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Executive Summary
The Lightweight Process Modelling Language (LPML) is devised to provide a lightweight
methodology and a set of process modelling vocabularies to aid non-experienced users to
get on with their tasks quickly. It is the SOA4All language for process modelling and is used
in the entire project Users can create graphical process models using the Process Editor
(T2.6). These models are enhanced by the WP6 components such as the Design Time
Composer (DTC) and Optimizer (T6.4). Finally the enhanced process models are
transformed into executable processes and executed by the Execution Engine (T6.5).

This deliverable provides the final design of the LPML which is based on the last version of
the language as described in the deliverable D6.3.2. The fundamental design principles
focus on two major aspects. First, we preserve the language elements such as process
activities, gateways, control-flow constructs, etc. due to backward compatibility concern.
Second, we strive to enhance interoperability by adding further API components such as
loops and loop-handling functionality, a better serialization and de-serialization mechanism.
Semantic modeling and execution of dataflow has been enhanced using decidable conditions
which have been implemented in a language-agnostic way to optimize interoperability. These
aspects reflect a more elaborate design of the language and are viewed as response to the
continuous WP6 process integration task and service construction needs.
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1. Introduction
1.1 Purpose and Scope
LPML has become an indispensable part of the SOA4All Service Construction facility, the
core to lightweight process abstraction, process representation, annotation, instantiation,
persistence and facilitating medium for process optimization and executions. The SOA4All
Studio and its respective platform components of different work packages use LMPL
extensively. Non-experienced end users are able to compose services via connecting the
activities and defining their control-flows and dataflow using visual LPML conceptualization
elements of the SOA4All Process Editor within the SOA4All Studio, thereby creating their
business processes using the canonical LPML vocabulary on the language level.

Since LPML is a common effort on the language level to assist the SOA4All Service
Construction Platform services that exchange process models using the provisions of the
language, it is the correct medium to provide a process vocabulary to link the modellers and
the SOA4All tools as well as the Service Construction Platform services together. It is
subjected to continuous scrutiny, changes and an evolutionary improvement processes in
alignment with the further development of the different studio and platform components. This
deliverable will provide an overview and description of the final design and specification of
LPML programmatic facilities from the language perspective. We will describe the
components of the current API that are aligned with the updated requirements of the Process
Editor (D2.6.3), Design Time Composer (D6.4.2, D6.4.3), Optimizer (D6.4.3) and Execution
Engine (D6.5.3). We describe the additional features of the current API such as looping in
activity, LPML process serialization and de-serialization that makes persistence of processes
more flexible; and semantic modeling and execution of dataflow and conditions using
SPARQL queries.

Technically the LPML API has been evolved and geared toward optimally aligning the needs
of process modelling in a flexible manner, i.e. creation of correct and complete process
models that are valid and lightweight from the non-experienced end users’ perspective. This
means that conventional heavier weight process modelling language such as Business
Process Modelling Notation (BPMN) or Event Process Chain (EPC), though could be more
expressive and provide more process modelling premises, also incur the drawback of these
points: they include a superset of modelling constructs that are either seldom used by non-
technical users because of their arcane or incomprehensible usage or due to over-
empowerment, i.e., they confer to the modellers a full range of expressive power using these
premises that there is no guarantee of the correctness of the process model. With conscious
judgments of these drawbacks, the LMPL API is further developed and consolidated to suit
the actual need of the SOA4All platform. It tries to retain the minimal expressive set of
premises that allow real-world modelling without compromising correctness. This deliverable
gives the technical evaluation and discussions about these aspects.

1.2 Structure of the Document
This document is organized in four main parts. Section 1 is an introductory exposition of the
deliverable. Section 2 elaborates on the final design of the LPML language API as well as a
series of additional features that make the language more suitable for the project. Section 3
evaluates the technicalities from an expressiveness and correctness perspective of the
current language design. The final section concludes this document.
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1.3 Technical Deliverable Introduction
The main technical background of LPML comprises of characteristics of different aspects of
the language that is created for the sole purpose of lightweight process modelling. This
principles guide through the technical design of the language and can be enumerated mainly
in the following aspects:

 Graphical abstraction of process model and coherent encapsulation of model details

 Semantic annotations of process elements and contextualization

 Process patterns and templates

 Dataflow aspects and data connectors

These following sections of the deliverable elaborate more on these aspects with regard to
current final design of LPML.
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2. Final Design of Lightweight Context-Aware Process
Modelling
The aim of LPML (Schnabel, 2008) is to simplify the work of a process designer by hiding
tedious modelling and programming chores from users, performing automatic compositions
and allowing for the late binding to concrete semantically annotated services that are bound
at runtime. LPML is devised taking into account both the LPML usability in the tool that will
be provided to the user and the underlying design process. In this section, we will give an
insight into the current design of LPML and how the design principles of lightweight modelling
are reflected in enhancing user modelling and designing processes. However, these
enhancements are not visualized in the process model view. Activities have to be
instantiated by services. Further the tools help to include conditions for gateways and those
flows connected to a gateway based on the semantic descriptions given by the user. In the
following we will cover various aspects of LPML to illustrate the design principles such as
semantic annotations, process patterns and templates, aided semantic service discovery,
dataflow mapping, process composition and optimization.
As an evolutionary effort for the service construction platform, the final design of LPML has
been enhanced with a concentration on seamless integration with the other service
construction components of SOA4All for scalability and stability; additionally other newer
features such as loops and dataflow elements address further expressiveness issues of the
process language. Scalability requirements of modelling dataflow are mainly addressed by
dynamic generative approach of dataflow query using standard open language such as
SPARQL which is used to dynamically extract dataflow mapping information and instances at
runtime in interaction with backend components. This ensures better integration with other
SOA4All runtime components.

2.1 LPML Metamodel and Language Elements
In the following section, technical aspects of LPML will be explicitly described in its design
that addresses a series of technical requirements described in the introduction. Regarding
the abstraction of process modelling approach, conceptualization of the underlying principles
of LPML to abstractly represent lightweight processes is mainly comprises of two abstraction
layers. The scheme comprising the graphical abstraction layer and the canonical LPML
metamodel layer is shown in Figure 1. The graphical abstraction layer represents the user
interface that is used by end users to create a process and assigning activities to concrete
services. It is realized by the implementation of the SOA4All Process Editor (D2.6.2). The
LPML metamodel layer is the canonical representation of the business process that is semi-
automatically created by the end users assisted by the abstract graphical process layer
studio tools, mainly the SOA4All Process Editor. The user can create and edit processes
through their interaction with the user interface and thus indirectly instantiating, manipulating
the canonical representation of the LPML metamodel. In order to complete the model and
make it executable, the user can specify and provide the necessary services details to the
model by binding them to activities of the process.
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Figure 1: Graphical abstaction and canonical representation of LPML

LPML allows and encourages users to use semantic annotations to enhance a process
model by providing semantics or business meaning. LPML caters in this regard by providing
the necessary constructs in the model to allow user to specify and attach information of
knowledge representation models such as domain ontology and ontology concept instances
via references to the process elements. Ontology concept instances are metadata that can
be added to the process elements such that these annotations are useful for a variety of
purposes. For instance, annotated semantic services can be referenced and attached by
instantiating service elements and attaching them to the process activities in the process
model. By using SOA4All service discovery components, suitable semantic services can be
found and bound to process activities. This way, LPML provides the necessary premises to
facilitate service discovery. Moreover by making combination of process activities possible,
LPML ensures that composition of services on the canonical language level is guaranteed.
By using semantic annotations and constraints on the respective process elements, different
conditions and constraints can be checked in this composition process. Within SOA4All, such
annotations are drawn from the Web Service Modelling Ontology-Lite (WSMO-Lite) ontology.
On the other hand, business users can use annotations to further describe the scope of
applicable circumstances, for instance, also in form of semantic annotations and constraints
to specify under which context or with what limitations a certain process and its elements can
be interpreted and instantiated.

