

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D5.4.3 Second Service Ranking Prototype

Activity N: A2 - Core Research and Development

Work Package: WP5 – Service Location

Due Date: 30/04/2011

Submission Date: 28/04/2011

Start Date of Project: 01/03/2008

Duration of Project: 38 months

Organisation Responsible of Deliverable: KIT

Revision: 1.4 / Final for submission

Author(s): Sudhir Agarwal (KIT), Martin Junghans
(KIT), Barry Norton (KIT), José María
García (USE)

Reviewers: Usman Wajid (UNIMAN),
Jacek Kopecky (OU)

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 2 of 29

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

1.0 21.04.2011 Initial version Steffen Stadtmüller (KIT)

1.1 26.04.2011 Preference-based Ranking added José María García (US)

1.2 27.04.2011 Consolidation Barry Norton (KIT)

1.3 27.04.2011 Final review for submission Julia Wells (ATOS)

1.4 28.04.2011 Update of tables pages refs Julia Wells (ATOS)

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 3 of 29

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

2. PRELIMINARIES __ 8

2.1 ‘OBJECTIVE’ ONTOLOGY-BASED FEATURE AGGREGATION FOR MULTI-
VALUED RANKING __ 8

2.1.1 Related Documents Rank __ 8

2.1.2 WSDL Mertrics Rank ___ 8

2.1.3 Monitoring Rank ___ 8

2.1.4 WebAPI Rank ___ 8

2.1.5 Global Rank __ 9

2.1.6 Implementation __ 9

2.2 ‘SUBJECTIVE’ MULTI-CRITERIA RANKING BASED ON NON-FUNCTIONAL
PROPERTIES ___ 9

2.2.1 Implementation ___ 10

2.3 ‘SUBJECTIVE’ FUZZY LOGIC BASED RANKING APPROACH _____________ 10

3. INTEGRATED RANKING APPROACH _______________________ _____________ 11

3.1 INTEGRATED PREFERENCE BASED RANKING APPROACH _____________ 12

3.1.1 Preference Model ___ 12

3.1.2 User Interface __ 14

3.1.3 Implementation ___ 14

4. IMPLEMENTATION ___ 15

4.1 WSL4J ___ 15

4.2 DISCLOUD __ 16

4.3 FUZZY BASED SERVICE RANKING __________________________________ 19

4.3.1 Modeling Preferences __ 19

4.3.2 Modeling Property Value Categorization _____________________________ 20

4.3.3 Utilization of Semantic Service Descriptions __________________________ 21

4.3.4 User Interface __ 21

5. USE OF RANKING WITHIN SOA4ALL _____________________ _______________ 23

5.1 USE IN OTHER COMPONENTS _____________________________________ 23

5.2 DELIVERABLE RELATION WITH THE USE CASES _____________________ 23

6. CONCLUSIONS AND OUTLOOK ___________________________ _____________ 24

7. REFERENCES ___ 25

ANNEX A. SELECTED JAVADOCS _________________________________ ______ 26

CLASS HIERARCHY __ 27

PACKAGE EU.SOA4ALL.WSL4J ___ 28

PACKAGE EU.SOA4ALL.WSL4J.SERVICETEMPLATE _________________________ 28

PACKAGE EU.SOA4ALL.WSL4J.RPC _______________________________________ 29

PACKAGE EU.SOA4ALL.WSL4J.WSML _____________________________________ 29

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 4 of 29

List of Figures
Figure 1: Discovery Cloud Architecture and Interactions. ...11

Figure 2: Simplified UML representation of the preference model ..12

Figure 3. Screenshot of the preference definition UI ...13

Figure 4: Categories of property response time modeled by membership functions.20

Figure 5: UML diagram of the data objects model. ...21

Figure 6: Screenshot of the user interface to define categories of a property by membership
functions. ..22

List of Tables
Table 1 Correspondences between ranking mechanisms and preference terms13

Table 2: measurements of exclusive matching time ...18

Table 3: measurements of overall execution time ...18

Table 4 : Grammar of Fuzzy IF-THEN Rules. ...20

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 5 of 29

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

MSM Minimal Service Model

NFP Non-Functional Property/Parameter

POSM Procedure-Oriented Service Model

WP Work Package

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 6 of 29

Executive summary
In a world of ‘billions of services’, as envisioned by SOA4All, it is not sufficient merely to aid
users in finding services as an ad hoc task. It has been long-acknowledged that ranking will
be required to help users find the best offerings in a service economy, but in the work
described in this deliverable we go further. Using the latest SOA4All developments, such as
service templates and a scalable service repository, we provide an infrastructure for a long-
term, evolving relationship between service consumers and providers according to particular
consumer needs, documented in a service template. We call this approach the Discovery
Cloud, or DisCloud. The template becomes a permanent resource, not just a transient one
for an ad hoc request. Matching services are ranked at each request, reflecting the real-time
information available from the crawler and the developing SOA4All analysis platform. This
development has produced a reusable object model for service descriptions and templates,
called WSMO-Lite for Java, or WSL4J We also describe the development of both a fuzzy
logic-based approach to specifying preferences and a model that provides a super-structure
to preferences to accommodate all the fore-going approaches into the Discovery Cloud.

This deliverable is a revision to D5.4.2; Section 3.1, on the integrated preference model, is
new and Section 4.2 is completely revised and includes details on the distributed
implementation of discovery and ranking and performance evaluation.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 7 of 29

1. Introduction
In a world of ‘billions of services’, as envisioned by SOA4All, it is not sufficient merely to aid
users in finding services as an ad hoc task. It has been long-acknowledged that ranking will
be required to help users find the best offerings in a service economy. SOA4All has
proposed three approaches to ranking. An ‘objective’ ranking approach based on metrics
collected by the crawler, also developed in WP5. A ‘subjective’ ranking approach where
service descriptions can express rule-based metrics to give values to non-functional
properties (NFPs) and basic consumer preferences can be expressed over these. A
sophisticated fuzzy logic and rule-based ranking approach where metrics and other NFPs
are first fuzzified, to aid understanding by consumers, and then preferences can be
expressed by flexible rules. Integration between these approaches allows the objective
metrics to be used also in subjective user preferences, and has led to a new infrastructure,
the Discovery Cloud (DisCloud), with which we hope to make scalable discovery and ranking
scalable to allow for the foreseen rapid expansion in services.

