

Project Number: 215219
Project Acronym: SOA4All
Project Title: Service Oriented Architectures for All
Instrument: Integrated Project
Thematic
Priority:

Information and Communication
Technologies

D3.2.6 Second Prototype

Rule Reasoner for WSML-Rule v2.0
Activity N: 2 Fundamental and Integration Activities

Work Package: 3 Service Annotation and Reasoning

Due Date: 31/08/2010

Submission Date: 31/08/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Daniel Winkler
Matthias Pressnig

UIBK
UIBK

Reviewers: Barry Norton
Maria Maleshkova

UKARL
OU

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 2 of 33

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 22/07/2010 First draft Daniel Winkler

0.2 13/08/2010 Finalized version for peer review Daniel Winkler

0.3 17/08/2010 Corrections after peer review Daniel Winkler

1.0 25/08/2010 Final version Daniel Winkler

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 3 of 33

Table of Contents

EXECUTIVE SUMMARY __6

1. INTRODUCTION __7

1.1 PURPOSE AND SCOPE __8
1.2 STRUCTURE OF THE DOCUMENT ___________________________________8

2. REFLECTION OF THE SPECIFICATION ___________________________________9

3. SOFTWARE DESCRIPTION __10

3.1 RIF DATA TYPES AND BUILT-IN PREDICATES ________________________10
3.2 W3C XML SCHEMA DATATYPES ___________________________________11
3.3 EQUALITY IN RULE CONCLUSION __________________________________13

4. INSTALLATION AND CONFIGURATION __________________________________15

4.1 INSTALLATION __15
4.2 CONFIGURATION __16
4.3 DATALOG REASONING ___16

4.3.1 Creating objects with the Java API __________________________________16
4.3.2 Creating objects using the parser ___________________________________17
4.3.3 Evaluating a program __17

4.4 EXAMPLE __18

5. EVALUATION ___19

5.1 PERFORMANCE IN APPLICATION SCENARIOS________________________19
5.2 PERFORMANCE TEST SUITE ______________________________________20
5.3 PERFORMANCE EVALUATION RESULTS ____________________________20

6. CONCLUSIONS ___24

7. REFERENCES __25

ANNEX A. EXAMPLE RULE BASE _______________________________________27

ANNEX B. DATATYPE CONSTRUCTORS __________________________________28

ANNEX C. EVALUATION RULE BASES ___________________________________32

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 4 of 33

List of Figures
Figure 1: Evaluation of cross product ...21

Figure 2: Evaluation of cross product with default negation ..21

Figure 3: Evaluation of join with relations of size 5 ...22

Figure 4: Evaluation of well-founded semantics evaluation strategy23

 List of Tables
Table 1: Reasoner usage ...19

Table 2: WSML Datatypes ..28

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 5 of 33

Glossary of Acronyms

Acronym Definition
D Deliverable

EC European Commission

WP Work Package

DL Description Logic

LP Logic Programming

OWL Web Ontology Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

KB Knowledge Base

RB Rule Base

RIF Rule Interchange Format

RIF BLD RIF Basic Logic Dialect

RIF DTB Datatypes and Built-Ins

W3C World Wide Web Consortium

DT Datatype

DV Data Value

DLP Description Logic Programs

XSD XML Schema Definition

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 6 of 33

Executive summary
In order to automate tasks such as discovery and composition, Semantic Web Services must
be described in a well-defined formal language. The Web Services Modeling Language
(WSML) [10] is based on the conceptual model of the Web Service Modeling Ontology [9]
(WSMO) and as such can be used for modeling all aspects of Web services and associated
ontologies. WSML is actually a family of several language variants, each of which is based
upon a different logical formalism. The family of languages are unified under one syntactic
umbrella, with a concrete syntax for modeling ontologies, web services, etc.

WSML2Reasoner is a reasoning framework that allows querying for implicit knowledge over
explicit modeled WSML knowledge bases, which is of interest to various components of the
SOA4All Service Delivery Platform such as the Service Location (WP5) and Service
Construction (WP6) components.

This deliverable, along with others, describes the second prototype rule reasoner for WSML-
Rule v2.0, in particular improvements and reconsiderations to the reasoner extensions,
namely equivalences as discussed in deliverable D3.1.4 [3]. However, the main contribution
described in this deliverable concerns the discussion and extension of the algorithms
described in deliverable D3.2.5 [7], as well as a performance evaluation of the rule reasoner
IRIS. The evaluation compares the actual time consumption with the theoretical complexity of
Datalog, by creating artificial rule bases that are exponentially or linearly increased in size.

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 7 of 33

1. Introduction
The Web Service Modeling Language WSML is a formal language for the specification of
ontologies and different aspects of Web services, based on the conceptual model of WSMO
[9]. Several different WSML language variants exist, which are based upon different logical
formalisms. The main formalisms exploited for this purpose are Description Logics (DL, [17]),
Logic Programming (LP, [12]), and the intersection of these two families of logics, namely
“Description Logic Programs” [16], which form the basis of WSML-DL, WSML-Flight/Rule and
WSML-Core, respectively. Furthermore, WSML has been influenced by F-Logic [18] and
frame-based representation systems.

Rule-based reasoning is of interest to various components of the SOA4All Service Delivery
Platform: developers of the different Service Location (WP5) and Service Construction
components (WP6), for which reasoning is basic infrastructure in the process of service
discovery and composition. Furthermore, all use-cases (WP7, WP8 and WP9) have certain
direct or indirect dependencies on the reasoning component.

Reasoning for WSML-Flight v2.0 and WSML-Rule v2.0 can be achieved in the same way as
for WSML-Core v2.0 by performing the conversion steps that transform a WSML ontology to
the corresponding Datalog program. In order to support the added expressivity in WSML-
Flight v2.0 and WSML-Rule v2.0 the underlying Datalog reasoner needs to provide support
for the required features. In particular, support for the Rule Interchange Format (RIF) built-in
data types, predicates and functions [21] and for instance equivalence; i.e., equality in rule
heads [20]. WSML-Flight v2.0 is the less expressive of the two LP-based WSML variants.
Compared to WSML-Core v2.0, it adds features such as meta-modeling, constraints and
non-monotonic (stratified) negation. WSML-Flight v2.0 is semantically equivalent to Datalog
with equality and integrity constraints. WSML-Rule v2.0 is an extension of WSML-Flight v2.0.
It adds features from Logic Programming, such as the use of function symbols, unsafe rules
and unstratified negation [3].

Reasoning for these two WSML variants is realized by converting a WSML ontology to the
corresponding Datalog program (with the discussed extensions) and then perform reasoning
on this Datalog program using a Datalog reasoner. Therefore, the Datalog reasoner has to
cover the features required by WSML-Flight v2.0 and WSML-Rule v2.0. In this deliverable,
we focus on describing the necessary adaptations done to the Datalog reasoner IRIS1

The implementation presented in this deliverable follows the concepts and specifications that
were released with deliverable D3.2.1

.

