

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D3.2.8 Enhanced Reasoning

Framework Core
Activity N: 2 Fundamental and Integration Activities

Work Package: 3 Service Annotation and Reasoning

Due Date: 28/02/2011

Submission Date: 28/02/2011

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Adrian Marte, UIBK

Reviewers: Barry Norton, KIT

Mateusz Radzimski, ATOS

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 2 of 29

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 15.01.2011 First draft Adrian Marte

0.2 08.02.2011 Implementation report, Evaluation Adrian Marte

0.3 09.02.2011 Internal peer review Daniel Winkler

0.4 11.02.2011 Corrections after internal peer review Adrian Marte

0.4 15.02.2011 Internal peer review Reto Krummenacher

0.5 15.02.2011 Corrections after internal peer review Adrian Marte

0.6 18.02.2011 Peer review Mateusz Radzimski

0.7 21.02.2011 Corrections after review Adrian Marte

0.8 25.02.2011 Peer review Barry Norton

1.0 28.02.2011 Corrections after review Adrian Marte

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 3 of 29

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 STRUCTURE OF THE DOCUMENT ___________________________________ 7
1.2 PURPOSE AND SCOPE __ 7

2. SOFTWARE DESCRIPTION ___ 8

2.1 DATALOG ___ 8
2.2 FEATURES __ 8

2.2.1 Supported Datatypes ___ 9
2.2.2 Built-in Predicates __ 9
2.2.3 Rule Head Equality ___ 9

2.3 EVALUATION PROCESS __ 10
2.3.1 Program Optimization __ 10
2.3.2 Rule-Safety Processing __ 11
2.3.3 Stratification ___ 11
2.3.4 Rule Re-Ordering ___ 12
2.3.5 Rule Optimization ___ 12
2.3.6 Rule Compilation ___ 13
2.3.7 Rule Evaluation ___ 13

2.4 TRANSLATION OF DATALOG PROGRAMS INTO RELATIONAL ALGEBRA __ 13
2.4.1 The Relation of a Predicate _______________________________________ 13
2.4.2 The Relation Defined by a Rule Body ________________________________ 14
2.4.3 The Relational Views for a Rule ____________________________________ 17

3. INSTALLATION AND CONFIGURATION __________________________________ 18

3.1 INSTALLATION __ 18
3.2 CONFIGURATION __ 19
3.3 USAGE EXAMPLE __ 19

4. EVALUATION ___ 22

4.1 OPENRULEBENCH ___ 22
4.1.1 Join1 ___ 22
4.1.2 Join2 ___ 24

4.2 BUILT-IN PREDICATES __ 25
4.3 EVALUATION CONCLUSION _______________________________________ 25

5. CONCLUSIONS __ 26

6. REFERENCES ___ 27

ANNEX A. __ 28

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 4 of 29

List of Figures

Figure 1: Stratified evaluation strategy ...10

List of Tables

Table 1: Comparison of IRIS and IRIS-RDB features. ... 9

Table 2: Schema of the universe relation ...14

Table 3: Times for Join1, no query bindings ...23

Table 4: Times for Join1 with first argument bound ..24

Table 5: Times for Join1 with second argument bound ...24

Table 6: Times for Join2 ...25

Table 7: Times for program with built-in predicates. ...25

List of Listings

Listing 1: Usage example. ..20

Listing 2: Recursive Datalog program using built-ins. ...21

Listing 3: Part of the output of Java program defined in Listing 1. ...21

Listing 4: Rules for Join1 ..22

Listing 5: Queries for Join1 ...23

Listing 6: Rules and queries for Join2. ..24

file:///D:/Workspaces/SOA4All/D3.2.9/D3.2.8.doc%23_Toc286655460
file:///D:/Workspaces/SOA4All/D3.2.9/D3.2.8.doc%23_Toc286655461
file:///D:/Workspaces/SOA4All/D3.2.9/D3.2.8.doc%23_Toc286655462

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 5 of 29

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

RIF Rule Interchange Format

BLD Basic Logic Dialect

DTB Datatypes and Built-ins

EDB Extensional Database

IDB Intensional Database

RHS Right-hand side

LHS Left-hand side

RDB Relational Database

POM Project Object Model

WSML Web Service Modeling Language

LUBM Lehigh University Benchmark

DBLP Digital Bibliography & Library Project

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 6 of 29

Executive Summary

The Datalog reasoner IRIS is the main underlying engine used by the WSML2Reasoner
framework for reasoning with WSML-Core, WSML-Flight, WSML-Rule and also for WSML-
DL language variants. Recently development started on making the IRIS engine a fully
compatible – or at least a maximally compatible – RIF-BLD system.

In IRIS the evaluation of Datalog programs is handled only in-memory. As RIF especially
targets Web applicability where the amount of data is extremely large, the IRIS reasoner has
been extended in order to support data that exceeds the limits of a computer’s memory.

This deliverable describes IRIS-RDB, an extension of IRIS, that overcomes this limitation by
using a relational database as an underlying system to evaluate Datalog programs. The
focus of the deliverable is to compare the original IRIS implementation to IRIS-RDB with
respect to the supported features, the performance and the scalability of the software
component.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 7 of 29

1. Introduction

The Datalog reasoner IRIS is the main underlying engine used by the WSML2Reasoner
framework for reasoning with WSML-Core, WSML-Flight, WSML-Rule and also for WSML-
DL language variants. Recently, development started on making the IRIS engine a fully
compatible – or at least a maximal compatible – RIF-BLD system. RIF-BLD is the Basic
Logic Dialect (BLD) of the Rule Interchange Format (RIF), a W3C recommendation for a
standard for exchanging rules among rule systems, in particular among Web rule engines.

RIF-BLD1 extends RIF-Core2, a common subset of RDF-based rule dialects that supports a
rich set of XML Schema and RDF datatypes and XPth built-ins defined in RIF-DTB3. RIF-BLD
adds features to RIF-Core that are not directly available, such as logic functions, equality in
the rule head (rule head equality) and named arguments. Furthermore, it defines the concept
of logical entailment, i.e. what it means for a set of RIF-BLD rules to entail another RIF-BLD
formula.

