
  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 1 of 38 

 

      

Project Number: 215219 
Project Acronym: SOA4All 
Project Title: Service Oriented Architectures for All 
Instrument: Integrated Project 
Thematic 
Priority: 

Information and Communication 
Technologies 

 
D5.3.2 Second Service Discovery 
Prototype 
Activity N: A2 – Core Research and Development 

Work Package: WP5 - Service Location 

Due Date: 31/08/2010 

Submission Date: 31/08/2010 

Start Date of Project: 01/03/2008 

Duration of Project: 36  Months 

Organisation Responsible of Deliverable: KIT 

Revision: 1.0 

Author(s): Sudhir Agarwal (KIT), Martin Junghans 
(KIT), Barry Norton (KIT) 

 
 

Reviewers: Yosu Gorroñogoitia (ATOS) 
Patrick Un (SAP) 

 
 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 2 of 38 

 

 
Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013) 
Dissemination Level 

PU Public x 

PP Restricted to other programme participants (including the Commission)  

RE Restricted to a group specified by the consortium (including the Commission)  

CO Confidential, only for members of the consortium (including the Commission)  

 

 

 

 

Version History 

Version Date Comments, Changes, Status Authors, contributors, 
reviewers 

1.0 04.08.2010 Initial Version Martin Junghans 

1.1 09.08.2010 Executive Summary, Introduction Sudhir Agarwal 

1.2 18.08.2010 Conclusion  and Outlook Barry Norton 

1.3 20.08.2010 Version for internal review Sudhir Agarwal 

1.4 27.08.2010 Addressed reviewers’ comment,  final 
version 

Sudhir Agarwal 

    

    

 

 

 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 3 of 38 

 

Table of Contents 
 

EXECUTIVE SUMMARY ____________________________________________________ 6 

1. INTRODUCTION ______________________________________________________ 7 

1.1 PURPOSE AND SCOPE OF THIS DELIVERABLE ___________________________ 7 
1.2 STRUCTURE OF THE DOCUMENT ______________________________________ 7 

2. PRACTICAL SEMANTIC WEB SERVICE DISCOVERY ________________________ 8 

2.1 REQUIREMENTS _____________________________________________________ 8 
2.2 SERVICE DESCRIPTIONS ____________________________________________ 11 

Formal Model of Web Services __________________________________________ 11 
Description Formalism _________________________________________________ 13 
Modeling Example ____________________________________________________ 15 

2.2 SERVICE REQUESTS ________________________________________________ 17 
Request Description Syntax _____________________________________________ 17 
Semantics of Service Request ___________________________________________ 19 

2.3 MATCHMAKING _____________________________________________________ 21 
Matching Properties ___________________________________________________ 21 
Matching Functionalities ________________________________________________ 22 

3. IMPLEMENTATION AND EVALUATION __________________________________ 25 

3.1 INTEGRATION WITH SOA4ALL SERVICE REPOSITORY ____________________ 25 
3.2 INTEGRATION WITH WSML2REASONER ________________________________ 26 
3.3 SERVICE TEMPLATES _______________________________________________ 26 
3.4 PERFORMANCE RESULTS ____________________________________________ 28 
3.5 USER INTERFACE ___________________________________________________ 31 

4. USE OF DISCOVERY WITHIN SOA4ALL _________________________________ 33 

5. RELATED WORK ____________________________________________________ 34 

6. CONCLUSION AND OUTLOOK _________________________________________ 36 

REFERENCES ___________________________________________________________ 37 

 

 
  



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 4 of 38 

 

List of Figures 
Figure 1: Discovery approaches that use the same formalism for an offer 𝑫 and a request 𝓡 

are based on intersections (left). Using two different formalisms allows specifying the 
(exact) matches in the request (right). .............................................................................. 9 

Figure 2: Formal Property-Based Model of Web Services ..................................................... 12 

Figure 3: Actual Functioning of a Web Service ...................................................................... 13 

Figure 4: Abstract Formal Model of the Functionality of a Web Service ................................ 14 

Figure 5: Mean query answering time against increasing number of Web service descriptions 
for three query sizes. ...................................................................................................... 30 

Figure 6: Discovery user interface with request specification (left) and desired services and 
operations (right). ........................................................................................................... 31 

Figure 7: Specification of desired service classification. ........................................................ 32 

Figure 8: Specification of desired functional and non-functional properties. .......................... 33 

 
List of Tables 
Table 1: Mapping between theory and implementation of service descriptions. .................... 25 

Table 2: RDF Schema for service template. .......................................................................... 27 

Table 3: An Example Service Template ................................................................................. 28 

Table 4: Query sizes tested in the experiment. ...................................................................... 29 

 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 5 of 38 

 

Glossary of Acronyms 

 

 
 

  

Acronym Definition 

D Deliverable 

DL Description Logic 

EC European Commission 

ISBN International Standard Book Number 

NFP Non-Functional Property 

NFR Non-Functional Requirement 

POSM Procedure Oriented Service Model 

RDF Resource Description Framework 

RDFS RDF Schema 

REST Representational State Transfer 

SAWSDL Semantic Annotations for WSDL 

SDC Semantic Discovery Caching 

SOA Service Oriented Architectures 

SWRC Semantic Web Research Community 

UK United Kingdom 

WP Work Package 

WSDL Web Service Description Language 

WSL4J WSMO-Lite for Java 

WSML Web Service Modeling Language 

WSMO Web Service Modeling Ontology 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 6 of 38 

 

Executive summary 
Discovery of service descriptions is a central task in Service Oriented Architecture (SOA). 
The service discovery component enables users to find services appropriate for their needs 
from a large pool of available services. In the previous deliverables, we have presented a full 
text based discovery and a preliminary semantic discovery. In this deliverable, we present a 
more sophisticated and expressive semantic discovery technique as well as its 
implementation details and integration within other SOA4All components and its use within 
SOA4All use cases. The semantic discovery component allows users to specify a structured 
query containing requirements on service classification, pre-conditions, effects and non-
functional properties and finds the services that match the query by using the reasoning 
facilities provided by WP3.   



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 7 of 38 

 

1. Introduction 
SOA4All will help to realize a world where billions of parties are exposing and consuming 
services via advanced Web technology. The outcome of the project will be a comprehensive 
framework and infrastructure that integrates four complimentary and revolutionary technical 
advances into a coherent and domain independent service delivery platform.  

In such a setting users require mechanisms to find Web services that are suitable for their 
needs automatically. The mechanism should allow users to search for Web services by 
specifying desired functionality. In many practical scenarios, the non-functional properties of 
Web services are often crucial. For example, a user may not want to use a Web service for a 
particular purpose if it has low response time even though it offers the required functionality. 
Furthermore, Web services in general are not only data provision services, but can also 
cause changes. For example, a bank transaction service will cause a change in the account 
balance of the user. 

The semantic discovery component presented in this deliverable extends the first discovery 
prototype in many ways. It allows users to specify a structured query containing requirements 
on service classification, inputs, outputs, pre-conditions, effects and non-functional properties 
and finds the services that match the query by using the reasoning facilities. Apart from the 
conceptual and theoretical details about the functioning of the discovery component, a 
prototypical implementation along with performance evaluation results of the discovery 
component is also presented. The discovery component is integrated with the iServe 
repository and the ontology reasoner, which means that it fetches the service descriptions 
from the iServe repository and uses the reasoner to reason about various properties of the 
descriptions obtained from the iServe repository.   

1.1 Purpose and Scope of this Deliverable 
SOA4All is proposing a new paradigm where billions of services will be available for the 
users to interact with them. Thus, in order to enable an interaction with the right services we 
will need an efficient methodology to discover relevant services from the end-user 
perspective on large number of available services. Discovery of Web services is one of most 
important steps performed by a user in the overall Web services usage life cycle. The 
discovered Web services are meant to be embedded in a larger process which is then 
executed. The current deliverable describes a sophisticated expressive semantic discovery 
of services. The results presented in this deliverable will be mainly used by service 
provisioning and service consumption platforms developed in WP2 as well as automatic 
compositions techniques developed in WP6. Furthermore, the discovery component plays a 
central role in the SOA4All use case scenarios. The discovery component itself relies on the 
iServe repository for obtaining the semantic descriptions of services, and in many cases the 
domain ontologies, and uses the reasoning facilities provided by WP3. 

1.2 Structure of the Document 
This document is structured as follows. Section 2 describes the conceptual and theoretical 
details of the semantic discovery approach. Section 3 describes the implementation and 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 8 of 38 

 

evaluation details. In particular: (1) the mappings between the conceptual models from 
Section 2 and the concrete service description formalisms developed in WP3, (2) functioning 
of the discovery component with details about its integration with the WP2 iServe repository 
and the WP3 reasoning facilities, (3) performance evaluation and (4) Graphical user 
interface. In Section 4, we present details about the usage of the discovery component within 
SOA4All. We distinguish between the usage by other platform services, e.g. composition 
(WP6), and usage within the SOA4All use cases. In Section 5, we discuss some related work 
in detail and compare them with our work. In Section 6, we summarize our results and 
discuss briefly the next steps in the context of this task. 

2. Practical Semantic Web Service Discovery  

2.1 Requirements 
In this section, we discuss in detail the limitations of existing semantic Web  service 
discovery approaches and derive the requirements for our SOA4All approach. 

Comprehensible Requests and Descriptions – Uniformity of Offer and Request.  One 
common problem of almost all existing and well known approaches is that they apply the 
same formalism for describing service offers and service requests. Intuitively, a service 
description formalizes the actual values of the Web service properties and a service request 
specifies the acceptable value range of the properties. Therefore, using the same formalism 
with same interpretation for both service description as well as request does not correspond 
with the intuition of the requester. Such mismatch between the semantics of formalisms and 
the intuitive interpretation of the requester makes these approaches hard to use in practice. 
There exists a mismatch between the interpretation of 𝐷 that describes a service and the 
tuple ℛ that describes a request, if the description of a service request uses the same 
formalism as the one used for service descriptions. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 9 of 38 

 

 

Figure 1: Discovery approaches that use the same formalism for an offer 𝑫 and a request 𝓡 are based on 
intersections (left). Using two different formalisms allows specifying the (exact) matches in the request 
(right). 