[4] with respect to reasoning for WSML-Rule v2.0. This
document belongs to a set of related deliverables, which discuss the second prototype
implementations of several WSML v2.0 variants, namely:

• D3.2.5 Second Prototype Repository Reasoner for WSML-Core v2.0
• D3.2.6 Second Prototype Rule Reasoner for WSML-Rule v2.0 (including

Reasoner Framework Report [23])
• D3.2.7 Second Prototype for Description Logic Reasoner for WSML-DL v2.0

(including Reasoner Framework Report [23])

1 http://www.iris-reasoner.org/

http://www.iris-reasoner.org/�

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 8 of 33

1.1 Purpose and Scope
This document is a progress report on the software implementation for the second prototype
rule reasoner for WSML-Flight v2.0 and WSML-Rule v2.0. The objective of the report is to
provide information about the use and features of the final SOA4All prototype of the rule-
based reasoning infrastructure. In particular, it explains the extensions and updates required
for the instance equivalence feature, in the final implementation of the Datalog reasoner IRIS
and the WSML2Reasoner reasoning framework. Previous releases exhibited several
limitations and incorrect behavior in certain circumstances and some unexpected
modifications were required to the reasoning algorithms.

The target audience of this report are mainly developers who wish to integrate the WSML
reasoning framework into their components to model Web services and ontologies, and
others who want to understand some of the issues regarding processing information
represented using this formalism.

1.2 Structure of the Document
Section 2 of the deliverable discusses the actual implementation and its changes with
respect to the specification. The main implementation of the prototype, as well as the
algorithms extending conventional semi-naive Datalog evaluation are described in Section 3.
Section 4 describes how to install and use the IRIS reasoner used for WSML Flight 2.0 and
WSML-Rule v2.0 reasoning; for a description of the reasoner framework references to the
reasoning framework report are given. An evaluation of the reasoning component is provided
in Section 5. Section 6 concludes with a short summary of the deliverable.

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 9 of 33

2. Reflection of the Specification
For compatibility reasons, the rule-based reasoner supports instance equality, which allows
the inference that two distinct identifiers refer to the same real world object, e.g. that ‘Dr.
Gordon Freeman’ and ‘gordonFreeman’ are one and the same thing. To accomplish this, the
IRIS prototype implementation and the WSML2Reasoner framework have been modified to
add new transformations and reasoning behavior. The WSML-Core reasoner deliverable
D3.2.5 [7] discussed, in addition to the accomplished evaluation strategies, an advanced
strategy that was expected to be implemented for the second prototype of the WSML-Rule
reasoner, considered in this deliverable. Section 3.3 reviews the proposal and justifies why
the implementation of the strategy was not carried out.

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 10 of 33

3. Software Description
This section discusses the architecture of the logic programming part of the reasoning
framework WSML2Reasoner, as well as the Datalog-based reasoner implementation IRIS
and related issues that have been tackled since the first prototype implementation was
released with deliverable D3.2.3 in month M18 [6]. The current implementation of the final
SOA4All reasoner prototype follows in principle the guidelines specified in [4].

The Datalog reasoner IRIS is written in the Java programming language and is integrated in
the reasoning framework WSML2Reasoner. The rule reasoner can be run with different
underlying Datalog engines. In order to align with the existing reasoner framework, the
reasoner release provides implementations for the following interfaces:

• DatalogBasedWSMLReasoner: An implementation of this interface takes care of
axiomatization, normalization and generation of Datalog rules of WSML expressions.
The Datalog rules are represented by a generic object model. These rules are then
passed on to an external reasoning engine represented by a concrete implementation
of a DatalogReasonerFacade.

• DatalogReasonerFacade: An implementation of this interface converts the generic
Datalog object model into the representation required by the underlying Datalog
reasoning engine. The prototype reasoner provides such a facade for the Datalog
reasoner IRIS.

In the following, the most prominent changes to the WSML-Rule v2.0 reasoner are discussed
and revised. The first two subsections are related to the W3C standards RIF and XML
Schema Datatypes and the efforts that have been undertaken for aligning the
implementations to them. Section 3.3 will then discuss the issues related to equality in rule
conclusion, a feature that has been added to the language variants due to the alignment of
WSML to the RIF BLD standard.

3.1 RIF Datatypes and Built-in Predicates
The Rule Interchange Format (RIF) is a W3C working group that develops standards for
exchanging rules in the context of modern rule systems and the World Wide Web.2

The Datalog reasoner IRIS has been updated to support most RIF built-in datatypes,
predicates and functions that have been identified as being relevant for WSML

 RIF
enables the semantic and syntactic description of rule systems, which can be further used to
exchange axiomatic knowledge between systems. RIF includes a framework for defining
logic dialects, several concrete dialects, data type definitions and built-in predicates and
functions.

[2]; currently
all but the list built-ins are implemented. The new supported built-in functions and predicates
are listed in [21] and implemented in the WSML2Reasoner framework, as well as in IRIS.
From a high level perspective they include:

• Predicates for all datatypes: Predicates that are not restricted to certain datatypes.
• Guard Predicates for Datatypes: Predicates to check if a term is of a specified data

type.
• Negative Guard Predicates for Datatypes: Predicates to check if a term is not of a

specified data type.
• Datatype Conversion and Casting: Various functions to convert from one data type to

2 RIF working group, http://www.w3.org/2005/rules/wiki/RIF_Working_Group

http://www.w3.org/2005/rules/wiki/RIF_Working_Group�

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 11 of 33

another.
• Numeric Functions and Predicates: Various functions and predicates for operations

on numeric datatypes; e.g., subtract, divide, less-than.
• Functions and Predicates on Boolean Values: Various functions and predicates for

operations on the boolean datatype.
• Functions and Predicates on Strings: Various functions and predicates on the string

datatype; e.g., concatenation, substring, starts-with.
• Functions and Predicates on Dates, Times, and Durations: Various functions to

extract elements from the complex data types date, time and duration.
• Functions and Predicates on rdf:XMLLiterals: self-defined; e.g., equality.
• Functions and Predicates on rdf:PlainLiteral: self-defined; e.g., language tag

extraction.
• Functions and Predicates on RIF Lists: Various functions and predicates on the RIF

list datatype; e.g., contains, make-list.

Note that, as stated above, the last point Functions and Predicates on RIF Lists is not
implemented, neither for WSML2Reasoner nor for the IRIS reasoner. To this end, there are
63 RIF functions and 46 predicates implemented and supported by the presented release.

The RIF DTB specification references to the document XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes which is not yet a W3C recommendation. Section 3.2 discusses
the working draft and the proposed datatypes separately; the XML Schema datatypes are
almost fully implemented in the reasoning framework and the reasoner implementation.