IRIS is an extensible reasoning engine for expressive rule-based languages. It supports (un-)
safe Datalog with (locally) stratified or well-founded “negation as failure”, function symbols,
equality in the rule head and a comprehensive and extensible set of built-ins and datatypes
[6]. In IRIS the evaluation of Datalog queries, i.e., the evaluation of queries over a knowledge
base, where a knowledge base consists of facts and rules, is only handled in memory. As
RIF especially targets application to the Web where the amount of data is extremely large,
the IRIS reasoner needs to be extended in order to support data that exceeds the limits of a
single computer’s memory.

This deliverable describes the development of IRIS-RDB, an extension of IRIS that uses a
relational database as an underlying system to evaluate stratified and recursive Datalog
programs using relation algebra.

1.1 Structure of the Document

Section 2 of the deliverable describes the software in detail, where Section 2.4 focuses on
the description of the transformation from Datalog programs to relational algebra. Section 3
shows how to install and use the system for evaluating Datalog programs. An evaluation of
the software component is provided in Section 4. Section 5 concludes with a short summary
of the deliverable.

1.2 Purpose and Scope

This document is a report on the extension of the IRIS reasoner called IRIS-RDB. The object
of the report is to give information about the implementation and to show how to use the
software for the evaluation of Datalog programs. Further, it defines in an abstract way a
transformation from Datalog to relational algebra.

The target audiences of this report are mainly developers who wish to integrate the IRIS-
RDB reasoning system into their software components to evaluate Datalog programs, and
others who want to understand how the system evaluates Datalog programs using a
relational database system.

1 RIF Basic Logic Dialect, http://www.w3.org/TR/2010/REC-rif-bld-20100622/ [last checked
25.01.2011]

2 RIF Core, http://www.w3.org/TR/2010/REC-rif-core-20100622/ [last checked 25.01.2011]

3 RIF Datatypes and Built-ins 1.0, http://www.w3.org/TR/2010/REC-rif-dtb-20100622/ [last
checked 20.01.2001]

http://www.w3.org/TR/2010/REC-rif-bld-20100622/
http://www.w3.org/TR/2010/REC-rif-core-20100622/
http://www.w3.org/TR/2010/REC-rif-dtb-20100622/

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 8 of 29

2. Software Description

IRIS-RDB has been developed with the goal to have a more scalable reasoning engine that
is able to process knowledge bases that exceed the limits of a single computer’s memory.
This has been accomplished by exploiting the close relationship of Datalog and relational
algebra and, thus, by implementing an evaluation strategy based on a relational database
system.

2.1 Datalog

According to [1], Datalog is in many respects a simplified version of general Logic
Programming. A logic program consists of a finite set of facts and rules. In Datalog both facts
and rules are represented as Horn clauses of the general shape

L0 :- L1, ..., Ln

where each Li is a literal. A literal is either an atomic formula or a negated atomic formula,

where an atomic formula is of the form pi(t1, ..., tki) such that pi is a predicate

symbol and the tj are terms. A non-negated atomic formula is also referred to as a positive

literal, whereas a negated atomic formula is called a negative literal. A term is either a
constant, variable or, in the case of function-aware systems, a function symbol. In IRIS the
constant symbols are represented by data values of the set of XML Schema, RDF
(rdf:PlainLiteral and rdf:XMLLiteral) and RIF (rif:local and rif:iri) datatypes. The left-hand side
(LHS) of a clause is called the rule head, whereas the right-hand side (RHS) is called the rule
body. Clauses with an empty body represent facts, and clauses with at least one literal in the
body represent rules. A literal or atomic formula which does not contain any variables is
called ground. In the following we may also refer to literals in the rule body as subgoals.

In Datalog there are three types of predicates, Extensional Database (EDB), Intensional
Database (IDB) and built-in predicates. The predicates denoting the ground facts are EDB
predicates, while the ones defined by rules are IDB predicates. Built-in predicates are

expressed by special predicate symbols such as <, > or = with a predefined meaning.

Arithmetic built-in predicates can be written in infix notation, e.g. ?X<?Y rather than <(?X,

?Y), whereas other built-ins are written like rif-pred:is-literal(?X). Each non-built-

in predicate in a Datalog program is either an EDB predicate or an IDB predicate, but not
both. We further assume, that each predicate symbol is associated with a particular number
of arguments that it takes, and we may denote that number as the arity of the predicate.

2.2 Features

IRIS-RDB is an extension of the IRIS reasoner that uses the database engine H24 as an
underlying relational database system to evaluate Datalog programs.

H2 is an open-source relational database implemented in Java. It is a very fast5 and feature-
rich6 system that supports persistent and in-memory storage and has both an embedded and
a server mode. H2 is dual licensed under a modified version of the MPL 1.1 (Mozilla Public
License) and under the (unmodified) EPL 1.0 (Eclipse Public License). Since IRIS-RDB uses
SQL as query language it is, in principle, easy to align the system such that it is possible to
use it with a different relational database engine than H2.

4 H2 Database Engine, http://www.h2database.com [last checked 19.01.2011]

5 H2 Performance, http://www.h2database.com/html/performance.html [last checked
19.01.2011]

6 H2 Features, http://www.h2database.com/html/features.html [last checked 19.01.2011]

http://www.h2database.com/
http://www.h2database.com/html/performance.html
http://www.h2database.com/html/features.html

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 9 of 29

IRIS-RDB can evaluate safe or unsafe Datalog (without function symbols) and equality in rule
heads, supports XML, RDF, and RIF data types, built-in predicates (those supported by IRIS)
and (locally) stratified negation as failure, see Table 1.

IRIS is a highly modular system, that provides well-defined Java interfaces which allow the
implementation and integration of additional evaluation strategies or storage mechanisms.
IRIS-RDB makes heavy use of these interfaces and provides implementations and
extensions of such where possible, which allows for the seamless integration of the
extension into the IRIS code base.

Table 1: Comparison of IRIS and IRIS-RDB features.

Feature IRIS IRIS-RDB

Unsafe rules Yes Yes

Globally unstratified programs Yes No

Locally unstratified program Yes Yes

Function symbols Yes No

RIF list terms Yes No

RIF-BLD datatypes Yes Yes

RIF-BLD built-ins Yes Yes

Rule head equality Yes Yes

2.2.1 Supported Datatypes

IRIS, and also IRIS-RDB, support all types defined in RIF-DTB, in particular all XML Schema

1.1, RDF (rdf:XMLLiteral and rdf:PlainLiteral) and RIF (rif:iri and

rif:local) datatypes.