In resemblance to software patterns, process patterns allow effective summarization and
communication of process knowledge. Some patterns such as the workflow process patterns
have semantics that are proven to be complete, correct and conflict-free. They represent
high degree of abstraction of knowledge fragments that are reusable. As shown in
(Schnabel, 2008), we have adopted a series of patterns in the design of LPML. We further
introduce workflow templates that represent coarse-grained combinable workflow patterns
that are functionally and syntactically sound. Workflow templates contain start and end
activities and are non-executable fragments of a process with unbound activities and certain
unset information e.g. flow conditions. They can be regarded as abstract process because
they require an instantiation with concrete missing information and bound activities. Workflow
patterns do not possess start and end activities and are also non-executable. They cover the
common reusable and recurrent portions of a process which can be reused in many different
processes across different scenarios and domains. Further integration has led to the mixed
use of workflow patterns and templates represented by LPML canonical representation and
details can be found in (Gorronogoitia, 2010).

The idea of dataflow connectors which are introduced in the language is instrumental in order
to overlay a layer of dataflow manipulation operations on top of the control-flow based
process model. With dataflow oriented language constructs, LPML allows users, via the
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graphical layer, to create mash-up-based service compositions and connect the dataflow with
a list of operators as described in the previous language specification (Schnabel 2008).
These operators allow data operations to be performed on the data passing from one activity
to another. A mandatory mapping of both semantic and syntactic nature can be specified and
represented in the canonical language model. Further development in the area of dataflow
has shown that by using executable SPARQL query expressions, to semantically manipulate
messages to effect pre-annotated dataflow schemes, mapping can thus be further simplified
and operation effectiveness can be enhanced. We use this approach to simplify data
operations by externalizing the tasks towards reusable semantic machinery in order to
compute the necessary syntactic data transformation operations.

2.1.1 Application Programming Interface
The concept of abstractions in LPML is described in the previous section. This section
provides detailed descriptions of the LPML API. It is used to programmatically create an in-
memory process model that conforms to the abstract metamodel of LPML. Such a model has
the advantages of facilitating interaction between the components, users as well as between
the users and the process editor. In addition it can be serialized either in XML or directly as
serializable Java object that can be stored or exchanged easily. Additional features that
address iterative processing issues are integrated into the final design of LPML and will be
described in detail in section 2.3. We described the mechanism of dataflow mapping support
in section 2.5. Finally, better integration of other interoperable standard modelling premises
is supported by allowing generating the LPML model directly from BPMN. This can either be
imported into the process editor or processed directly by service construction platform
components. This is described in detail in section 2.6.

2.1.2 API Elements
In the development of the design, it is apparent that in order to gain compatibility of the
metamodel of the previous version, the LPML API programming model is going to retain
certain API elements that are general to both versions. These elements are indispensable in
creating a valid process model. Moreover, in the development of LPML, we integrate some
additional features into the language that enhances usability and scalability. This has led to
changes in the API by adding and removing of some elements since the last version. The
following section describes the current status.

The principles of good software engineering practices, such as reducing coupleness and
enhancing cohesive design, have been followed already in the last version of LPML and it
guides the final design here as well. It consists of mainly Java interfaces and implementation
classes that are described in the following.

Identifiable
Figure 2 shows an Identifiable interface which is used to factor out the canonical
representation of the uniquely identifiable characteristics of LPML elements that extend it.
Regarding compatibility with the previous version of LPML, in this way it can be guaranteed
that all process elements will have an identifier when it is extended by an additional interface
or implemented by subclasses where its attributes are inherited. Its characteristics are
described in Table 1.
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Figure 2: Identifiable Interface

Identifiable

Attributes ID

Extending interface N/A

Serialization Serializable or via stream

Concrete implementations IdentifiableImpl, ProcessElement

Table 1: Identifiable Interface Description

Annotatable
Attaching additional semantics beside textual description helps to enhance the process
model by providing explicit and formal description about process and process elements.
Semantic annotations in form of concepts and instances pertinent to domain ontologies can
be added by attaching references to them in the dedicated attribute fields of process
elements. An Annotatable interface as shown in Figure 3 represents a concept to denote that
a process element is capable of having semantic annotations. Consequently it offers
methods to retrieve a set of SemanticAnnotation instances that are contained within it. Its
main purpose is to offer to the API an interface which allows implementing classes to specify
their ability to attach references of semantic annotations. It is meant to be extended by
additional interfaces or implemented by process element classes and is described in Table 2.

Figure 3: Annotatable Interface
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Annotatable

Attributes Set of SemanticAnnotation

Extending interface N/A

Serialization Serializable or via stream

Concrete implementations N/A (marker interface)

Table 2: Annotatable Interface Description

Process
An LPML process is defined with a ProcessElement that serves as a container for other
elements and defines the process structure. It represents an LPML process within the
metamodel and can be programmatically manipulated through the API. The Process
interface as shown in Figure 4 that is defined according to this notion and defines the
methods for retrieving a set of constituent process components containing within the Process
container. Since control-flow is distinguished from other process elements such as activities
or gateways, there is a method to retrieve a set of these flow elements contained within the
process. A process has a unique ID which is assigned when it is created or it optionally can
be provided by the user. The process can be annotated with metadata which references
semantically all process elements such as relevant activities or concrete services. The main
purpose of using a Process is to structure its constituent process elements in an ordered way
with the process node as an entry point of the process graph; moreover it allows proper
serialization by providing the method to persist the entire structure of process elements
contained. This interface is explained in Table 3.

+getID() : String
+getSemanticAnnotations()
+getProcessElements()
+getFlows()

-Set<Flow> flows
-Set<ProcessElement> elements
-Set<SemanticAnnotation> annotations

ProcessImpl

+getID() : String

«interface»
Identifiable

+getSemanticAnnotations()

«interface»
Annotatable

+getProcessElements()
+getFlows()

«interface»
Process

Figure 4: Process Interface and ProcessImpl
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Process

Elements contained Flow, ProcessElement, Semantic Annotation

Attributes ID, SemanticAnnotation

Extending interface Identifiable, Annotatable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations ProcessImpl

Table 3: Process Interface Description

Since process definitions in a broad sense can be application-specific, the design of LPML
process should incorporate both abstract process container concepts as well as bear
representation of unique identifier in its canonical representation to distinguish each instance
of an LPML process created. We believe this minimal definition is necessary in order to
secure validity of the language element and refrain from bringing in irrelevant application-
specific attributes. Composite process elements are realized in simple containment
relationship with Process that helps to simplify the memory model of a process instance.

Nameable
The Nameable interface shown in Figure 5 represents a concept to denote human readable
names for process element. It can be implemented by concrete classes representing any
process elements that are displayed in the process editor so that user can give meaningful
names to these elements. Consequently it offers method to retrieve and set the name for the
element. The characteristics of a Nameable interface are shown in Table 4.

Figure 5: Nameable Interface

Nameable

Attributes Name

Extending interface N/A

Serialization Serializable or via stream

Concrete implementations ProcessElementImpl, BindingImpl,  ActivityImpl,
ParameterImpl, FlowImpl,
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Table 4: Nameable Interface Description

Positionable
The Positionable interface shown in Figure 6 is used to denote process elements that are
mappable to certain Cartesian coordinates for graphical representation and positioning in the
SOA4All Process Editor. As such it belongs to the abstract graphical layer of LPML and is
mainly used to bear positional metadata persisted in the canonical LPML representation.
This metadata helps to structurally display a process identically each time when it is saved
and reloaded on the SOA4All Process Editor Dashboard. A Positionable object can be
positioned in a 3-dimensional space within the process editor by keeping track of three
coordinate attributes for each instance of process element that implements this interface.
The coordinate system and unit of measurement is not specified here for the sake of generic
implementation. The obvious choice is the Cartesian coordinate system. While the x and y-
coordinates span an element in a two-dimensional space, the third one, i.e. the z-coordinate
can be used to specify which process element is overlaid on top of another one. The
characteristics of the Positionable interface are explained in Table 5.