3.2 W3C XML Schema Datatypes
Although deliverable D3.1.4 [3] does not mention built-in datatypes, the WSML specification
[10] does by defining datatype constructors based on XML Schema datatypes and the RDF
XMLLiteral. For the second version of WSML, the set of supported datatypes has been
extended from 17 in [10] to 47, capturing all W3C XSD datatypes and RDF-based datatypes
referenced in RIF DTB. For this reason, the IRIS reasoner and the reasoner framework were
updated to be fully compliant to the current W3C working draft (version 1.1 part 2) of the XML
Schema Definition Language [13].

For a full list of changes to datatype definitions consult Appendix I of [13]. The framework
and the reasoner implementation are conformant with the standard, with some minimal
deviations only:

1. One issue is related to the notions of equality and identity for the float and double
datatypes, Appendix I.1 of [13] serves as definition for the distinction: “The (numeric)
equality of values is now distinguished from the identity of the values themselves; this
allows float and double to treat positive and negative zero as distinct values, but
nevertheless to treat them as equal for purposes of bounds checking. This allows a better
alignment with the expectations of users working with IEEE floating-point binary
numbers”. The current implementation does not support distinction between equality and
identity, thus this difference is not reflected in reasoning. For the OWL 2 test cases, this
causes the implementation fail when it comes to checking whether a data property is
functional or not (as discussed in deliverable D3.2.7 [8]). This specification is however of
minor practical relevance, thus the reasoner has not been adapted.

2. The RIF DTB standard [21] does not include all datatypes defined by XSD [13] that are
implemented in the WSML2reasoner framework. However, the XSD standard defines the
following datatypes which are not implemented in the reasoner framework and that are
not part of RIF DTB:

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 12 of 33

• IDREFS

• ENTITIES

• NMTOKENS

All other XSD datatypes are implemented according to the specification.

Note that the data value constructors of WSML do not reflect the lexical representation of
XSD completely. Whereas XSD defines the lexical space of datatypes using an extended
Backus Naur Format grammar,3

Problematic is the definition of the WSML constructors for durations and time zone (which is
a special case of duration) in

 WSML defines datatype constructors based on XML
Schema datatypes and separates the datatype space in primitive and complex datatypes.
Primitive datatypes encompass string, integer and decimal, which have a direct
correspondence to the according XML Schema datatypes. However, all other datatypes are
complex and are created of one or more WSML primitive datatypes. As an example, the XML
Schema data value

“2001-10-26T21:32:52Z”^^xsd:dateTime

corresponds to the WSML data value constructor

_dateTime(2001,10,26,21,32,52,0,0,0).

[10], which has no parameter in the constructor for defining the
sign of the duration; i.e., it has to be defined in one of the duration values (e.g., year, hour).
Additionally, the specification does not define how negative durations should be encoded.
Examples for such durations are:

1. “2001-10-26T21:32:52-02:00”^^xsd:dateTime

2. “2001-10-26T21:32:52-00:30”^^xsd:dateTime

3. “-PT35.89S”^^xsd:dayTimeDuration

For the case of the above values, the duration part is always negative, but in some cases the
most significant value (e.g., hour for the time zone part of xsd:dateTime or day for
xsd:dayTimeDuration) is zero, which means that this value cannot be used to attach a sign
to the duration.

For reasons of readability, stability and conformance to the XSD standard, the constructor
definition was changed such that an additional integer value to determine sign of duration
was added. In specific, the sign is defined as follows: -1 if the duration is negative, 0 if the
duration is zero, and +1 if the duration is positive. Thus, the corresponding WSML
constructors for the above examples are as follows:

1. _dateTime(2001,10,26,21,32,52,-1,2,0)

2. _dateTime(2001,10,26,21,32,52,-1,0,30)

3. _dayTimeDuration(-1,0,0,0,35.89)

Annex B contains a complete list of all datatypes supported by the reasoning framework with
the respective WSML constructors and datatype shortcut syntax.

3 and in most cases also a regular expression using the regular expression language defined
in the document http://www.w3.org/TR/xmlschema11-2/#regexs

http://www.w3.org/TR/xmlschema11-2/#regexs�

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 13 of 33

3.3 Equality in Rule Conclusion
RIF BLD [20] introduces instance equivalence, also known as equality in rule heads. In
WSML this permits to declare that different instance identifiers (IRIs) refer to the same
object. In Datalog equality in rule heads allows for the declaration of equivalence between
constant terms, such as strings or integers, too. Equality in rule heads has been integrated
into the Datalog reasoner IRIS. Two approaches have been implemented to realize this
feature, a rewriting technique and integrated support for equivalence in rule heads, see
D3.2.5 Second Prototype Repository Reasoner for WSML-Core v2.0 [7].

D3.2.5 furthermore discusses a formal algorithm for extending the semi-naive evaluation
strategy defined in [12]. The problem is that "equality in the rule conclusion" breaks the semi-
naive evaluation strategy, since tuples that were not able to be joined in the first place are
not considered any more for later iterations, which is wrong as some asserted equality might
enable them to be joined.

The easiest approach is to fall back to the naive evaluation in case of any equality assertion.
A more complex solution would be to extend the semi-naive evaluation by some post-
processing; i.e., using the EQUAL relation as intermediate relation for joins: P x EQUAL x Q.
These two approaches were described in D3.2.5, Sections 4.1 and 4.4.

After investigating the problem thoroughly, the algorithm was defined slightly different to
optimize the evaluation. The EQUAL relation is used in a semi-naive manner as pre-
processing step to extend the relations before each join iteration. This is basically the same
as the above discussed join with the intermediate EQUAL relation, but was thought to be more
efficient since it keeps the results of equality joins in the according relations; i.e., joins need
to be computed only once. That optimization would be useful if a certain argument of a
relation is considered for more than one join. The algorithm extension compared to [7] is as
follows:

For some rule
p(X,Y) :- r(X,Z,U1,...,Un) and s(Z,Y,V1,...,Vm)

do (semi-naive) pre-processing
r(X,Y,U1,...,Un) :- r(X,Z,U1,...,Un) and EQUAL(Z,Y).

s(X,Y,V1,...,Vm) :- s(Z,Y,V1,...,Vm) and EQUAL(Z,X).

Note that the extension of the relation is only done on those arguments that are considered
for joining.

The advantage is that:

• The semi-naive evaluation is used for evaluation;
• The semi-naive evaluation is used for extending the relations;
• The relations get extended only on those arguments that are considered for joining

during the evaluation.

The disadvantage is that:

• A tuple gets doubled in a relation for every asserted equality of an individual that is
considered for a join (unless the tuple already exists).

The implementation could be realized by using the union-find algorithm on disjoint sets
representing equivalence classes [22]. More specifically, every data value is represented by
an equivalence class containing all entities that are equal to it. Thus, the disadvantage of
tuple doubling occurs solely on a theoretical basis and could be eradicated by the bespoken
implementation.