2.2.2 Built-in Predicates

IRIS comes with a rich set of built-in predicates that can be used in the bodies of rules, both
in a positive and in a negative literal. They include:

 Equality, inequality, assignment, and unification.

 Addition, subtraction, multiplication, division and modulus.

 All built-ins defined in RIF-DTB, including arithmetical built-ins, guard predicates for
datatypes, built-ins for datatype conversion and casting and special functions and
predicates on various RDF and XML Schema datatypes.

IRIS-RDB uses the built-in infrastructure of the original IRIS and, therefore, takes advantage
of all the built-ins mentioned above.

2.2.3 Rule Head Equality

In order to support rules with equality in the head, IRIS-RDB uses the rewriting technique
defined in [2, Section 4.1] where additional rules are created for each predicate occurring in
the Datalog program in order to resolve equivalent terms.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 10 of 29

2.3 Evaluation Process

IRIS-RDB evaluates queries over sets of facts (ground atomic formulas) and rules, which
together we call a knowledge base. A knowledge base can be created directly via the Java
API or can be parsed from a Datalog program in textual form using the parser provided by
IRIS. For each query that is evaluated over the knowledge base, IRIS-RDB returns the set of
tuples that can be found or inferred from the knowledge base that satisfy the query.

IRIS-RDB supports semi-naive bottom-up evaluation using a (locally) stratified technique,
see Annex A. The implementation of this evaluation strategy is based on the original semi-
naive implementation of IRIS and makes heavy use of the involved interfaces and classes.
See Figure 1 for a depiction of the steps involved in the process of evaluation.

Figure 1: Stratified evaluation strategy

2.3.1 Program Optimization

The Magic Sets optimization technique [7] re-writes the rule-set according to the query so
that only tuples likely to be involved in satisfying the query are computed. The disadvantage
of this approach is that a new sub-set of the model must be computed for each new query.
Therefore, Magic Sets allows faster knowledge-base initialization times at the expense of

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 11 of 29

longer query times. IRIS can be configured programmatically whether to use the Magic Sets
optimization or not.

Another simpler program optimization technique is rule-filtering that simply removes those
rules that cannot influence the query result, thus reducing the size of the minimal model
computation. This technique is usually used in combination with Magic Sets.

2.3.2 Rule-Safety Processing

The algorithm for detecting unsafe rules was used from the original IRIS implementation,
which is based on the algorithm and the definition of unsafe rules defined in [1, page 105].
According to this definition, a rule is safe if all its variables are limited, where limited variables
are defined as follows:

1. Any variable that appears as an argument in an ordinary predicate of the body is
limited.

2. Any variable X that appears in a subgoal X=a or a=X, where a is a constant, is

limited.

3. Variable X is limited if it appears in a subgoal X=Y or Y=X, where Y is a variable

already known to be limited.

In order to support unsafe rules, IRIS provides an augmenting rule processor, which is based
on the technique suggested by [3] that adds a “universe” predicate for each unbound variable
to the body of the rule. This “universe” predicate contains all constants appearing in the input
program or that are created during the evaluation of the program, see also Section 2.4.1. For
instance, consider rule

q(?X) :- not p(?X).

which unsafeness is directly visible, as variable X is not limited, as it does not appear in any
non-negated ordinary predicate, nor is it equated with a constant or a variable known to be
limited. However, using the aforementioned technique the rule can be made safe by adding a
universe predicate and, thus, limiting the variable X, such that the new rule looks like

q(?X) :- universe(?X), not p(?X).

2.3.3 Stratification

IRIS has the concepts of globally and locally stratified logic programs. A globally stratified
program is one where all rules can be grouped into strata using, for instance, the algorithm
defined in [1, page 133]. This algorithm computes a stratification of the rules of a program. It
groups the predicates into strata, which are the largest sets of predicates, such that:

1. If a predicate p is the head of a rule with a subgoal that is a negated q, then q is in a

lower stratum than p.

2. If predicate p is the head of a rule with a subgoal that is a non-negated q, then the

stratum of p is at least as high as the stratum of q.

Given stratified predicates we can also group the rules into strata, by assigning rules r to

stratum i, where i is the stratum assigned to the head predicate of r. A positive side effect

of this stratification is that the strata give an order in which the rules should be evaluated, as
all rules in each stratum can be evaluated before the rules of the higher stratum. If no
stratification of the rules can be computed, the program is not globally stratified [1, p. 134].

Local stratification is needed when the head predicate of a rule has a negative direct or
indirect dependency on itself, but the presence of constants allow the separation of the
domain of tuples used as input to the rule and the domain of tuples produced by the rule [6,
page 7]. For instance, the following rule appears to be unstratified:

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 12 of 29

p(2, ?X) :- q(?X), not p(3, ?X).

because the head predicate of the rule has a direct negative dependency on itself. However,

as the rule can only produce tuples whose first term value is 2 and can only use input tuples

whose first term is 3, there exists no (local) recursive dependency and the rule can be

evaluated normally.

2.3.4 Rule Re-Ordering

After stratification of a program, the performance of the evaluation can be further improved,
by changing the order in which the rules are evaluated. IRIS provides a rule optimizer, which
re-orders the rules in a way such that those rules that produce tuples that feed the other rule
bodies, are evaluated earlier. For example, the rule

p(?X, ?Z) :- r(?X, ?Y), s(?Y, ?Z).

is evaluated before the rule

q(?X, ?Y) :- p(?X, ?Y), t(?X).

as the tuples generated by the first rule can immediately used when evaluating the second
rule, which reduces the number of runs required by the semi-naive evaluation algorithm.

2.3.5 Rule Optimization

IRIS provides further optimization techniques, which optimize the evaluation on a per rule
basis. The supported optimizers are listed below.

 Join condition: This optimizer reduces the number of equality relations by

substituting the occurrences of variables Y of a built-in predicate X=Y with the variable

X, e.g.:

p(?X) :- q(?X), r(?Y), ?X = ?Y.

would be changed to

p(?X) :- q(?X), r(?X).

This can significantly reduce the number of intermediate tuples produced during a
sequence of Cartesian products. In the case of IRIS-RDB it also improves
performance, as in most cases the join will be handled implicitly by the database
system, instead of the IRIS built-in for equality, see Section 2.3.6 for more information
on evaluating rules with built-in predicates.