1.1 Purpose and Scope
In this deliverable we describe the latest developments on the ranking approaches,
especially the fuzzy logic-based integration on which development is now underway, a novel
integration approach that reuses the latest developments in general SOA4All technology,
including the Service Template model and the iServe service repository, and a new approach
to modelling user preferences that covers the existing work including the fuzzy logic-based
approach.

The DisCloud service template repository is introduced to manage the long-term, evolving
relationship between service consumers and providers according to particular consumer
needs, documented in a service template. The template becomes a permanent resource, not
just a transient one for an ad hoc request. Functionally-matching services are pre-computed,
and will be updated on an on-going basis as new descriptions are added to iServe, for
efficiency. The matching services are then ranked at each request, reflecting the real-time
information available from the crawler and the developing SOA4All analysis platform. A
large-scale evaluation has been carried out of DisCloud-based discovery and ranking.

1.2 Structure of the document
This document is structured as follows. Section 2 recalls the three approaches to ranking
proposed by WP5. Section 3 describes the integration achieved, and explains its novelty;
during the last period the work described in Section 3.1 has been introduced. Section 4
describes the work to date on integrated ranking; Section 4.2 described the work in the last
period on large-scale evaluation of the integrated approach. Section 5 gives an overview of
the current uses made of ranking in the project and Section 6 describes on-going work and
the general outlook.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 8 of 29

2. Preliminaries
In this section, we give short overviews of the three approaches for service ranking, namely
the multi-valued ranking approach, the multi-criteria ranking based on non-functional
properties, and the fuzzy logic based ranking. The approaches are described in more detail
in the D5.4.1 deliverable.

2.1 ‘Objective’ Ontology-based Feature Aggregation for Multi-
valued Ranking
The ontology-based feature aggregation for multi-valued ranking approach differs for the two
types of services supported in SOA4All: WSDL services and Web APIs. For WSDL services,
first three independent ranking values (based on crawl meta-data like info on related
documents, WSDL metrics and monitoring data) are calculated. These values are then
combined to one global rank. For Web APIs we so far only take into account only the Web
API confidence score.

2.1.1 Related Documents Rank

This rank is based on the crawl meta-data that is delivered by the crawler and is calculated
based on the following information: (1) How many related documents does a service have?
(2) How is the document related to a specific service?

In a first step we calculate the number of related documents per service. This value is stored
using the hasNumberOfRelatedDocuments relation of the seekda Ranking Ontology. Now
the related documents rank is calculated. The final rank is stored for each service using the
hasRelatedDocsRank relation of the seekda Ranking Ontology.

2.1.2 WSDL Mertrics Rank

This rank is based on metrics that we extract from the WSDL descriptions. We currently take
into account the documentation of (a) the service element, and (b) the operations. The rank
is calculated as follows. We put more importance on the documentation of the single
operations than of the service documentation, as we think that the operation might contain
useful information regarding the functionality provided by the operation and regarding its
invocation. We currently do not differentiate between whether all operations of a service are
documented or only one or some. The final rank is stored for each service using the
hasWSDLMetricRank relation of the seekda Ranking Ontology.

2.1.3 Monitoring Rank

This rank is based on the liveliness information of a service, e.g., is the server reachable,
does it correctly implement the SOAP protocol, etc. This liveliness information is delivered by
seekda on a weekly basis. The availability score is a number between 0 and 1 that is set
depending on the endpoint check result. In between different scores are set to express
pages that are not found, pages that require a login or an authentication, etc., mostly based
on the HTTP response code.

We get the average service availability score for different time periods: last week, last month
and last 6 months. We assume that the long-time availability of a service is more relevant
than only the short-time availability over one week. The rank is stored for each service using
the hasMonitoringRank relation of the seekda Ranking Ontology:

2.1.4 WebAPI Rank

For ranking Web APIs we currently only take into account the Web API confidence score.
This score is calculated based on two classifiers within the crawler that check whether a Web

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 9 of 29

resource might be a Web API or not. The rank is based on the following information: (1)
What is the Web API Confidence score of a document? (2) Which crawler classifier has
classified the document as Web API?

To calculate the rank we need to extract both the score and the component that has
assigned the score. Based on first evaluations of the classifiers, we deem the score of the
SVM classifier more important than the one of the Web API Evaluator.

2.1.5 Global Rank

As already mentioned above, the calculation of the global rank differs depending on whether
the ranked service is a WSDL-based service or a Web API. For WSDL services we calculate
the global rank based on the Related Documents Rank, the WSDL Metrics Rank and the
Monitoring Rank. The single ranks are numbers between 0 and 1, and from these we
calculate the global rank while putting equal relevance on the availability of documentation
(related documents being estimated more important than the documentation within the
WSDL) and on the liveliness of a service. The global rank is stored for each service using the
hasGlobalRank relation of the seekda Ranking Ontology.

For Web APIs, the calculation is simple: the WebAPI Rank is at the same time the global
rank of the service.

2.1.6 Implementation

The service ranks produced by seekda take as input meta-data in RDF triples format and
returns the ranks in the same way. We use the seekda Ranking Ontology to store and
distribute the service ranks. In the meanwhile we have a Java component that calculates the
ranks.

Together with the single ranks we will distribute the meta-data triples that the ranks are
based upon. As both the single ranks and the global rank are values between 0 and 1, all
reasoners that can do ordering on numbers are able to work with the ranks. The RDF data
will be delivered as dump on a weekly basis by seekda. The triples will then be added to the
SOA4All semantic spaces and will be available to the Studio.

2.2 ‘Subjective’ Multi-criteria Ranking based on No n-Functional
Properties
Non-functional properties specified in the user request and service descriptions are
formalized by means of logical rules using terms from NFP ontologies. The logical rules used
to model NFPs of services are evaluated, during the ranking process, by a reasoning engine.
Additional data is required during this process: (1) which NFPs the user is interested in, (2)
the importance of each of these NFPs, (3) how the list of services should be ordered (i.e.,
ascending or descending) and (4) concrete instance data. The non-functional properties
values obtained by evaluating the logical rules are sorted and the ordered list of services is
built.