 

If the same formalism is used for offers and requests, then a service request corresponds to 
a service offer description from which a set of desired services is derived. In our view, this is 
an impractical and unintuitive approach as we will further justify in the subsequent section. 
Consequently, we propose to use two distinct formalisms for service descriptions and 
request. It is more intuitively that a service description formalizes the actual functionality of a 
Web service and a service request describes the set of services that provide a requested 
functionality. 

The left side of Figure 1 shows a service description 𝐷 and a request ℛ that are interpreted 
as a set of execution runs depicted by dots respectively. A match is given if there is an 
intersection between 𝐷 and ℛ. Degrees of matches, for instance plugin or subsume match, 
present different types of the intersection of both sets of runs. Although the notion of different 
types of matches was applied in many discovery approaches [2, 3, 4, 5, 6], intersection 
based approaches require further matchmaking to make sure that a service is applicable for 
all the desired tasks at hand. For example, if only a few runs of a request overlap with those 
of a match, then it is possible that the requested domain of inputs is not covered by the 
match, which in turn causes that the discovered service is not applicable. In addition, if the 
requester wants to prohibit specific service properties, then it is not possible to ensure that 
the matching services fulfill such requirements, which might not be covered by the 
intersection. Since we aim at service discovery that is expressive enough to cover practical 
use cases, the request formalism must be capable to let users specify desired properties and 
rule out undesired ones as well as the specification of alternative and preferred properties. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 10 of 38 

 

Consider for instance the functional description of a book selling Web services that requires 
the invoker to provide as input an ISBN book number of the book to sell. While the inputs of 
the service descriptions are consentaneously interpreted as required for invocation, the 
interpretation of the inputs specified in a request using the same formalism is not clear. A 
user might specify a set of inputs he or she is able to provide or the set of inputs that a 
service has to consume. From a user perspective, a request for book selling Web services 
may contain different interpretations of a set of inputs simultaneously. Either the user 
provides an ISBN number or alternatively author name and book title as inputs. This very 
simple example leads to the observation that a set of inputs is not a proper representation of 
inputs in a request. While inputs of a service description are usually interpreted as 
compulsory, the interpretation of inputs within a request however should not be solely 
compulsory since the user may also want to specify which inputs must not be provided for a 
service invocation, like the number of a bank account. The user should be able to specify as 
much information as he or she wants to provide in a service request to precisely characterize 
the desired set of discovery results. 

Intersection-based approaches lack the ability to let requests exclude certain properties 
because not all requested properties need to be fulfilled by matching services. Furthermore, 
an intersection-based match cannot guarantee that a matching service can be successfully 
invoked as the execution run that the user wants to invoke may not comply with the 
requirements specified in the request. This can be since the desired run might not be 
member of the intersection between service offer and request. Thus, in order to guarantee 
applicability of a matching service, intersection-based approaches using the same formalism 
for offers and requests need to further check for applicability in a further step. Consequently, 
the freedom provided by the different matching degrees is not practicable for the purpose of 
service invocation. As an example, a service offers to ship goods from a city in the UK to 
another city in Germany. A user requests for a shipping provider that operates between 
European cities. Using intersection based matchmaking will identify the mentioned service as 
a match. However, if the requester wants to ship an item from Berlin to Hamburg, then the 
matched service offer fails. 

The same conceptual mismatch between service descriptions and requests occurs in 
preconditions and effects. Employing the same formalism for the description of a service, a 
class of services, and a set of desired services is not appropriate, because their 
interpretation and their intended use are different. Requests conceptually differ from service 
functionality descriptions. We believe that this mismatch makes current functionality based 
formalisms difficult to use. 

The right side of Figure 1 shows a more intuitive interpretation of a request (in analogy to 
database queries), in which a request is viewed as a set of all desired services a user is 
looking for. A desired service is described by a combination of desired properties depicted by 
the dots in the figure. Any service description from the pool of available service descriptions 
that describes a service contained in the set is considered as a match for the request. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 11 of 38 

 

Unified View on Functional and Non-Functional Properties. Non-functional properties 
(NFPs) are part of semantic service descriptions and supplement functionality descriptions of 
services. In contrast to functional descriptions that describe what a service actually does, 
NFPs describe manifold quality attributes of services. It can be observed that non-functional 
requirements (NFRs) are often referred to as soft criteria and exclusively considered for 
ranking [7]. It is not determined per se whether properties are interpreted as hard or soft 
requirements and it is likewise valid to perceive NFRs as hard requirements, too. For 
example, the NFP availability with a value of 0.99 can be considered for discovery as well. A 
request may specify that services have to offer an availability of at least 90%, which is 
considered to be a hard requirement. When a user specifies that he prefers higher availability 
rates to lower ones then such requirements are referred to as a soft requirement and can be 
used to rank services. 

Support for Services That May Cause Changes. Web services are not only information 
providing services, but many of them may cause changes, for example by creating a new 
order. Both, service descriptions and requests, have to capture the dynamic nature of 
services. Existing semantic discovery approaches do not support modeling the changes 
caused by a service execution nor do they support specifying desired and undesired 
changes in  requests [3]. Although [5] addresses changes in the knowledge bases by the 
introduction of dynamic symbols, the discovery approach presented in [5] fails to reason 
about the dynamics of Web services. 

2.2 Service Descriptions 
In this section, we introduce a formalism to describe Web services semantically. We first 
present a formal model of a Web service that captures functional and non-functional 
properties in a unifying way. We then introduce a formalism for describing such models by 
presenting an abstract syntax and its semantics as a mapping to the formal model. 

We present our formal model of Web services, the formalism to describe service properties 
including functionality descriptions. We consider atomic Web services that may require user 
inputs at service invocation time and provide outputs at the end solely. There are no user 
interactions in between, which allows us to describe service functionalities by the states 
before and after execution without stating anything about the intermediate states. 

Formal Model of Web Services 
We consider a finite set ℘ of Web service property types and a finite set 𝒱 of value sets. 
Each property type 𝑃 ∈ ℘ is associated with a value set 𝑉𝑃 ∈ 𝒱. We view a Web service as a 
finite set of property instances 𝑄 with each property instance 𝑞 ∈ 𝑄 being of a property type 
𝑡(𝑞) ∈ ℘ that is associated with a value 𝑣𝑞 ∈ 𝑉𝑡(𝑞) (refer to Figure 2). 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 12 of 38 

 

 

Figure 2: Formal Property-Based Model of Web Services 

Of particular interest is the functionality or behavior of a Web service. We consider traditional 
Web services that have no user interactions during their execution. That is, we assume that 
inputs are provided with the invocation and outputs are returned at the end. In general, a 
Web service not only provides information but may also cause changes in the information 
state of the Web service provider. 

  



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 13 of 38 

 

 

Definition: Labeled Transition System (LTS). A labeled transition system 𝐿 = (𝑆,𝑇,→) 
comprises a set 𝑆 of states, a set 𝑇 of transition labels and a labeled transition relation 
→⊆ 𝑆 × 𝑇 × 𝑆. 

 

Figure 3: Actual Functioning of a Web Service 

 Figure 3 shows the formal model of the behavior of a Web service as a labeled transition 
system. The execution can be seen as a series of states: 

(1) 𝑠𝑖 is the start state that contains the knowledge available to the Web service before the 
Web service is invoked by providing input parameters. 

(2) 𝑠𝑤 describes the knowledge after the service invocation carrying the input values as well. 
This state contains the values of the input parameters in addition to all the knowledge of 𝑠𝑖. 

(3) A series of states 𝑠1, … , 𝑠𝑛 that occur during the execution of a Web service while 
computing the output values and performing any changes with actions [𝜔1]𝑓1, … , [𝜔𝑛]𝑓𝑛. An 
action 𝑓𝑖 in a state takes place only if the condition 𝜔𝑖 is true in the state. 

(4) A state 𝑠𝑜 after the Web service has performed all the changes and computed the output 
values. In this state the output operation 𝑜 takes place, which emits the computed output 
values. 

(5) 𝑠𝑒 denotes the end state that is equivalent to 𝑠𝑜 since the output operation does not 
change the knowledge base. 

The activities 𝑖, 𝑓1, … , 𝑓𝑛 and 𝑜 can take place only if their respective beginning state is 
consistent. In particular, after inputs values are available in the state 𝑠𝑤, further execution of 
a Web service can take place only if 𝑠𝑤 is consistent. Any conditions that need to hold on the 
input values are available as part of the knowledge in the state 𝑠𝑤. 

While transitions 𝑖 and 𝑜 are communication activities for receiving values from and emitting 
values to the user resp., transitions 𝑓1, … , 𝑓𝑛 are local operations for navigating and 
performing computations within the knowledge base as well as adding or deleting facts in the 
knowledge base. 

Description Formalism 
The formal model of Web services as presented above cannot be described completely 
mainly because of the following reasons. (1) Service providers may not want to reveal the 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 14 of 38 

 

exact internal sequence of local operations they perform. (2) Assuming a global set of 
property names is not feasible. 

 

Figure 4: Abstract Formal Model of the Functionality of a Web Service 

The first issue is relevant for functionality, which is in our model just one of many properties 
of a Web service. However, because of high importance of this property, we will deal with it 
in more detail in the subsequent sections. We address the second issue by modeling Web 
service properties as properties in WSML [11]. This allows us to use existing ontology 
reasoners to reason about Web service properties while not forcing a global set of property 
names. More precisely, we 

• define for each value set 𝑉 ∈ 𝒱 an ontology concept V. Furthermore, we assume a 
set of common data types either available directly or modeled as ontology concepts. 

• model for each property 𝑃 ∈ ℘ with range 𝑉𝑃 a property P as an object property with 
range VP if VP is a set of individuals. Otherwise, if VP is a data type, we model a 
property P as a data type property with range VP. 

Furthermore, since ontology languages allow alignment of concepts and properties in 
subclass-of and subrelation-of relationships respectively, we achieve interoperability among 
properties without demanding a global set of property names. We now turn our attention to 
modeling functionality of a service semantically.  

Inputs. Inputs of a Web service are simply described as a set of variable names.  