 Replace variables with constants: Similar to the above optimization, this
optimization reduces the number of equality relations, by substituting the occurrences

of variables X of a built-in predicate X=a with a, where a is a constant. For instance,

p(?X) :- q(?X, ?Y), ?Y = 2.

would be changed to

p(?X) :- q(?X, 2).

 Re-order literals: This optimization re-arranges the literals in a rule body, such that
the most restrictive literals appear first. The preferred order is: positive literals with no
variables, built-ins with no variables, positive literals, built-ins and negated literals.
Negated literals and built-ins can be pushed earlier into the rule body as soon as all
their variables are bound.

 Remove duplicate literals: In order to avoid unnecessary joins, this optimizer
removes any literal in a rule body that appears twice with the same variables or
constants.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 13 of 29

2.3.6 Rule Compilation

In the original IRIS a rule is transformed into a compiled rule that gets evaluated by a rule
evaluator. The compiler inspects each body literal and creates a view on the corresponding
relation that filters the tuples of the relation according to the view criteria given by the

arguments of the literal. For instance, for the literal q(?X, ?X) the compiler creates a view

on the relation of q, where only those tuple are returned, where both terms are equal. In the

next step, the compiler looks for all matching variables between two adjacent views,
calculates the join indices and creates indices. For built-in predicates, as there is usually no
relation associated with a built-in, the compiler uses the corresponding implementation of the
built-in for evaluation.

In IRIS-RDB, the compilation of a rule is performed similarly. However, instead of creating
dedicated objects that take care of filter or joining relations, the various operations are
represented by relational algebra operations. The rule compiler of IRIS-RDB creates a
relation for the rule body as described in the algorithm in Section 2.4.2. In principle, the

compiler creates a relational view for each intermediate A computed in the process of the

rule compilation. The final A is then the relation/view representing the relation of the rule

body, and can eventually be used to project the values into the head of the rule, see Section
2.4.3.

Since IRIS supports a rich set of built-ins and provides means to easily implement further
built-ins, we have decided to use this infrastructure to evaluate built-in predicates, rather than
having only a restricted set of built-ins given by the underlying database system. However,
this approach comes with the cost of reduced performance when evaluating rules with built-
ins, as the tuples may then only be processed one-by-one, which might be quite inefficient
compared to the set-oriented methods used by a relational database system.

2.3.7 Rule Evaluation

The original IRIS supports two rule evaluation techniques, the “naive” and the “semi-naive”
evaluator. The “naive” [1, page 119] evaluator simply applies all facts to all rules in each
round of evaluation and stops when no new facts are computed. The “semi-naive” [1, page
127] evaluator is an extension of the “naive” algorithm that takes advantage of incremental
relations and tries to avoid computing tuples that have been computed before.

IRIS-RDB provides an implementation of the “semi-naive” algorithm defined in Annex A.

2.4 Translation of Datalog Programs into Relational Algebra

The following three sections describe the transformation of Datalog rules to relational algebra
and the corresponding SQL expressions.

2.4.1 The Relation of a Predicate

Ground facts are intended to be stored in a relational database, therefore we assume that

each corresponding EDB-predicate r corresponds to exactly one relation R in the database,

such that each fact r(c1, ..., ck) is stored as a tuple (c1, ..., ck) of R. In general,

IDB predicates correspond to relational views and are not stored explicitly. However, in our

implementation we also have for each IDB predicate s occurring in a program a

corresponding relation S in the database. Although this can result in reduced performance,

this approach allows recursive programs to be computed by simple non-recursive relational
expressions. This clearly avoids problems with the underlying database systems, as only a
few database systems support recursive SQL and those which do usually need some kind of
termination argument, such as an integer that is increased in each recursive step and
determines the number of maximal recursive steps.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 14 of 29

2.4.1.1 The Universe Relation

In order to support the method implemented in IRIS for processing unsafe rules, a special
predicate and corresponding relation is used to store and retrieve the constant symbols
appearing in and generated by the program. This universe relation stores the string
representation of the common and canonical value and the datatype URI of a constant term.
The common value is the lexical representation of the constant term casted to the most
general type of that constant term. For instance, the most general type of numeric terms is

xsd:decimal, as all numerical values can be represented as a decimal value. The

canonical value is the canonical, lexical representation of the data value (as defined by the

specification of such). For example, the lexical representation of a xsd:duration of 1

month is “P1M”. The datatype URI is the absolute URI of the data type of the constant term.

For instance, the data type URI of xsd:duration is

http://www.w3.org/2001/XMLSchema#duration.

The schema of the universe relation is depicted in Table 2, where “id” is an auto-increasing
integer representing the primary key, “common” is the column storing the common value,
“canonical” is the column storing the canonical value, and “type” is the column storing the
datatype URI of the constant term, each in a string representation. In order to enable equality
checking and to reduce redundancy, a unique index is created on the columns “canonical”
and “type”, which ensures that there are no two terms of the same type with the same
canonical value.

Table 2: Schema of the universe relation

Universe

id: INT common: VARCHAR canonical: VARCHAR type: VARCHAR

486 1337.0 1337 http://www.w3.org/2001/

 XMLSchema#int

...

2.4.1.2 The Relation for a Predicate

The relations corresponding to a predicate are created according to the following schema: a

predicate p with arity n is associated with a relation P in the database, that has n columns,

where the column for the first term has the identifier attr1, for the second attr2 and so on.

The value of each column is the foreign key (ID in the universe relation) of the tuple in the
universe relation corresponding to the term.

This enables us to use two different implementations of joins. The first solution – which is
actually the one currently used by IRIS-RDB – joins two tables on the integers values of the
attribute columns, which means that those tuples are joined, where the attribute at the
specified position has the same canonical value and data type URI. The second method
uses the normalized string values of the attributes that is being joined on. This however
would require additional joins to the universe relation when joining two relations and,
therefore, may significantly reduce performance.

2.4.2 The Relation Defined by a Rule Body

A rule may be evaluated by computing a relation for the rule body using relational algebra
operations. We have implemented a modified version of the algorithm defined in [1, page

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 15 of 29

109]. This version of the algorithm requires the literals of the rule body to be reordered such
that all but the allowed unbound variables of a built-in are already bound by a preceding

literal. The symbols π and σ refer to the standard relational operations projection and

selection, respectively, as defined in [1, page 56].

