

Project Number: 215219
Project Acronym: SOA4All
Project Title: Service Oriented Architectures for All
Instrument: Integrated Project
Thematic
Priority:

Information and Communication
Technologies

D5.4.2 Second Service Ranking Prototype

Activity N: A2 - Core Research and Development

Work Package: WP5 – Service Location
Due Date: 31/08/2010

Submission Date: 31/08/2010
Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: KIT
Revision: 1.0

Author(s): Sudhir Agarwal (KIT), Martin Junghans
(KIT), Barry Norton (KIT)

Reviewers: Usman Wajid (UNIMAN),
Jacek Kopecky (OU)

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 2 of 24

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

1.0 04.08.2010 Initial version Martin Junghans

1.1 06.08.2010 Internal review, updated example and
screenshot

Martin Junghans

1.2 09.08.2010 Section preliminaries Sudhir Agarwal

1.3 18.08.2010 Filled in content Barry Norton

1.4 26.08.2010 Accounted for reviews Barry Norton

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 3 of 24

Table of Contents

EXECUTIVE SUMMARY ___ 6
1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE ___ 7
1.2 STRUCTURE OF THE DOCUMENT ____________________________________ 7

2. PRELIMINARIES ___ 8
2.1 ‘OBJECTIVE’ ONTOLOGY-BASED FEATURE AGGREGATION FOR MULTI-
VALUED RANKING __ 8

2.1.1 Related Documents Rank ___ 8
2.1.2 WSDL Mertrics Rank ___ 8
2.1.3 Monitoring Rank __ 8
2.1.4 WebAPI Rank __ 8
2.1.5 Global Rank __ 9
2.1.6 Implementation ___ 9

2.2 ‘SUBJECTIVE’ MULTI-CRITERIA RANKING BASED ON NON-FUNCTIONAL
PROPERTIES __ 9

2.2.1 Implementation __ 10
2.3 ‘SUBJECTIVE’ FUZZY LOGIC BASED RANKING APPROACH ______________ 10

3. INTEGRATED RANKING APPROACH _____________________________________ 11
4. IMPLEMENTATION __ 13

4.1 WSL4J ___ 13
4.2 DISCLOUD ___ 14
4.3 FUZZY BASED SERVICE RANKING ___________________________________ 15

4.3.1 Modeling Preferences ___ 15
4.3.2 Modeling Property Value Categorization ______________________________ 16
4.3.3 Utilization of Semantic Service Descriptions ___________________________ 16
4.3.4 User Interface ___ 17

5. USE OF RANKING WITHIN SOA4ALL _____________________________________ 19
5.1 USE IN OTHER COMPONENTS ______________________________________ 19
5.2 DELIVERABLE RELATION WITH THE USE CASES ______________________ 19

6. CONCLUSIONS AND OUTLOOK ___ 20
ANNEX A. SELECTED JAVADOCS __ 21

CLASS HIERARCHY __ 22
PACKAGE EU.SOA4ALL.WSL4J __ 23
PACKAGE EU.SOA4ALL.WSL4J.SERVICETEMPLATE __________________________ 23
PACKAGE EU.SOA4ALL.WSL4J.RPC __ 24
PACKAGE EU.SOA4ALL.WSL4J.WSML ______________________________________ 24

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 4 of 24

List of Figures
Figure 1: Discovery Cloud Architecture and Interactions. ... 11

Figure 2: Categories of property response time modeled by membership functions. 16
Figure 3: UML diagram of the data objects model. ... 17

Figure 4: Screenshot of the user interface to define categories of a property by membership
functions. .. 18

List of Tables
Table 1 : Grammar of Fuzzy IF-THEN Rules. ... 15

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 5 of 24

Glossary of Acronyms

Acronym Definition
D Deliverable

EC European Commission

MSM Minimal Service Model

NFP Non-Functional Property/Parameter

POSM Procedure-Oriented Service Model

WP Work Package

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 6 of 24

Executive summary
In a world of ‘billions of services’, as envisioned by SOA4All, it is not sufficient merely to aid
users in finding services as an ad hoc task. It has been long-acknowledged that ranking will
be required to help users find the best offerings in a service economy, but in the work
described in this deliverable we go further. Using the latest SOA4All developments, such as
service templates and a scalable service repository, we provide an infrastructure for a long-
term, evolving relationship between service consumers and providers according to particular
consumer needs, documented in a service template. We call this approach the Discovery
Cloud, or DisCloud. The template becomes a permanent resource, not just a transient one
for an ad hoc request. Matching services are ranked at each request, reflecting the real-time
information available from the crawler and the developing SOA4All analysis platform. This
development has produced a reusable object model for service descriptions and templates,
called WSMO-Lite for Java, or WSL4J We also describe development on the plans for a
fuzzy logic-based approach to specifying preferences that, by integration with this platform,
will aid users in guiding the rank that is most useful for them.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 7 of 24