State after Input. After a Web service has received inputs, it reaches the state 𝑠𝑤, where the 
actual execution of the functionality of the Web service starts. This state contains 

• ontology individuals describing the knowledge of the Web service before the input 
activity. 

• input variables as ontology individuals. Note that even though inputs are concrete 
values that are unknown at the time of service description, we can differentiate inputs 
from other individuals, since we know from the set of inputs which of the individuals 
are inputs. 

• formulas that represent the overall condition derived from the conditions 𝑤1, … ,𝑤𝑛 
and actions 𝑓1, … , 𝑓𝑛. 

State Before Output. After a Web service has performed all the operations (computing the 
output and performing any changes), it is ready for emitting output values to the user. This 
state 𝑠𝑜 describes the state obtained after performing the operations 𝑓1, … , 𝑓𝑛 to the state 𝑠𝑤 
and the subsequent states 𝑠1, … , 𝑠𝑛−1. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 15 of 38 

 

Outputs. Outputs of a Web service are simply described as a set of individuals that are 
returned to the user. 

Modeling Updates. The four properties described above model the functionality of a Web 
service. Changes caused by a Web service are modeled implicitly as difference between the 
pre-state and the post-state. Note, that a change can only be either addition or deletion of a 
concept or property instances. We model such changes with axioms about the existence and 
non-existence of the concept or property instances in the pre- and post-state. 

The sets of inputs 𝐼 and outputs 𝑂 denote the set of inputs required by a service and the set 
of outputs returned by the service after its successful execution, respectively. They assign 
the service's inputs and outputs to variable names that can be referenced in preconditions 
and effects and also allow us to distinguish inputs and outputs from instances that already 
exist in the provider's knowledge bases. The types of inputs and outputs are specified in 
preconditions and effects. 

The pragmatics of the logical formula that represents the precondition is restricted to the 
description of (i) requirements on inputs, like their types, relationships among them, 
conditions on the values of the inputs, and (ii) conditions that must hold in the state after 
inputs from the perspective of service providers. A precondition describes the state from the 
perspective of the service provider(s) before a service can be successfully invoked. In 
contrast to [20], by preconditions and effect we do not intend to describe global states that 
model the knowledge bases of the entire world as perceived by an external observer which 
certainly causes several problems. An effect formula is restricted to describe (i) constraints 
on returned outputs, (ii) the relation between inputs and outputs, and (iii) changes made by 
the service in the knowledge bases of service providers. 

Modeling Example 
We now give an example of service description with our formalism. Imagine a service s that 
has one operation that requires three inputs: user ID, password, and the ISBN number of a 
book. The service creates a shipping order for the given book if it is available to the user's 
address. The service then returns an invoice to the user about the order and price details. 
The Web service has inputs 

𝐼 = {id, pwd, isbn}. 

The precondition 𝜙 below states that the described service requires that the user user with 
ID id is registered and authenticated by its password pwd. Furthermore, for a successful 
execution the service requires that the book book with ISBN isbn is in stock. If the user 
user has already any reward points, they can be referenced by the variable rewards. 

𝜙 ≡ isRegistered(id) ⋀ isAuthenticated(id, pwd) ⋀ Book(book) ⋀ 
ISBN(isbn)  
⋀ hasISBN(book, isbn) ⋀ isAvailable(book)  
⋀ User(user) ⋀ hasID(user, id) ⋀  hasRewards(user, rewards) 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 16 of 38 

 

The effect 𝜓 states that in the state 𝑠𝑒 there exists an order order about product book 
(which is made sure by the precondition to be the ordered book) which is supposed to be 
shipped to the user's address denoted by address. Furthermore, it states that there exists 
an invoice about the order and price, which equals the price of the book. The user already 
collected rewards reward points before the service is executed. And as 𝜓 guarantees, the 
user receives for each Euro spent for the book another reward point to its balance after 
service execution. 

𝜓 ≡ Order(order) ⋀ containsProduct(order, book) ⋀ 
isShippedTo(order, address) 
⋀ containsOrder(invoice, order) ⋀ containsPrice(invoice, price)  
⋀ hasPrice(book, price) ⋀ hasAddress(user, address)  

⋀ Invoice(invoice) ⋀ hasRewards(user, rewards+price) 

Another example that also needs to model updates is a service that deletes a user 
subscription. Hence, the precondition contains ∃u:User(user) ⋀ hasID(user, id) and 
the effect contains ∄u:User(user) ⋀ hasID(user, id) … . To explicitly create a 
subscription that did not exist before, the conditions apply to precondition and effect vice 
versa. Coming back to the book selling service, it returns the book and the corresponding 
invoice to the user, which is modeled by  

𝑂 = {book, invoice}. 

Apart from the functionality described above, the NFPs of the service s state that it does not 
accept credit cards, delivers within 2 days and has availability 0.90. With our formalism these 
characteristics can be modeled as follows. 

𝑁 = { acceptsCreditCard(s, false), deliversBefore(s, 2), 
(availability(s, 0.90) } 

  



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 17 of 38 

 

2.2 Service Requests 
A service request aims at specifying constraints in order to restrict the set of available Web 
services to the set of desired Web services. We first describe the description syntax of 
requests and afterwards investigate in detail how constraints on functional and non-functional 
properties can be expressed. Then the semantics of requests is introduced. 

In the following, we denote a service request by ℛ = (𝐼ℛ ,𝑂ℛ ,𝜙ℛ ,𝜓ℛ ,𝑁ℛ). We apply a 
formalism to requests that differs from that of service descriptions as the request models sets 
of services with sets of desired property values (see the right side of Figure 1). Such 
intention is analogous to database queries and we claim that this approach is more intuitive 
to use than applying the same formalism to model both offer and request, however with 
dissimilar interpretations. 

Request Description Syntax 
We aim at requests that constrain properties of services in a unifying way. That is, can 
comprise constraints on the functionality and NFPs as well logical combinations of different 
types of constraints. Besides requesting for inclusions and exclusions of desired property 
values, requests also allow for the specification of certain combinations of desired property 
values. For example, a user might accept a longer delivery time if the service offers credit 
card payment. 

A request always refers to a desired service s of type Service (defined in a service model 
ontology like WSMO-Lite [21]) in order to refer to its properties and specify constraints on 
their values by expressions of the form hasProperty(s, propertyValueSet). By this, 
the request description structure reflects the formal service model from the previous section. 
The following example sketches a request ℛ = (𝐼ℛ ,𝑂ℛ ,𝜙ℛ ,𝜓ℛ ,𝑁ℛ) for a book selling service. 

ℛ ≡ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑠) ⋀  

⋀ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡𝑠(𝑠, 𝑖𝑠𝑏𝑛 ⋀ 𝑖𝑑 ⋀ ∄𝑏𝑑𝑎𝑦)  

⋀ ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡𝑠(𝑠, 𝑏𝑜𝑜𝑘 ⋀ 𝑖𝑛𝑣)  

⋀ ℎ𝑎𝑠𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑠, ". . . 𝐼𝑆𝐵𝑁(𝑖𝑠𝑏𝑛) ⋀ 𝐵𝑖𝑟𝑡ℎ𝑑𝑎𝑦(bday) ⋀ hasRewards(user, 𝑟𝑝𝑟𝑒)") 

⋀ hasEffect(s, "Book(book) ⋀ hasISBN(book, isbn) ⋀ Invoice(inv) ⋀  
hasRewards(user, 𝑟𝑝𝑜𝑠𝑡) ⋀ lessThan(𝑟𝑝𝑟𝑒, 𝑟𝑝𝑜𝑠𝑡)") 

⋀ hasPrice(s, p) ⋀ hasDeliveryTime(s, dt) ⋀ lessThan(dt, 7) ⋀ 
( acceptCreditCard(s, true) ⋁ acceptCreditCard(s, false) ⋀ lessThan(dt, 3) ) 

Constraints on functional properties are expressed by logic expressions. This example states 
that the desired sets of inputs must accept an ISBN and must not require any date of birth 
information. Furthermore, the desired service must return a book that is identified by the 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 18 of 38 

 

given ISBN as well as an invoice. The service must provide a reward program and the user's 
number of rewards has to be increased after the purchase. 

Constraints on NFPs. Non-functional requirements, denoted by 𝑁ℛ, constrain values of 
NFPs such that the request again describes a set of desired values. Analogously to service 
descriptions, each desired service can be described by a finite set of property instances 𝑄 in 
a request. A property instance 𝑞 ∈ 𝑄 of a property type 𝑡(𝑞) ∈ ℘ can be restricted to a set of 
desired values 𝑉𝑅,𝑞 ⊆ 𝑉𝑡(𝑞). 

As an example, the maximum delivery time of 7 days of the desired service s can be 
requested by stating  

hasDeliveryTime(s, dt) ⋀ lessThan(dt, 7). 

Constraints on Functionality. Service descriptions 𝐷 may contain a description of the sets 
of inputs 𝐼, set of outputs 𝑂, precondition 𝜙 and effect 𝜓. A request ℛ describes a set 𝐼ℛ of 
desired sets of inputs and a set 𝑂ℛ of desired sets of outputs by logic formulas. The 
description also may include required or exclude unacceptable inputs or outputs of a desired 
service as the above example request shows. 

In turn, it allows precise description of all possible matches as we consider the equality 
match solely. Prior approaches like [19] classified different interpretations into types of 
matches. Since these matching types are implemented by a discovery algorithm, the 
interpretation of the request is not as clear to the user as first order logic expressions are. 
Furthermore and as already mentioned above, these approaches cannot guarantee that 
discovered services fulfill all requested properties if all kind of intersections are considered as 
matches. 

The request analogously describes a set 𝜙ℛ of precondition descriptions and a set 𝜓ℛ of 
effect descriptions. Using formulas expressed in a logic like first order logic to specify the set 
of requested preconditions and effects not only allows for precisely expressing which 
conditions must hold in the pre- and post-state, but also for excluding services with undesired 
conditions. For example, the negation of the existence of a bday prevents matching Web 
services that require a user registration for the order of the specified book. Consequently, the 
query in the above example request prevents Web service requiring a date of birth 
information being a match for the request. 