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 14 of 33

This theoretically improved approach was presented and discussed with different leading
experts in the field of reasoning, in particular logic programming: Dr. Axel Polleres, Dr. Jos
de Brujn, Prof. Dr. Jürgen Angele, and Prof. Michael Kifer (notably one of the editors of the
RIF standard). Two important claims that could be extracted from the Email conversions are:

• Prof. Dr. Jürgen Angele agreed on the theoretical value of the proposal, denied
however its practical applicability. In fact, equality in rule conclusions is not and will
not be supported in any of the Ontoprise products (including Ontobroker) “as it will
break performance”4

• Prof. Michael Kifer pointed out that equality is hard to implement and changes the
computational complexity of the evaluation. It was tagged in RIF BLD as a “feature at
risk”. Eventually, it was added to the recommendation as “many people felt it is
needed although it is not expected that many system will implement it in full. The idea
is that some consensus might emerge as to what is really needed for Semweb
applications and then a subdialect of BLD will be defined appropriately. At this point
there is not enough info to decide what this might be”

.

5

These two strong opinions on rule-head equality clearly lowered the importance or even the
use of the feature at hand. Consequently, it was decided to stick with the non-optimized
implementation discussed in D3.2.5 and trade the advanced implementation for better
integration and conformance with built-ins and datatypes as they were presented in Sections

.

3.1 and 3.2.

4 Email conversation with Prof. Dr. Jürgen Angele, 31/05/2020
5 Email conversation with Prof. Michael Kifer, 04/06/2010

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 15 of 33

4. Installation and Configuration
A detailed description of the WSML2Reasoner framework is given in the framework report on
WSML2Reasoner [23], shared between the WP3 second prototype deliverables. This section
concentrates on the description of the underlying Datalog engine IRIS and discusses how it
can be used as standalone reasoner. A short guide on how to install and configure the IRIS
reasoner is followed by a short example that outlines the actual use of the framework.

4.1 Installation
IRIS is an open-source Datalog reasoner that can evaluate safe or unsafe Datalog extended
with function symbols, XML schema datatypes, built-in predicates and (locally) stratified or
well-founded negation as failure.

It is delivered in three java “jar” files. One contains the API, another contains the parser and
the last contains the actual reasoning engine implementation including two applications that
provide a user interface to the IRIS engine. These applications are useful for experimenting
with Datalog and various evaluation options. IRIS is licensed under the GNU lesser GPL and
hosted by Sourceforge6. More detailed information is available on the IRIS home page7

However, the standard SOA4All project setup should have the SOA4All NEXUS repository

.

Additionally, to ease the integration of the framework including all dependencies, IRIS is
developed as Apache Maven project and distributed via the STI maven repository
(http://maven.sti2.at/archiva/repository/external/). To get releases and snapshots of IRIS and
dependent components, the following repositories have to be added to the project object
model (POM) files:
<repositories>

 <repository>

 <id>sti2-archiva-external</id>

 <url>http://maven.sti2.at/archiva/repository/external</url>

 </repository>

 <repository>

 <id>sti2-archiva-snapshots</id>

 <url>http://maven.sti2.at/archiva/repository/snapshots</url>

 </repository>

</repositories>

8

• http://coconut.tie.nl:8080/nexus-webapp-1.3.1/content/groups/public/

hosted by TIE in its configuration, which mirrors both STI repositories, thus they do not need
to be added explicitly. The repositories that should be used in the configuration for mirroring
are:

• http://coconut.tie.nl:8080/nexus-webapp-1.3.1/content/groups/public-
snapshots/

6 http://sourceforge.net/projects/iris-reasoner
7 http://www.iris-reasoner.org/
8 http://coconut.tie.nl:8080/nexus-webapp-1.3.1

http://coconut.tie.nl:8080/nexus-webapp-1.3.1/content/groups/public-snapshots/�
http://coconut.tie.nl:8080/nexus-webapp-1.3.1/content/groups/public-snapshots/�
http://sourceforge.net/projects/iris-reasoner�
http://www.iris-reasoner.org/�
http://coconut.tie.nl:8080/nexus-webapp-1.3.1�

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 16 of 33

The software was released on 23/07/2010 in its latest version 0.7.1. Ongoing work, e.g. bug
fixes are released on weekly basis, the corresponding version is 0.7.2-SNAPSHOT. The
reasoner can be added as dependency by adding at.sti2.iris:iris-impl as
dependency to the POM file:
<dependency>

 <groupId>at.sti2.iris</groupId>

 <artifactId>iris-impl</artifactId>

 <version>0.7.2-SNAPSHOT</version>

</dependency>

4.2 Configuration
IRIS can be configured at the point where a knowledge base is created. All configuration
parameters are collected together in a single configuration class that is passed to the
knowledge base factory, thus allowing a highly flexible combination of standard and user-
provided components. The configuration class contains these categories of parameters:

• Factories for evaluation strategies, rule compilers, rule evaluators, relations and
indexes.

• Termination parameters for termination conditions (time out, maximum tuples,
maximum complexity).

• Numerical behavior significant bits of floating point precision for comparison, divide
by zero behavior.

• External data sources collection of external data source objects.
• Optimizers collections of program optimizers, rule optimizers and a rule reordering

optimizer.
• Stratifiers collection of rule stratifiers.
• Rule-safety processor for detecting unsafe rules or making unsafe rules safe.

4.3 Datalog Reasoning
IRIS evaluates queries over a knowledge base. The knowledge base consists of facts
(ground atomic formula) and rules. The combination of facts, rules and queries is known as a
logic program and forms the input to a reasoning (query-answering) task.

The creation of the knowledge base is achieved in one of two ways:

• Create the java objects representing the components of the knowledge base using
the API.

• Parse an entire Datalog program written in human-readable form (Datalog) using the
parser.

For each query submitted to the knowledge base, IRIS will return the variable bindings; i.e.,
the set of all tuples that can be found or inferred from the knowledge base that satisfy the
query.

4.3.1 Creating Objects with the Java API
Rules, facts, queries and their components are created using factories. The most important
ones are described below9

9 all contained in the org.deri.iris.api.factory package

:

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 17 of 33

• IProgramFactory creates programs with or without initial values.
• IBasicFactory creates tuples, atoms, literals, rules and queries.
• ITermFactory creates variables, strings and constructed terms.
• IConcreteFactory creates all datatype terms.
• IBuiltinsFactory creates built-in atoms provided by IRIS.

The Factory class holds static final instances of all the factories, so they can be easily
imported (e.g., import static org.deri.iris.factory.Factory.CONCRETE). For a more
complete list of methods, input parameters and return values it is recommended to read the
JavaDoc10

4.3.2 Creating Objects Using the Parser

.

Instead of creating the java objects by hand, the org.deri.iris.compiler.Parser can be
used to parse a Datalog program. The grammar used by the parser is described in the
grammar guide [11].

4.3.3 Evaluating a Program
After the components of a logic program have been created, either step by step using the
API factories or using the parser, a knowledge base can be created and queries evaluated
by following these steps:

1. Choose a configuration: a default configuration object can be obtained from the
KnowledgeBaseFactory class. Modify this object to change the KnowledgeBase
behavior.