Figure 6: Positionable Interface

Positionable

Attributes Float coordinates

Extending interface N/A

Serialization Serializable or via stream

Concrete implementations Activity, ParallelGateway

Table 5: Positionable Interface Description

ProcessElement
The ProcessElement interface shown in Figure 7 represents a generic interface that all other
LPML process elements (process nodes) should inherit. It provides the basic support for
identification via globally unique process element identifier, adding human readable naming
for these process elements and the capability of attaching references to semantic
annotations pertinent to these process elements. Furthermore Gateway is conceptually
classified as a type of ProcessElement in accordance with the previous language version. In
order to ensure global uniqueness, for instance, in some collaboration scenarios where
process elements of different process instance might be included and used in mixed manner,
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the identifiers help to ensure which specific instance of a process element is addressed.

Figure 7: ProcessElement Interface and ProcessElementImpl

An instance of ProcessElement is implemented with the inherited identifier, which is a
generated UUID. Consequently, the process element identifier can be used across different
ProcessElements contained within different instances of processes as well to identify the
process element globally. The ProcessElementImpl is the primary concrete class, which
implements this interface and provides methods to retrieve a corresponding human readable
name of this ProcessElement and a set of SemanticAnnotations present. The characteristics
of ProcessElement are described in Table 6.

ProcessElement

Elements contained Set of SemanticAnnotation

Attributes ID, Name

Extending interface Identifiable, Namable, Annotatable,
Serializable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations ProcessElementImpl, ActivityImpl, FlowImpl,
GatewayImpl, ParallelGatewayImpl

Table 6: ProcessElement Interface Description

Activity
The Activity interface shown in Figure 8 is defined conceptually to represent the notion of a
process activity. The Activity interface provides the flexibility in the final version to bind one or
more compatible pairs of services and their operations. It represents a unit of work in an
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LPML business process. It extends the ProcessElement in order to inherit the globally unique
process element identifier and the capability to attach SemanticAnnotations for an instance
of Activity. Furthermore, Activity extends the Positionable interface to inherit the coordinate
information used to properly display placement of Activity instances in an LPML process
model.

-startElement : Boolean
-endElement : Boolean
-humanTask : Boolean
-synchronous : Boolean
-List<Binding> bindings
-Set<Parameter> inputParameters
-Set<Parameter> outputParameters
-Set<Connector> connectors
-loopParameter

ActivityImpl

ProcessElementImpl

+getBindings()
+getInputParameters()
+getOutputParameters()
+getConnectors()
+getLoopParameter()
+setLoopParameter()
+isSynchronous()
+setSynchronous()
+isHumanTask()
+setHumanTask()
+isStartElement()
+setStartElement()
+isEndElement()
+setEndElement()

«interface»
Activity

Figure 8: Activity Interface and ActivityImpl

An Activity has a list of Bindings used to reference and bind semantic services based on their
semantic annotations. We devise this design with the advantage that in case of failover of
services, the backend components with service adaptation logics can simply fallback to the
next available service in the service list during runtime. Consequently, the order within the
service list, which is defined when they are bound during design-time, reflects the invocation
preference of the services during runtime. This characteristic implies the invocation
semantics that the higher ordered services should be attempted first during runtime over the
remaining ones, where evocable services can dynamically replace unavailable ones.

Each Activity defines a set of input Parameters, which are required to instantiate the control-
flow. A process modeller is knowledgeable about the required set of Flow objects to realize
the control-flow; which together with the defined Activity object instances realize the specific
execution order of a process model. Regarding design-time specification of dataflow, there is
a partial order relationship among all the Parameters of the Activities. During runtime the
service backend components traverse the process graph to realize the execution order
based on the Flow set before executing these Activity instances. The set of input Parameters
also contain the dataflow mapping information which is kept in the attributes within the
dataflow Connectors. There is a new supported feature for looping activities in this version of
LPML by introducing a new looping Parameter within the Activity to denote that this type of
Activity is executed iteratively during runtime until all the elements within the loop parameter
are traversed. Analogous to the set of input Parameters, an instance of Activity provides
methods to set and retrieve a set of output Parameters for the current Activity. By specifying
the proper order and mappings of the input and output pairs of Parameters that are
connected to an Activity, there is an additional advantage of enabling lightweight service
composition. The backend Design Time Composer (DTC) component identifies the proper
set of parameter pairs in combination with the service-operations pairs in order to retrieve the
most appropriate set of semantic service operations for resolving execution. This task to bind
appropriate services to activities can also be done manually in the SOA4All Process Editor.
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Furthermore, this information can also be used to automatically render human tasks to the
proper set of human task clients.

In the dataflow regard, each Activity instance has a set of Connectors that define the
mappings for dataflow information. These Connectors specify which type of dataflow
operations can be performed on the data which passes a specific Flow. There can be zero or
more Connectors specified for each input or output Parameter of an Activity. The details of
process level mechanism of handling concrete operations for dataflow is described in Section
2.5. Activity provides method retrieve a set of  associated with an Activity.

One of the challenges is to support iterative operations within an Activity and it is addressed
in the final version of LPML. Support of iteration is realized by providing support of
Parameters of type Java Collection. During runtime each value of the Parameter of the
Collection type is executed when a Collection parameter is set as the loop parameter and the
iteration will be executed until the Collection is exhausted. Otherwise the value is treated as
a common input parameter. The rationale of using this iteration semantics lies in the fact that
the majority of looping is performed mainly in Activities of a business process. Each such
Activity can be either viewed as iterative task or a dedicated service which executes exactly
the number of iterations according to its inputs. Due to this practical design, we believe to
achieve a homogeneous mechanism of iterative processing that is oriented to Parameters of
an Activity. The advantage is to align iterative loop handling with other non-iterative activity
execution without further introducing other more complex or unnecessary artifacts. The
Activity interface provides methods to set and retrieve the looping Parameter.

There is a series of Boolean attributes that specify whether an Activity is synchronously
executed, whether it is a human task similar to the previous version of the language. The
start and end event of an LPML process can be specified by setting the Boolean flags of an
Activity instance accordingly. The characteristics of the Activity interface are described in
Table 7.

Activity

Elements contained Set of Binding, set of input/output Parameter,
set of Connector, loop Parameter

Attributes ID, Name, Start-element, End-element,
human task, synchronous (Boolean).

Extending interface ProcessElement, Positionable, Serializable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations ActivityImpl

Table 7: Activity Interface Description

Connector
The Connector interface shown in Figure 9 represents the concept of an associative element
that defines the dataflow mappings between one or more outputs of preceding activities and
a single input of a successive activity. In order to specify the data operations that are
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possible on the outflow of the parameter before the flow reaches the input of the successive
activity, the Connector interface provides methods to set and retrieve the SPARQL query-
based semantic dataflow mappings associated with this Connector instance. This is stored
internally as query string within the Connector. Thus data transformation can be applied
conveniently to the dataflow in the flow connected by the Connector. While this mechanism
elegantly separates the notational specification from the concrete dataflow operations that
are actually performed, we believe that using indirection to retrieve dynamic SPARQL
dataflow manipulation query provides greater scalability to the dataflow handling as a whole.
It is necessary to specify a set of input and output Parameters when creating an instance of a
Connector and it provides methods accordingly for doing so. A Connector instance inherits
the globally unique process element identifier through its relation to ProcessElement. The
characteristics of the Connector interface are shown in Table 8.