Input: The body of a Datalog rule r, which consists of subgoals S1, ..., Sn containing

variables X1, ..., Xm, where each variable appears only once in the list. For each

Si=pi(ci1, ciki) with a non-built-in predicate, there is a relation Ri already computed,

where the c’s are arguments, either variables or constants.

Output: An expression of relational algebra, which we call

EVAL-RULE (r, R1, ..., Rn)

that computes from the relations R1, ..., Rn a relation R(c1, ..., ck) with all and only

the tuples (a1, ..., ak) such that, when we substitute aj for each cj, where cj is a

variable and 1 <= j <= k, all the subgoals S1, ..., Sn are made true.

Method: The expression is constructed by the following steps.

A := Ø

E := Ø

O := empty tuple

for i := 1 to n do

 if Si is positive then

 if pi is not a built-in predicate then

Let T be the expression σF(Ri). F is the conjunction (logical AND) of

the following conditions:

1. If position k of Si has constant a, then F has the term $k=a

2. If position k and l of Si both contain the same variable, then F

has the term $k=$l

if A != Ø then

Let Y1, ..., Yr be the variables occuring in O, where each

variable appears only once in the list.

Let G be the conjunction (logical AND) of the following

conditions:

1. If some Y is also in X1, ..., Xm and let a be the

position of Y in O and b be the position of Y in (ci1,

ciki) then G has the term $a=$b

If G is not empty then let A be the expression ΩF(A x T)

otherwise let A be the expression (A x T).

 else

 Let A be T.

 fi

 else

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 16 of 29

Let Q be a new relation in the database with arity c + d, where c is

the arity of A and d is the arity of the built-in predicate. Here A is not

empty, as the rule is safe.

Let Y1, ..., Yr be the variables occuring in O, where each variable

appears only once in the list.

Let F be the conjunction (logical AND) of the following conditions:

1. If some Y is also in X1, ..., Xm and let a be the position of Y

in O and b be the position of Y in (ci1, ..., ciki), then F

has the term $a=$b

Let T be σF(A) and and let (a1, ..., ac) be the tuples from T and

let (b1, ..., bd) be the tuples from the result of the evaluation of

the built-in where some of b1, ..., bd are the input (extracted from

(a1, ..., ac)) and some are the output terms of the built-in. Add all

tuples (a1, ..., ac, b1, ..., bd) to Q for which (b1, ...,

bd) the built-in holds.

Let A be Q.

 fi

 Let O be the concatenation of O and (ci1, ..., ciki).

 else

 if pi is not a built-in predicate then

Let T be the expression σF(Ri), where F is the conjunction (logical

AND) of the following conditions:

1. If position k of Si has constant a, then F has the term $k!=a

2. If position k and l of Si both contain the same variable, then F

has the term $k!=$l

if A != Ø then

Let Y1, ..., Yr be the variables occurring in O, where each

variable appears only once in the list.

Let G be the conjunction (logical AND) of the following

conditions:

1. If some Y is also in X1, ..., Xm and let a be the

position of Y in X1, ..., Xm and b be the position of Y

in Y1, ..., Yr then G has the term $a!=$b

Let A be the expression π1...rσG(A x T)

 else

 Let A be T.

 fi

 else

Let Q be a new relation in the database with arity c, where c is the arity

of A.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 17 of 29

Let Y1, ..., Yr be the variables occurring in O, where each variable

appears only once in the list.

Let F be the conjunction (logical AND) of the following conditions:

1. If some Y is also in X1, ..., Xm and let a be the position

of Y in O and b be the position of Y in (ci1, ..., ciki),

then F has the term $a=$b

Let T be σF(A) and and let (a1, ..., ac) be the tuples from T and

let (b1, ..., bd) be the tuples from the result of the evaluation of

the built-in where some of b1, ..., bd are the input (extracted from

(a1, ..., ac)) and some are the output terms of the built-in. Add all

tuples (a1, ..., ac) to Q for which the built-in does not hold.

Let A be Q.

fi

 fi

 Let E be A.

end

2.4.3 The Relational Views for a Rule

In principle, the system uses SQL to create relational views for each intermediate A and the

final E computed by the algorithm defined in Section 2.4.2. For instance, for the rule body of

the rule

p(?X, ?Y) :- q(?X, ?X), r(?X, 'a', ?Y).

a relational view is created with the SQL expression

CREATE VIEW body(attr1, attr2, attr3, attr4, attr5) AS

 SELECT left.attr1 AS attr1, left.attr2 AS attr2,

 right.attr1 AS attr3, right.attr2 AS attr4,

 right.attr3 AS attr5

 FROM q_filter AS left, r_filter AS right

 WHERE left.attr2 = right.attr1

where q_filter and r_filter are relational views created by the SQL expressions

CREATE VIEW q_filter(attr1, attr2) AS

 SELECT attr1, attr2 FROM relation_for_q WHERE attr1 = attr2

CREATE VIEW r_filter(attr1, attr2, attr3) AS

 SELECT attr1, attr2, attr3

 FROM relation_for_r

 WHERE attr2 = '234'

where 234 is the ID of the tuple in the universe relation corresponding to the constant a.

In a final step, the relation of the body is projected into the rule head by, again, creating a
relational view for the head of the rule using the SQL expression

CREATE VIEW p(attr1, attr2) AS SELECT attr1, attr5 FROM body

This enables the optimizer of the database system to find a well-performing execution plan
for the final SQL query.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 18 of 29

3. Installation and Configuration

3.1 Installation

IRIS is an open-source Datalog reasoner developed under the GNU Lesser General Public
License (LGPL) and provided as a Java implementation that can be downloaded in both,
source and binary form, from the Sourceforge project page7. The extension described in this
deliverable, called IRIS-RDB, is an additional module of IRIS and is, therefore, also licensed
under LGPL and is available on the IRIS Sourceforge page.

Since version 0.7.0 IRIS is delivered and maintained as an Apache Maven8 project. For IRIS-
RDB an additional module has been added to the IRIS project. To get releases and
snapshots of IRIS-RDB and the dependent components, the following repositories have to be
added to the project object model (POM) file:

<repositories>

 <repository>

 <id>sti2-archiva-external</id>

 <url>http://maven.sti2.at/archiva/repository/external</url>

 </repository>

 <repository>

 <id>sti2-archiva-snapshots</id>

 <url>http://maven.sti2.at/archiva/repository/snapshots</url>

 </repository>

</repositories>

The standard SOA4All project setup should have the SOA4All NEXUS repository9 hosted by
TIE in its configuration, which mirrors both STI repositories, thus they do not need to be
added explicitly. The repositories that should be used in the configuration for mirroring are:

 http://coconut.tie.nl:8080/nexus-webapp-

1.3.1/content/groups/public/

 http://coconut.tie.nl:8080/nexus-webapp-

1.3.1/content/groups/public-snapshots/

The current stable version of IRIS and IRIS-RDB, as of 09.02.2011, is version 0.8.0.