2. Instantiate a KnowledgeBase: by passing the configuration object, starting facts and
rules to the KnowledgeBaseFactory.createKnowledgeBase() method.

3. Execute queries: after initialization queries can be executed against the
KnowledgeBase by calling execute(). Two variations of this method are available.
The first one just accepts a query and the second accepts a query and an array for
variable bindings. This second method can be useful if the query is complex and the
order of variables is not obvious.

10 http://www.iris-reasoner.org/snapshot/javadoc/

http://www.iris-reasoner.org/snapshot/javadoc/�

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 18 of 33

4.4 Example
Listing 1 outlines an example for an IRIS evaluation where the default configuration is used.
The method loadRuleBase() emulates the loading of the rule base; e.g., from a file. Annex
A shows such an example rule base with one rule and one query. The result to the query is
28 since the rule infers that gordanFreeman and gf are equal.

Listing 1: IRIS example parsing and query execution

// load the rule base to String
String program = loadRuleBase();
// create parser instance
Parser parser = new Parser();
// parse the datalog program
parser.parse(program);
// extract facts and rules
Map<IPredicate,IRelation> facts = parser.getFacts();
List<IRule> rules = parser.getRules();

// create knowledge base from facts and rules
IKnowledgeBase knowledgeBase = KnowledgeBaseFactory.
 createKnowledgeBase(facts, rules);

// iterate over queries in program String
for(IQuery query : parser.getQueries())
{
 // execute the query
 IRelation results = knowledgeBase.execute(query);
 // print results to console
 System.out.println(results.toString());
}

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 19 of 33

5. Evaluation
The evaluation of the WSML-Rule v2.0 reasoner is done on implementation specific level.
This means that the implementation of IRIS is tested rather than the entire reasoning
framework, which allows to evaluate the performance of the reasoning engine more
specifically. Although the evaluation is not performed on WSML knowledge bases, the
evaluation respects the expressivity of the WSML LP variants. This means that knowledge
bases are created such that the used features match the expressivity of specific language
variants. The evaluation focus is on comparison of the actual performance with the
theoretical complexity results discussed in [26], [30]. However, section 5.1 summarizes the
usage of the reasoning framework in the project and references deliverables that evaluate
the reasoner performance where possible.

5.1 Performance in Application Scenarios
For the evaluation of the reasoning framework in terms of use case scenarios, we refer to the
deliverables of the according work packages. Table 1 gives an overview of Ontology-based
reasoning in the SOA4All project.

Table 1: Reasoner usage

Component Work package WSML variant

Semantic Discovery WP5 Core

Rule-based Ranking WP5 Flight/Rule

Fuzzy Ranking WP5 DL

Design Time Composition WP6 Flight/Rule

Process Optimization WP6 DL

Deliverable D5.3.2 Second Service Discovery Prototype [27] has undertaken a thorough
performance evaluation of reasoner performance in Web service discovery. The performance
test aims at the evaluation of the entire process of semantic service discovery, which
however produces representative results for the reasoner evaluation since “semantic
matchmaking highly depends on the performance of the reasoner” [27]. The evaluation was
carried out by using the Semantic Web for Research Community (SWRC) ontology [28] and
creating artificially 5,000 to 30,000 rich semantic service descriptions. The time to answer
small, medium, large sized queries ranges from 2.8s, 4.2s, 5.0s with 5,000 service
descriptions to 17s, 23s, 33s with 30,000 descriptions, respectively.

Deliverable D6.4.2 Advanced Prototype for Service Composition and Adaptation
Environment [29] discusses the usage of the reasoning framework in their applications.
However, the deliverable describes the integration of the framework as partly done and
refers to upcoming months, which will focus on the implementation of full support for
“WSMO-Lite descriptions and use common SOA4All reasoner facilities”. According to ATOS
this has been accomplished at current point in time for the Design Time Composer. Process
Optimization developed by UNIMAN still uses their in-house reasoner solution Fact++, but
will change to the SOA4All reasoning framework for the next review (M36). The upcoming
deliverable D6.5.4 Evaluation of Service Construction will serve as evaluation of the reasoner
in terms of performance and applicability for WP6.

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 20 of 33

5.2 Performance Test Suite
For the performance evaluation of IRIS a test harness was set up. Each WSML variant is
evaluated by a generic rule base that takes a predicate max as input relation for the size of
the rule base. The rule base is generated dynamically by the rule engine based on this value.

The rule
p(?n) :- p(?x), max(?max), ?x + 1 = ?n, ?n <= ?max.

illustrates an easy example how the reasoner is used to dynamically create an input relation
for the evaluation. The input value is increased either linearly or exponentially; the resulting
query times are used for evaluation. Note that every relation size is evaluated by running ten
iterations to be resistant to test outliers. The results are depicted by smoothed11

• Intel ® CoreTM i7-620M 2x 2.66GHz,

 colored
graphs in the following diagrams. Every diagram also shows a function that serves as upper
bound for the reasoning time, visualized by a black solid graph.
All test results were produced by running 10 iterations on a system with

• Ubuntu Linux 10.04, 64bit,

• 4 Gbyte DDR2 RAM,

• Sun Java SE Development Kit (JDK) 6 Update 20 (64 bit),

• Java Runtime Options: -Xmx3g.

5.3 Performance Evaluation Results
For the evaluation of the WSML-Core variant, an input relation p is created as described with
21 to 211 tuples. The idea of the program (see Annex C, Listing 2) is to use two unary
relations and create a binary relation from the cross product. Since both input relations are of
equal size, the cross product results in a relation of size square compared to the input
relation, for input i = 1 ... 11 this means (2i)2 = 2i x 2 as size for the output relation.
The rule to be evaluated is:

q(?x,?y) :- p(?x), p(?y).

The example is chosen to be representative for Core performance evaluation, since only
unary and binary relations are used. The intention is to test the basic join operation,
fundamental to evaluating Datalog. The rule base setup gives a good estimation for the
amount of tuples that can be reasoned over and the corresponding time that is needed for
the rather easy computation of a natural join. This data can be used as reference in the
following benchmarks when more expressive constructs are evaluated.

Figure 1 illustrates the evaluation results of IRIS with the bespoken rule base. The function
f(x) was created manually to serve as upper bound estimation for the time consumption.
The offset of 30 is used to compensate setup times, for bigger input relations this offset has
only minor impact. Crucial about the estimation is the exponent, namely 2.8, which is
responsible for the slope. Since it is fixed, the evaluation shows that the behavior is
polynomial, thus behaving according to the theoretical complexity of general recursive
Datalog (PTIME) [25].