The precondition 𝜙 and effect 𝜓 of a service offer 𝐷 describe the knowledge before and after 
service execution, respectively. The collection of facts of on ontology based knowledge base 
is often called A-Box. That is, 𝜙 and 𝜓 are interpreted as A-Box statements of the knowledge 
base. Whereas the requests 𝜙ℛ and 𝜓ℛ for preconditions and effects are interpreted as 
queries to restrict the set of available services to those that have required knowledge in their 
A-Boxes described by 𝜙 and 𝜓, respectively. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 19 of 38 

 

Semantics of Service Request 
The semantics ℑ of a request maps a set of property-values sets into the formal model that is 
described by sets of desired property-value sets. Translated into the formal model, a request 
is a set of sets of property instances 𝑞 ∈ 𝑄 of type 𝑡(𝑞), which is assigned to a value 𝑣 ∈ 𝑉𝑅,𝑞 
that is member of the desired value set 𝑉𝑅,𝑞. 

Let 𝑞 = (𝑝,𝑉𝑅) denote a requested property instance of user's concern. 𝑉𝑅,𝑞 ⊆ 𝑉𝑡(𝑞) is the set 
of acceptable property values of the property 𝑝 = 𝑡(𝑞)  ∈ ℘. Then, the interpretation 

ℑ:�ℚ:ℚ ⊆�{𝑞} × 2𝑉𝑅,𝑞

𝑞∈𝑄

� → �ℚ:ℚ ⊆�{𝑞} × 𝑉𝑅,𝑞
𝑞∈𝑄

� 

of a property request is (𝑝,𝑉𝑅,𝑞)ℑ = �(𝑝, 𝑣)|𝑣 ∈ 𝑉𝑅,𝑞�, which is the set of property-value pairs 
that is constructed by considering each value 𝑣 ∈ 𝑉𝑅,𝑞 that is member of the set of acceptable 
values individually.  

This interpretation provides us means to formalize properties of services. The desired value 
set of the functionality property is discussed now. 

The request ℛ embraces constraints on the functional properties by describing desired sets 
𝐼ℛ, 𝑂ℛ, 𝜙ℛ and 𝜓ℛ of input sets, output sets, preconditions and effects, respectively. Note, 
that a simpler approach for matching functionality on the basis of explicit functional 
classification has been provided in the SOA4All deliverable D5.3.1. The desired functionality 
(𝐼ℛ ,𝑂ℛ ,𝜙ℛ ,𝜓ℛ) is translated into a set ℒ of LTS's, which formally models a set of desired 
service executions that fulfill the requirements in ℛ. 

An LTS 𝐿𝑅 ∈ ℒ models a service execution in terms of the formal model depicted in Figure 3. 
𝐿𝑅 = (𝑆𝑅 ,𝑊𝑅 ,→𝑅) models the functionality of one particular service configuration 𝑅 ∈ ℛ and is 
defined as follows. 

𝑆𝑅 = {𝑠𝑖 , 𝑠𝑤, 𝑠𝑜, 𝑠𝑒} 
𝑊𝑅 = {𝑅𝑖𝑛,𝑅,𝑅𝑜𝑢𝑡 , } 
→𝑅= {(𝑠𝑖 ,𝑅𝑖𝑛, 𝑠𝑤), (𝑠𝑤,𝑅, 𝑠𝑜), (𝑠𝑜,𝑅𝑜𝑢𝑡 , 𝑠𝑒)} 

A request describes requirements on the precondition and effect by 𝜙ℛ and 𝜓ℛ. The states in 
𝐿𝑅 that are described by the knowledge that holds at that time consequently have to fulfill the 
requirements and constraints of 𝜙ℛ and 𝜓ℛ. Each desired service execution that fulfills the 
request ℛ is modeled by one LTS in the set ℒ. The semantics maps the requested 
functionality (𝐼ℛ ,𝑂ℛ ,𝜙ℛ ,𝜓ℛ) into (i) a set of transitions modeling the input operations 
described by 𝐼ℛ, (ii) a set of transitions modeling the output operations described by 𝑂ℛ, (iii) a 
set of pre-states 𝑠𝑤 described by 𝜙ℛ, and (iv) a set of post-states 𝑠𝑜 described by 𝜓ℛ. 

Then, an LTS is constructed for each combination of input transition, output transition, pre-, 
and post-state. In each LTS, the state 𝑠𝑖 is implicitly derived from the description of 𝑠𝑤 and 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 20 of 38 

 

the input operation that is that (𝑠𝑖 ,𝑅𝑖𝑛, 𝑠𝑤) ∈→𝑅 is a consistent transition in 𝐿𝑅 and is 
described by 𝐼ℛ. The knowledge modeled by 𝑠𝑖 can be derived from the knowledge in 𝑠𝑤 
except for the knowledge derived from the input operation. Similarly, the end state 𝑠𝑒 can be 
derived from 𝑠𝑜 as the output operation does not change the knowledge. The remaining 
transition (𝑠𝑤,𝑅, 𝑠𝑜) ∈→𝑅 abstracts from the individual local operations and is implicitly 
described by the states before and after service execution. 

Consequently, the set of possible values of the property instance that models the 
functionality is the set of all labeled transition systems. 

  



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 21 of 38 

 

 

2.3 Matchmaking 
 

The task of service discovery is to find matches between service offers and requests. After 
we introduced both description formalisms and their translations into a common model, we 
define in this section a match and how it can be determined. 

A match is given if a service � meets all requirements of a request ℛ, i.e., the property 
values of the service are in the set of desired values of the request of all requested property 
instances. Within the two formal models of service descriptions and requests, a match is 
computed by checking whether the service description is contained in the set of desired 
service descriptions of the request. Since we consistently modeled each property of a 
request as a set of desired values, the matchmaker checks for a containment relation 
between service description and request. This applies to all property-value pairs as well as to 
the LTS-based formal interpretation of offered and requested functionalities. 

Matching Properties 
We first investigate how to match properties in general. The subsequent section discusses 
functionalities in detail. 

A service description was interpreted as a set 

𝑄𝑤ℑ ⊆ �𝑃 × 𝑉𝑃
𝑃∈℘

 

of property instances comprising functional and non-functional properties in a unifying way. 
Within the formal model of service descriptions, the property instances 𝑞 ∈ 𝑄 model the 
assignment of a property 𝑡(𝑞) to a value 𝑣𝑡(𝑞) ∈ 𝑉𝑡(𝑞). Constraints on properties 𝑄𝑅 in a 
request are formalized as a set of values assigned to a property. 

𝑄𝑅 ⊆ �𝑃 × 2𝑉𝑃
𝑃∈℘

 

𝑄𝑅ℑ ⊆ {𝑄:𝑄 ⊆} �𝑃 × 𝑉𝑃
𝑃∈℘

 

As can be easily derived from these three equations, a set of property instances 𝑄𝑤ℑ  of a Web 
service description matches the requested properties 𝑄𝑅ℑ if and only if 𝑄𝑤ℑ ∈ 𝑄𝑅ℑ. I.e., there 
exists a set 𝑄′𝑅 ∈ 𝑄𝑅ℑ of property instances that equals the set 𝑄𝑤ℑ . Then there exists 𝑞𝑅 ∈ 𝑄′𝑅 
for each property instance 𝑞𝑤 ∈ 𝑄𝑤ℑ  with 𝑞𝑅 = 𝑞𝑤 and this in turn means that resp. types 
𝑡(𝑞𝑅) = 𝑡(𝑞𝑤) and values 𝑣𝑞𝑅 = 𝑣𝑞𝑤 of both property instances are equal per definition. 

 

 

 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 22 of 38 

 

 

 

 

Matching Functionalities 
Let 𝐿𝐷 denote the interpretation of the functionality description (𝐼,𝑂,𝜙,𝜓) of service 𝑤, i.e., 
𝐿𝐷 is the value of the functionality property of 𝑤. Also, let the set ℒ of LTS' denote the 
interpretation of the requested functionality (𝐼ℛ ,𝑂ℛ ,𝜙ℛ ,𝜓ℛ). Analogously, ℒ corresponds to 
the set of desired values of the service functionality property. Then, a service functionality 
matches a requested functionality if and only if 𝐿𝐷 ∈ ℒ. That is, ∃𝐿𝑅 ∈ ℒ: 𝐿𝑅 ≡ 𝐿𝐷. In order to 
define a match, we now define the equivalence between labeled transition systems. 

Definition: Equivalence of States. Two states 𝑠𝑖 and 𝑠𝑗 are equivalent if the knowledge 𝑠𝑖
ℑ 

and 𝑠𝑗
ℑ that holds in the respective states is equivalent. 

𝑠𝑖 ≡ 𝑠𝑗 ⟺ 𝑠𝑖
ℑ ⊨ 𝑠𝑗

ℑ ∧ 𝑠𝑗
ℑ ⊨ 𝑠𝑖

ℑ 

Definition: Equivalence of Transition Labels. Two transition labels 𝑤𝑖 and 𝑤𝑗 are 
equivalent if they both either simulate an input or an output operation and the set of variables 
that are modeled by the transitions are equivalent. 

𝑤𝑖 ≡ 𝑤𝑗 ⟺ 𝑤𝑖
ℑ ⊨ 𝑤𝑗

ℑ ∧ 𝑤𝑗
ℑ ⊨ 𝑤𝑖

ℑ 

If both labels model local operations, then they are also considered to be equivalent. 
Otherwise, two labels are not equivalent. 

Definition: Equivalence of Labeled Transitions. Two labeled transitions are equivalent if 
both start and both end states as well as the transition labels are equivalent. 