Figure 9: Connector Interface and ConnectorImpl

Connector

Elements contained String of dataflow operation mapping, set of
input Parameter

Attributes ID, Name, output Parameter

Extending interface Identifiable, Serializable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations ConnectorImpl

Table 8: Connector Interface Description
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Binding
This Binding interface shown in Figure 10 represents an executable entity that is used to
combine executable process elements i.e. Activity with a group of services in the form of
service-operation pairs. This rationale of this design lies in the lightweight view of services
being unit of works that are directly mappable to Activities or human tasks without regarding
other technical details of these services except their corresponding operations. A tuple of a
service-operation pair consists of the service instance in the form of an URL reference and
one operation that is defined in the interface of this specific service. Since multiple operations
are allowed within each service, in practice there is usually one or more of such tuples that
must be stored within each instance of Binding.

+getID() : String
+getName()
+setName()
+getServiceReference()
+setServiceReference()
+getOperation()
+setOperation()

-name
-ID
-URL serviceReference
-URI serviceOperation

BindingImpl

+getID() : String
-Id : String

IdentifiableImpl

+getServiceReference()
+setServiceReference()
+getOperation()
+setOperation()

«interface»
Binding

Figure 10: Binding Interface and BindingImpl
This design approach elegantly simplifies the information that is needed to be kept within
each Binding. Each tuple represents therefore an executable operation within such execution
context. In the previous version of the language, since service operations are contained
within a service instance which must be bound via a conversation instance to realize a
Binding, it has the drawback that operation lookup require navigating two levels of indirection
to reach the available operations of a service; this has been simplified in the final design
substantially by storing service-operation tuples directly within a Binding instance. Binding is
based on the concept of the MSM model (Lambert, 2010) as integrated in the SOA4All
Procedure-Oriented Service Model (POSM)1, in which semantic services are identified by
URLs and their operations are identified by URIs. If a certain process has been deployed to
the execution engine previously, it is possible to discover its service URL by looking up the
deployment URL that is referenced in a standard Linked Data-style rdfs:seeAlso
annotation to the MSM/POSM model. A Binding instance provides methods to set and
retrieve the inherent service URL as well as those to set and retrieve the associated
operation URI. The characteristics of the Binding interface are shown in Table 9.

Binding

Elements contained Service reference URL, operation URI

Attributes ID, Name, deployment URL, operation URI

1 http://www.wsmo.org/ns/posm

http://www.wsmo.org/ns/posm
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Extending interface Identifiable, Nameable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations BindingImpl

Table 9: Binding Interface Description

Parameter
The Parameter interface shown in Figure 11 represents the notion of I/O-parameters of
activities and services, either for input or output parameters. In general this notion can be
extended to cover also human tasks which are special types of activities requiring human
interventions. It is possible to attach a set of SemanticAnnotation to the Parameter to further
refine semantic descriptions about the process element. Other than the previous version of
LPML, for pragmatic reason Parameters are now associated with an Activity through an
instance of Connector rather than going through an extra indirection of Conversation. It is
described in Table 10.

+getID() : String
+getName() : String
+setName()
+getSemanticAnnotations()
+setSemanticAnnotations()

-Id : String
-name
-Set<SemanticAnnotation> semanticAnnotations

ParameterImpl

+getID() : String
-Id : String

IdentifiableImpl

+getName() : String
+setName()
+getSemanticAnnotations()
+setSemanticAnnotations()

«interface»
Parameter

Figure 11: Parameter Interface and ParameterImpl

Parameter

Elements contained Set of SemanticAnnotation

Attributes ID, Name

Extending interface Identifiable, Annotatable, Nameable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations ParameterImpl
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Table 10: Parameter Interface Description

SemanticAnnotation
Similar to the previous definition of a SemanticAnnotation, this interface shown in Figure 12
is used to represent arbitrary form of semantic annotations. Pertinent to the current project
are the annotations defined by the WSMO-Lite, MicroWSMO ontology, expressions defined
in WSML (axioms) and SPARQL (queries), and links to further RDFS vocabularies and
WSML ontologies. There are two main ways to define SemanticAnnotation: the first is to
specify a reference URI to point to a piece of SemanticAnnotation that can be retrieved by
dereferencing the URI to retrieve the corresponding concept instances for instance from the
Semantic Space; the second way is to embed and store such annotations as String in an
instance of SemanticAnnotation. For the definition of valid types of SemanticAnnotation,  a
method is provided to set the AnnotationType for the instance. The characteristics of
SemanticAnnotation are shown in Table 11.

+getID() : String
+getAnnotationType()
+setAnnotationType()
+getReferenceURI() : String
+setReferenceURI()
+getExpression() : String
+setExpression()

-Id : String
-AnnotationType type
-referenceURI : String
-expression : String

SemanticAnnotationImpl

+getID() : String
-Id : String

IdentifiableImpl

AnnotationType

Enum

+getReferenceURI() : String
+setReferenceURI()
+getExpression() : String
+setExpression()
+getAnnotationType()
+setAnnotationType()

«interface»
SemanticAnnotation

Figure 12: SemanticAnnotation Interface and SemanticAnnotationImpl

SemanticAnnotation

Elements contained AnnotationType

Attributes ID, Name, type of SemanticAnnotation,
reference URI to external
SemanticAnnotation, expression of internal
SemanticAnnotation

Extending interface Identifiable
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Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations SemanticAnnotationImpl

Table 11: SemanticAnnotation Interface Description

AnnotationType
The AnnotationType is used to set the appropriate values for the displayable property of a
SemanticAnnotation. Since SemanticAnnotations are widely used for a variety of purposes in
SOA4All, for instance, to annotation services, define the concepts and properties in domain
ontology that are used by these services, to denote metadata to specify functional
classification of services, to denote non-functional properties of services, to specify
conditions, constraints and effects axioms for states and state transitions of a stateful
semantic service model such as WSMO/WSMO-Lite. Consequently it is necessary to
differentiate the types of SemanticAnnotations and define them accordingly when an
instance of SemanticAnnotation is created. These types and usage are described in Table
12.

Types Descriptions

FUNCTIONAL_CLASSIFICATION Specifies a functional classification according to the
taxonomic scheme of MSM

NON_FUNCTIONAL_PROPERTY Specifies any non-functional parameters such as
efficiency, user preferences or performance related
indicators

PRECONDITION Specifies, as a semantic annotation (i.e., in WSML), a
logical expression that must be evaluated true before
an element is considered valid

EFFECT Specifies any logical expression or semantic
annotations in form of predicates that must be
evaluated and after a process element is executed and
result produced

META_DATA Specifies the specific type of semantic annotations that
are used to describe and are related to I/O parameters
of Activity

REQUIREMENT Specifies the specific type of semantic annotations that
are used on the Process instance and Activity instance
level by backend components, denoting global (process
level) and local (activity level) compulsory
requirements.

CONSTRAINT/PREFERENCE Specifies the type of semantic annotations that are
related to global (process level) and local (activity level)
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optional preferences used for binding filtering.

