

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D3.2.7 Second Prototype for Description
Logic Reasoner for WSML DL v2.0

Report on Installation and Configuration
Activity N: 2 Fundamental and Integration Activities

Work Package: 3 Service Annotation and Reasoning

Due Date: 31/08/2010

Submission Date: 31/08/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Report: UIBK

Revision: 1.0

Author(s): Daniel Winkler, UIBK
Matthias Pressnig, UIBK

Reviewers: Barry Norton, KIT
Martin Junghans, KIT
Mateusz Radzimski, ATOS
Yosu Gorroñogoitia, ATOS

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 2 of 14

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 22/07/2010 First draft Daniel Winkler

0.2 27/07/2010 Added content Matthias Pressnig

0.3 28/07/2010 Added content, peer review Daniel Winkler

0.4 29/07/2010 Internal review Matthias Pressnig

0.5 30/07/2010 Peer review Martin Junghans

0.6 03/08/2010 Corrections after peer review Daniel Winkler

0.7 30/08/2010 Format revision for submission Julia Wells (ATOS)

1.0 25/08/2010 Final version Daniel Winkler

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 3 of 14

Table of Contents

EXECUTIVE SUMMARY __ 5

1. INSTALLATION ___ 6

1.1 HOSTING __ 6

2. USAGE __ 8

2.1 INPUT / OUTPUT __ 8

2.1.1 Parsing __ 8

2.1.2 Serialization __ 9

2.2 VALIDATION ___ 9

3. REASONING __ 10

3.1 INTERFACE ___ 10

3.1.1 Logic Programming (LP) __ 10

3.1.2 Description Logic (DL) ___ 11

3.2 ONTOLOGY MERGING __ 11

3.3 REASONING EXAMPLE ___ 11

4. UTILITY APPLICATIONS __ 12

4.1 WEB REASONING TOOLS ___ 12

4.2 WEB RDF TRANSLATION __ 12

4.3 DEMO WIDGET __ 12

ANNEX A. FULL REASONING EXAMPLE __________________________________ 13

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 4 of 14

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

DL Description Logic

LP Logic Programming

OWL Web Ontology Language

WSML Web Service Modelling Language

WSMO Web Service Modelling Ontology

KB Knowledge Base

RB Rule Base

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 5 of 14

Executive summary
This document serves as software description of the WSML2Reasoner reasoning framework,
which integrates Logic Programming (LP) and Description Logic (DL) reasoners together with
a common object-model. The object-model is implemented in the WSMO4J library, with
which all static operations on WSML ontologies are carried out (by the user as well as by the
reasoning framework). Facades are used to hide the actual reasoner implementations (IRIS,
ELLY) from the user, thus those parts of the framework do not need to be configured or
managed while performing reasoning.

The main task of WSML2Reasoner is to build a bridge between the WSMO4J object model
and the reasoners, which carry out the computations. This means that dynamic operations
which corresponds to reasoning has to be done by means of the WSML2Reasoner
framework.

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 6 of 14

1. Installation
This section explains how WSML reasoning support can be added to a project by adding the
WSML2Reasoner framework as dependency to a project. Since SOA4All agreed on using
Maven for distributed project development, this tutorial will mainly focus on how reasoner
support can be added to maven projects.

1.1 Hosting
In order to install and configure the reasoning framework, a Java Virtual Machine (version 1.5
or later) is required. The WSML2Reasoner binary distribution can be obtained from the
sourceforge project page1 or via the WSML2Reasoner homepage2.

Additionally, to ease the integration of the framework including all dependencies,
WSML2Reasoner is developed as Apache Maven3 project and distributed via the STI maven
repository (http://maven.sti2.at/archiva/repository/external/). To get releases and snapshots
of wsml2reasoner and dependent components, the following repositories have to be added
to the project object model (POM) files:

<repositories>

 <repository>

 <id>sti2-archiva-external</id>

 <url>http://maven.sti2.at/archiva/repository/exte rnal</url>

 </repository>

 <repository>

 <id>sti2-archiva-snapshots</id>

 <url>http://maven.sti2.at/archiva/repository/snap shots</url>

 </repository>

</repositories>

However, the general SOA4All project setup should have the SOA4All NEXUS repository4
hosted by TIE in its configuration, which mirrors both STI repositories, thus the STI
repositories do not need to be added explicitly. The repositories that should be used in the
configuration for mirroring are:

• http://coconut.tie.nl:8080/nexus-webapp-1.3.1/conte nt/groups/public/

• http://coconut.tie.nl:8080/nexus-webapp-1.3.1/conte nt/groups/public-
snapshots/

1 https://sourceforge.net/projects/wsml2reasoner/
2 http://tools.sti-innsbruck.at/wsml2reasoner/
3 http://maven.apache.org/
4 http://coconut.tie.nl:8080/nexus-webapp-1.3.1

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 7 of 14

The software was released on 23/07/2010 in its latest version:

• WSML2Reasoner: version 0.8.1

• WSMO4J: version 2.1.1

• ELLY: version 0.2.1

• IRIS: version 0.7.1

Ongoing work, e.g. bug fixes are released on a weekly basis, the corresponding versions
are:

• WSML2Reasoner: version 0.8.2-SNAPSHOT

• WSMO4J: version 0.2.2-SNAPSHOT

• ELLY: version 0.2.2-SNAPSHOT

• IRIS: version 0.7.2-SNAPSHOT

All reasoning related projects are hosted on Sourceforge for WSML2Reasoner and WSMO4J
the development is hosted in “WSML2.0” branches on the subversion repository.

As opposed to earlier versions of WSML2Reasoner, support for the OWL reasoners Pellet
and KAON2 as well as for the Datalog reasoner MINS has been dropped. This allows
distributing the reasoning framework using one single license, namely the GNU Lesser GPL
(LGPL).

The package of the WSML2Reasoner framework consists of the following components:

• wsml2reasoner-0.8.1-sources.zip: The source code of the reasoning framework.

• wsml2reasoner-0.8.1-javadoc.zip: The JavaDoc of the reasoning framework API.

• wsml2reasoner-0.8.1.jar: The main executable containing all required jars.

Note that all components can be downloaded from the respective project sites separately. To
use the WSML2Reasoner framework, the project user has to use the binaries located in the
WSML2Reasoner Java archive file or compile the source and add the needed components to
the classpath.

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 8 of 14

2. Usage
This section will give an overview of the WSML2Reasoner framework and describe how it
can be used to perform ontology related tasks.

2.1 Input / Output
The WSML2Reasoner framework supports various WSML syntaxes to be parsed and
serialized. All implementations are unified by implementing shared interfaces. Like stated in
the introduction, the following tasks are all realized by means of the used WSMO4J library.

2.1.1 Parsing

The parsing interface is

• org.wsmo.wsml.Parser

The parser provides a method parse , which returns an array of top enities5. Top entities may
generally be any WSMO top entity; however in the scope of the SOA4All project top entity
merely represents the Ontology concept.

The parsing implementations are

• WSML syntax: com.ontotext.wsmo4j.parser.wsml.WsmlParser

• RDF syntax: org.deri.wsmo4j.io.parser.rdf.RDFParser

• XML syntax: com.ontotext.wsmo4j.parser.xml.XmlParser

Be aware that the RDF parser is actually not a parser for the WSML RDF Syntax6 but rather
an interpreter that translates arbitrary RDF(S) to WSML.

A parser that does not implement the above interface is the logical expression (LE) parser,
used to parse WSML logical expressions. While being integrated in the above parsers, the
LE parser may be used stand-alone to parse any WSML human readable logical expressions
e.g. queries or axioms. The implementation of the LogicalExpressionParser provides a
constructor that allows to pass a WSMO top entity, which serves as “NamespaceHolder”
(i.e., the parser extracts the namespaces and the according prefixes from the top entity). This
means in particular that a logical expression can be parsed with namespace qualified IRIs,
which must be defined in the provided top entity to be interpreted. Otherwise, all IRIs have to
be fully qualified.

The specific implementation is

• WSML Syntax:

org.deri.wsmo4j.io.parser.wsml.WsmlLogicalExpressio nParser

5 org.wsmo.common.TopEntity
6 http://www.wsmo.org/TR/d32/v1.0/

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 9 of 14

Since parsing involves creation of objects, the parser constructors require an instance of
org.wsmo.factory.FactoryContainer . The factory container is a container that holds
instances of all object factories that are required for creating WSML ontologies. These are:

• org.wsmo.factory.WsmoFactory

• org.wsmo.factory.DataFactory

• org.wsmo.factory.LogicalExpressionFactory

• org.wsmo.factory.ChoreographyFactory

In the case that no factory container is provided to the constructor, the parser
implementations create fresh factories unified in a fresh factory container.