1. Introduction
In a world of ‘billions of services’, as envisioned by SOA4All, it is not sufficient merely to aid
users in finding services as an ad hoc task. It has been long-acknowledged that ranking will
be required to help users find the best offerings in a service economy. SOA4All has
proposed three approaches to ranking. An ‘objective’ ranking approach based on metrics
collected by the crawler, also developed in WP5. A ‘subjective’ ranking approach where
service descriptions can express rule-based metrics to give values to non-functional
properties (NFPs) and basic consumer preferences can be expressed over these. A
sophisticated fuzzy logic and rule-based ranking approach where metrics and other NFPs
are first fuzzified, to aid understanding by consumers, and then preferences can be
expressed by flexible rules. Integration between these approaches allows the objective
metrics to be used also in subjective user preferences, and has led to a new infrastructure,
the Discovery Cloud (DisCloud), with which we hope to make scalable discovery and ranking
scalable to allow for the foreseen rapid expansion in services.

1.1 Purpose and Scope
In this deliverable we describe the latest developments on the ranking approaches,
especially the fuzzy logic-based integration on which development is now underway, and a
novel integration approach that reuses the latest developments in general SOA4All
technology, including the Service Template model and the iServe service repository.

The DisCloud service template repository is introduced to manage the long-term, evolving
relationship between service consumers and providers according to particular consumer
needs, documented in a service template. The template becomes a permanent resource, not
just a transient one for an ad hoc request. Functionally-matching services are pre-computed,
and will be updated on an on-going basis as new descriptions are added to iServe, for
efficiency. The matching services are then ranked at each request, reflecting the real-time
information available from the crawler and the developing SOA4All analysis platform

1.2 Structure of the document
This document is structured as follows. Section 2 recalls the three approaches to ranking
proposed by WP5. Section 3 describes the integration achieved, and explains its novelty,
during the last period. Section 4 describes the work to date on implementing fuzzy logic and
rule-based ranking. Section 5 gives an overview of the current uses made of ranking in the
project and Section 6 describes on-going work and the general outlook.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 8 of 24

2. Preliminaries
In this section, we give short overviews of the three approaches for service ranking, namely
the multi-valued ranking approach, the multi-criteria ranking based on non-functional
properties, and the fuzzy logic based ranking. The approaches are described in more detail
in the D5.4.1 deliverable.

2.1 ‘Objective’ Ontology-based Feature Aggregation for Multi-
valued Ranking
The ontology-based feature aggregation for multi-valued ranking approach differs for the two
types of services supported in SOA4All: WSDL services and Web APIs. For WSDL services,
first three independent ranking values (based on crawl meta-data like info on related
documents, WSDL metrics and monitoring data) are calculated. These values are then
combined to one global rank. For Web APIs we so far only take into account only the Web
API confidence score.
2.1.1 Related Documents Rank
This rank is based on the crawl meta-data that is delivered by the crawler and is calculated
based on the following information: (1) How many related documents does a service have?
(2) How is the document related to a specific service?

In a first step we calculate the number of related documents per service. This value is stored
using the hasNumberOfRelatedDocuments relation of the seekda Ranking Ontology. Now
the related documents rank is calculated. The final rank is stored for each service using the
hasRelatedDocsRank relation of the seekda Ranking Ontology.

2.1.2 WSDL Mertrics Rank
This rank is based on metrics that we extract from the WSDL descriptions. We currently take
into account the documentation of (a) the service element, and (b) the operations. The rank
is calculated as follows. We put more importance on the documentation of the single
operations than of the service documentation, as we think that the operation might contain
useful information regarding the functionality provided by the operation and regarding its
invocation. We currently do not differentiate between whether all operations of a service are
documented or only one or some. The final rank is stored for each service using the
hasWSDLMetricRank relation of the seekda Ranking Ontology.