SELECTION_CRITERIA Specifies the type of semantic annotations that are
evaluated as preferences when service selection is
performed

REPLACEMENT_CONDITION Similar to the above type and is retained for backward
compatibility

CONTEXTUAL_INFORMATION Specifies contextual semantic annotations

REFERENCE Specifies the process and activity level preferences of
an LPML process

Table 12: AnnotationType Description

Flow
The Flow interface shown in Figure 13 represents the abstract notion of a transition from one
business process element to another. It mainly differentiates between inbound and outbound
flow with the corresponding source and destination of the current Flow. The source and
destination are basically process elements from which the current Flow originates from or to
which it directly converges. This configuration helps to define implicitly the partial ordering
relationship between process elements connected by any Flow. In order to form a complete
process, each Flow instance must have a condition associated with it, yielding a Boolean
value by evaluation of the condition. Flow condition is stored internally as String which
specifies an arbitrary predicate that is either evaluated to true or false at runtime. While the
former value dictates that the Flow can be traversed, the latter outcome prohibits the
corresponding Flow to be traversed at runtime while the process instance is executed.
Consequently, it is mandatory to define a default Flow in the set of flows going out of a
process element to accommodate the special case if all previous conditions associated with
the Flow evaluate to false. In that case, the default Flow is followed.

+getID() : String
+getSource()
+setSource()
+getDestination()
+setDestination()
+getCondition() : String
+setCondition()
+getSequenceNumber() : int
+setSequenceNumber()

-Id : String
-condition : String
-ProcessElement source
-ProcessElement destination
-sequenceNumber : int

FlowImpl

ProcessElementImpl

+getSource() : String
+setSource()
+getDestination() : String
+setDestination()
+getCondition() : String
+setCondition()
+getSequenceNumber() : int
+setSequenceNumber()

«interface»
Flow

Figure 13: Flow Interface and FlowImpl

Flow conditions are abstract notions representing arbitrary Boolean expression, evaluable
predicates and logical formulae. At the abstract level they should be expressed independent
to a specific Flow implementation. One implementation approach is to delegate the
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evaluation of concrete conditions at runtime to some external logical instance, e.g. we could
incorporate an executable SPARQL expression which contains an SPARQL ASK query
instead of simple predicates to handle conditions or we rely on XPath expressions to achieve
the same effect. Using the SPARQL approach could potentially provide the advantage of
using both standard machinery from the semantic technology community, a familiar language
for those working with lightweight semantic languages, including the growing community
using Linked Data, and support for more complex dataflow oriented condition specification. In
the final design of the LPML, the notion of an inherent sequence number provides a
mechanism to order different instances of Flow that is based on a natural order of them
within the LPML process model. This mainly helps for more efficient traversal of the process
graph and allows mapping different Flow instances in a certain control-flow context. The
characteristics of the Flow interface are shown in Table 13.

Flow

Elements contained Source and destination process elements,
condition predicate

Attributes ID, Name, Source, Destination, Condition
expression, sequence number

Extending interface Identifiable, Annotatable, Nameable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations FlowImpl

Table 13: Flow Interface Description

Gateway
The Gateway interface shown on the left in Figure 14 retains its semantics as in the previous
version and represents the notion of a split of Flow that is implicitly handled by Flow condition
evaluation in an LPML process model. In addition a Gateway represents also the concept of
merging after Flow has been split. The Gateway allows process modeller to split a Flow into
two or more outbound Flows which must be merged before each LPML process is
terminated.

Figure 14: Gateway and ParallelGateway Interfaces

This is done by using the provided method to set the Boolean attribute to specify the type of
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the Gateway. This version of the language supports the parallel semantics of split and
merges Gateway to address the requirements of real-world business usecase scenarios to
support parallel Flow and Activity instantiation without blocking. The concrete semantics of a
Gateway should be specified in the classes that implement it. The characteristics of the
Gateway interface are shown in Table 14.

Gateway

Attributes Split flag (Boolean)

Extending interface ProcessElement, Positionable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations N/A

Table 14: Gateway Interface Description

ParallelGateway
The ParallelGateway interface shown in Figure 15 represents the semantics of a parallel split
or merges Gateway in the control-flow. It is mainly used to give the execution engine a hint
that some set of independent process elements of the LPML process can be executed in
parallel in order to improve the overall process execution efficiency. Support of parallelism
can enhance efficiency of execution of independent activities in a process such as human
tasks or asynchronous web services which are often inherently slow in response;
consequently other activities that do not depend on response of them can be executed
without waiting. We device this design with regard to a given set of N services, parallel
execution can asymptotically yield polynomial performance improvement because the overall
execution time is equal to the time needed to execute the slowest service or human task
within the set.

Figure 15: ParallelGateway Interface and ParallelGatewayImpl

When an instance of ParallelGateway is reached during process execution, the execution
engine can create one parallel execution token, i.e. parallel instances of Flow emerging out
of this gateway so that the subsequent instances of Activity can be instantiated and executed
in parallel. For valid process model, a merging instance of ParallelGateway must be used to
synchronize such parallel executing Flow back to one Flow. At runtime execution, the
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Gateway must wait until all the preceding parallel tokens have arrived before it continues
triggering subsequent execution of the following process elements. In practice merging
status can be determined by traversing the process graph backwards in order to find all
tokens that could potentially arrive at the corresponding merging Gateway. A
ParallelGateway inherits the fields of the previously described Gateway interface and its
characteristics are shown in Table 15.

ParallelGateway

Attributes ID, Name, Split flag (Boolean)

Extending interface Gateway, Serializable

Serialization Serializable both in XML format and via Java
object serialization mechanism

Concrete implementations ParallelGatewayImpl

Table 15: ParallelGateway Interface Description

2.2 LPML: Process Modelling Lifecycle
In the following sections we describe a design process for LPML modelling and execution. A
design process represents a lifecycle of step-by-step breakdown of the necessary measures
which the user employs, aided semi-automatically by all WP6 and appropriate GUI based
tools, in order to create a valid and executable LPML process. We walk through the
necessary steps required to create executable LPML process model by involving both user
interaction and support of the automated tools of the service construction platform of WP6.
We refer to the LPML API elements whenever necessary to give an updated view of the
language usage in a tools-guided process modelling context.

2.2.1 Conceptual Design Process
Some external effort in the process modelling community such as the approach given in (Gil
2006) describes creating executable workflows out of templates comprising three steps in
general. The first step defines data and execution independent workflow templates.
Subsequently, workflow instances are created and specification of data input needed on
activity level are mapped on the dataflow definition for these instance. In the final step
executable workflow is instantiated by mapping existing resource dependent data sources
and other resources to the dataflow. Our design process to create executable LPML process
shows resemblance to the described approach consisting out of five steps as shown in
Figure 16.
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Figure 16: Design Process using LPML and Service Construction Components

The first step the user (a process modeller) conceptually conceives of the abstract process
which the modeller intends to create. The modeller can either start from scratch on paper or
in a mental process. In order to derive the set of requirements, especially concerning
required resources and data, requirement elicitation process can be carried out in advance.
The current version of language supports in addition to manual creation of a process
fragment also the import of generated LPML process fragments or existing LPML process
templates created previously in other modelling projects and stored in a process/template
repository (Gorronogoitia 2010). Templates can be generated by using transformation from
BPMN as described in Annex A. The main rationale lies in the fact that the user may want to
reuse a certain piece of process workflow that exists as template expressed in another
standard modelling notation. Supported by the SOA4All Process Editor, in step 2, the
modeller interacts with the GUI to draw her conceptual process on the dashboard. A
graphical process model is created with the underlying canonical LPML process model
representation that is used by the platform services of the service construction components.
By using additional tools, e.g. the external service annotation widgets (SWEET/SOWER) in
the dashboard, process modellers can provide semantic annotations to the set of candidate
web services which the modeller wants to use for fulfilling the tasks within the process
context. The modeller either searches for and integrates existing services in hand or uses the
service discovery component in the studio to find a set of previously annotated candidate
services. The first and second steps represent the design-time tasks. Ideally the backend
components will automatically enhance and transform the created process model in the
following steps at runtime without further user interaction.