Ongoing development is committed to the snapshot version 0.8.1-SNAPSHOT. IRIS-RDB

can be added as dependency by adding at.sti2.iris:iris-rdb as dependency to the

POM file:

<dependency>

 <groupId>at.sti2.iris</groupId>

 <artifactId>iris-rdb</artifactId>

 <version>0.8.0</version>

</dependency>

7 IRIS project page at Sourceforge, http://sourceforge.net/projects/iris-reasoner/ [last checked
24.01.2011]

8 Apache Maven, http://maven.apache.org/ [last checked 06.02.2011]

9 SOA4All NEXUS repository, http://coconut.tie.nl:8080/nexus-webapp-1.3.1 [last checked
24.01.2011]

http://coconut.tie.nl:8080/nexus-webapp-1.3.1/content/groups/public-snapshots/
http://coconut.tie.nl:8080/nexus-webapp-1.3.1/content/groups/public-snapshots/
http://sourceforge.net/projects/iris-reasoner/
http://maven.apache.org/
http://coconut.tie.nl:8080/nexus-webapp-1.3.1

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 19 of 29

3.2 Configuration

IRIS and IRIS-RDB can be programmatically configured when initializing a knowledge base.
All configuration parameters are collected together in a single configuration object that is
passed to the knowledge base, thus allowing a highly flexible combination of standard and
user-provided components. The configuration class contains these categories of parameters:

 Factories for evaluation strategies, rule compilers, rule evaluators, relations and
indexes. N.B., not used in IRIS-RDB.

 Termination parameters for termination conditions (time out, maximum tuples,
maximum complexity).

 Numerical behaviour determining significant bits of floating point precision for
comparison, divide by zero behaviour.

 Collections of program optimizers, rule optimizers and rule re-ordering
optimizers.

 Collection of rule stratifiers.

 Rule-safety processor for detecting unsafe rules or making unsafe rules safe.

 Unlike the original IRIS, IRIS-RDB provides no support for external data sources.

Furthermore, the IRIS-RDB knowledge base can be configured to use

 A newly created embedded database stored in the temporary directory of the user
running the Java program.

 An in-memory H2 database.

 An already existing database referenced by a java.sql.Connection object. N.B.,

IRIS-RDB has currently only been tested with the H2 database system.

3.3 Usage Example

Listing 1 gives an example Java program that creates an IRIS-RDB knowledge base for the
program shown in Listing 2, executes all the queries defined in this program over the
previously created knowledge base and outputs the resulting relation to the console. For the
sake of simplicity, exceptions are not handled in this example.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 20 of 29

Listing 1: Usage example.

public class Example {

 public static void main(String[] args) throws Exception {

 // Create a Reader on the Datalog program file.

 File program = new File("datalog_program.iris");

 Reader reader = new FileReader(program);

 // Parse the Datalog program.

 Parser parser = new Parser();

 parser.parse(reader);

 // Retrieve the facts, rules and queries from the

// parsed program.

 Map<IPredicate, IRelation> factMap = parser.getFacts();

 List<IRule> rules = parser.getRules();

 List<IQuery> queries = parser.getQueries();

 // Create a default configuration.

 Configuration configuration = new Configuration();

 // Enable Magic Sets together with rule filtering.

 configuration.programOptmimisers.add(new RuleFilter());

 configuration.programOptmimisers.add(new MagicSets());

 // Convert the map from predicate to relation to a

// IFacts object.

IFacts facts = new Facts(factMap,

configuration.relationFactory);

 // Create the knowledge base.

 IKnowledgeBase knowledgeBase = new RdbKnowledgeBase(facts,

rules, configuration);

 // Evaluate all queries over the knowledge base.

 for (IQuery query : queries) {

 List<IVariable> variableBindings =

new ArrayList<IVariable>();

 IRelation relation = knowledgeBase.execute(query,

 variableBindings);

 // Output the variables.

 System.out.println(variableBindings);

// For performance reasons compute

// the relation size only once.

 int relationSize = relation.size();

// Output each tuple in the relation, where the term

// at position i corresponds to the variable at

// position i in the variable bindings list.

 for (int i = 0; i < relationSize; i++) {

 System.out.println(relation.get(i));

 }

 }

 }

}

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 21 of 29

The Datalog program used in this example is shown in Listing 2. The program creates 20
pairs of X and Y, where 0 <= X < 200 and Y = X + 1 and then computes all possible paths by
the recursive joining of all pairs.

Listing 3 shows a part of the output produced by the Java program defined in Listing 1, which

is the result of the query ?- path(?X, ?Y) that gives all the possible 20503 transitive

paths.

Listing 2: Recursive Datalog program using built-ins.

p(0, 1).

p(?X1, ?Y1) :- p(?X, ?Y), ?X + 1 = ?X1, ?Y + 1 = ?Y1, ?X < 200.

path(?X, ?Y) :- p(?X, ?Y).

path(?X, ?Y) :- path(?X, ?Z), path(?Z, ?Y).

?- path(?X, ?Y).

Listing 3: Part of the output of Java program defined in Listing 1.

[?X, ?Y]

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(0, 7)

(0, 8)

(0, 9)

(0, 10)

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 22 of 29

4. Evaluation

IRIS-RDB has been developed with the goal to have a more scalable Datalog reasoner,
which can process Datalog programs that contain and produce facts that do not fit in the
memory of a single computer. The evaluation focuses on the comparison of the original IRIS
with IRIS-RDB with respect to the performance and, more importantly, to the scalability of the
system.

All test results were produced using the rule-filtering and Magic Sets optimization techniques
and were run on a system with:

 Intel ® CoreTM i7-620M 2x 2.66GHz,

 Windows 7 (64-bit),

 4 Gbyte DDR2 RAM,

 Oracle Java SE Development Kit (JDK) 6 Update 23 (32-bit).