2.1.3 Monitoring Rank
This rank is based on the liveliness information of a service, e.g., is the server reachable,
does it correctly implement the SOAP protocol, etc. This liveliness information is delivered by
seekda on a weekly basis. The availability score is a number between 0 and 1 that is set
depending on the endpoint check result. In between different scores are set to express
pages that are not found, pages that require a login or an authentication, etc., mostly based
on the HTTP response code.

We get the average service availability score for different time periods: last week, last month
and last 6 months. We assume that the long-time availability of a service is more relevant
than only the short-time availability over one week. The rank is stored for each service using
the hasMonitoringRank relation of the seekda Ranking Ontology:

2.1.4 WebAPI Rank
For ranking Web APIs we currently only take into account the Web API confidence score.
This score is calculated based on two classifiers within the crawler that check whether a Web

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 9 of 24

resource might be a Web API or not. The rank is based on the following information: (1)
What is the Web API Confidence score of a document? (2) Which crawler classifier has
classified the document as Web API?

To calculate the rank we need to extract both the score and the component that has
assigned the score. Based on first evaluations of the classifiers, we deem the score of the
SVM classifier more important than the one of the Web API Evaluator.
2.1.5 Global Rank
As already mentioned above, the calculation of the global rank differs depending on whether
the ranked service is a WSDL-based service or a Web API. For WSDL services we calculate
the global rank based on the Related Documents Rank, the WSDL Metrics Rank and the
Monitoring Rank. The single ranks are numbers between 0 and 1, and from these we
calculate the global rank while putting equal relevance on the availability of documentation
(related documents being estimated more important than the documentation within the
WSDL) and on the liveliness of a service. The global rank is stored for each service using the
hasGlobalRank relation of the seekda Ranking Ontology.

For Web APIs, the calculation is simple: the WebAPI Rank is at the same time the global
rank of the service.
2.1.6 Implementation
The service ranks produced by seekda take as input meta-data in RDF triples format and
returns the ranks in the same way. We use the seekda Ranking Ontology to store and
distribute the service ranks. In the meanwhile we have a Java component that calculates the
ranks.
Together with the single ranks we will distribute the meta-data triples that the ranks are
based upon. As both the single ranks and the global rank are values between 0 and 1, all
reasoners that can do ordering on numbers are able to work with the ranks. The RDF data
will be delivered as dump on a weekly basis by seekda. The triples will then be added to the
SOA4All semantic spaces and will be available to the Studio.

2.2 ‘Subjective’ Multi-criteria Ranking based on Non-Functional
Properties
Non-functional properties specified in the user request and service descriptions are
formalized by means of logical rules using terms from NFP ontologies. The logical rules used
to model NFPs of services are evaluated, during the ranking process, by a reasoning engine.
Additional data is required during this process: (1) which NFPs the user is interested in, (2)
the importance of each of these NFPs, (3) how the list of services should be ordered (i.e.,
ascending or descending) and (4) concrete instance data. The non-functional properties
values obtained by evaluating the logical rules are sorted and the ordered list of services is
built.

Once the preprocessing is completed each service is assessed in order to determine
whether the non-functional properties specified in the user request are available in service
description. If this is the case, the algorithm extracts the corresponding logic rules and
evaluates them using the WP3 reasoning engine which supports WSML rules. A quadruple
structure is built that contains the computed value and its importance for each service and
non-functional property. An aggregated score is computed for each service by summing the
normalized values of non-functional properties weighted by importance values. The results
are collected in a set of tuples, each tuple containing the service id and the computed score.
Finally, the scores are ordered as specified by the user and the final list of services returned.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 10 of 24

2.2.1 Implementation
The multi-criteria ranking approach takes as input a set of services annotated using the
WSMO-Lite ontology and a user request using the new Service Template model. The result
is presented in a form of ordered list of services. Furthermore, for each service in the list
additional information can be provided such as the score for each non-functional property
requested by the user as well as the aggregated score. The implementation uses the IRIS
reasoner to evaluate the values of non-functional properties. The multi-criteria ranking
approach is implemented as a Java component and is exposed as a web service.

The high level interface for the ranking component is provided below.
@WebMethod(operationName = "rank")
@WebResult(name = "rankedServices")
String[] rank(@WebParam(name = "services") String[] services,
 @WebParam(name = "templateURI") String template) throws
RankingException;

In the above method signature the input array of Strings represents the IDs of the services
being ranked and the output array of Strings represents the same IDs of services but in this
case the services (IDs) are ranked according to user preferences available in the goal
description.