11 Smoothness is achieved by interpolating smoothly between successive points.

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 21 of 33

Figure 1: Evaluation of cross product

WSML-Flight extends WSML-Core with several features, one of which is stratified default
negation [3]. The rule base (see Annex C, Listing 3) is generated as discussed, but for this
evaluation two input relations p and q are created. q is created with a offset of max/4, e.g. for
max = 100 relations p(1 .. 100) and q(26 .. 125) are created. Each are used to create
a cross product p2 and q2, respectively. The query predicate q2_minus_p2 is computed by
joining q2 with not p2.

Figure 2: Evaluation of cross product with default negation

The computation is more expensive than the previous discussed since the cross product is
computed twice, additionally a join between the resulting relations has to be computed. This
join brings unstratified default negation into the evaluation, which means that a fact is
considered to be false if it is not existent in the relation (also known as closed world
assumption). This is also reflected in Figure 2 since the factor of x shrinks from

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 22 of 33

approximately 25 to 20. The exponent remains 2.8, which can be interpreted such that this
feature does not influence the performance of the computation significantly.

Another feature is relations of arbitrary arity, which break the compatibility with the DL based
paradigm, but allow to model knowledge more flexible. The following benchmark is borrowed
from [11], where it is used to compare IRIS to other rule engines in a benchmark. The
benchmark shows that IRIS outperforms the competitors in time, but due to the Java
implementation IRIS has a higher memory consumption such that it cannot reason over an
input relation bigger than 17. For consistency reasons, the test has been repeated in this
paper to capture also the changes that have been applied to the engine in the evaluation.

The test setup is chosen differently: the input size seems to be merely small, which however
is a result of the rule base definition (see Annex C, Listing 4), which creates very big relations
from a small input; e.g.,

ra(?A,?B,?C,?D,?E) :- p(?A),p(?B),p(?C),p(?D),p(?E).

This means that from an input relation p of size i, the rule creates a relation ra of size i5.
The same procedure is applied for a relation rb, which both are used to create a relation r by
applying the rule

r(?A,?B,?C,?D,?E) :- ra(?A,?B,?C,?D,?E),rb(?A,?B,?C,?D,?E).

r is used in the following to reconcile all artificially generated tuples in a predicate q with
rules

q(?A) :- r(?A,?B,?C,?D,?E).

for each argument of r. The rule base has a relatively small input (p) and output (q), but
creates big relations during computation (r, ra, rb).

Figure 3: Evaluation of join with relations of size 5

Figure 3 illustrates the evaluation result of the discussed rule base. The maximum size of the
input value is 18, which means that two relations of size 185 are computed and used for
joining. This fact clearly influences the slope of the graph, increasing it from approx. 3 to 5.5,
additionally the factor is decreased by the factor 10. Nevertheless, the behavior retains
polynomial although the performance if much worse if only the input relation is used as
reference (if the actual size of computed terms would be used, the performance would be in
the same order, cf. 2*185 vs 222).

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 23 of 33

For the case of WSML-Rule, the evaluation tests the reasoning strategy for well-founded
semantics [26]. Well-founded semantics allow modeling of unstratified knowledge bases; i.e.,
the rule conclusion may depend negatively on itself. The evaluation example (see Annex C,
Listing 5) is adapted from [26], in a way such that it is generated dynamically depending on a
parameter serving as maximum size. The idea is to build a directed binary tree where all
nodes are enumerated, starting at the root (0) and ending at the last leaf (max). Additionally
the unstratified rules

even(?x) :- ?x - 1 = ?p, not even(?p).

jump(?x) :- even(?x), ?x - 2 = ?p, not jump(?p).

are used to determine whether or not a leaf is even and has the property to “jump” back. This
is the case for every second even node n1, such that an additional edge to the node #(n1)/2
is added to the graph (those edges create cycles thus the original tree becomes a directed
graph). The program simulates a game where the player who is not able to perform a move
looses, thus the player that does the last move wins. Every edge in the tree corresponds to a
move, such that the rule

win(?x) :- move(?x,?y), not win(?y).

defines the predicate win, depending negatively on itself.

Figure 4: Evaluation of well-founded semantics evaluation strategy

As visualized in Figure 4, the performance of the well-founded semantics and the
corresponding evaluation strategy is comparatively weak to the stratified bottom-up
evaluation strategy evaluated so far. Furthermore, compared to the previous evaluations, the
time consumption was not needed for querying but consumed as initialization time. The
graph for the query time is not shown since the results for arbitrary tested size were either 0
or 1 milliseconds; i.e., the entire rule base is computed at the initialization of the rule base.
Thus, if unstratified negation can be avoided it should not be used, such that (locally)
stratified bottom-up evaluation strategies can be used for query answering. However, even
though the performance is not as good as for less expressive variants, the evaluation shows
that query answering can still be performed in polynomial time as discussed in [26].

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 24 of 33

6. Conclusions
This deliverable summarizes the efforts that have been put into the development of the
WSML2Reasoner framework and the LP reasoner IRIS. The idea of WSML is to create a
language for the Web Service Modeling Ontology (WSMO), and as such can be used for
modeling all aspects of Web services and associated ontologies. Notably, WSML tries to
avoid reinventing the wheel, such that conformance to existing Web standards is
accomplished wherever applicable. For the case of data representation, the most prominent
Web standard is XML, having a distinct standard for datatypes, which is almost fully
implemented in both, the reasoner framework and the underlying reasoner. For the Logic
Programming paradigm, one important upcoming standard is the Rule Interchange Format
(RIF), which defines semantic profiles on top of a standardized syntax. The WSML variants
as well as the implementations have been extended accordingly, to capture this semantics.
In course of the project, RIF4J12

12

 has been developed, which serves as Java object model for
RIF rule bases. RIF4J also supports serialization of RIF BLD rule bases as WSML logical
expressions, which allows for reasoning with the WSML2Reasoner framework over any RIF
BLD rule base.

This document serves as description for the second version of the reasoner. It discusses all
implemented features and partially justifications for deviations from the standard. A key point
is the evaluation of the reasoner. Since IRIS serves as reasoner for the WSML-Core, Flight
and Rule variant, the performance evaluation is done on an implementation specific level.
This allows for an easier comparison with other rule engines or future improvements of the
reasoning engine by excluding the (static) syntactic transformations performed by
WSML2Reasoner. The evaluation has shown that reasoning for all WSML variants is
performed according to the theoretical complexity results in polynomial time. Apart from the
theoretic evaluation, pointers to work package deliverables utilizing the reasoner framework
are given.

http://sourceforge.net/projects/rif4j/

http://sourceforge.net/projects/rif4j/�

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 25 of 33

7. References
[1] Unel, G., Keller, U., Fisher, F., Bishop, B., “D3.1.1 Defining the features of the

WSML-Quark language”, SOA4All Deliverable, 2009.

[2] Unel, G., Keller, U., Fischer, F. and Bishop, B., “D3.1.2 Defining the Features of the
WSML-Core v2.0 Language”, SOA4All Deliverable, 2009.