The focus of this evaluation was to measure the time to do inference rather than loading the
test data sets. Thus, we only measured the time it took to evaluate a query, and did not
consider the loading of the facts into the database. If not stated otherwise, the results in the
tables below show the times measured in seconds.

4.1 OpenRuleBench

The scalability tests were taken from the OpenRuleBench [4] test suite, in particular, we used
some of the test cases of the large join tests category, which includes large database joins,
LUBM-derived tests, the Mondial and the DBLP test. In the detailed report of the
OpenRuleBench [5] it has been observed that IRIS could not handle any of the large join
tests, due to a timeout. Therefore, these test cases seemed to be a suitable candidate to
check if the IRIS-RDB system meets the stated expectations.

Unfortunately, only the Join1 and Join2 tests could be run, as the LUBM-derived tests were
not available in an IRIS compatible format, and the Mondial tests contained function symbols,
which are not supported by IRIS-RDB. We could not use the DBLP tests as the IRIS parser
failed to load the program due to memory limitations.

Unlike the OpenRuleBench we did not use a timeout, which determined the maximum
allowed time to run an evaluation, but waited until the system produced a result or until an
error occurred. In the tables below, “Error” means, that the system produced an

OutOfMemoryError after some time, even if we assigned 1536 megabyte of memory to the

Java virtual machine.

4.1.1 Join1

The Join1 test has a form of a non-recursive tree of binary joins, which is expressed using
the rules shown in Listing 4.

Listing 4: Rules for Join1

a(?X, ?Y) :- b1(?X, ?Z), b2(?Z, ?Y).

b1(?X, ?Y) :- c1(?X, ?Z), c2(?Z, ?Y).

b2(?X, ?Y) :- c3(?X, ?Z), c4(?Z, ?Y).

c1(?X, ?Y) :- d1(?X, ?Z), d2(?Z, ?Y).

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 23 of 29

The relations for the predicates c2, c3, c4, d1, and d2 were randomly generated.

OpenRuleBench provides three datasets: data0 with 50 000, data1 with 250 000 and data2
with 1250000 tuples. In our evaluation we only used the datasets data0 and data1 as the
IRIS parser did not manage to process data2 containing 1 250 000 tuples.

The test further defines nine queries on the predicates a, b1 and b2. There are three queries

for each predicate where one query has no variable binding, one has a binding on the first
variable and one has a binding on the second variable. The queries are shown in Listing 5,
where each line in the listing represents a single test.

Listing 5: Queries for Join1

Table 3 shows the results of the Join1 test with unbound variables in the query. As expected,

the original IRIS could not compute the result for query a due to an OutOfMemoryError.

Interestingly, for data0 we succeeded in computing results for the other two queries, unlike in
the evaluation conducted by OpenRuleBench authors, where IRIS did not manage to
evaluate any of the programs. This might be the case, since the OpenRuleBench authors
only assigned 512MB of memory to the Java virtual machine running the programs, whereas
we assigned 1536MB of memory. This also applies for the Join2 test in Section 0.

Table 3: Times for Join1, no query bindings

 data0 data1

a b1 b2 a b1 b2

IRIS-RDB 1068.875 67.726 7.112 16685.639 474.931 74.71

IRIS Error 19.069 1.417 Error Error 45.16

Table 4 shows the results of the Join1 test with a binding on the first variable. In this test,
both systems take heavy advantage of the Magic Sets optimization in order to rewrite the
program in a way such that the data handled in the process of evaluation is limited by the
variable bindings in the query. Thus, the evaluation times are significantly lower than in the
test above. For data0, IRIS performs better than IRIS-RDB in all three tests, showing a

significant difference for the query on predicate a. For data1 IRIS did not manage to compute

the first two queries due to an OutOfMemoryError. Interestingly, it can be observed, that

?- a(?X, ?Y).

?- b1(?X, ?Y).

?- b2(?X, ?Y).

?- a(1, ?Y).

?- b1(1, ?Y).

?- b1(1, ?Y).

?- a(?X, 1).

?- b1(?X, 1).

?- b2(?X, 1).

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 24 of 29

the performance difference for query b2 is less significant than for data0. We assume that for

larger fact bases the drawback of hard-disk access may be amortized by the set-oriented
techniques used by the database system.

Table 4: Times for Join1 with first argument bound

 data0 data1

 a b1 b2 a b1 b2

IRIS-RDB 13.275 0.475 0.178 186.372 0.749 0.187

IRIS 1.332 0.135 0.112 53.711 0.593 0.172

Table 5 shows the results of the final Join1 test where the second variable is bound. In this

test, IRIS performs significantly better than IRIS-RDB on all three queries. For query a on

data1 IRIS did not manage to evaluate the program.

Table 5: Times for Join1 with second argument bound

 data0 data1

 a b1 b2 a b1 b2

IRIS-RDB 164.119 21.497 1.061 735.923 454.904 18.611

IRIS 34.725 1.404 0.063 Error 62.681 0.625

4.1.2 Join2

The Join2 test defines the rules and queries shown in Listing 6. The facts for the program

consist of the tuples p(abcd0), ..., p(abcd18). The program produces a large

intermediate result, but only a small set of answers for the query ?- q(?X).

Listing 6: Rules and queries for Join2.

ra(?A, ?B, ?C, ?D, ?E) :- p(?A), p(?B), p(?C), p(?D), p(?E).

rb(?A, ?B, ?C, ?D, ?E) :- p(?A), p(?B), p(?C), p(?D), p(?E).

r(?A, ?B, ?C, ?D, ?E) :- ra(?A, ?B, ?C, ?D, ?E),

 rb(?A, ?B, ?C, ?D, ?E).

q(?A) :- r(?A, ?B, ?C, ?D, ?E).

q(?B) :- r(?A, ?B, ?C, ?D, ?E).

q(?C) :- r(?A, ?B, ?C, ?D, ?E).

q(?D) :- r(?A, ?B, ?C, ?D, ?E).

q(?E) :- r(?A, ?B, ?C, ?D, ?E).

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 25 of 29

Table 6 shows the results of the Join2 test. IRIS did not manage to evaluate the program due

to an OutOfMemoryError.

Table 6: Times for Join2

 q

IRIS-RDB 1773.478

IRIS Error

4.2 Built-in Predicates

In order to test the performance of Datalog programs with built-in predicates, we have run the
program shown in Listing 2, where we have varied the number that limits the range of the

variable X and, therefore, determines the number of recursive calls of the rule on line 2.