�𝑠𝑖 ,𝑤𝑖 , 𝑠𝑗� ≡ (𝑠𝑘 ,𝑤𝑘 , 𝑠𝑙) ⟺ 𝑠𝑖 ≡ 𝑠𝑘 ∧ 𝑠𝑗 ≡ 𝑠𝑙 ∧ 𝑤𝑖 ≡ 𝑤𝑘 

Now we are able to define the equivalence between the 𝐿𝐷 and 𝐿𝑅 ∈ ℒ, which corresponds to 
a match between the offered and the requested functionality. Therefore, let the superscripts 
𝐷 and 𝑅 link the symbols to the corresponding LTS' 𝐿𝐷 and 𝐿𝑅. Two LTS' 𝐿𝐷 and 𝐿𝑅 are 
equivalent if and only if the following conditions hold: (i) Equivalence of the corresponding 
four states 𝑠𝑖𝐷 ≡ 𝑠𝑖𝑅, 𝑠𝑤𝐷 ≡ 𝑠𝑤𝑅 , 𝑠𝑜𝐷 ≡ 𝑠𝑜𝑅, 𝑠𝑒𝐷 ≡ 𝑠𝑒𝑅, and (ii) Equivalence of transitions such that 

�𝑠𝑖𝐷,𝑤𝑖𝑛, 𝑠𝑤𝐷� ≡ �𝑠𝑖𝑅 ,𝑅𝑖𝑛, 𝑠𝑤𝑅� 
(𝑠𝑤𝐷,𝑤, 𝑠𝑜𝐷) ≡ (𝑠𝑤𝑅 ,𝑅, 𝑠𝑜𝑅) 
(𝑠𝑜𝐷,𝑤𝑜𝑢𝑡 , 𝑠𝑒𝐷) ≡ (𝑠𝑜𝑅 ,𝑅𝑜𝑢𝑡 , 𝑠𝑒𝑅) 

Now we further show how a match within the formal model corresponds to a match in terms 
of the service and request descriptions. Basically, the containment relation 𝐿𝐷 ∈ ℒ 
corresponds to the query answering task of a reasoner that computes the match. Therefore, 
the reasoner identifies a model for the request query by binding variables of the request to 
individuals modeled in the A-Box of the knowledge base that represents the service 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 23 of 38 

 

description. To show the equivalence of the match in the formal model and the match 
identified by a reasoner, both directions of the implication between them are discussed. For 
simplicity, we now only consider knowledge bases that model the pre-states before 
execution. The post-states are treated analogously. 

Assuming that there is a match in the formal model, i.e., 𝐿𝐷 ∈ ℒ, then it holds that 𝑠𝑤𝐷 ≡ 𝑠𝑤𝑅  as 
defined above. Consequently, the information content 𝐾𝐵(𝑠𝑤𝐷) and 𝐾𝐵(𝑠𝑤𝑅) that model the 
pre-states 𝑠𝑤𝐷 and 𝑠𝑤𝑅  is equivalent, i.e., it holds that 𝐾𝐵(𝑠𝑤𝐷) ⊨ 𝐾𝐵(𝑠𝑤𝑅) ∧ 𝐾𝐵(𝑠𝑤𝑅) ⊨ 𝐾𝐵(𝑠𝑤𝐷). 
Obviously, then there exists a variable binding to answer the query against the knowledge 
base 𝐾𝐵(𝑠𝑤𝐷) that models the service description. 

In reverse, if there exists a variable binding to answer the query, then the knowledge base 
𝐾𝐵(𝑠𝑤𝐷) is a model of the request and contains at least the information that has to be satisfied 
to fulfill the request. Due to the definition of the request semantics, there also exists an LTS 
in ℒ which contains a pre-state 𝑠𝑤𝑅  that is modeled by a knowledge base 𝐾𝐵(𝑠𝑤𝑅) that is 
equivalent to 𝐾𝐵(𝑠𝑤𝐷). The reason why there exists such LTS is that the model ℒ of a request 
contains all the LTS' with all possible states and respective knowledge bases that are model 
of the request. Hence, if there exists a variable binding to answer the query, then 𝐿𝐷 ∈ ℒ. 

The same argumentation applies to the remaining states of the LTS'. It remains to show that 
matching inputs and outputs is also guaranteed. As current reasoners only model static 
knowledge, we model the additional information that input and output operations provide in 
the knowledge bases 𝐾𝐵(𝑠𝑤𝐷) and 𝐾𝐵(𝑠𝑒𝐷) that model the respective states subsequent to the 
operation. In the pre-state knowledge base 𝐾𝐵(𝑠𝑤𝐷) we therefore explicitly add the 
information about inputs and their values. In the end state knowledge based 𝐾𝐵(𝑠𝑒𝐷) after the 
output operation, we only mark the instances that are emitted. Because the values of the 
outputs were already computed by the sequence of local operations before the post-state 𝑠𝑜, 
no further changes are performed by the output operation. By modeling inputs and outputs 
within the knowledge bases that model the states of the transition systems, the presented 
matchmaking already covers matching inputs and outputs. As a consequence, the match 
between functionalities can be computed by using query answering (i.e., instance checking) 
as the reasoning task. 

Matchmaking, as introduced above, detects the match between the example service 
description and the request described in previous sections. For instance, the NFPs 𝑁 match 
the NFRs 𝑁ℛ, because the offered service is that fast that it delivers in less than three days 
although it does not accept a credit card. Furthermore, the precondition also matches the 
request as it only requires that the service identifies books by ISBN and the effect as it 
delivers the proper book with an invoice and the user receives reward points. However, a 
book selling service that identifies book by author name and book title for example would not 
match the example request ℛ. 

 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 24 of 38 

 

 

 

 

 

 

 

  



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 25 of 38 

 

3. Implementation and Evaluation 
In this section, we introduce the implementation of the presented discovery approach by 
explaining the creation of the reasoner's knowledge base, which is derived from the services 
descriptions retrieved from a repository of semantic service descriptions. Within the project, 
we use the WSML reasoner framework (See http://tools.sti-innsbruck.at/wsml2reasoner, [28], 
[27] for reasoning and installation details) and the WSML-DL language dialect [29] for Web 
service descriptions within project. 

We present the implementation of the matchmaking algorithm within the SOA4All discovery 
component and provide performance results at the end. The semantic discovery is 
developed as Web service so that it can be used by other SOA4All components with 
standard Web protocols. The semantic discovery component offers a range of methods for 
various purposes related to the discovery of Web services.  

Semantic Web service descriptions use the WSMO-Lite service ontology [36, 21] in 
conjunction with the Procedure Oriented Service Model (POSM)1

Table 1

. POSM is a service model 
that represents the structure of a service description containing concepts like Service, 
Operation, etc. POSM refers to the concepts provided by WSMO-Lite. By this, POSM allows 
us to describe services semantically using WSMO-Lite Annotations without annotating a 
WSDL document. In order to bridge the gap between the formal models on a theoretical level 
that were introduced above and the concrete implementation, we provide the mapping 
between the two levels as depicted in  (posm and wl abbreviate the namespaces of 
POSM and WSMO-Lite respectively). 

Table 1: Mapping between theory and implementation of service descriptions. 

Formal 
model 

Elements of Semantic Service Descriptions 

𝐼 posm:hasInputMessage and 
posm:Message 

𝑂 posm:hasOutputMessage and 
posm:Message 

𝜙 posm:hasCondition and wl:Condition 
𝜓 posm:hasEffect and wl:Effect 
𝑁 wl:NonFunctionalParameter 

 

3.1 Integration with SOA4All Service Repository  
Semantic service descriptions are stored in the SOA4All service repository (available at 
http://iserve.kmi.open.ac.uk/). Semantic service descriptions can be created by means of the 
SOA4All Studio. Therefore, given OWL-S Profile, SAWSDL, and WSDL service descriptions 
can be imported. Semantic service descriptions within the SOA4All service repository are 
modeled using the minimal service model. (For more information about the current version of 

                                                            
1 http://www.wsmo.org/ns/posm  

http://tools.sti-innsbruck.at/wsml2reasoner�
http://iserve.kmi.open.ac.uk/�
http://www.wsmo.org/ns/posm�


  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 26 of 38 

 

the minimal service model we have to refer to the documentation provided at the following 
Web page http://iserve.kmi.open.ac.uk/wiki/index.php/Simple_vocabulary). As the discovery 
component relies on the POSM developed by Work Package 3, the semantic service 
descriptions derived from the SOA4All service repository are translated into the proper 
model. The translation is provided by the WSL4J API, which was developed in collaboration 
with Work Package 3 (see appendix to D5.4.2). 

Service descriptions are retrieved from the repository in form of ontologies serialized in RDF. 
We use the RESTful service interface of the service description repository in order to obtain 
a list of currently registered Web service descriptions. The resource ‘services’ located at 
http://iserve.kmi.open.ac.uk/data/services/ provides a list of available service description 
within the repository. By integration of the latest semantic space developments, a notification 
mechanism (for new service descriptions) will shortly be provided by the iServe repository. It 
will enable us to continuously run discovery upon the most current set of available service 
descriptions. Each service description retrieved from the repository is parsed by WSL4J API, 
which then simply allows us to serialize the parsed service description into a RDF ontology 
using the POSM service model. 

3.2 Integration with WSML2Reasoner 
The service discovery component uses the reasoner to provide intelligent matching of 
requests and services. Different reasoning functionalities, such as subsumption reasoning, 
satisfiability checking, instance retrieval, etc. are required by the discovery component 
depending on the model used to specify services and user requests. To achieve one of the 
functional requirement mentioned before, namely accuracy, the discovery solution must 
integrate and use the reasoning support. A clear defined interaction that results in a well 
defined interface between the two components is required. The translated service description 
ontologies retrieved from the service repository are imported into a WSML reasoner instance 
using the reasoner’s RDF parser functionality.  

Each service description retrieved from the SOA4All repository was translated into a POSM 
service description in form of an ontology. We refer to the documentation of POSM for details 
on the modeling of service descriptions within an ontology serialized in RDF. These POSM 
ontologies are then imported into the reasoner and build the knowledge base on which 
reasoning tasks can be performed later. Within the reasoner’s knowledge base, properties of 
a service description 𝐷 are modeled as properties of the service instance within the WSML 
representation of the service description ontology.  