2.3 ‘Subjective’ Fuzzy Logic Based Ranking Approach
This process of computing a fuzzy logic-based rank of a service consists of four main steps:
(1) Fuzzification (2) Inferencing (3) Aggregation and (4) Defuzzification. The user
preferences are specified as fuzzy IF-THEN rules.

During fuzzification, the crisp values of the non-functional properties of the service are
fuzzified, i.e. their fuzzy memberships in the fuzzy sets associated with the properties are
computed. During inferencing, each fuzzy IF-THEN rule is processed and a degree of
fulfillment of the rule is computed. The fuzzy set in the conclusion of a rule are chopped at
the level that equals to degree of fulfillment of the premise of the rule. During aggregation,
the chopped fuzzy sets in the conclusion of the rules are aggregated. The aggregated fuzzy
set denotes the rank of the service as a fuzzy set, which is then defuzzified to a crisp value
between 0 and 1 to obtain the actual rank of the service.

The novelties of the fuzzy logic based service ranking approach can be summarized as
follows.

1. Expressivity: This approach is capable to model complex preferences and thus to
consider relationships between different non-functional properties. For instance, the
prior approaches did not allow users to formulate that a Web service with a high price
and with a comparably large response time is not acceptable.

2. Efficiency: Using fuzzy logics introduces the well proven benefits low computational
costs to compute a ranking. Considering the vast number of targeted Web service
descriptions and the potential size of user preferences, the complexity of a Web
service ranking algorithm is crucial for usability.

3. Practicability: Users are not forced to formulate crisp preferences; they do not even
need to be aware about specific values of a property. The fuzzy logic based approach
allows users to formulate requirements rather vaguely.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 11 of 24

3. Integrated Ranking Approach
In order to bring together together the three approaches to ranking, and to take best
advantage of SOA4All developments such as Service Templates and the RESTful repository
for service descriptions, we have introduced an integrated ranking approach based on the
following principles:

• The various ‘objective’ ranking metrics, made available via the crawler as described
in Section 2.1.1, should be dynamically encoded in NFPs attached to semantic
service descriptions in such a way that they are available (for users to include in their
preferences) in the subjective ranking described in Section 2.1.2.

• The rules applied to derive metrics as NFPs for service descriptions in the approach
described in Section 2.1.2 should be made available for ‘fuzzification’ in the fuzzy
ranking approach described in Section 2.1.3.

• A repository-oriented approach to Service Templates has been investigated, where:
o templates are stored as permanent resources, which may be private (brokered

only for the uploading client) or shared;
o the functional match with services, i.e. the discovery approach described in

D5.3.2 should be carried out on upload and kept up-to-date with new services,
with discovery against each brokered service triggered by notifications of new
uploads from iServe;

o ranking should be carried out at request, taking advantage of the all three
ranking approaches – i.e. based on the subjective preferences of the
requester, but allowing preferences to be specified over the up-to-date metrics
used for objective ranking.

The intended architecture and interaction is as shown in Figure 1, as described in the
following section.

Service
Template

DisCloud

iServe

Service
Description

Semantic
Discovery

Reasoner

Rule-Based
Ranking

Service
Template

Service
Description

Seekda
Ranking Metadata

Service
Description

1
2

3

1. (POST) RDF

2.a. SPARQL 2.b. RDF 3. RDF

4. WSML

7. RDF

8. WSML

5.a. (GET) URI

6. RDF

5.b. RDF

Figure 1: Discovery Cloud Architecture and Interactions.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 12 of 24

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 13 of 24

4. Implementation
The implementation is intended to support the interaction shown in Figure 1, and so create
an effective service template repository called DiscoveryCloud, or DisCloud, as follows:

1. The client formalises their functional requirements using the SOA4All Service
Template model, and their preferences using the chosen preference model, encode
these together in RDF and HTTP POST them to the new repository.

2.a. The functional classification(s) requested in the service template are used to pre-
select potential service matches from iServe, using a SPARQL query;

2.b. The appropriate service definitions are retrieved, in RDF;

3. Semantic discovery is extended, as described in D5.3.2, to have an interface based
on the new Service Template model;

4. Semantic discovery encodes the appropriate WSML queries to refine the set of
matching services that are then stored.

5.a. The repository waits (or rather, when available, uses iServe upload notifications to
keep an up-to-date list of functional matches) until the user requests information on
the status of the template (with an HTTP GET);

6. At this point the latest objective ranking metrics are retrieved from the seekda
crawler via the metadata repository API and are used to update the RDF description
of the services, adding further NFPs;

7. The updated (MSM) service descriptions are passed to the WSML or Fuzzy
rule-based ranking engine

5.b. The ranked services are returned to the user.

