2007.
[20] Lakiotaki, K., S. Tsafarakis, and N. Matsatsinis, UTA-
Rec: A Recommender System based on Multiple Criteria
Analysis, in The 2nd ACM conference of Recommender
Systems. 2008. p. 219-225.
[21] Chen, A., Context-Aware Collaborative Filtering
System: Predicting the User’s Preference in the Ubiquitous
Computing Environment, in Location- and Context-
Awareness. 2005, Springer Berlin / Heidelberg. p. 244-253.
[22] Chapphannarungsri, K. and S. Maneeroj. Combining
Multiple Criteria and Multidimension for Movie
Recommender System. in Proceedings of the International
Multiconference of Engineers and Computer Scientists.
2009.
[23] Palmisano, C., A. Tuzhilin, and M. Gorgoglione,
Using Context to Improve Predictive Modeling of
Customers in Personalization Applications. IEEE
transactions on knowledge and data engineering, 2008.
20(11): p. 1535-1549.
[24] Schilit, B., N. Adams, and R. Want, Context-aware
Computing Applications, in 1st International Workshop on
Mobile Computing Systems and Applications. 1994. p. 85-
90.
[25] Lieberman, H. and T. Selker, Out of Context:
Computer Systems that Adapt to, and Learn from, Context.
IBM Systems Journal, 2000. 39: p. 617-632.
[26] Dey, A.K., Understanding and Using Context Personal
and Ubiquitous Computing, 2001. 5(1): p. 4-7.
[27] Lilien, G.L., P. Kotler, and S.K. Moonrthy, Marketing
Models. 1992: Prentice Hall.
[28] Kwon, O. and M. Kim, MyMessage: Case-based
Reasoning and Multicriteria Decision Making Techniques
for Intelligent Context-aware Message Filtering. Expert
Systems with Applications, 2004. 27: p. 467-480.
[29] Sarwar, B., et al. Item-based collaborative filtering
recommendation algorithms. 2001. Proceedings of the 10th
international conference on World Wide Web.