In case further user interaction and information is necessary, the process modeller can walk
through step 3 and 4. In step 3 the modeller specifies the concrete Activity that is specifically
intended for a portion in the process. In the canonical representation of the process, Activity
instances can be created using the LPML API and further characteristics, e.g. message
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processing mode can be specified. On the other hand according to the minimal service
model (MSM) (Lambert 2010), existing service annotations may require harmonization or
mediation to transform them into conforming format. The model can manually provide further
editing on the annotations using the Studio tool and subsequently define binding for the
selected services. In step 4 manual creation of Binding and Connector oriented dataflow
mappings assisted by the Studio tools aims to realize the concrete dataflow operations on
data between adjacent Activity instances as well as providing specification for the
corresponding input and output Parameters (I/O) for these Activity instances.

In step 5, WP6 components are capable of finalizing the LPML process by performing
service selection and binding, Activity instantiation, optimizations on the process model and a
series of other operations. Subsequently the execution component can load the LPML
process and execute it. Details of these steps are described in deliverable D6.4.3.

2.2.2 Modelling-centric Approach
The previously described lifecycle clearly indicates that using the current process language
elements as described in Section 2.1.2 contributes to a comprehensive design process using
our updated LPML approach. These LPML elements belong to the following groups which
together constitute the essential LPML vocabulary:

Process

ProcessElement

Flow

Gateway

Activity

Assisted by the Process Editor GUI tool in the SOA4All Studio and the WP6 backend
components, the core LPML vocabulary and visual language elements enhance the
efficiency of the modeller’s task in both automated and user-interaction-guided manner.

We have tested the prototype of these tools with the update final version of the LPML. User
experiences have shown that by simplifying the language to an appropriate expressiveness
and retaining proper tooling support, our approach has successfully guided test modellers to
perform a series of recurring modelling tasks.

2.3 Iterative Activity and Looping
The most common programming languages include iterative blocks or loops that iterate their
body block while or until a particular condition is hold. The condition can be evaluated before
entering the loop (while) or after each iteration (do-while). More specific sort of loops is
specialized to transverse collection of objects (for each) where the loop body is executed for
each item within the collection.

In the context of business process modelling, languages such as BPMN do not offer special
language primitives to specify iterative blocks or loop over an arbitrary sub-process or
arbitrary sub-graph of a composite task. Although they can be modelled using other
modelling primitives such as exclusive gateways. However, that makes the model difficult to
understand, since it adds artificial structures that deviates the model from its intending
meaning. Fortunately, BPMN offers a loop activity, which, although limited to loop over only
one activity when the condition holds, can be easily extended to support more complex
blocks of activity by using sub-processes.
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The SOA4All scenarios have identified the need to support loop in LPML, although the need
is restricted only to the case for going over each object within a collection. This is the case
when the output of one activity is a collection C<T> of types T and the subsequent block of
activities should be traversed over each individual object of type T. Even if this scenario can
be modelled with the current LPML primitives, we opt for adding special support to for-each
loop in the language in order to avoid aforementioned artificial and cumbersome complex
models. This is specially required if we want to keep LPML concise, easy to use and
understandable.

Similar to the BPMN specification, we support loop activities, constrained as for-each loops.
The LPML loop activity does not include a condition (as BPMN) that determines how far the
activity must be iterated, but a reference to one of its inputs that contains the collection
whose items must be traversed. In case the block to iterate is more complex than a single
activity, the modeller can extract the complex block as a sub-process that is deployed and
afterwards bound to a single loop activity, in a similar way BPMN encourages.

Figure 17 shows a snapshot of LPML metamodel with loop activities. Note that LPML does
not add an additional loop activity but reuses the existing one that is considered as a loop
activity as soon as its loopParameter property is not null.

Figure 17: Loop Parameter

2.4 Dynamic Semantic Service Discovery and Binding
The implementation of the LPML1 tooling support currently uses a SPARQL query based on
the use of rdf:List to support collections, as explained in Section 2.5.

In the area of service discovery and ranking the LPML tooling is being updated to take
account of the definition of unbound Activities which serve the purpose of process templates,
encapsulating users’ functional requirements and preferences in a standard model
(previously called ‘goal’) as well as the provision of the DisCloud repository, which is based
on the storage and brokerage of these templates against the service descriptions in the
iServe service repository, as described in D5.4.2.The use of DisCloud brokerage is seen at
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two points in process definition and execution. In the first place, this extends the use of
discovery to bind activities at design time, by allowing process designers to take advantage
of reused templates rather than define an ad hoc one for a requirement that might have been
experienced before – by this designer or another.

Secondly, while in several scenarios it is unlikely that open-ended dynamic discovery and
binding would be applied at run-time, an extension is planned to DisCloud to allow templates
do be matched, per user, against a pre-approved ‘short-list’ of services, from among those
discovered, which are still dynamically ranked. Since this ranking includes up-to-the-minute
monitoring information from the crawler, and in future from the dedicated SOA4All analysis
platform, this allows binding of the best candidate at run-time without the perceived dangers
of open-ended dynamic discovery. At the same time the process designer is enabled to
expand on the short list without re-defining or re-deploying the process.

2.5 Dataflow and Conditions Perspective and Design Issues
Besides purely control flow oriented constructs, the LPML aims at providing some data flow
oriented constructs for supporting mashup-like service composition. As such we require a
reasonably simple and familiar data processing language. In the previous deliverable D6.3.2
we presented a holistic view of data flow connectors and operators that should be supported
by any mashup-based description language. Such operators were required to model data
manipulation through the LPML. In particular, operators such as Merge, Split, Count, Filter,
Reduction, Sort, Loop, Sub-Description and Aggregation were detailed.

Rather than implementing each and every operator, the LPML team decided to be more
general, and then considering more operators by allowing the LPML language to host
SPARQL queries on data. In this direction, every previous single operator is mapped to a
specific pre-defined SPARQL query. The mapping depends on the services involved in the
composition and the data that their required operations produce and consume, therefore
needs to be manipulated.

We depend heavily on the definition of message partonomy, introduced in iServe’s extension
of the MSM2 and adapted, based on standard vocabularies and predicates, for POSM. The
basis of this extension is the original MSM concept Message, which was modeled as follows:

msm:hasInputMessage  rdf:type  rdf:Property ;

    rdfs:domain  msm:Operation ;

    rdfs:range  msm:Message .

msm:hasOutputMessage  rdf:type  rdf:Property ;

    rdfs:domain  msm:Operation ;

    rdfs:range  msm:Message .

msm:hasInputFault  rdf:type  rdf:Property ;

    rdfs:domain  msm:Operation ;

    rdfs:range  msm:Message .

msm:hasOutputFault  rdf:type  rdf:Property ;

    rdfs:domain  msm:Operation ;

2 http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_vocabulary

http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_vocabulary
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    rdfs:range  msm:Message .

msm:Message  rdf:type  rdfs:Class .

This has so-far been extended as follows3:

:Message rdfs:subClassOf :MessagePart .

:hasPart rdfs:subPropertyOf <http://www.w3.org/2001/sw/BestPractices/OEP/

                             SimplePartWhole/part.owl#hasPart_directly> ;

         rdfs:domain :MessagePart ;

         rdfs:range :MessagePart .

:hasOptionalPart rdfs:subPropertyOf :hasPart .

:hasMandatoryPart rdfs:subPropertyOf :hasPart .

:hasName rdfs:subPropertyOf rdfs:label ;

         rdfs:domain :MessagePart .