4.1 WSL4J
In order to support validation of service templates, and the addition of preference models to
MSM (which has been renamed Procedure-Oriented Service Model, or POSM1

Alongside the developments described for DisCloud this was then extended to:

, as a result of
the proposed RPC Service Model of D3.4.6), a parsing (from RDF serialisations) Java object
model was developed.

• directly load service descriptions from iServe;
• directly load service templates from DisCloud;
• automatically load and encode ranking metrics from the seekda metadata repository;
• serialise models back to RDF (n3/Turtle and RDF/XML syntax).

As well as being used in the development of DisCloud, this object model was used to update
the interfaces of all semantic ranking and discovery components.

Thereafter, having demonstrated its general utility, it was renamed WSL4J (WSMO-Lite for
Java) and contributed to WP3 for maintenance.

The Javadocs for WSL4J have been included in Annex A.

1 http://www.wsmo.org/ns/posm/

http://www.wsmo.org/ns/posm/�

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 14 of 24

4.2 DisCloud
The Discovery Cloud, or DisCloud2

Service templates can be POSTed, in n3/Turtle or RDF/XML syntax, and are validated,
returning the usual HTTP Status codes:

, offers a RESTful repository API for the maintenance of
service templates, compatible with the API of iServe.

• 201 Created – the template has been stored and its new representation can be
retrieved from the URI returned in the Location HTTP header field;

• 400 Bad Request – the model passed did not validate;
• 401 Unauthorised – the client did not pass relevant authorisation header (DisCloud

is being integrated with the authorisation system of the SOA4All Studio).

Service templates are stored internally in a triple store. Technically, the REST interface is
realised using the Jersey3 implementation of JAX-RS4, while the repository is currently
realised using the standard Sesame5 implementation of the SAIL API6, accessed via the
RDF2Go API7

Stored service templates can later be DELETEd, with the normal HTTP responses
(depending on authorisation):

. This means that DisCloud can easily be upgraded, once stable, to use the
SOA4All semantic space via the recent implementation of this API.

• 200 OK – template will no longer be available;
• 401 Unauthorised – the client is not the owner of the resource.

Until deletion, each template is directly GETtable, resulting in a Linked Data-style redirect:

• 303 See Other – location depends on Accept HTTP header field:
o http://km.aifb.kit.edu/services/DisCloud/templates/{id}/data field matches

media type ‘application/rdf+xml’, ‘text/n3’ or ‘text’ttl’, etc.,
o http://km.aifb.kit.edu/services/DisCloud/templates/{id}/page field matches

media type ‘text/html’ or similar;
• 401 Unauthorised – the client is not the owner of the resource.

Upon storage, discovery is triggered and the URIs for matched services are linked to the
stored service template via further triples.

On retrieval of matching services (via GET on
http://km.aifb.kit.edu/services/DisCloud/templates/{id}/matches), DisCloud parses back the
relevant service template from the underlying repository using WSL4J object model
(eu.soa4all.wsl4j.ServiceTemplate.ServiceTemplate.createFromDisCloud), loads the
attached services from iServe (...wsl4j.rpc.MSMService.createFromIServe), retrieves the
latest metrics (...wsl4j.WSML.SeekdaRankingNFP.updateNFPs) and dispatches to the
relevant ranking engine based on the classification of the associated preference model (e.g.
...wsl4j.WSML.RuleBasedRanking).

2 Available at http://km.aifb.kit.edu/services/DisCloud
3 https://jersey.dev.java.net/
4 https://jsr311.dev.java.net/
5 http://www.openrdf.org/
6 http://www.openrdf.org/doc/sesame2/system/ch05.html
7 http://semanticweb.org/wiki/RDF2Go

http://km.aifb.kit.edu/services/DisCloud�
https://jersey.dev.java.net/�
https://jsr311.dev.java.net/�
http://www.openrdf.org/�
http://www.openrdf.org/doc/sesame2/system/ch05.html�
http://semanticweb.org/wiki/RDF2Go�

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 15 of 24

4.3 Fuzzy Based Service Ranking
This service ranking approach proposes a fuzzy logic based ranking mechanism that
considers an extended model of preferences including vagueness. In D5.4.1 we
introduced a fuzzy logic approach for modeling user preferences. We use fuzzy IF-THEN
rules to express user preferences and relationships between values of non-functional
properties. Then, fuzzy logic based ranking approach features the abilities:

- to express vagueness while expressing preferences using linguistic terms instead
of crisp values;

- to assign crisp property values to different categories by specifying overlapping
fuzzy sets membership functional that model these categories;

- to create complex preferences constructed by the combination of simple terms.