Once the preprocessing is completed each service is assessed in order to determine
whether the non-functional properties specified in the user request are available in service
description. If this is the case, the algorithm extracts the corresponding logic rules and
evaluates them using the WP3 reasoning engine which supports WSML rules. A quadruple
structure is built that contains the computed value and its importance for each service and
non-functional property. An aggregated score is computed for each service by summing the
normalized values of non-functional properties weighted by importance values. The results
are collected in a set of tuples, each tuple containing the service id and the computed score.
Finally, the scores are ordered as specified by the user and the final list of services returned.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 10 of 29

2.2.1 Implementation

The multi-criteria ranking approach takes as input a set of services annotated using the
WSMO-Lite ontology and a user request using the new Service Template model. The result
is presented in a form of ordered list of services. Furthermore, for each service in the list
additional information can be provided such as the score for each non-functional property
requested by the user as well as the aggregated score. The implementation uses the IRIS
reasoner to evaluate the values of non-functional properties. The multi-criteria ranking
approach is implemented as a Java component and is exposed as a web service.

The high level interface for the ranking component is provided below.

@WebMethod(operationName = "rank")
@WebResult(name = "rankedServices")
String[] rank(@WebParam(name = "services") String[] services,
 @WebParam(name = "templateURI") St ring template) throws
RankingException;

In the above method signature the input array of Strings represents the IDs of the services
being ranked and the output array of Strings represents the same IDs of services but in this
case the services (IDs) are ranked according to user preferences available in the goal
description.

2.3 ‘Subjective’ Fuzzy Logic Based Ranking Approach
This process of computing a fuzzy logic-based rank of a service consists of four main steps:
(1) Fuzzification (2) Inferencing (3) Aggregation and (4) Defuzzification. The user
preferences are specified as fuzzy IF-THEN rules.

During fuzzification, the crisp values of the non-functional properties of the service are
fuzzified, i.e. their fuzzy memberships in the fuzzy sets associated with the properties are
computed. During inferencing, each fuzzy IF-THEN rule is processed and a degree of
fulfillment of the rule is computed. The fuzzy set in the conclusion of a rule are chopped at
the level that equals to degree of fulfillment of the premise of the rule. During aggregation,
the chopped fuzzy sets in the conclusion of the rules are aggregated. The aggregated fuzzy
set denotes the rank of the service as a fuzzy set, which is then defuzzified to a crisp value
between 0 and 1 to obtain the actual rank of the service.

The novelties of the fuzzy logic based service ranking approach can be summarized as
follows.

1. Expressivity: This approach is capable to model complex preferences and thus to
consider relationships between different non-functional properties. For instance, the
prior approaches did not allow users to formulate that a Web service with a high price
and with a comparably large response time is not acceptable.

2. Efficiency: Using fuzzy logics introduces the well proven benefits low computational
costs to compute a ranking. Considering the vast number of targeted Web service
descriptions and the potential size of user preferences, the complexity of a Web
service ranking algorithm is crucial for usability.

3. Practicability: Users are not forced to formulate crisp preferences; they do not even
need to be aware about specific values of a property. The fuzzy logic based approach
allows users to formulate requirements rather vaguely.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 11 of 29

3. Integrated Ranking Approach
In order to bring together together the three approaches to ranking, and to take best
advantage of SOA4All developments such as Service Templates and the RESTful repository
for service descriptions, we have introduced an integrated ranking approach based on the
following principles:

• The various ‘objective’ ranking metrics, made available via the crawler as described
in Section 2.1.1, should be dynamically encoded in NFPs attached to semantic
service descriptions in such a way that they are available (for users to include in their
preferences) in the subjective ranking described in Section 2.1.2.

• The rules applied to derive metrics as NFPs for service descriptions in the approach
described in Section 2.1.2 should be made available for ‘fuzzification’ in the fuzzy
ranking approach described in Section 2.1.3.

• A repository-oriented approach to Service Templates has been investigated, where:
o templates are stored as permanent resources, which may be private (brokered

only for the uploading client) or shared;
o the functional match with services, i.e. the discovery approach described in

D5.3.2 should be carried out on upload and kept up-to-date with new services,
with discovery against each brokered service triggered by notifications of new
uploads from iServe;

o ranking should be carried out at request, taking advantage of the all three
ranking approaches – i.e. based on the subjective preferences of the
requester, but allowing preferences to be specified over the up-to-date metrics
used for objective ranking.

The intended architecture and interaction is as shown in Figure 1, as described in the
following section.

Service

Template

DisCloud

iServe

Service

Description

Semantic

Discovery

Reasoner

Rule-Based

Ranking

Service

Template
Service

Description

Seekda

Ranking Metadata

Service

Description

1
2

3

1. (POST) RDF

2.a. SPARQL 2.b. RDF 3. RDF

4. WSML

7. RDF

8. WSML

5.a. (GET) URI

6. RDF

5.b. RDF

Figure 1: Discovery Cloud Architecture and Interactions.

© SOA4All consortium

3.1 Integrated Preference Based
In order to take full advantage of the three developed ranking techniques detailed in the
D5.4.1 deliverable, a user should be able to express preferences using every facility those
ranking techniques provide, at the same time. In order t
ranking approach have been developed, so that a user can define and compose preferences
using a generic and expressive model that integrate preference definitions used in the other
ranking techniques. This integrated rank
available ranking techniques using a common, unique access point to them.

3.1.1 Preference Model

The preference model used in this approach is an adaptation of a comprehensive, user
friendly model described in [1]
different preference terms that are handled internally by the corresponding ranking approach,
and then composite preferences can be used to compose those terms, defining the
relationship between previously expressed atomic preferences.
representation of this preference model.

Figure 2: Simplified UML representation

Essentially, each preference term is handled by a corresponding ranking mechanism, namely
‘objective’ ranking metrics, multi
while more generic composite preferences are d
framework used in the implementation (see Ranking Implementation section). Note that fuzzy
preferences representation is simplified in the diagram (see Fuzzy Logic Based Ranking
Approach section for a more detailed
terms and ranking mechanisms are summarized in

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

Integrated Preference Based Ranking Approach
In order to take full advantage of the three developed ranking techniques detailed in the
D5.4.1 deliverable, a user should be able to express preferences using every facility those
ranking techniques provide, at the same time. In order to achieve this goal, an integrated
ranking approach have been developed, so that a user can define and compose preferences
using a generic and expressive model that integrate preference definitions used in the other
ranking techniques. This integrated ranking approach can be viewed as a façade to access
available ranking techniques using a common, unique access point to them.