3.3 Service Templates 
A simple user interface that is part of the SOA4All Studio allows to formulate and submit 
service requests that may contains the combination of constraints on the desired NFPs, 
inputs, outputs, precondition, and effect. The request information is encapsulated into a so-
called service template2

                                                            
2 

 object. A service template is defined by an RDFS ontology (see [30], 

http://www.wsmo.org/ns/service-template  

http://iserve.kmi.open.ac.uk/wiki/index.php/Simple_vocabulary�
http://iserve.kmi.open.ac.uk/data/services/�
http://www.wsmo.org/ns/service-template�


  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 27 of 38 

 

though the definition has evolved) and contains the elements inputs, outputs, requirements, 
and preferences. These elements of a service template are defined by the respective 
properties as shown in Table 2 taken from [30]. Obviously, inputs 𝐼ℛ and outputs 𝑂ℛ of a 
service request are captured by the respective elements within a service template. Desired 
precondition 𝜙ℛ and effects 𝜓ℛ as well as non-functional requirements 𝑁ℛ are encapsulated 
to the requirements field of service templates by using multiple instances of the 
hasRequirement property. Preconditions and effects are logical expressions and are 
encoded as string representation of WSML axioms. The preferences are used for service 
ranking. The functional category is used for classification based discovery (refer to SOA4All 
deliverable 5.3.1). 

Table 2: RDF Schema for service template. 

ServiceTemplate rdf:type rdfs:Class . 
hasFunctionalCategory rdf:type rdf:Property . 
hasInput rdf:type rdf:Property . 
hasOutput rdf:type rdf:Property . 
hasPreference rdf:type rdf:Property . 
hasRequirement rdf:type rdf:Property . 

 

The discovery engine translates the user request into proper WSML syntax and sends this 
WSML query to the reasoner. The reasoner executes the query upon its knowledge base, 
which models all service descriptions. In order to answer the query, the reasoner determines 
for each service 𝑤 modeled in the knowledge base, whether the descriptions of inputs 𝐼, 
outputs 𝑂, precondition 𝜙, effect 𝜓, and 𝑁 is a  model for the requested combination of inputs 
𝐼ℛ, outputs 𝑂ℛ, precondition 𝜙ℛ, effect 𝜓ℛ, and NFRs 𝑁ℛ, respectively. I.e., the reasoner 
checks, for example, whether the requested preconditions 𝜙ℛ is fulfilled by the facts in the A-
Box that were introduced by the precondition 𝜙 of the service 𝑤. Therefore, the reasoner 
checks all potential variable mappings between query and service description including input 
and output variables. If there is a variable mapping that fulfills the conditions of precondition 
and effect and also the requested sets of inputs and outputs cohere to this mapping, a match 
is identified. Finally, a list of matching services from a repository of generated Web service 
description is retrieved from the discovery engine and displayed to the user. 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>. 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>. 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>. 
@prefix wsml: <http://www.wsmo.org/wsml/wsml-syntax#>. 
@prefix wsl: <http://www.wsmo.org/ns/wsmo-lite#>. 
@prefix st: <http://www.wsmo.org/ns/service-template/0.1#>. 
@prefix sf: <http://www.service-
finder.eu/ontologies/ServiceCategories#>. 
@prefix sr: <http://seekda.com/ontologies/RankingOntology#>. 
@prefix pref: <http://www.wsmo.org/ontologies/nfp/preferenceOntology#>. 
@prefix bs: <http://www.example.com/bookselling#>. 
@prefix ex: <http://localhost:8081/DisCloud/serviceTemplates/BSS#>. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 28 of 38 

 

 
ex:stBSS a st:ServiceTemplate; 
           st:hasFunctionalCategory sf:BookSellingService; 
           st:hasInput bs:isbn, bs:id; 
           ex:hasOutput bs:book, bs:inv; 
           st:hasRequirement [rdf:type wsl:Condition; rdf:value "?isbn 
memberOf _\"http://www.example.com/bookselling#ISBN\"  ?bday memberOf 
_\"http://www.example.com/bookselling#Birthday\" and 
?user[_\"http://www.example.com/bookselling#hasRewards\" hasValue 
?rpre]"^^wsml:AxiomLiteral]. 
 
           st:hasRequirement [rdf:type wsl:Effect; rdf:value 
"?book[_\"http://www.example.com/bookselling#hasISBN\" hasValue ?isbn] 
memberOf _\"http://www.example.com/bookselling#Book\" and ?inv memberOf 
memberOf _\"http://www.example.com/bookselling#Invoice\" 
?user[_\"http://www.example.com/bookselling#hasRewards\" hasValue 
?rpost] and ?rpre[_\"http://www.example.com/bookselling#lessThan\" 
?rpost]"^^wsml:AxiomLiteral]. 
 
st:hasRequirement rdf:value 
"?s[_\"http://www.example.com/bookselling#hasDeliveryTime\" hasValue 
?dt] and ?dt[_\"http://www.example.com/bookselling#lessThan\" 
_int(\"7\")]]"^^wsml:AxiomLiteral]. 
 
st:hasRequirement rdf:value 
"?s[_\"http://www.example.com/bookselling#acceptCreditCard\" hasValue 
_boolean(\"true\")]"^^wsml:AxiomLiteral]. 
 
... 
 

Table 3: An Example Service Template 

In order to reason about updates caused by the execution of a Web service, the discovery 
engine manages the differentiation between individuals that change during execution. As per 
convention, changing instances have different symbols indicated by the suffixes pre and 
post in above sections. This allows to reason about changes although reasoners are not 
capable to model dynamics in knowledge bases. We therefore introduced the association 
between the changed instances, which is managed by the discovery engine.  

3.4 Performance Results 
In the following we performed some tests on the implementation of the semantic service 
discovery. As the presented formal approach already guarantees the applicability of 
discovered services for the given problem described by the request, we tested the 
performance of the discovery implementation.  That is, we measured the time between 
submitting a request and the retrieval of the discovery results. Typically, semantic 
matchmaking highly depends on the performance of the reasoner, which depends on the 
size of the knowledge base among other and was already subject to performance evaluation 
in [28].  



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 29 of 38 

 

Given that service descriptions crawled by seekda mainly represent the information derived 
from WSDL service descriptions, we decided to synthesize rich semantic service descriptions 
in a fairly large scale to perform our measurements. Also the SOA4All service description 
repository did not provide us a large number of semantic service descriptions at that stage. 
Therefore, we created a set of randomly generated service descriptions with varying size 
ranging from 5,000 to 30,000 descriptions, which is approximately the number of currently 
available Web service according to seekda (Trends available at 
http://webservices.seekda.com/about/web_services). We used the Semantic Web for 
Research Community (SWRC) ontology [12] as domain knowledge to model service 
descriptions. It provides classes and properties to express individual types and conditions. 

The synthetic semantic service descriptions provide one operation each. An operation 
expects 1 to 8 inputs and returns 1 to 8 outputs. The precise numbers were randomly 
chosen. Note that we refer to message parts of the input or output message of the service 
operation. Each input and output is assigned to a random concept of the SWRC ontology 
within the description of precondition and effect respectively. Then, we further randomly 
generated up to 8 further variables for each precondition and each effect. Each variable or 
input/output parameter can have an association with another one within the description of 
preconditions and effects. 

Further, we generated up to 6 non-functional properties per service. Non-functional 
properties are modeled by an instance of an ontology concept which is associated to a 
random precise value within the range of property values. 

We measured the mean query answering time of the reasoner on a quad core Xeon CPU 
(2.33GHz) powered machine with 2GB RAM. Queries of three different sizes (small, medium, 
large) were sent to the reasoner’s knowledge base.  

Table 4: Query sizes tested in the experiment. 

  Small Medium Large 
Query size    
 Variables 6 9 12 
 Relations 9 12 15 
 NFRs 2 4 6 

 

Small, medium, and large conjunctive queries with various numbers of variables (including 
inputs, and outputs) and relationships among them within the desired precondition and effect 
description were tested in this experiment. Table 1 lists the precise number of terms of the 
individual queries. As depicted in Figure 4, the time to answer these queries range from 2.8s, 
4.2s, 5.0s with 5,000 service descriptions to 17s, 23s, 33s with 30,000 descriptions for small, 
medium, large sized queries, resp. 

 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 30 of 38 

 

 

Figure 5: Mean query answering time against increasing number of Web service descriptions for three 
query sizes. 

Note, the purpose of Figure 4 is to show the feasibility of the presented discovery approach. 
It is clear, that query answering time measure highly depends on size and structure of the 
used domain ontologies, size and complexity of the query and service descriptions. 
Nevertheless, these results can be significantly improved by the introduction of indexing 
structures, increasing the computational power, and distributing the reasoning process [13] 
among various options. 

Finally, we want to provide some references to related semantic discovery approaches which 
provide some performance results. Such results comprise time measures for the computation 
of the desired service functionalities. We want to emphasize that results, esp. the answering 
time, are not comparable at all. Among many different reasons, the usage of different 
hardware and the varying complexity of semantic service descriptions, requests, and domain 
ontologies lead to incomparability. However we want to provide a hint on the very rough 
ranges of query answering times of other prominent Web service discovery approaches. 

[35] provides experimental results from a test bed related to the European INFRAWEBS 
project. The authors conclude that matching a WSML goal against semantic service 
descriptions scales up to 1,000 service descriptions with a result within 5 seconds. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 31 of 38 

 

Stollberg et al. reports mean query answering times of 72 seconds against 2K Web service 
descriptions when using a naïve approach that they reduced to 0.3 seconds by using 
semantic discovery caching (SDC) [33]. As we will further discuss in the related work section 
of this document, the SDC technique relies on a pre-computed caching structure within a 
global hierarchy of goals. The query is answered by a simple lookup which leads to the fairly 
fast response time. 

Another example for an approach that relies on a pre-computation phase is provided in [34]. 
An experiment shown in 34] with 2K Web service descriptions measured a classification 
phase with more than 160 seconds and query answering time of about 20ms. 

 

 

Figure 6: Discovery user interface with request specification (left) and desired services and operations 
(right). 

 

3.5 User Interface 
The semantic Web service discovery component of SOA4All comes with a Web based 
graphical user interface (see Figure 5). It is implemented with the Google Web toolkit and an 
integrated part of the SOA4All Studio. The interface allows users to enter a request for 
service functionalities by specifying: 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 32 of 38 

 

• The functional classification of the service. Classification based discovery was 
already discussed in [31]. It allows selecting a set of classes displayed to the user as 
depicted in Figure 5. Services descriptions contain an assignment to a subset of 
available classes. 