We implemented the ranking component as a Web service 8

Figure 3

. It provides two public
methods. One method ‘addPropertyClasification’ that lets users add categorizations of
properties. This method requires a property name and a set of membership functions
over those categories. As depicted in , each category is represented by a unique
category name and four characteristic points of the membership function.

The second method ‘rankServices’ computes the ranking according to preferences
specified by the user. The signature of the method is defined as follows. The method
receives a set of service IDs used to identify the semantic service description, and the
user preference expressed by a set of fuzzy IF-THEN rules. As a result, the method
returns an ordered list of service IDs with ascending degree of fulfillment of the
preferences. In the following, we will provide insights on the modeling preferences and
property categories with fuzzy sets within the user interface.

4.3.1 Modeling Preferences
Preferences of the user are represented by a set of fuzzy IF-THEN rules; one rule for
each category of the acceptance property at most. The conclusion of the rule, i.e., the
THEN part, refers to exactly one category of the acceptance property. The grammar to
express IF-THEN rules is given in Table 1 in Backus-Naur Form. PropertyName and
PropertyCategory refer to the name of a property like ‘ex:responseTime’ in the
namespace abbreviated by ‘ex’ and a category like ‘low’ that should be defined for the
rsp. property. In this example, a term is ‘responseTime=low’.

Table 1 : Grammar of Fuzzy IF-THEN Rules.

<Rule> ::= ‘IF’ <Body> ‘THEN’ <Head>
<Body> ::= <Expression>
<Expression> ::= <Term> | ‘(‘ <Expression> ‘)’ |
<Conjunction>
 | <Disjunction> | <Negation>
<Conjunction> ::= <Expression> ‘AND’ <Expression>

8 The service ranking Web service is available at http://km.aifb.kit.edu/services/soa4all-
discovery/axis2/services/FuzzyServiceRanking?wsdl

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 16 of 24

<Disjunction> ::= <Expression> ‘OR’ <Expression>
<Negation> ::= ‘NOT’ <Expression>
<Term> ::= PropertyName ‘=’ PropertyCategory
<Head> ::= ‘Acceptance=’ PropertyCategory

The simple syntax of the rules allows to express complex preferences using
conjunctions, disjunctions, negations, and nesting. In order to process given user
preferences, a parser translates the preferences specified in a user interface into the
Java object model as shown in Figure 3 representing preferences internally.

4.3.2 Modeling Property Value Categorization

The value range of each property that occurs in the preferences of the user must be
categorized in order to allow users to refer to fuzzy sets (identified by the name of the
category) instead of crisp values. For example, the property responseTime can be
categorized into the three categories low, medium, and high. Each of these categories is
modeled as a fuzzy set by a membership function. The specification of four points allows
for the creation of trapezoids in the two-dimensional space that represent the
membership of crisp values in the property range to the respective category. Figure 2
depicts the membership functions for the above-mentioned example with property
responseTime. Left and right shoulder functions used for the categories low and high,
respectively, denote a membership of 1 for infinitely rsp. small and large property values
on the horizontal axis. Figure 3 depicts the relation of properties, categories, and the
characteristic points of membership functions.

Figure 2: Categories of property response time modeled by membership functions.

4.3.3 Utilization of Semantic Service Descriptions

Non-functional properties including their actual values are derived from the service
descriptions. The service IDs are used to retrieve the corresponding semantic service
description from the SOA4All service repository using its RESTful interface 9

3
. The

WSMO-Lite [] based service description may contain non-functional properties (using
the concept wl:NonFunctionalParameter defined in WSMO-Lite). These non-
functional properties are expressed by a concept of a domain ontology and is associated

9 http://iserve.kmi.open.ac.uk/resource/services/<service ID>

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 17 of 24

with a concrete value. Within the computation of the ranking, each service is reduced to
a set of key value pairs (see Figure 3).

Figure 3: UML diagram of the data objects model.