The preference model used in this approach is an adaptation of a comprehensive, user
friendly model described in [1]. Basically, the user can express atomic preferences using
different preference terms that are handled internally by the corresponding ranking approach,
and then composite preferences can be used to compose those terms, defining the

eviously expressed atomic preferences. Figure
representation of this preference model.

: Simplified UML representation of the preference model

Essentially, each preference term is handled by a corresponding ranking mechanism, namely
‘objective’ ranking metrics, multi-criteria NFP-based ranking, and fuzzy logic based ranking,
while more generic composite preferences are directly handled by the integrated ranking
framework used in the implementation (see Ranking Implementation section). Note that fuzzy
preferences representation is simplified in the diagram (see Fuzzy Logic Based Ranking
Approach section for a more detailed description). The correspondences between preference
terms and ranking mechanisms are summarized in Table 1.

Page 12 of 29

In order to take full advantage of the three developed ranking techniques detailed in the
D5.4.1 deliverable, a user should be able to express preferences using every facility those

o achieve this goal, an integrated
ranking approach have been developed, so that a user can define and compose preferences
using a generic and expressive model that integrate preference definitions used in the other

ing approach can be viewed as a façade to access
available ranking techniques using a common, unique access point to them.

The preference model used in this approach is an adaptation of a comprehensive, user-
. Basically, the user can express atomic preferences using

different preference terms that are handled internally by the corresponding ranking approach,
and then composite preferences can be used to compose those terms, defining the

Figure 2 shows a UML

of the preference model

Essentially, each preference term is handled by a corresponding ranking mechanism, namely
based ranking, and fuzzy logic based ranking,

irectly handled by the integrated ranking
framework used in the implementation (see Ranking Implementation section). Note that fuzzy
preferences representation is simplified in the diagram (see Fuzzy Logic Based Ranking

description). The correspondences between preference

© SOA4All consortium

Table 1 Correspondences between

Preference Term

LowestPreference

HighestPreference

ObjectiveRankingPreference

ParetoPreference

PrioritizedPreference

WeightedPreference

FuzzyPreference

Atomic preferences are related to a domain
should be optimized to fulfil the user
preference means that the user prefers an NFP value the lower (the higher) the better. These
preferences mimic the ascending or descending order defined in the multi
based ranking approach, while using Weighted preferences the user can define each atomic
preference interest value.

The objective ranking metrics approach is actually an optimization of ranking metrics, so it is
handled similarly to a highest preference, but the referred domai
of the available metrics. Finally, users can compose preferences by balancing their fulfilment
degree (a Pareto preference) or prioritizing some preferences over others (a Prioritized
preference). See [1] for further details.

Figure 3. Screenshot of the preference definition UI

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

Correspondences between ranking mechanisms and preference terms

Ranking Mechanism

MultiCriteriaRanking

MultiCriteriaRanking

ObjectiveRankingPreference ObjectiveMetricsRanking

DefaultParetoRanking

DefaultPrioritizedRanking

MultiCriteriaRanking

FuzzyLogicBasedRanking

Atomic preferences are related to a domain-specific concept that represents a NFP that
should be optimized to fulfil the user preference over it. For instance, a Lowest (a Highest)
preference means that the user prefers an NFP value the lower (the higher) the better. These
preferences mimic the ascending or descending order defined in the multi

h, while using Weighted preferences the user can define each atomic

The objective ranking metrics approach is actually an optimization of ranking metrics, so it is
handled similarly to a highest preference, but the referred domain concept to optimize is one
of the available metrics. Finally, users can compose preferences by balancing their fulfilment
degree (a Pareto preference) or prioritizing some preferences over others (a Prioritized
preference). See [1] for further details.

. Screenshot of the preference definition UI

Page 13 of 29

ranking mechanisms and preference terms

specific concept that represents a NFP that
preference over it. For instance, a Lowest (a Highest)

preference means that the user prefers an NFP value the lower (the higher) the better. These
preferences mimic the ascending or descending order defined in the multi-criteria, NFP-

h, while using Weighted preferences the user can define each atomic

The objective ranking metrics approach is actually an optimization of ranking metrics, so it is
n concept to optimize is one

of the available metrics. Finally, users can compose preferences by balancing their fulfilment
degree (a Pareto preference) or prioritizing some preferences over others (a Prioritized

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 14 of 29

3.1.2 User Interface

A user interface to define preferences and rank services accordingly have been developed,
using the Google Web Toolkit and based on Universidad de Sevilla’s AcME modelling
toolkit1. This interface allows the user to easily define preferences based on the discussed
model. For instance, in Figure 3, a user has defined a preference that balance the
importance of a higher global rank with a multi-criteria preference over a lower price (with an
interest value of 0.6) and a higher number of delivered SMS (with an interest value of 0.4).

Additionally, the user interface can also be used to test the integrated preference based
ranking implementation, so a set of pre-loaded services can be ranked in terms of the
created preferences. Using the “Rank services” button, the resulting ranking of services is
shown. In the next section this integrated ranking implementation is introduced.

3.1.3 Implementation

The developed integrated preference based ranking approach uses preferences defined after
the presented model in order to rank a set of discovered services. As described before, each
preference term is handled by a particular ranking mechanism. In order to correctly call each
mechanism, compose the results, and manage in general the integrated ranking process, the
implementation is based on the PURI framework, developed by Universidad de Sevilla as a
working implementation of the model discussed in [1].

PURI2 stands for Preference-based Universal Ranking Integration framework, and provides
facilities to integrate several ranking mechanisms by using an extended preference model.
The integrated ranking approach adapts the PURI framework, integrating the three ranking
approaches described in this deliverable.

This implementation is published as a web service that provides a method called rank that
takes a set of services to rank and the user preference defined after the discussed
preference model. Concretely, this method firstly analyses the user preference. Then, service
ranking for each preference term is delegated to the corresponding ranking mechanism
presented in Table 1. The adaptation of PURI framework that has been developed is
responsible to both the delegation mechanism and the composition of ranked results for each
preference term. Finally, the method returns the requested ranked list of services.