This is particularly useful in the case, for instance, that a number of inputs are provided to a
service. This was explicitly (but non-semantically) modelled in WSDL 1.1, where messages
could possess parts then separately typed in XML Schema. This is not present in: WSDL 2.0,
where SOAP bodies are typed as a whole in XML Schema; in XML over REST, where the
same may be true but without a direct unifying model; or in JSON over REST, where JSON
Schema is likely not to be used at all and does not distinguish separate inputs anyway
(JSON is simply a tagged recursive array-based data structure).

In all of these cases we can use the partonomy model to both provide further documentation
of the expected interpretation of the message and, via appropriate lifting, to enable the
automatic generation of the appropriate SPARQL query to effect dataflow from abstract
mappings between message parts (for which a graphical user interface has been provided
within the SOA4All Studio).

Let us first consider a simple example. Consider the message partonomies shown on the left
and right on the following figure, and the SPARQL query shown underneath.

3 Note that Message may also be renamed MessageContent in order to disambiguate.

http://www.w3.org/2001/sw/BestPractices/OEP/
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service1

operation1

operation2

inputMessage1

outputMessage1

part1_1

part1_2

service2

operation3
inputMessage3

outputMessage3

part3_1
construct1

:construct1 rdf:value
"CONSTRUCT {o2:part3_1 rdf:value ?part1}
WHERE {o1:part1_2 rdf:value ?part1}"
^^sparql:construct

:service1 a POSM:Service;
POSM:hasOperation :operation1, :operation2.

:operation1 POSM:hasOptionalPart :part1_1;
POSM:hasMandatoryPart :part1_2.

:service2 a POSM:Service;
POSM:hasOperation :operation3.

:operation3 POSM:hasMandatoryPart :part3_1.

Figure 18: Simple Dataflow Example

Note that since the partonomy is defined at the instance level in service definitions, and at
run-time values are simply attached to this implicit structure using the rdf:value predicate

(see Lambert, 2010), multiple such mappings can be used to create a complete input
message, perhaps derived from the output messages of different services. This scheme
requires that each part in the partonomy is given a URI, i.e., blank nodes cannot be used as
there is no way to separately attach a value when the part is unidentified. At the
implementation level it is also necessary to keep the set of values for a given invocation
separate from all other invocations in the process, as there may be other invocations of the
same services. In BPEL this is natural as input and output messages are formed in separate
mutable variables.

In the case of loops that iterate over collections, discussed above, a generic dataflow is most
of the time sufficient to extract the items, provided that this is lifted to form an instance of
rdf:List. In the same way a generic dataflow can be used to re-assign the tail of the list for
the next iteration. These two queries are as follows4:

:constructHead rdf:value

4 We assume that a usable sparql prefix can be defined as (this is unofficial, but matches the
anchors in the standard):

http://www.w3.org/TR/rdf-sparql-query/#

http://www.w3.org/TR/rdf-sparql-query/#
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"PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 CONSTRUCT {?root rdf:value ?value .
            ?value ?pred ?obj}
 WHERE {?root rdf:value ?list .
        ?list rdf:first ?head .
        ?head rdf:value ?value .
        OPTIONAL {?value ?pred ?obj}}"
   ^^sparql:construct

:constructTail rdf:value
" PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 CONSTRUCT {?root rdf:value ?new .
            ?node rdf:first ?each .
            ?node rdf:rest ?rest .
            ?each rdf:value ?value .
            ?value ?pred ?obj}
 WHERE {?root rdf:value ?list .
        ?list rdf:rest ?new .
        ?node rdf:first ?each .
        ?node rdf:rest ?rest .
        ?each rdf:value ?value .
        OPTIONAL {?value ?pred ?obj} .
        FILTER (!sameTerm(?node, ?list))}"
   ^^sparql:construct

To illustrate the use the instances (note that the round bracket notation is the list constructor
in n3/Turtle):

@prefix :<http://www.example.com/list#> .
@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
:root rdf:value ([rdf:value 1] [rdf:value [:p1 :i1; :p2 :i2]]).

The initial instances so defined, and the effect of the two queries can be seen in the following
figure. Note that even if i1 and i2 are defined in the source graph they will be available only
‘by reference’ to activities within the loop: this can be addressed with a custom query if
necessary.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.example.com/list#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
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Figure 19: Dataflow for Lists

The example of lists also provides an example for the definition of conditions within
processes using SPARQL. In order to define the loop condition we simply need the following
ASK query:

:askList rdf:value
"PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 ASK {?root rdf:value ?value .
      FILTER (!sameTerm(?value, rdf:nil))}"
   ^^sparql:ask

In general conditions within processes may be combined with dataflow to derive an ASK
query on values from some part of an output message since the condition handling of the
LPML is formalism agnostic. For example if we consider part1_2 from the simple dataflow
example was given integer values, which would be documented by the triple:

:part1_2 sawsdl:modelReference xsd:int.

Now, given that some invocation of service1 has given values to its output message, we can
use these values to evaluate the following query as a condition (deciding on which branch of
the process to execute next, for example):

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX :<http://www.example.com/list#>

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.example.com/list#
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 ASK {:part1_3 rdf:value ?value .
      FILTER (?value > 3)}

The primary outstanding issues with the partonomy and SPARQL-based approach to
dataflow and conditions specified here concern the existing SOA4All approach to lifting and
partonomy. In particular, it is not clear how HTTP status codes and header fields in RESTful
are to be included in lifting.

This is important since:
 A condition might rely, for instance, on whether a preceding activity, which involved

PUTting a resource, was successful or not. This might only be represented (i.e. the
HTTP body might be empty in both cases) by having the HTTP status code of the
response equal to 200 or, if unsuccessful, to a code in the 4xx range (e.g., 409
Conflict).

 A dataflow, for instance if the source activity involved POSTing a resource, might
need to communicate a value from a header field (e.g. Location – the URI given to
the resource on the server) from the response to some new message.

 It is also possible that a dataflow might be needed to pass some value into a request
header field. In particular credentials may need to be passed in a process that deals
explicitly with authorization.

Annex B contains our proposed extension of the partonomy model, which would allow the
SPARQL-based approach detailed above to be used in all of these cases, given appropriate
lifting.

2.6 Generation of LPML from BPMN
We have designed and implemented a prototype for generating LPML files from BPMN
models. This work has been realized in the context of the Eclipse modelling environment,
leveraging the open-source BPMN editor5 that is very popular with Eclipse-based designers
and architects. This choice is justified by the fact that the Eclipse environment is very popular
for BPMN creation and we already have good technical expertise with the BPMN editor.
Lastly, this choice reduces development efforts as it reuses existing code.

The technical foundation for this transformation is the same as for the LPML to Business
Process Execution Language (BPEL) one6: the metamodel based transformation support
offered by the Mangrove7 project (formerly STP-IM). We describe the user interaction support
for this transformation in Annex A. From an architectural point of view, the transformation
chain comprises the following elements:

 Eclipse plug-in for adding contextual menu support for BPMN to LPML (this plug-in
drives the entire transformation chain)

 Eclipse plug-ins for generating the Mangrove Core from BPMN (updated existing
plug-ins in order to adapt to specific requirements of the LPML generation)

5 http://www.eclipse.org/bpmn/
6 please refer to D6.5.2 and D6.5.3 for more information on this transformation
7 http://www.eclipse.org/mangrove/

http://www.eclipse.org/bpmn/
http://www.eclipse.org/mangrove/
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 Generation of LPML from the Mangrove core, using the Eclipse Modelling Framework
(EMF)-based metamodel matching with Java code (invoked from the main plug-in
after the Mangrove generation)

 Eclipse plug-in for textual display of transformation status and the updating of the
Eclipse workspace to show the generated LPML file[s]

We have taken the choice to generate one LPML process (and therefore one LPML file) per
BPMN pool. This choice is a simplifying choice but we believe it is suitable for the purposes
of this proof-of-concept prototype. In addition, we generate a rather basic LPML that is
structurally identical to the BPMN pool it corresponds to, but which does not contain any
executable content (such as service names or semantic information). Such data is not
present in basic BPMN but we can envisage a more complex transformation, which could
take into account BPMN annotations that are specifically designed for SOA4All (this would
entail adding editor extensions for these annotations to the BPMN editor).