4.3.4 User Interface
The Web based user interface for modeling preference and property categorization is
developed with the Google Web toolkit. To model preferences, fuzzy IF-THEN rules are
described by the user. Therefore, the Web based user interface provides a form that allows
to enter A rule bodies within A text fields. The number A of text fields is derived from the
number A of categories of the property Acceptance. For instance, let the property
Acceptance be categorized by the four different levels of acceptance: poor, good, super,
excellent. The preferences can be expressed in four fuzzy rules. Each rule holds another
category of Acceptance in its rule head. As the number of rules, and the rule heads are
already known, the user only enters up to four expressions (see <Expression> in Table 1)
in the text fields which are marked with the corresponding level of acceptance. Editing the
rule body expressions is assisted by auto completion for the keywords defined in the
grammar and the property names defined in domain ontologies.

Figure 4 show a screenshot of a Web based user interface that allows to model the
categories of a property. In the depicted example, three categories represented by three
labeled membership functions model were added to the diagram. A trapezoid, which is
determined by four points, can be arbitrarily adjusted by the drag and drop functionality of the
four characteristic points. The user interface enforces, that acceptance of at each of the
points is in the interval [0,1] depicted on the vertical axis. The property value range on the
horizontal axis can be adjusted. Further, for acceptance=0, the horizontal extent of a
trapezoid must be equal or larger than for higher acceptance values.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 18 of 24

Figure 4: Screenshot of the user interface to define categories of a property by membership
functions.

The result of the ranking method is a ranked list of services. These are displayed in an
ordered list within the discovery user interface that is already described in D3.4.2.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 19 of 24

5. Use of Ranking within SOA4All
5.1 Use in Other Components
Service Construction
The use of ranking in service construction goes hand-in-hand with the documented use of
discovery. The repository-based approach has been evaluated with respect to the aims of
WP6 and would match particularly well where the template owner can explicitly register
which services they’re prepared to use, at run-time, and retrieve a dynamic rank based just
on these (as discussed in Section 6).

5.2 Deliverable relation with the use cases
All use cases potentially use ranking, together with discovery, especially: (WP7) in locating
relevant services within an enterprise (when, again the management of a ‘short-list’ of
services, and the dynamic provision of a rank would be advantageous) and within e-
Government scenarios, which is the longest-standing use of discovery and ranking in use
case demonstrators; (WP8) in considering the objective ranking metrics (uptime and
reliability, etc.) of third party services (SMS, etc.) in geographical regions where Ribbit does
not provide these, as in the demonstration prepared for the M24 review. WP9 has offered the
most concrete new use for DisCloud-based templates, as the long-term brokerage model of
shared templates, representing payment services, etc., fits particularly well and this will be
further investigated.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 20 of 24

6. Conclusions and Outlook
In this deliverable we have introduced the latest work on ranking, which has been oriented
towards development on the planned fuzzy ranking approach, and on integration. The
integration has itself produced two major new artifacts: the WSL4J object model, which has
been handed over to WP3 for maintenance, and the DisCloud service template repository,
which will be the basis of further work in the remainder of the project.

Plans for extension, based on DisCloud involve the following:

• full integration of the fuzzy ranking approach, as this is completed;
• provision for set-up of an ‘approved shortlist’ of matching services against a template,

and ability to retrieve a rank just across those services;
• work on scalability of discovery and ranking based on this repository.

Regarding scalability, the plan is to apply the MapReduce scheme (technically the Hadoop
implementation) to the two points in the lifecycle of the repository that require significant
computation, that is: the upload of a new template, and the notification of a new service.
Further details on this issue are contained in the Conclusion and Outlook section of D5.3.2.

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 21 of 24

Annex A. Selected JavaDocs

Packages

eu.soa4all.wsl4j

eu.soa4all.wsl4j.rpc

eu.soa4all.wsl4j.ServiceTemplate

eu.soa4all.wsl4j.WSML

All Classes

AnnotatedArtifact
Annotation
AnnotationException
Artifact
FunctionalClassificationAnnotation
Message
MessageContent
MessagePart
ModellingException
MSMService
OriginalMSMOperation
OriginalMSMService
ParseException
PartonomisedOperation
PartonomisedService
POSMService
Preference
ReferantAnnotation
RootArtifact
RPCOperation
RPCService
RuleBasedRankingNFP
RuleBasedRankingPreference
SeekdaRankingNFP
Service
ServiceTemplate
StructuralException
USEPreference
ValuedAnnotation
WSMLAnnotation