1 AcME development has been supported by the European Commission (FEDER) and
Spanish Government under CICYT project SETI (TIN2009-07366) and PPP project
SMARTGRID. More information can be found at http://www.isa.us.es/acme
2 PURI is currently under development, supported by the European Commission (FEDER)
and Spanish Government under CICYT project SETI (TIN2009-07366). An early prototype
described in [2] can be found at http://www.isa.us.es/upsranker

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 15 of 29

4. Implementation
The implementation is intended to support the interaction shown in Figure 1, and so create
an effective service template repository called DiscoveryCloud, or DisCloud, as follows:

1. The client formalises their functional requirements using the SOA4All Service
Template model, and their preferences using the chosen preference model, encode
these together in RDF and HTTP POST them to the new repository.

2.a. The functional classification(s) requested in the service template are used to pre-
select potential service matches from iServe, using a SPARQL query;

2.b. The appropriate service definitions are retrieved, in RDF;

3. Semantic discovery is extended, as described in D5.3.2, to have an interface based
on the new Service Template model;

4. Semantic discovery encodes the appropriate WSML queries to refine the set of
matching services that are then stored.

5.a. The repository waits (or rather, when available, uses iServe upload notifications to
keep an up-to-date list of functional matches) until the user requests information on
the status of the template (with an HTTP GET);

6. At this point the latest objective ranking metrics are retrieved from the seekda
crawler via the metadata repository API and are used to update the RDF description
of the services, adding further NFPs;

7. The updated (MSM) service descriptions are passed to the WSML or Fuzzy
rule-based ranking engine

5.b. The ranked services are returned to the user.

4.1 WSL4J
In order to support validation of service templates, and the addition of preference models to
MSM (which has been renamed Procedure-Oriented Service Model, or POSM3, as a result of
the proposed RPC Service Model of D3.4.6), a parsing (from RDF serialisations) Java object
model was developed.

Alongside the developments described for DisCloud this was then extended to:

• directly load service descriptions from iServe;
• directly load service templates from DisCloud;
• automatically load and encode ranking metrics from the seekda metadata repository;
• serialise models back to RDF (n3/Turtle and RDF/XML syntax).

As well as being used in the development of DisCloud, this object model was used to update
the interfaces of all semantic ranking and discovery components.

Thereafter, having demonstrated its general utility, it was renamed WSL4J (WSMO-Lite for
Java) and contributed to WP3 for maintenance.

The Javadocs for WSL4J have been included in Annex A.

3 http://www.wsmo.org/ns/posm/

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 16 of 29

4.2 DisCloud
The Discovery Cloud, or DisCloud2, stores service descriptions as well as service templates,
both consisting of a pair of SPARQL graph patterns. In case of a service description, these
patterns are representing the input and output of the described service. In case of a service
template the patterns are representing the input a client can provide to invoke a service and
the output the client requests.

The DisCloud offers a RESTful repository API: Service descriptions and templates can be
POSTed, returning the usual HTTP status codes:

o 201 Created – the service description/template has been stored and its new
representation can be retrieved from the URI returned in the Location HTTP header
field;

o 400 Bad Request – the model passed did not validate;

o 401 Unauthorised – the client did not pass relevant authorisation header (DisCloud is
being integrated with the authorisation system of the SOA4All Studio).

Stored service descriptions and templates can later be DELETEd, with the normal HTTP
responses (depending on authorisation):

o 200 OK – service description/template will no longer be available;

o 401 Unauthorised – the client is not the owner of the resource.

Every submitted template is stored and matched with all currently stored service
descriptions. Jena4, a Java framework for building Semantic Web applications, and ARQ5, a
query engine for Jena, is used to implement the matching mechanism. To determine if a
service description matches a template it is calculated, if the graph representing the input in
the service description is ‘contained’ in the graph representing the input in the template;
equivalent to checking whether the promised input is enough to invoke the described service.
Analogously it is determined if the graph pattern representing the output of the template is
contained in the graph representing the output in the service description. This is equivalent to
checking, if the output of the described service is enough to satisfy the demands declared in
the template.

To allow for a sophisticated ranking, instead of just a binary discovery decision, additionally
two other metrics calculated: The predicate subset ratio, which measures the fraction of
predicates used in the input graph pattern of the service description, that are also used in the
input graph pattern in the template (and vice versa for output graph patterns). The resource
subset ratio analogously measures the fraction of resources in subject or object position of
the triple patterns in one graph that are used in the other.

These two metrics provide a continuum of matches be expressing to what degree, the
template and the service description use the same vocabulary. To calculate the two ratios for
input and output respectively ARQ SPARQL SELECT queries are executed over the
skolemized graphs to extract the set of predicates (resources) used in the graph patterns.
Each set of metrics, generated in this way, for every combination of template and service
descriptions is tagged with an identifier consisting of a combination of respective service
description URI and template URI.

To allow service descriptions to be updated, or to populate the system with new service

4 http://openjena.org
5 http://jena.sourceforge.net/ARQ/

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 17 of 29

descriptions, an analogous process is employed. A submitted (via HTTP POST) service
description is stored in the system and matched with all service templates. The resulting
metrics are also tagged with an identifier and complement the already existing results. Thus,
every combination of template and service description has a set of results that is persistently
saved and can be retrieved from the system via HTTP GET.

Apache Hadoop6, the open-source implementation of Google MapReduce, is used to provide
for scalability. The Hadoop software allows for parallel computation of the metrics on different
nodes in a cluster of machines.

OpenCirrus7, a research testbed for cloud-based systems, is used to deploy the DisCloud.
This environment provides an “infrastructure as a service”-cloud (IaaS) to easily create and
configure virtual machines that act as independent computers. These machines are used to
set up a Hadoop cluster. This implies, that the cluster runs on top of a cloud, further
abstracting from actual physical hosts.

When a template, or service description, is submitted, Hadoop calculates the matching
metrics by transferring and executing the code, that implements the matching mechanism
together with the submitted template, to the nodes where the service descriptions (templates)
are stored, rather than moving the data to the code.

After calculation of the metrics, a timestamp and the identifier are assigned to every set of
metrics, which are persistently saved on cloud. Since the system also allows for updating
templates and service descriptions by re-submitting a new version of them with the same
identifier the newly generated results are compared with the results that are already stored. If
a submitted service description is tagged with the same URI than a preexisting service
description (i.e., an update is intended), some of the generated results will also have the
same identifiers. In this case the older results are deleted, which can be checked by using
the mentioned timestamps.