Surprisingly, IRIS-RDB performs almost as well as the original IRIS. We expected that, due
to the one-tuple-at-a-time iteration, and the continuous hard disk access that is required
when evaluating rules with built-in predicates, the performance of IRIS-RDB was significantly
worse compared to the in-memory evaluation of IRIS.

Table 7 depicts the results of the evaluations, where the number in parentheses shows the

number of tuples in the output relation of the predicate path.

Table 7: Times for program with built-in predicates.

 200

(20503)

400

(80601)

800

(321201)

1000

(501501)

IRIS-RDB 14.365 100.216 1056,399 2439.453

IRIS 9.92 86.623 825.255 1897.620

4.3 Evaluation Conclusion

The results show that IRIS-RDB is able to evaluate Datalog programs for which the original
in-memory implementation fails to compute a result. However, the results also outline that
IRIS performs better than IRIS-RDB in those tests that it manages to process. The reason for
this may be that IRIS-RDB requires continuous hard disk access, whereas, IRIS processes
everything in-memory. Furthermore, in each run of the semi-naive evaluation, the system
copies each delta relation, see Annex A, to a dedicated relation in the database, which may
also have an influence on the performance, especially for large and numerous intermediate
relations.

We also presume that the performance of IRIS-RDB could be increased by reducing the
tuple size of the intermediate relations and by optimizing the SQL expressions by, for
instance, changing the order of the joins, such that relations with the smallest size are joined
first, which in turn reduces the size of intermediate relations.

An advantage of using a relational database system as underlying engine for evaluating
Datalog programs is that the system may benefit of the performance optimizations of future
versions of the DBMS.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 26 of 29

5. Conclusions

In this deliverable, we have presented IRIS-RDB, an extension of the IRIS reasoner that
uses the database engine H2 as an underlying relational database system to evaluate
Datalog programs. H2 is a very fast and feature-rich relational database system that supports
persistent and in-memory storage and has both an embedded and a server mode, which
proved to be suitable for the purpose of IRIS-RDB.

IRIS-RDB can evaluate safe or unsafe Datalog programs containing rules with equality in the
head. It supports XML, RDF, and RIF data types, an extensive set of built-in predicates and
(locally) stratified negation as failure. Furthermore, the database binding extends IRIS with a
persistent data storage facility that enables for processing continuously growing data, which
is a necessity when reasoning in the context of millions of services.

We have shown that the system is able to evaluate Datalog programs for which the original
IRIS fails to compute a result due to the limits on the data it can process in memory.
However, this increased degree of scalability comes at the cost of reduced performance on
programs where this does not apply.

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 27 of 29

6. References

1. Ullman, J. D., Principles of Database And Knowledge-Base Systems, W.H. Freeman
& Co. Ltd., 1988

2. Winkler, D., Bishop, B., D3.2.5 Second Prototype Repository Reasoner for WSML-
Core v2.0, 2010

3. Van Gelder, A., Ross, K., Schlipf, J. The Well-Founded Semantics for General Logic
Programs, in Journal of the AssocM1on for Computing Machinery 38(3), pp. 620-650,
1991

4. Senlin Liang, S., Fodor, P., Wan, H., Kifer, M., OpenRuleBench: An Analysis of the
Performance of Rule Engines, 2009

5. Senlin Liang, S., Fodor, P., Wan, H., Kifer, M., OpenRuleBench: Detailed Report,
2009

6. IRIS – Integrated Rule Inference System – API and User Guide, http://iris-
reasoner.org/pages/user_guide.pdf, 2008

7. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J. D., Magic Sets and Other Strange
Ways to Implement Logic Programs, Proceeding PODS '86 Proceedings of the fifth
ACM SIGACT-SIGMOD symposium on Principles of database systems, 1986

http://iris-reasoner.org/pages/user_guide.pdf
http://iris-reasoner.org/pages/user_guide.pdf

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 28 of 29

Annex A.

Semi-naive Datalog Evaluation as defined in [1, page 125]

Input: A collection of datalog rules with EDB predicates r1, ..., rk and IDB predicates

p1, ..., pm. Also, a list of relations R1, ..., Rk to serve as values of the EDB

predicates.

Output: The last fixed point solution to the datalog equations obtained from these rules.

Method: We use EVAL once to get the computation of relations started, and then use EVAL-

INCR repeatedly on incremental IDB relations. The computation is shown in the following

program, where for each IDB predicate pi, there is an associated relation Pi that holds all

the tuples, and there is an incremental relation ΔPi that holds only the tuples added on the

previous round.

for i := 1 to m do

 ΔPi := EVAL(pi, R1, ..., Rk, Ø, ..., Ø);

 Pi := ΔPi;

end

repeat

 for i := 1 to m do

 ΔQi := ΔPi; /* save old ΔP's */

 for i := 1 to m do begin

 ΔPi := EVAL-INCR(pi, R1, ..., Rk, P1, ..., Pm, ΔQ1, ..., ΔQm);

 ΔPi := ΔPi - Pi; /* remove "new" tuples that appeared before */

 end;

 for i := 1 to m do

 Pi := Pi ∪ ΔPi; /* save old ΔP's */

until ΔPi = Ø for all i

output Pi's

The expression EVAL-RULE(r, R1, ..., Rn) computes for a rule r from the relations

R1, ..., Rn a relation R(X1, ..., Xn) as defined in Section 2.4.2.

EVAL(pi, R1, ..., Rk, P1, ..., Pm) is defined as the union of EVAL-RULE(...) for

each of the rules r for a predicate pi, projected onto the variables of the head.

The incremental relation EVAL-RULE-INCR for rule r is the union of the n relations

EVAL-RULE(r, R1, ..., Ri-1, ΔRi, Ri+1, ..., Rn)

for 1 <= i <= n. That is, in each term, exactly one incremental relation is substituted for

the full relation. Formally, we define:

EVAL-RULE-INCR(r, R1, ..., Ri-1, ΔRi, ..., ΔRn) =

∪i<=i<=n EVAL-RULE(r, R1, ..., Ri-1, ΔRi, Ri+1, ..., Rn)

 SOA4All –FP7 – 215219 – D3.2.8 Enhanced Reasoning Framework Core

© SOA4All consortium Page 29 of 29