[3] Toma, I., Bishop, B., Fischer, F. D3.1.4 “D3.1.4 Defining the features of the WSML-
Rule v2.0 language”, SOA4All Deliverable, 2009.

[4] Fischer, F., Bishop, B., “D3.2.1 Framework and APIs for integrated reasoning
support”, SOA4All Deliverable, 2009.

[5] Pressnig, M., SOA4All deliverable “D3.2.2 First Prototype Reasoner for WSML-Core
v2.0”, SOA4All Deliverable, 2009.

[6] Marte, A., “D3.2.3 First Prototype Rule Reasoner for WSML-Rule v2.0”, SOA4All
Deliverable, 2009.

[7] Winkler, D. “D3.2.5 Second Prototype Repository Reasoner for WSML-Core v2.0”,
SOA4All Deliverable, 2010.

[8] Winkler, D. “D3.2.7 Second Prototype for Description Logic Reasoner for WSML-DL
v2.0”, SOA4All Deliverable, 2010.

[9] Roman, D., Lausen, H. and Keller, U., “Web Service Modeling Ontology (WSMO)”
WSMO Working Draft, 2004.

[10] The WSML Working Group, “D16.1v1.0 WSML Language Reference”, WSML Final
Draft, 2008.

[11] B Bishop, F Fischer, “IRIS - Integrated Rule Inference System”, International
Workshop on Advancing Reasoning on the Web, 2008.

[12] Ullman, J. D., "Principles of Database and Knowledge base Systems”, vol. I.
Chapter 3 (Logic as a Data Model), 1988.

[13] Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C. M., Thompson, H. S.
“W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes”, W3C
Working Draft, 3 December 2009.

[14] Bao, J., Hawke, S., Motik, B., Patel-Schneider, P. F., Polleres, A., "rdf:PlainLiteral: A
Datatype for RDF Plain Literals”, W3C Recommendation, 27 October 2009.

[15] The IRIS Datalog reasoner website: http://www.iris-reasoner.org/

[16] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. 2003. Description logic
programs: combining logic programs with description logic. In Proceedings of the
12th international Conference on World Wide Web (Budapest, Hungary, May 20 -
24, 2003). WWW '03. ACM, New York, NY, 48-57. DOI=
http://doi.acm.org/10.1145/775152.775160

[17] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P.F.
(Eds.), The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[18] Kifer, M., Lausen, G., and Wu, J. 1995. Logical foundations of object-oriented and
frame-based languages. J. ACM 42, 4 (Jul. 1995).

[19] Toma, I., Bishop, B., Fischer, F, SOA4All deliverable “D3.1.4 Defining the features
of the WSML-Rule v2.0 language”, 2009.

[20] Boley H., Kifer M., “RIF Basic Logic Dialect”, W3C Recommendation, 2010.

http://elly.sourceforge.net/�
http://elly.sourceforge.net/�
http://elly.sourceforge.net/�
http://elly.sourceforge.net/�
http://doi.acm.org/10.1145/775152.775160�

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 26 of 33

[21] Polleres A., Boley H., Kifer M., “RIF Datatypes and Built-Ins 1.0”, W3C
Recommendation, 2010.

[22] Gabow H., Tarjan R., “A linear-time algorithm for a special case of disjoint set
union”, Journal of Computer and System Sciences, 1985.

[23] Winkler, D., Pressnig M., “Reasoning Framework Report Installation and
Configuration”, SOA4All Deliverable Attachment, 2010.

[24] Klyne G., Carroll J., McBride B., “Resource Description Framework (RDF): Concepts
and Abstract Syntax”, W3C Recommendation, 2004.

[25] Calvanese D., Giacomo G., Lembo D., Lenzerini M., Rosati R., “Data Complexity of
Query Answering in Description Logics”, Proceedings of the 10th International
Conference on the Principles of Knowledge Representation and Reasoning (KR
2006), pp. 260-270, Lake District, 2-5 June 2006.

[26] Van Gelder A. ; Ross K. A. ; Schlipf J. S., “The well-founded semantics for general
logic programs”, Journal of the Association for Computing Machinery, 1991.

[27] Junghans M., Agarwal S., “D5.3.2 Second Service Discovery Prototype”, SOA4All
deliverable, 2010.

[28] Sure Y., Bloehdorn S., Haase P., Hartmann J., and Oberle D., “The SWRC Ontology
- Semantic Web for Research Communities” in Proc. of the 12th Portuguese
Conference on Artificial Intelligence – Progress in Artificial Intelligence (EPIA 2005),
ser. LNCS, vol. 3803. Springer, December 2005, pp. 218–231.

[29] Gorroñogoitia Y., Radzimksi M., Lecue F., Villa M., di Matteo G., “D6.4.2 Advanced
Prototype for Service Composition and Adaptation Environment”, SOA4All
deliverable, 2010.

[30] Immerman N., “Relational queries computable in polynomial time”, Information and
control, 1986.

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 27 of 33

Annex A. Example rule base

Listing 2: Example rule base for inferring equality in the rule conclusion

// facts
hasName('gf', 'Gordon Freeman').
hasAge('gf', 28).
hasName('gordenFreeman', 'Gordon Freeman').

// rule with head equality
?x = ?y :- hasName(?x, ?name) and hasName(?y, ?name).

// query, age of 28 should be inferred
?- hasAge('gordenFreeman', ?age).

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 28 of 33

Annex B. Datatype constructors
Annex B lists all available datatype constructors for XSD and RDF datatypes. The table contains the WSML primitive datatype constructors for
string, integer and decimal, corresponding to the respective XSD datatypes. All other datatypes, called complex datatypes, are created from
one or more primitive datatypes. For the restriction on the data values have a look at the respective specification, XSD [13], RDF PlainLiteral
[14] or RDF XMLLiteral [24].

Table 2: WSML Datatypes

Datatype Syntax Datatype constructor
shortcut syntax

XSD Primitive Datatypes

string* xsd#string("any-character*") _string

boolean xsd#boolean(string_boolean) _boolean

decimal* xsd#decimal("'-'?numeric+.numeric+") _decimal

float xsd#float(string_float) _float

double xsd#double(string_double) _double

duration xsd#duration(integer_sign, integer_year, integer_month, integer_day,
integer_hour, integer_minute, decimal_second)

xsd#duration(integer_sign, integer_year, integer_month, integer_day,
integer_hour, integer_minute, integer_second)

_duration

dateTime xsd#dateTime(integer_year, integer_month, integer_day, integer_hour,
integer_minute, decimal_second, integer_timezone-sign, integer_timezone-
hour, integer_timezone-minute)

xsd#dateTime(integer_year, integer_month, integer_day, integer_hour,

_datetime

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 29 of 33

integer_minute, decimal_second)

time xsd#time(integer_hour, integer_minute, decimal_second, integer_timezone-
sign, integer_timezone-hour, integer_timezone-minute)

xsd#time(integer_hour, integer_minute, decimal_second)