To evaluate the performance of the DisCloud a generator was developed to create random
pairs related SPARQL graph patterns within boundaries, set by certain parameters,
described below. These graph patterns can be interpreted as input and output of service
descriptions or templates.

For evaluation 10 000 service descriptions have been generated and deployed on the
DisCloud. The graph patterns in these service descriptions are composed with a random
number between 5 and 50 of triple patterns. The triple patterns for every respective pair are
generated with resources in subject or object position, randomly drawn out of a local
resource pool consisting of 10 to 50 different (URI-identified) resources. These local
resources are randomly drawn out of a global pool of 500 resources. The predicates in the
triple patterns of the tuples are also randomly drawn out of 3 to 25 different predicates in a
local predicate pool. And again this local pool is randomly chosen out of a global pool of 250
predicates. So the difference between the local and global pools is, that the global pools of
resources and predicates are used for all tuples, whereas the local predicates and resources
are only consistent for both of the graph patterns within a tuple. This approach is chosen to
establish a credible relationship between input and output.

Additionally the generator uses variables, rather than resources, in subject or object position
with a probability of 0.3 in each case. A variable is used in predicate position with a

6 http://hadoop.apache.org
7 http://opencirrus.org

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 18 of 29

probability of 0.2. In every tuple between 2 and 10 different variables are used. Since
variables are already locally valid within one tuple, no global variable pool to draw from is
needed. Additionally a generated pair of graph patterns is used as template with the same
parameters.

Then the matching process for the generated template over all service descriptions was
triggered on the DisCloud using different setups with one, two, five, eight and ten Hadoop
worknodes on the OpenCirrus testbed. The execution time needed for the matching itself as
well as the overall execution time was measured. The latter includes the time needed to
compare the newly calculated with the preexisting metric sets (i.e. the update mechanism).
To account for fluctuations in network traffic we measured the matching on each setup twice.
The results are shown in Table 1 and Table 2.

Table 2: measurements of exclusive matching time

Worknodes Execution Time (sec) Mean (sec) Standard
deviation (sec)

Standard error
(sec)

1 1. 394.3 395 1 0.7
2. 395.8

2 1. 223.6 221.5 3 2.1
2. 219.3

5 1. 120.6 122.4 2.4 1.7
2. 124

8 1. 121.7 119.5 3.2 2.3
2. 117.2

10 1. 81.4 81.8 0.5 0.4
2. 82.1

Table 3: measurements of overall execution time

Worknodes Execution Time (sec) Mean (sec) Standard
deviation (sec)

Standard error
(sec)

1 1. 477.3 470.3 9.9 7.0
2. 463.3

2 1. 283.7 280.4 4.7 3.3
2. 277

5 1. 169.7 162.9 9.6 6.8
2. 156

8 1. 155.3 161.2 8.2 5.9
2. 167.1

10 1. 134 127.8 8.7 6.2
2. 121.7

The calculation of the metrics alone took between 81.4 sec, on ten worknodes, and 395.8
sec, on one worknode. The overall execution time was measured between 121.7 sec using
ten worknodes, and 477.3 sec on one worknode. This observation shows, that a high
scalability is achieved, which cannot only be attributed to the increase of computation
resources (i.e., adding additional CPUs and memory with every worknode), but also to the
strategic distribution and execution of matching tasks.

For the overall execution time the standard deviation ranges between 4.7 sec and 9.9 sec,
which results in a standard error between 3.3 sec and 7 sec. For the exclusive matching
process the standard deviation is measured between 0.5 sec and 3.2 sec, which results in a

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 19 of 29

standard error between 0.4 sec and 2.3 sec. Those values clearly indicate the stability of the
system.

These results are not only valid for the matching a template over service descriptions, but
also for populating the discovery system with a new service description, because they are
syntactically equivalent and the process to submit a new service description is symmetrical to
the process of submitting a new template.

4.3 Fuzzy Based Service Ranking
This service ranking approach proposes a fuzzy logic based ranking mechanism that
considers an extended model of preferences including vagueness. In D5.4.1 we
introduced a fuzzy logic approach for modeling user preferences. We use fuzzy IF-THEN
rules to express user preferences and relationships between values of non-functional
properties. Then, fuzzy logic based ranking approach features the abilities:

- to express vagueness while expressing preferences using linguistic terms instead
of crisp values;

- to assign crisp property values to different categories by specifying overlapping
fuzzy sets membership functional that model these categories;

- to create complex preferences constructed by the combination of simple terms.

We implemented the ranking component as a Web service8. It provides two public
methods. One method ‘addPropertyClasification’ that lets users add categorizations of
properties. This method requires a property name and a set of membership functions
over those categories. As depicted in Figure 5, each category is represented by a unique
category name and four characteristic points of the membership function.

The second method ‘rankServices ’ computes the ranking according to preferences
specified by the user. The signature of the method is defined as follows. The method
receives a set of service IDs used to identify the semantic service description, and the
user preference expressed by a set of fuzzy IF-THEN rules. As a result, the method
returns an ordered list of service IDs with ascending degree of fulfillment of the
preferences. In the following, we will provide insights on the modeling preferences and
property categories with fuzzy sets within the user interface.

4.3.1 Modeling Preferences

Preferences of the user are represented by a set of fuzzy IF-THEN rules; one rule for
each category of the acceptance property at most. The conclusion of the rule, i.e., the
THEN part, refers to exactly one category of the acceptance property. The grammar to
express IF-THEN rules is given in Table 4 in Backus-Naur Form. PropertyName and
PropertyCategory refer to the name of a property like ‘ex:responseTime’ in the
namespace abbreviated by ‘ex’ and a category like ‘low’ that should be defined for the
rsp. property. In this example, a term is ‘responseTime=low’.