• The desired functional and non-functional properties of a request ℛ. It includes the 
fields for inputs, outputs, precondition, effect, and non-functional requirements. In 
order to support users in expressing the conditions, elements of registered (domain) 
ontologies are automatically suggested for completion as depicted in Figure 8. 

• Preferences that are used to rank the set of results according to what the user 
describes in this field. Preferences are discussed in the ranking deliverable [32]. 

 

 

Figure 7: Specification of desired service classification. 

After submitting the request to the discovery service, the user interfaces retrieves a set of 
services and operations that fulfill the request. If preferences were specified, then the 
displayed result set is an ordered list with descending adherence to the preferences. In 
addition, some further information about a selected service and operation are display on the 
right side of the Web interface, which is omitted in Figure 6 due to the space constraints. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 33 of 38 

 

 

Figure 8: Specification of desired functional and non-functional properties. 

If the requesting user is logged in into the SOA4All Studio with an OpenID account, the 
discovered operations can be added to the personalized list of favorite service operations 
(Figure 5). The favorites list, which is a module within the SOA4All Studio, is for example 
also used in the SOA4All Process Editor and allows to bind process activities to user’s 
favorite service operations. 

4. Use of Discovery within SOA4All 
Service ranking and selection component (WP5) will order the relevant services that were 
identified by the service discovery solution and finally select the best fit. From an 
architectural perspective, service discovery is expected to return a set of service descriptions 
that belong to the services matching the request.  

The service discovery solution should support the service construction (WP6) in dynamic and 
adaptive composition and reconfiguration of constructed services in reaction to 
environmental changes. Parametric templates that represent service compositions as well as 
the composition optimizer require as bidding time concrete services that will be identified by 
the service discovery solution.  

All use cases potentially use discovery, especially: (WP7) in locating relevant services within 
an enterprise and within e-Government scenarios, the longest-standing use of discovery in 
use case demonstrators; (WP8) in locating, for example, third party services (SMS, etc.) in 
geographical regions where Ribbit does not provide these. WP9 has so far concentrated 
more on potential uses of ranking since the scenarios are based on hand-built compositions 
of tightly-controlled services. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 34 of 38 

 

5. Related Work 
Service-oriented computing is an interdisciplinary paradigm that revolutionizes distributed 
software development. The success encountered by the Web has shown that tightly coupled 
software systems are only good for niche markets, whereas loosely coupled software 
systems can be more flexible, more adaptive and often more appropriate in practice. 
Applications that adopt service-oriented architectures (SOA) can evolve during their lifespan 
and adapt to changing or unpredictable environments more easily. When properly 
implemented, services can be discovered and invoked dynamically using non-proprietary 
mechanisms, while each service can still be implemented in a black-box manner. Despite 
these promises, service integrators, developers, and providers need to create methods, 
tools, and techniques to support cost-effective development, as well as the use of 
dependable services and service-oriented applications. 

Web service discovery deals with finding appropriate Web services for a task at hand and is 
one of the central components needed for developing service-oriented applications. It is the 
task of identifying service descriptions from a pool of descriptions that fulfill the request and 
is realized by matching service descriptions against a service request. 

Universal Description, Discovery and Integration (UDDI) [1] was the first attempt to provide 
users with a system for finding Web services. However, UDDI discovery requires a lot of 
manual effort for finding the right services, mainly due to its lack of support for use of 
heterogeneous terminologies and the lack of formal description of the functionality of Web 
services in its underlying model. For example, UDDI is not able to deal with synonyms or 
relations between terms that describe services. 

Since the advent of the Semantic Web, many semantic Web service discovery approaches 
have been proposed to deal with heterogeneity in the terminology used in different services. 
Some of them consider the functionality description of services, which allows for automated 
tasks like service composition. Automation requires functionality-based discovery, since 
simple matching of input and output types still requires a lot of human effort to figure out 
whether the matching Web services offer the desired functionality. 

Functionality based semantic service discovery allows for automated tasks like service 
composition. The common model to describe the functionality of a software artifact is 
represented by inputs, outputs, preconditions, and effects, or shortly denoted by (𝐼,𝑂,𝑃,𝐸) 
(analogously (𝐼,𝑂,𝜙,𝜓)). Inputs denote the set of user-provided message parts at Web 
service invocation. Outputs describe the set of values returned to the user after service 
execution. Preconditions and effects describe the information states of the world before and 
after service execution, resp., by logical formulas. Semantic Web service discovery 
approaches compute the match between a service offer that describes the functionality of the 
service and a service request. 

OWL-S Matchmaker uses OWL-S profile for describing Web service offers as well as 
requests [2, 16]. Even though OWL-S Profile has elements for preconditions and effects, the 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 35 of 38 

 

OWL-S matchmaker uses types of input and output parameters only. The approach 
presented in [3] models Web services as well as requests as description logic (DL) classes 
and bases the matchmaking on the intersection of service offer and request, which is 
computed by a DL reasoner. Such approaches fail to reason about the dynamics of Web 
services, since DL reasoners cannot reason about changing knowledge bases. The 
approach in [26] deals with variables, but is limited to Web services that do not change the 
world and, thus, can be described by a query. Efficient semantic discovery approaches that 
can deal with functionality of Web services are presented in [21]. Efficiency is achieved by 
pre-computing a classification of services in a hierarchy of goal templates. However, the 
requirement of such a classification hierarchy hinders the usability of creating service 
descriptions and requests since it is not feasible to maintain a global hierarchy in a 
decentralized and open environment of the Web. Furthermore, [21] do not support matching 
of inputs and outputs nor do they deal with the possible inconsistency between functional 
description of Web services and their classification. 

The description of the functionality of a software by preconditions and effects was introduced 
by [14]. In contrast to description and discovery approaches in the field of software 
specification, the assumption of a closed world does not hold for Web services. The ability to 
model side effects to the world and the consideration of background knowledge thus were 
not considered. Zaremski and Wing consider different match types based on the implication 
relations between preconditions and postconditions of software library components and a 
query [15]. 

Martin et al. presents a discovery approach in [16] that is based on OWL-S and describes 
services functionalities semantically by inputs, outputs, preconditions, and effects. This 
approach interprets preconditions as constraints that need to be satisfied for the service 
requester only and effects as side effects of the service execution on the world. In our 
approach we model conditions that hold at the service provider side since those conditions 
can be evaluated during service invocation and execution time.  

The semantic Web community with focus on languages provides description logic (DL) based 
description approaches [17,2,18]. The approach by Li et al. in [3] represents objects like 
inputs and outputs as concepts in description logics. This approach further combines the use 
of DL with DAML+OIL and DAML-S and defines different matching degrees. Service 
description and request are similarly structured comprising inputs, outputs, preconditions, 
and effects. Discovery, i.e., matchmaking is based on the intersection of service offer and 
request and is reduced to checking subsumption of input and output types. However, DL-
based approaches fail to reason about the dynamics of Web services, since DL reasoners 
cannot reason about changing knowledge bases. Consequently, more recent research 
activities concentrate on more detailed formalisms, for instance the state-based perspective 
on Web services that is discussed below. These models allow modeling the dynamics of 
Web services. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 36 of 38 

 

The state-based service discovery approach [5,19] developed by Stollberg et al. uses a 
state-based formal model of service descriptions [20]. The functionality of a Web service is 
formally described by the set of possible Web service executions while each normal 
execution of a Web service is determined by its start and end state. The discovery algorithm 
relies on the assumption that the precondition 𝜙 logically implies the effect 𝜓 of a Web 
service execution. Modeling a transition as a logical implication 𝜙 ⟹ 𝜓 can be problematic, 
e.g., in case of a Web service that deletes a certain fact, the existence of the fact would imply 
non existence of the fact, e.g., a user subscription would imply that the user is not subscribed 
anymore. 

In contrast to the state-based approaches, Hull et al. propose a matching technique for 
stateless Web services in [26] with the restriction to conjunctive queries, since the query 
containment problem is decidable for such queries. In our approach, we can deal with 
stateful services since our discovery approach is not based on query subsumption but on 
query answering. 

Goal-driven approaches like [5,24,25] do not explicitly specify inputs as parts of the goal. 
However, a goal needs to be mapped to a request for finding appropriate Web services. In 
such a request, constraints on inputs can be useful, in particular if a user wishes to exclude a 
particular input parameter. In goal based approaches, goals are mapped to predefined goal 
templates that are used to find appropriate Web services. However, the usability of one 
global hierarchy of goal templates is hardly feasible in an open environment like the Web. 
One major difference between our approach and the goal based approaches is that we 
interpret inputs, outputs, preconditions, and effects of descriptions and requests differently, 
namely the former as a pair of states the latter as a pair of queries.  

Non-functional properties were not used for Web service discovery so far. In OWL-S non-
functional properties are considered as human-readable metadata, e.g., service name. 
WSML [11] does not include NFPs into the logical model. Consequently, no reasoning on 
them is possible. The WSMO specification defined NFPs, however there is so far no 
prominent implementation available that considers them, such as the Internet Reasoning 
Service [22]. O'Sullivan et al. [23] described a set of NFPs relevant for Web services and 
their modeling, which were formalized in a WSMO deliverable. 

6. Conclusion and Outlook 
In this deliverable we have introduced the latest work on discovery and its evaluation. We 
discussed some drawbacks of the existing approaches that hinder them to be accepted in 
practical settings. Then we presented in detail the theory and implementation of our 
approach. The theoretical part explains the meaning of service descriptions, service requests 
and matching between the two with example illustrations. The implementation part explains 
the programming interface provided the discovery component, the graphical user interface as 
well the details of the integration of the service discovery component with WSML ontology 
reasoners and iServe repository. We also provide results of the performance evaluation. 



  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 37 of 38 

 

Plans for the rest of the project involve addressing scalability at a different level, based on 
the Discovery Cloud (DisCloud) service template repository documented in the SOA4All 
Deliverable D5.4.2 [32]. DisCloud brokers service templates long-term, rather than ad hoc, 
against matching services. Within the lifetime of a service template there are two kinds of 
application of the discovery component that represent the significant computational load and 
potential difficulty in applying semantic discovery, with the characteristics detailed in this 
deliverable, at the scale foreseen in the SOA4All vision. 