The factory container concept was not present in previous versions of WSMO4J and
introduced for the reason that one may want to cope with several separated ontologies in a
single JVM. In previous versions all objects were registered in single static factories, such
that parsed ontologies were merged semi-automatically if their entities (concepts, instances,
relations, attributes, axioms...) shared identifiers. This behaviour can be replicated by
creating just one factory container and providing it to all classes that are used to create
objects (e.g. parsers or synthetic ontology factories). To create separated ontologies one can
either reset the container or create a new one and provide it to the respective classes.

2.1.2 Serialization

As with parsing, the serialization uses a single interface to unify the serialization in different
syntaxes:

• org.wsmo.wsml.Serializer

As opposed to the parse method, the serializers implement a serialize method that takes
an array of TopEntities as input.

The implementations are

• WSML Syntax7: org.deri.wsmo4j.io.serializer.wsml.WSMLSerializerIm pl

• RDF Syntax8: org.deri.wsmo4j.io.serializer.rdf.WsmlRdfSerializer

• XML Syntax9: com.ontotext.wsmo4j.serializer.xml.WsmlXmlSerialize r

2.2 Validation
Within the parsing of input files in the WSML2Reasoner framework a basic validation check
is automatically done. This check tries to find errors in the parsed WSML file that causes the
parser to stop. To check for errors in a WSML file the validator can also be created
manually10, whose isValid method can be used to specify a WSML variant against which
the ontology will be checked to be valid. Additionally lists for errors and warnings have to be
passed, which are used during the validation process to log any warnings and errors.

7 WSML human readable syntax defined at http://www.wsmo.org/TR/d16/d16.1/v1.0/
8 RDF/XML translation defined in JavaDoc of the class implementation
9 WSML/XML syntax defined at http://www.wsmo.org/TR/d36/v1.0/
10 org.deri.wsmo4j.validator.WsmlValidatorImpl

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 10 of 14

3. Reasoning
WSML2Reasoner allows to reason over Logic Programming as well as Description Logic
ontologies. Due to the different underlying formalisms, both paradigms need to be
represented by different reasoner APIs, and are thus discussed separately.

The creation of the reasoners is unified in the reasoner factory

 org.wsml.reasoner.api.WSMLReasonerFactory

which features methods of type createXXXReasoner(HashMap<String,Object> params) .
XXX can be replaced by

• DL

• Core

• Flight

• Rule

• WSML

The fifth option (WSML) determines the type of the ontology and creates an appropriate
reasoner, based on the used language features.

The params argument may be null, which creates a correctly pre-configured reasoner for the
respective variant, but may also be configured by the user manually. This parameter is a
remnant from the old WSML2Reasoner API that was not changed for compatibility reasons.
It’s main purpose in the current implementation would be to pass a factory container, by
putting it in the map with the according key11. Consult the JavaDoc for further information.

Both reasoner facades share a common interface

 org.wsml.reasoner.api.WSMLReasoner

which handles the registering and de-registering of ontologies. The actual reasoning
interface is defined separately.

3.1 Interface
3.1.1 Logic Programming (LP)

For the Logic Programming paradigm the interface

 org.wsml.reasoner.api.LPReasoner

defines the functionality. The most important methods for SOA4All use-cases are
checkConsistency for checking the consistency of the registered ontologies and
executeQuery , which runs a query against the currently used reasoner and returns a
variable binding. A listing of all available methods and detailed information can be found in
the JavaDoc.

11 WSMLReasonerFactory.PARAM_FACTORY_CONTAINER

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 11 of 14

3.1.2 Description Logic (DL)

For the Description Logic paradigm the interface

 org.wsml.reasoner.api.DLReasoner

defines the functionality. This interface differs significantly from the LP interface on a
conceptual level, in a sense that there is not a single query method, but every supported
query is already exposed as method in the interface, e.g.

 boolean isSubConceptOf(Concept subConcept, Concept superConcept)

which tests whether one WSML concept is sub-concept of another one. There are also
corresponding methods

 Set<Concept> getSubConcepts(Concept concept)

that allow to retrieve a set of results. A listing of all available methods and detailed
information can be found in the JavaDoc.