8 The service ranking Web service is available at http://km.aifb.kit.edu/services/soa4all-
discovery/axis2/services/FuzzyServiceRanking?wsdl

© SOA4All consortium

Table

<Rule> ::=
<Body> ::= <Expression>
<Expression> ::=
<Conjunction>
 | <Disjunction> | <Negation>
<Conjunction> ::=
<Disjunction> ::=
<Negation> ::=
<Term> ::= PropertyName
<Head> ::= ‘Acceptance=

The simple syntax of the rules allows to express complex preferences using
conjunctions, disjunctions, negations, and nesting.
preferences, a parser translates the preferences specified in a user interface into the
Java object model as shown in

4.3.2 Modeling Property Value

The value range of each property that occurs in the preferences of the user must be
categorized in order to allow
category) instead of crisp values. For example, the property
categorized into the three categories
modeled as a fuzzy set by a membership function. The specification of four points allows
for the creation of trapezoids in the two
membership of crisp values in the property range to the respective category.
depicts the membership functions for the above
responseTime. Left and right shoulder functions used for the categories
respectively, denote a membership of 1 for infinitely rsp. small and large property values
on the horizontal axis. Figure
characteristic points of membership functions.

Figure 4: Categories of property

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

Table 4 : Grammar of Fuzzy IF-THEN Rules.

::= ‘IF ’ <Body> ‘THEN’ <Head>
<Expression>
::= <Term> | ‘(‘ <Expression> ‘)’ |

| <Disjunction> | <Negation>
::= <Expression> ‘AND’ <Expression>
::= <Expression> ‘OR’ < Expression
 ‘NOT’ <Expression>
PropertyName ‘=’ PropertyCategory
Acceptance= ’ PropertyCategory

The simple syntax of the rules allows to express complex preferences using
disjunctions, negations, and nesting. In order to process

preferences, a parser translates the preferences specified in a user interface into the
Java object model as shown in Figure 5 representing preferences internally.

Value Categorization

The value range of each property that occurs in the preferences of the user must be
categorized in order to allow users to refer to fuzzy sets (identified by the name of the
category) instead of crisp values. For example, the property responseTime
categorized into the three categories low, medium, and high. Each of these categories is

a membership function. The specification of four points allows
for the creation of trapezoids in the two-dimensional space that represent the
membership of crisp values in the property range to the respective category.
depicts the membership functions for the above-mentioned example with property

. Left and right shoulder functions used for the categories
, denote a membership of 1 for infinitely rsp. small and large property values

Figure 5 depicts the relation of properties, categories, and the
characteristic points of membership functions.

Categories of property response time modeled by membership functions.

Page 20 of 29

| ‘(‘ <Expression> ‘)’ |

<Expression>
Expression >

The simple syntax of the rules allows to express complex preferences using
In order to process given user

preferences, a parser translates the preferences specified in a user interface into the
representing preferences internally.

The value range of each property that occurs in the preferences of the user must be
users to refer to fuzzy sets (identified by the name of the

responseTime can be
. Each of these categories is

a membership function. The specification of four points allows
dimensional space that represent the

membership of crisp values in the property range to the respective category. Figure 4
mentioned example with property

. Left and right shoulder functions used for the categories low and high,
, denote a membership of 1 for infinitely rsp. small and large property values

categories, and the

modeled by membership functions.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 21 of 29

4.3.3 Utilization of Semantic Service Descriptions

Non-functional properties including their actual values are derived from the service
descriptions. The service IDs are used to retrieve the corresponding semantic service
description from the SOA4All service repository using its RESTful interface9. The WSMO-
Lite [Error! Reference source not found.] based service description may contain non-
unctional properties (using the concept wl:NonFunctionalParameter defined in
WSMO-Lite). These non-functional properties are expressed by a concept of a domain
ontology and is associated with a concrete value. Within the computation of the ranking,
each service is reduced to a set of key value pairs (see Figure 5).

Figure 5: UML diagram of the data objects model.

4.3.4 User Interface

The Web based user interface for modeling preference and property categorization is
developed with the Google Web toolkit. To model preferences, fuzzy IF-THEN rules are
described by the user. Therefore, the Web based user interface provides a form that allows
to enter A rule bodies within A text fields. The number A of text fields is derived from the
number A of categories of the property Acceptance. For instance, let the property
Acceptance be categorized by the four different levels of acceptance: poor, good, super,
excellent. The preferences can be expressed in four fuzzy rules. Each rule holds another
category of Acceptance in its rule head. As the number of rules, and the rule heads are
already known, the user only enters up to four expressions (see <Expression > in Table 4)
in the text fields which are marked with the corresponding level of acceptance. Editing the
rule body expressions is assisted by auto completion for the keywords defined in the
grammar and the property names defined in domain ontologies.

Figure 6 show a screenshot of a Web based user interface that allows to model the

9 http://iserve.kmi.open.ac.uk/resource/services/<service ID>

© SOA4All consortium

categories of a property. In the depicted example, three
labeled membership functions model were added to the diagram. A trapezoid, which is
determined by four points, can be arbitrarily adjusted by the drag and drop functionality of the
four characteristic points. The user inter
points is in the interval [0,1] depicted on the vertical axis. The property value range on the
horizontal axis can be adjusted. Further
trapezoid must be equal or larger than for higher acceptance

Figure 6: Screenshot of the user interface to define categories of a property by membership
functions.

The result of the ranking method is a ranked list of services. These are display
ordered list within the discovery user interface that is already described in

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

categories of a property. In the depicted example, three categories represented by three
labeled membership functions model were added to the diagram. A trapezoid, which is
determined by four points, can be arbitrarily adjusted by the drag and drop functionality of the
four characteristic points. The user interface enforces, that acceptance of at each of the
points is in the interval [0,1] depicted on the vertical axis. The property value range on the
horizontal axis can be adjusted. Further, for acceptance=0, the horizontal extent of a

r larger than for higher acceptance values.

: Screenshot of the user interface to define categories of a property by membership

The result of the ranking method is a ranked list of services. These are display
ordered list within the discovery user interface that is already described in

Page 22 of 29

categories represented by three
labeled membership functions model were added to the diagram. A trapezoid, which is
determined by four points, can be arbitrarily adjusted by the drag and drop functionality of the

face enforces, that acceptance of at each of the
points is in the interval [0,1] depicted on the vertical axis. The property value range on the

the horizontal extent of a

: Screenshot of the user interface to define categories of a property by membership

The result of the ranking method is a ranked list of services. These are displayed in an
ordered list within the discovery user interface that is already described in D3.4.2.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 23 of 29

5. Use of Ranking within SOA4All
5.1 Use in Other Components
Service Construction

The use of ranking in service construction goes hand-in-hand with the documented use of
discovery. The repository-based approach has been evaluated with respect to the aims of
WP6 and would match particularly well where the template owner can explicitly register
which services they’re prepared to use, at run-time, and retrieve a dynamic rank based just
on these (as discussed in Section 6).