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 22 of 24

Class Hierarchy

o java.lang.Object
o eu.soa4all.wsl4j.Artifact

o eu.soa4all.wsl4j.AnnotatedArtifact
o eu.soa4all.wsl4j.RootArtifact

o eu.soa4all.wsl4j.Service
o eu.soa4all.wsl4j.rpc.RPCService

o eu.soa4all.wsl4j.rpc.OriginalMSMService
o eu.soa4all.wsl4j.rpc.PartonomisedService

o eu.soa4all.wsl4j.rpc.MSMService
o eu.soa4all.wsl4j.rpc.POSMService

o eu.soa4all.wsl4j.ServiceTemplate.ServiceTemplate
o eu.soa4all.wsl4j.rpc.RPCOperation

o eu.soa4all.wsl4j.rpc.OriginalMSMOperation
o eu.soa4all.wsl4j.rpc.PartonomisedOperation

o eu.soa4all.wsl4j.Annotation
o eu.soa4all.wsl4j.ReferantAnnotation

o eu.soa4all.wsl4j.FunctionalClassificationAnnotation
o eu.soa4all.wsl4j.ValuedAnnotation

o eu.soa4all.wsl4j.WSML.WSMLAnnotation
o eu.soa4all.wsl4j.WSML.RuleBasedRankingNFP

o eu.soa4all.wsl4j.WSML.SeekdaRankingN
FP

o eu.soa4all.wsl4j.rpc.Message
o eu.soa4all.wsl4j.rpc.MessagePart

o eu.soa4all.wsl4j.rpc.MessageContent
o eu.soa4all.wsl4j.Preference

o eu.soa4all.wsl4j.WSML.RuleBasedRankingPreference
o eu.soa4all.wsl4j.ServiceTemplate.USEPreference

 java.lang.Throwable (implements java.io.Serializable)
o java.lang.Exception

o eu.soa4all.wsl4j.ModellingException
o eu.soa4all.wsl4j.AnnotationException
o eu.soa4all.wsl4j.ParseException
o eu.soa4all.wsl4j.StructuralException

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 23 of 24

Package eu.soa4all.wsl4j

Class Summary

AnnotatedArtifact

Annotation

Artifact

FunctionalClassificationAnnotation

Preference

ReferantAnnotation

RootArtifact

Service

ValuedAnnotation

 Exception Summary

AnnotationException

ModellingException

ParseException

StructuralException

Package eu.soa4all.wsl4j.ServiceTemplate

Class Summary

ServiceTemplate

USEPreference

 SOA4All –FP7 – 215219 – Deliverable 5.4.2

© SOA4All consortium Page 24 of 24

Package eu.soa4all.wsl4j.rpc

Class Summary

Message
Deprecated.

MessageContent

MessagePart

MSMService

OriginalMSMOperation Deprecated.

OriginalMSMService Deprecated.

PartonomisedOperation

PartonomisedService

POSMService

RPCOperation

RPCService

Package eu.soa4all.wsl4j.WSML

Class Summary

RuleBasedRankingNFP

RuleBasedRankingPreference

SeekdaRankingNFP

WSMLAnnotation

	Executive summary
	1. Introduction
	1.1 Purpose and Scope
	1.2 Structure of the document

	2. Preliminaries
	2.1 ‘Objective’ Ontology-based Feature Aggregation for Multi-valued Ranking
	2.1.1 Related Documents Rank
	2.1.2 WSDL Mertrics Rank
	2.1.3 Monitoring Rank
	2.1.4 WebAPI Rank
	2.1.5 Global Rank
	2.1.6 Implementation

	2.2 ‘Subjective’ Multi-criteria Ranking based on Non-Functional Properties
	2.2.1 Implementation

	2.3 ‘Subjective’ Fuzzy Logic Based Ranking Approach

	3. Integrated Ranking Approach
	4. Implementation
	4.1 WSL4J
	4.2 DisCloud
	4.3 Fuzzy Based Service Ranking
	4.3.1 Modeling Preferences
	4.3.2 Modeling Property Value Categorization
	4.3.3 Utilization of Semantic Service Descriptions
	4.3.4 User Interface

	5. Use of Ranking within SOA4All
	5.1 Use in Other Components
	5.2 Deliverable relation with the use cases

	6. Conclusions and Outlook
	Class Hierarchy
	Package eu.soa4all.wsl4j
	Package eu.soa4all.wsl4j.ServiceTemplate
	Package eu.soa4all.wsl4j.rpc
	Package eu.soa4all.wsl4j.WSML