_time

date xsd#date(integer_year, integer_month, integer_day, integer_timezone-hour,
integer_timezone-minute)

xsd#date(integer_year, integer_month, integer_day)

_date

gYearMonth xsd#gYearMonth(integer_year, integer_month) _gyearmonth

gYear xsd#gYear(integer_year) _gyear

gMonthDay xsd#gMonthDay(integer_month, integer_day) _gmonthday

gDay xsd#gDay(integer_day) _gday

gMonth xsd#gMonth(integer_month) _gmonth

hexBinary xsd#hexBinary(string_hexadecimal-encoding) _hexbinary

base64Binary xsd#base64Binary(string_base64) _base64binary

anyURI xsd#anyURI(string_anyURI) _anyuri

QName xsd#QName(string_namespace, string_localpart) _qname

NOTATION xsd#NOTATION(string_namespace, string_localpart) _notation

XSD Other Built-in Datatypes

normalizedString xsd#normalizedString(string_normalizedString) _normalizedstring

token xsd#token(string_token) _token

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 30 of 33

language xsd#language(string_language) _language

NMTOKEN xsd#NMTOKEN(string_NMTOKEN) _nmtoken

Name xsd#Name(string_Name) _name

NCName xsd#NCName(string_NCNAME) _ncname

ID xsd#ID(string_ID) _id

IDREF xsd#IDREF(string_IDREF) _idref

ENTITY xsd#ENTITY(string_ENTITY) _entity

integer* xsd#integer("'-'?numeric+") _integer

nonPositiveInteger xsd#nonPositiveInteger(string_nonPositiveInteger) _nonpositiveinteger

negativeInteger xsd#negativeInteger(string_negativeInteger) _negativeinteger

long xsd#long(string_long) _long

int xsd#int(string_int) _int

short xsd#short(string_short) _short

byte xsd#byte(string_byte) _byte

nonNegativeInteger xsd#nonNegativeInteger(string_nonNegativeInteger) _nonnegativeinteger

unsignedLong xsd#unsignedLong(string_unsignedLong) _unsignedlong

unsignedInt xsd#unsignedInt(string_unsignedInt) _unsignedint

unsignedShort xsd#unsignedShort(string_unsignedShort) _unsignedshort

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 31 of 33

unsignedByte xsd#unsignedByte(string_unsignedByte) _unsignedbyte

positiveInteger xsd#positiveInteger(string_positiveInteger) _positiveinteger

yearMonthDuration xsd#yearMonthDuration(integer_sign, integer_year, integer_month) _yearmonthduration

dayTimeDuration xsd#dayTimeDuration(integer_sign, integer_day, integer_hour,
integer_minute, decimal_second)

xsd#dayTimeDuration(integer_sign, integer_day, integer_hour,
integer_minute, integer_second)

_daytimeduration

dateTimeStamp xsd#dateTimeStamp(integer_year, integer_month, integer_day, integer_hour,
integer_minute, decimal_second, integer_timezone-sign, integer_timezone-
hour, integer_timezone-minute)

_datetimestamp

RDF Datatypes

rdf#XMLLiteral rdf#XMLLiteral(string_literal, string_lang) _xmlliteral

rdf#PlainLiteral rdf#PlainLiteral(string_literal, string_lang) _plainliteral

* primitive datatype

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 32 of 33

Annex C. Evaluation rule bases
Listing 3: Evaluation rule base for WSML-Core expressivity, testing join performance

p(1).

p(?n) :- p(?x), max(?max), ?x + 1 = ?n, ?n <= ?max.

q(?x, ?y) :- p(?x), p(?y).

?- q(?x, ?y).

Listing 4: Evaluation rule base for WSML-Flight expressivity, testing negation as failure join
performance

p(1).
p(?n) :- p(?x), max(?max), ?x + 1 = ?n, ?n <= ?max.
p2(?x, ?y) :- p(?x), p(?y).

diff(?diff) :- max(?max), ?max / 4 = ?diff.
q(?n) :- diff(?diff), ADD(?diff, 1, ?n).
q(?n) :- q(?x), max(?max), diff(?diff),
 ?max + ?diff = ?maxplus, ?x + 1 = ?n, ?n <= ?maxplus.
q2(?x, ?y) :- q(?x), q(?y).

p2_minus_q2(?x, ?y) :- q2(?x, ?y), not p2(?x, ?y).

?- p2_minus_q2(?x, ?y).

Listing 5: Evaluation rule base for WSML-Flight expressivity, testing relations with arity bigger

two join performance

p(1).
p(?n) :- p(?x), max(?max), ?x + 1 = ?n, ?n <= ?max.

ra(?A,?B,?C,?D,?E) :- p(?A),p(?B),p(?C),p(?D),p(?E).
rb(?A,?B,?C,?D,?E) :- p(?A),p(?B),p(?C),p(?D),p(?E).
r(?A,?B,?C,?D,?E) :- ra(?A,?B,?C,?D,?E),rb(?A,?B,?C,?D,?E).

q(?A) :- r(?A,?B,?C,?D,?E).
q(?B) :- r(?A,?B,?C,?D,?E).
q(?C) :- r(?A,?B,?C,?D,?E).
q(?D) :- r(?A,?B,?C,?D,?E).
q(?E) :- r(?A,?B,?C,?D,?E).

?- q(?X).

 SOA4All –FP7 – 215219 – D3.2.6 Second Prototype Reasoner WSML-Rule v2.0

© SOA4All consortium Page 33 of 33

Listing 6: Evaluation rule base for WSML-Rule expressivity, testing well-founded semantics
performance (unstratified program)

move(0,1).
move(0,2).

even(0).
even(?x) :- ?x - 1 = ?p, not even(?p).

jump(0).
jump(?x) :- even(?x), ?x - 2 = ?p, not jump(?p).

move(?from, ?to) :- move(?x, ?from), ?from * 2 = ?t, ?t + 1 = ?to, ?to <
?max, max(?max).
move(?from, ?to) :- move(?x, ?from), ?from * 2 = ?t, ?t + 2 = ?to, ?to <
?max, max(?max).
move(?from, ?to) :- move(?x, ?from), jump(?from), ?from / 2 = ?td,
 TO_INTEGER(?td, ?to).

win(?x) :- move(?x,?y), not win(?y).

?- win(?x).

	Executive summary
	Introduction
	Purpose and Scope
	Structure of the Document

	Reflection of the Specification
	Software Description
	RIF Datatypes and Built-in Predicates
	W3C XML Schema Datatypes
	Equality in Rule Conclusion

	Installation and Configuration
	Installation
	Configuration
	Datalog Reasoning
	Creating Objects with the Java API
	Creating Objects Using the Parser
	Evaluating a Program

	Example

	Evaluation
	Performance in Application Scenarios
	Performance Test Suite
	Performance Evaluation Results

	Conclusions
	References
	Example rule base
	Datatype constructors
	Evaluation rule bases