5.2 Deliverable relation with the use cases
All use cases potentially use ranking, together with discovery, especially: (WP7) in locating
relevant services within an enterprise (when, again the management of a ‘short-list’ of
services, and the dynamic provision of a rank would be advantageous) and within e-
Government scenarios, which is the longest-standing use of discovery and ranking in use
case demonstrators; (WP8) in considering the objective ranking metrics (uptime and
reliability, etc.) of third party services (SMS, etc.) in geographical regions where Ribbit does
not provide these, as in the demonstration prepared for the M24 review. WP9 has offered the
most concrete new use for DisCloud-based templates, as the long-term brokerage model of
shared templates, representing payment services, etc., fits particularly well and this will be
further investigated.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 24 of 29

6. Conclusions and Outlook
In this deliverable we have introduced the latest work on ranking, which has been oriented
towards development on the planned fuzzy ranking approach, a unified preference model,
and on integration. The integration has itself produced two major new artifacts: the WSL4J
object model, which has been handed over to WP3 for maintenance, and the DisCloud
service template repository, which will be the basis of further work in the remainder of the
project.

Finally, to achieve scalability a distributed Hadoop-based implementation has been carried
out and evaluated at large scale, as previously sketched in Deliverables 5.3.2 and 5.4.2.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 25 of 29

7. References
1. J. M. Garcia, D. Ruiz, A. Ruiz-Cortés. A Model of User Preferences for Semantic

Services Discovery and Ranking, in: L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije,
H. Stuckenschmidt, L. Cabral, T. Tudorache (Eds.), ESWC (2), Vol. 6089 of LNCS,
Springer, 2010, pp. 1–14.

2. J. M. García, I. Toma, D. Ruiz, and A. Ruiz-Cortés. A service ranker based on logic
rules evaluation and constraint programming, in: 2nd ECOWS Non-Functional
Properties and Service Level Agreements in Service Oriented Computing Workshop,
volume 411 of CEUR Workshop Proceedings, Dublin, Ireland, Nov 2008.

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 26 of 29

Annex A. Selected JavaDocs

Packages

eu.soa4all.wsl4j

eu.soa4all.wsl4j.rpc

eu.soa4all.wsl4j.ServiceTemplate

eu.soa4all.wsl4j.WSML

All Classes

AnnotatedArtifact
Annotation
AnnotationException
Artifact
FunctionalClassificationAnnotation
Message
MessageContent
MessagePart
ModellingException
MSMService
OriginalMSMOperation
OriginalMSMService
ParseException
PartonomisedOperation
PartonomisedService
POSMService
Preference
ReferantAnnotation
RootArtifact
RPCOperation
RPCService
RuleBasedRankingNFP
RuleBasedRankingPreference
SeekdaRankingNFP
Service
ServiceTemplate
StructuralException
USEPreference
ValuedAnnotation
WSMLAnnotation

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 27 of 29

Class Hierarchy

o java.lang.Object
o eu.soa4all.wsl4j.Artifact

o eu.soa4all.wsl4j.AnnotatedArtifact
o eu.soa4all.wsl4j.RootArtifact

o eu.soa4all.wsl4j.Service
o eu.soa4all.wsl4j.rpc.RPCService

o eu.soa4all.wsl4j.rpc.OriginalMSMService
o eu.soa4all.wsl4j.rpc.PartonomisedService

o eu.soa4all.wsl4j.rpc.MSMService
o eu.soa4all.wsl4j.rpc.POSMService

o eu.soa4all.wsl4j.ServiceTemplate.ServiceTemplate
o eu.soa4all.wsl4j.rpc.RPCOperation

o eu.soa4all.wsl4j.rpc.OriginalMSMOperation
o eu.soa4all.wsl4j.rpc.PartonomisedOperation

o eu.soa4all.wsl4j.Annotation
o eu.soa4all.wsl4j.ReferantAnnotation

o eu.soa4all.wsl4j.FunctionalClassificationAnnotation
o eu.soa4all.wsl4j.ValuedAnnotation

o eu.soa4all.wsl4j.WSML.WSMLAnnotation
o eu.soa4all.wsl4j.WSML.RuleBasedRankingNFP

o eu.soa4all.wsl4j.WSML.SeekdaRankingN
FP

o eu.soa4all.wsl4j.rpc.Message
o eu.soa4all.wsl4j.rpc.MessagePart

o eu.soa4all.wsl4j.rpc.MessageContent
o eu.soa4all.wsl4j.Preference

o eu.soa4all.wsl4j.WSML.RuleBasedRankingPreference
o eu.soa4all.wsl4j.ServiceTemplate.USEPreference

 java.lang.Throwable (implements java.io.Serializable)
o java.lang.Exception

o eu.soa4all.wsl4j.ModellingException
o eu.soa4all.wsl4j.AnnotationException
o eu.soa4all.wsl4j.ParseException
o eu.soa4all.wsl4j.StructuralException

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 28 of 29

Package eu.soa4all.wsl4j

Class Summary

AnnotatedArtifact

Annotation

Artifact

FunctionalClassificationAnnotation

Preference

ReferantAnnotation

RootArtifact

Service

ValuedAnnotation

 Exception Summary

AnnotationException

ModellingException

ParseException

StructuralException

Package eu.soa4all.wsl4j.ServiceTemplate

Class Summary

ServiceTemplate

USEPreference

 SOA4All –FP7 – 215219 – Deliverable 5.4.3

© SOA4All consortium Page 29 of 29

Package eu.soa4all.wsl4j.rpc

Class Summary

Message Deprecated.

MessageContent

MessagePart

MSMService

OriginalMSMOperation Deprecated.

OriginalMSMService Deprecated.

PartonomisedOperation

PartonomisedService

POSMService

RPCOperation

RPCService

Package eu.soa4all.wsl4j.WSML

Class Summary

RuleBasedRankingNFP

RuleBasedRankingPreference

SeekdaRankingNFP

WSMLAnnotation