In particular semantic discovery is applied at the following stages: 

• When a new service template is uploaded to DisCloud, semantic discovery is used 
against every service description of a matching functional classification. 

• When a new service description is uploaded to iServe, DisCloud will be notified, and 
every service template of a matching functional classification will be checked against 
this new service. 

The insight to be pursued is that both of these problems can be reduced to a map over the 
other type of resource, followed by a simple reduce. The important consideration, as with any 
MapReduce problem, is locality of data, i.e. that the computation is reasonably well isolated 
from the communication of large amounts of data (i.e., instead a well-scaling problem will 
place a virtualised image of the computation to be apply on the node with the data on which it 
must operate). 

SOA4All has been given, via an application to the OpenCirrus consortium, access to a large 
computing cluster with support for Hadoop (Yahoo!s open source MapReduce 
implementation) and Eucalyptus, a ‘private cloud’ interface-compatible clone for the Amazon 
Web Services cloud. 

One evaluation that will be carried out is whether the SOA4All semantic bus offers the best 
means to distribute service template descriptions, or whether this is best achieved with a file-
oriented distribution as in the Hadoop file system, or a ‘resource as bucket’ model of the 
Amazon S3 storage cloud (as supported by Eucalpyptus). Others will be how efficiently both 
of the above points of computation will scale using a Hadoop-based approach to distributing 
the problem. 

References 
1. UDDI, “UDDI Executive White Paper,” UDDI.org, Tech. Rep., Nov. 2001. [Online]. Available: 

http://uddi.org/pubs/UDDI_Executive_White_Paper.pdf 
2. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated Discovery, Interaction and Composition of Semantic 

Web Services,” in Journal of Web Semantics, vol. 1, no. 1, Dec. 2003, pp. 27–46. 
3. L. Li and I. Horrocks, “A Software Framework for Matchmaking Based on Semantic Web Technology,” Int. J. Electron. 

Commerce, vol. 8, no. 4, pp. 39–60, 2004. 
4. I. Constantinescu, W. Binder, and B. Faltings, “Flexible and Efficient Matchmaking and Ranking in Service Directories,” in 

ICWS ’05: Proceedings of the IEEE International Conference on Web Services. Washington, DC, USA: IEEE Computer 
Society, 2005, pp. 5–12. 

5. M. Stollberg, M. Hepp, and J. Hoffmann, “A Caching Mechanism for Semantic Web Service Discovery,” in The Semantic 
Web. 6th Int. Semantic Web Conf., ser. LNCS 4825, K. Aberer and et al., Eds. Busan, Korea: Springer, 2007, pp. 480–493. 

http://uddi.org/pubs/UDDI_Executive_White_Paper.pdf�


  

          SOA4All –FP7 – 215219 – Deliverable 5.3.2  

 

 

© SOA4All consortium Page 38 of 38 

 

6. S. Grimm, S. Lamparter, A. Abecker, S. Agarwal, and A. Eberhart, “Ontology Based Specification of Web Service Policies,” 
in INFORMATIK 2004 - Proceedings of Semantic Web Services and Dynamic Networks, ser. LNI, vol. 51. GI, September 
2004, pp. 579–583. 

7. S. Agarwal, S. Lamparter, and R. Studer, “Making Web services tradable - A policy-based approach for specifying 
preferences on Web service properties,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 7, 
no. 1, pp. 11–20, Januar 2009. 

8. M. Junghans and S. Agarwal, “Towards Practical Semantic Web Service Discovery,” in 7th Extended Semantic Web 
Conference, ser. LNCS. Springer, 2010. 

9. M. Junghans, S. Agarwal, “Web Service Discovery Based on Unified View on Functional and Non-Functional Properties,” 
Proceedings of Fourth IEEE International Conference on Semantic Computing (IEEE ICSC2010), Carnegie Mellon 
University, Pittsburgh, PA, USA, September, 2010. 

10. W3C OWL Working Group, OWL 2 Web Ontology Language: Document Overview. W3C Recommendation, 27 October 
2009, available at http://www.w3.org/TR/owl2-overview/. 

11. J. de Bruijn, D. Fensel, M. Kerrigan, U. Keller, H. Lausen, and J. Scicluna, Modeling Semantic Web Services: The Web 
Service Modeling Language. Berlin: Springer, 2008. 

12. Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle, “The SWRC Ontology - Semantic Web for Research 
Communities,” in Proc. of the 12th Portuguese Conference on Artificial Intelligence – Progress in Artificial Intelligence 
(EPIA 2005), ser. LNCS, vol. 3803. Springer, December 2005, pp. 218–231. 

13. J. Bock, “Parallel Computation Techniques for Ontology Reasoning,” in ISWC ’08: Proceedings of the 7th International 
Conference on the Semantic Web. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 901–906. 

14. C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12, no. 10, pp. 576–580, 1969. 
15. A. M. Zaremski and J. M. Wing, “Specification matching of software components,” ACM Trans. Softw. Eng. Methodol., vol. 

6, no. 4, pp. 333–369, 1997. 
16. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. 

Solanki, N. Srinivasan, and K. Sycara, “Bringing Semantics to Web Services: The OWL-S Approach,” in SWSWPC, ser. 
LNCS, J. Cardoso and A. Sheth, Eds., vol. 3387. Springer, 2004, pp. 26–42. 

17. B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani, “On automating Web services discovery,” The VLDB 
Journal, vol. 14, no. 1, pp. 84–96, 2005. 

18. J. Gonzalez-castillo, D. Trastour, and C. Bartolini, “Description Logics for Matchmaking of Services,” in KI-2001 Workshop 
on Applications of Description Logics, 2001. 

19. M. Stollberg, U. Keller, H. Lausen, and S. Heymans, “Two-phase Web Service Discovery based on Rich Functional 
Descriptions,” in Proc. of the 4th European Semantic Web Conf. Springer, 6 2007. 

20. U. Keller, H. Lausen, and M. Stollberg, “On the Semantics of Functional Descriptions of Web Services,” in Proc. of the 3rd 
European Semantic Web Conf., 2006. 

21. T. Vitvar, J. Kopeck´y, J. Viskova, and D. Fensel, “WSMO-Lite Annotations for Web Services,” in 5th European Semantic 
Web Conf., ser. LNCS 5021. Springer, 2008. 

22. J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton, and C. Pedrinaci, “IRS-III: A broker-based 
approach to semantic Web services,” Web Semant., vol. 6, no. 2, pp. 109–132, 2008. 

23. J. O’Sullivan, “Towards a precise understanding of service properties,” Ph.D. dissertation, Queensland University of 
Technology, 2006. 

24. R. Lara, M. Corella, and P. Castells, “A Flexible Model for Locating Services on the Web,” Int. J. Electron. Commerce, vol. 
12, no. 2, 2008. 

25. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel, “Automatic Location of Services,” in Proceedings of the 2nd 
European Semantic Web Symposium (ESWS2005), Heraklion, Crete, 5 2005. 

26. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens, “Deciding Semantic Matching of Stateless Services,” 
in Proc. of 21st Nat. Conf. on Artificial intelligence (AAAI’06). AAAI Press, 2006. 

27. Winkler, Daniel and Pressnig, Matthias. Reasoner Framework Report - Installation and Configuration. 2010. Technical 
Report. 

28. Winkler, D., Pressnig, M., D3.2.7 Second Prototype for Description Logic Reasoner for WSML DL v2.0. 2010. SOA4All 
Project Deliverable. 

29. Bishop, B., Fischer, F., Hitzler, P., Kroetzsch, M., Rudolph, S., Trimponias, Y., Unel, G., Defining the Features of the 
WSML-DL v2.0 Language. 2009. SOA4All Project Deliverable. 

30. Reto Krummenacher, John Domingue, Carlos Pedrinaci, Elena Simperl. SOA4All: Towards a Global Service Delivery 
Platform. Towards the Future Internet – Emerging Trends from European Research. Edited by Georgios Tselentis, Alex 
Galis, Anastasius Gavras, Srdjan Krco, Volkmar Lotz, Elena Simperl, Burkhard Stiller, Theodore Zahariadis. pp. 161 – 172. 
2010. 

31. S. Agarwal, M. Junghans, O. Fabre, I. Toma, D5.3.1 First Service Discovery Prototype. 2009. SOA4All Project Deliverable. 
32. S. Agarwal, M. Junghans, B. Norton, D5.4.2 Second Ranking Prototype. 2010. SOA4All Project Deliverable. 
33. Stollberg, M.: Martin Hepp. Semantic Discovery Caching: Prototype & Use Case Evaluation. Technical Report DERI-2007-

03-27, DERI (2007) 
34. Lara R. Two-phased Web Service Discovery. Proceedings of AI-Driven Technologies for Services-Oriented Computing 

Workshop at AAAI-06, Boston, USA. 2006. 
35. Kovacs, L.; Micsik, A.; Pallinger, P., Two-phase Semantic Web Service Discovery Method for Finding Intersection Matches 

using Logic Programming. Workshop on Semantics for Web Services (SemWS'06), 2006. 
36. Kopecky, J., Vitvar, T., Fensel, D. D3.4.2 WSMO-Lite: Lightweight Semantic Descriptions for Services on the Web, 

SOA4All Project Deliverable, 2009. 

http://www.w3.org/TR/owl2-overview/�

	Executive summary
	Introduction
	1.1 Purpose and Scope of this Deliverable
	1.2 Structure of the Document

	Practical Semantic Web Service Discovery
	2.1 Requirements
	2.2 Service Descriptions
	Formal Model of Web Services
	Description Formalism
	Modeling Example

	2.2 Service Requests
	Request Description Syntax
	Semantics of Service Request

	2.3 Matchmaking
	Matching Properties
	Matching Functionalities


	Implementation and Evaluation
	3.1 Integration with SOA4All Service Repository
	3.2 Integration with WSML2Reasoner
	3.3 Service Templates
	3.4 Performance Results
	3.5 User Interface

	Use of Discovery within SOA4All
	Related Work
	Conclusion and Outlook
	References