3.2 Ontology merging
As mentioned earlier, the concept of a factory container allows to create ontologies in
separate object models. For the case that these ontologies are intended to share entities, the
class

 org.sti2.wsmo4j.merger.Merger

allows to merge a collection of ontologies into a single one, thereby automatically merging all
contained entities (e.g. concepts, instances, relations). This merging is done automatically
when registering a bunch of ontologies to a reasoner, since the reasoner does not care about
where logically relevant entities are defined (in which ontology).

3.3 Reasoning Example
Listing 1 shows an example Java program that executes a query against an LP reasoner
ontology with a WSML-Core ontology registered. The example ontology features equality in
rule heads and is outlined in Listing 2. For the sake of simplicity, exceptions are not handled
in the example. Listing 3 illustrates the query result.

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 12 of 14

4. Utility Applications

4.1 Web Reasoning Tools
Online reasoning Tools are available for WSML Rule and DL reasoning.

WSML-Rule v2.0 Reasoner:

http://tools.sti-innsbruck.at/wsml/rule-reasoner/v0.2/

WSML DL v2.0 Reasoner:

http://tools.sti-innsbruck.at/wsml/dl-reasoner/v0.2/

4.2 Web RDF Translation
It is possible to translate RDF(S) to WSML online – the tool is available at the following
address:

http://soa4all-runtime.sti2.at:8180/rdftranslation-webservice/

The RDF translation is also available as RESTful web service available. To use the service
follow the instructions on this site:

http://soa4all-runtime.sti2.at:8180/rdftranslation-webservice/rs/translate

4.3 Demo Widget
The class DemoW – a Demo Widget for reasoning - can be found in the package

org.wsml.reasoner.gui in the WSML2Reasoner implementation project.

It provides a GUI for quick reasoning tests.

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 13 of 14

Annex A. Full Reasoning Example

Listing 1: Reasoning example

public class Example {
 public static void main(String[] args) {
 // Create a parser and parse the example ontology f ile.
 // For simplicity we do not take care of exceptions at the moment.
 Parser wsmlParser = new WsmlParser();
 InputStream is = wsmlParser.getClass().getClass Loader()
 .getResourceAsStream("example/instance-equality.wsml");
 TopEntity[] identifiable = wsmlParser.parse(new InputStreamReader(is));

 // We can be sure here, that we only parse a single ontology.
 Ontology ontology = (Ontology) identifiable[0];

 // Create a query, that should bind x to both insta nces A and B.
 String queryString = "p(?x)" ;

 // Define the desired reasoner by setting the corre sponding values in
 // the parameters. Here IRIS reasoner with well-fou nded semantics is
 // used.
 Map<String, Object> params = new HashMap<String, Object>();
 params.put(WSMLReasonerFactory.PARAM_BUILT_IN_R EASONER,
 WSMLReasonerFactory.BuiltInReasoner.IRIS_ST RATIFIED);

 // Instantiate the desired reasoner using the defau lt reasoner factory.
 LPReasoner reasoner = DefaultWSMLReasonerFactor y.getFactory()
 .createFlightReasoner(params);

 // Register the ontology.
 reasoner.registerOntology(ontology);

 // Transform the query in string form to a logical expression object.
 LogicalExpression query = new WsmlLogicalExpressionParser(ontology)
 .parse(queryString);

 // Execute query request and assign the result to ' bindings'.
 Set<Map<Variable, Term>> bindings = reasoner.ex ecuteQuery(query);
 }
}

 SOA4All –FP7 – 215219 – D3.2.7 WSML2Reasoner Framework Report

© SOA4All consortium Page 14 of 14

Listing 2: Example WSML file

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/ wsml-rule"

namespace { _"http://www.example.org/example#",

 wsml _"http://www.wsmo.org/wsml/wsml-syntax#",

 rif _"http://www.w3.org/2007/rif-builtin-function #"

}

ontology exampleOntology

 concept C1

 concept C2

 instance A memberOf C1

 name hasValue _string("Gordon Freeman")

 instance B memberOf C2

 nomen hasValue _string("Gordon Freeman")

 axiom exampleAxiom definedBy

 ?x = ?y :- ?x[name hasValue ?name]

 and ?y[nomen hasValue ?nomen]

 and rif#compare(0, ?name, ?nomen).

 p(?x) :- ?x memberOf C2.

Listing 3: Reasoning results

2 results to the query:

(1) - ?x=http://www.example.org/example#A

(2) - ?x=http://www.example.org/example#B