We illustrate the transformation with an example in Annex A.

2.7 Serialization and Storage
The previous version of the language supports LPML process serialization into an XML
format by deep traversal of the graph of the LPML process model thereby outputting the
entire set of process elements contained within the process model. Serialization is supported
using the XStream library8 which offers API methods to export the process and perform the
necessary traversal. It also supports the reverse import of a serialized LPML process back to
the corresponding in-memory process model on the fly. One of the advantages of this
mechanism lies in its programmatic simplicity as well as an implementation-agnostic design
of process serialization in the LPML API.

We have retained this serialization mechanism for the sake of compatibility and introduced
another effective serialization in this final version. By using Java Object Serialization
mechanism (JOS) and updating the LPML API accordingly, we have built object serialization
directly into the LPML API. It is now possible to export and store LPML process graph as
object files which can be either temporarily stored or persisted to the project’s storage space.
Comparing to the XStream serialization which exports the process models in XML based
structured format, exporting them using ObjectOutputStream has the obvious advantage that
process object graphs can be controlled to include or exclude certain fields during
serialization such that transiently marked fields or any volatile intermittent values that are
unsuitable for direct serialization can be selectively excluded. During deserialization,
meaningful initial values can be reset for such fields when the process object graph is
recreated in memory; while on the other hand, XStream based serialization only supports the
serialization of a process structure ‘as is’. Utility classes are created to support both type of
serializations seamlessly. Alternatively, process serialization can be realized using Java
Architecture for XML Building (JAXB)9 serialization and XML-Schema to define the formal
object-serialization structure of the process elements. This could be a replacement of the
XStream library to achieve a certain degree of interoperability since JAXB allows one to
define a finer grain customized object-XML binding mapping while XStream serialization
does not offer this flexibility. However, the downside of JAXB is its inflexibility toward
changing class structure. Modifications of class definitions or changes in the class hierarchy

8 http://xstream.codehaus.org/
9 https://jaxb.dev.java.net/

http://xstream.codehaus.org/
https://jaxb.dev.java.net/
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require simultaneous and often complex modifications of the binding mapping to properly
reflect these changes. Due to project time constraint, it is decided to adapt JOS as the
alternative over JAXB.

The project-wide Semantic Space of WP1 and process storage space can support storing
and retrieving of LPML process model in XML serialization by using the storage services.
Since the additional serialization JOS files are exported in binary format, if viewed as simple
flat file, they can also be stored as simple files using the storage services by attaching these
flat files as payload to the storage request. We have provided additional LPML validation
utility in this LPML API version for runtime validation of the syntactic correctness of an
exported or imported process model.
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3. Technical Evaluation of Language
In this section we evaluate the final version of the proposed process language by appealing
to the concepts of expressiveness and computational completeness of LPML and usability
coverage. For the latter purpose we have conducted a small scale intra company and
representative user survey to evaluate users’ acceptance and their opinion about the
available tools which uses LPML.

3.1 Expressiveness Issues
To lay the ground of analysis, we have selected a set of concepts and process constructs
using the following well-known reference frameworks: the Bunge-Wand-Weber (BWW)
framework (Bunge 1977) (Wand 1989), a adopted selection of the well-known workflow
patterns in workflow systems as described in (W. t. van der Aalst 2003) and (W. t. van der
Aalst 2005) as well as a set of relevant communication patterns pertinently adopted in
Enterprise Application Integration (EAI) systems as described in the treaty (Ruh 2000). Our
attempt to evaluate the computational completeness and expressiveness starts with mapping
these well-known concepts and process constructs on a practical ground onto our LPML
process elements and constructs described in the previous sections. Subsequently these
mapped set of elements are subjected to case study in which users (modellers) have been
given scenario specific modelling tasks and asked to identify whether the selected elements
of the LPML in the final version cover and satisfy the modeller’s requirement and usage
expectations. This result and opinion gives a pretty good analysis of what artifacts contribute
to essential set of elements to retain. Furthermore they drive the consideration of design of
the corresponding LPML element in the API. This approach of user feedback and scenario-
driven design helps to strike the correct balance of language expressiveness and suitability
as well as flexibility of language elements since only the essentially necessary and
semantically correct constructs and concepts will be mapped to our LPML design.

Green et al. have used similar approach to map the BWW representation model to constructs
of BPEL as described in (Green 2007). Furthermore another attempt in (Recker 2008) has
been made to apply such mapping approach to BPMN. In the same light our attempt to map
constructs onto LPML has shown that a significant number of concepts from the BWW model
do not have direct mappable constructs in LPML. Examples of these are the concepts for
things, system environment, event spaces, etc. Transformation on the other hand is a core
BWW concept which can be mapped directly to the groups of constructs constituting the
LPML control-flow and dataflow elements. The lack of many direct mappable constructs does
not necessarily denote deficiency of the reference model; in contrary the careful retention of
the mappable constructs helps to simplify the LPML core that leads to noticeable reduction in
language complexity for the sake of easier model creation and flexibility in expressions. The
outcome of mappable process elements led to the reduced set of LPML vocabulary
described previously in section 2.1.2.

3.2 Usability Issues
We have attempted evaluation of the simplicity and usability of the LPML and the studio tools
by conducting intra company small scale user tests. Modellers are selected from a set of
employees of different skill levels and vocational background. While over 80% of the
candidate modellers have shown an interest in mash-up based service composition, it is
identified that the SOA4All Studio tools, especially the Process Editor has met wide
satisfaction due to its ease of use. However, there have been some fears of certain
candidates about the possibility of making errors in attempting her first modelling tasks.
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Though the portion of these candidates is small, it does show that the invariant aspect of
inability of any tool to eliminate that fear from absolute laymen is comprehensible since every
beginner must empirically ‘learn’ to use the tool and the GUI correctly in order to create a
valid process model. There is no ‘shortcut’ in this path and once the learning process has
completed, candidates have shown significant mastery of the tools especially the Process
Editor, mainly due to its comprehensive interface design, its absolute alignment with the
LPML canonical representation and its functional simplicity of technical offers.

Furthermore it is discovered that even inherent process composition errors of some more
experienced candidates are uncovered because the Process Editor supports error handling
indicating occasional minor error in their process model. This proves to be great help to the
modeller through the built-in model validity checking function of the Editor.

In the past process modellers were clogged down by more unintuitive and complex process
modelling tools at their disposal with complaints about the complexities and challenges cast
on them when they perform their tasks. A clear need for simpler and properly guided service
composition in easy-to-use style resembling the mash-up approach has gradually become
evident, we believe the LPML approach: the LPML API and its corresponding components as
well as user level tools address these issues and satisfy the requirements. Due to the
evolutionary nature of the project, the final usability evaluation on the user tools in a larger
scale is eminently necessary. This evaluation should both involve a broader and more
comprehensive technical evaluation in the LPML as well as user survey on the basis of
usability, user satisfaction and degree of task achievement on the then available tools. This
evaluation will be due by the end of the project to deliver an evaluative holistic technical view
of the LPML.
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4. Conclusions
This document has described the final design and implementation of the LPML for the
Service Construction Platform of SOA4All. It has addressed challenges that are related to
scalability, integration with corresponding service construction platform components and
improvements in user interaction and satisfaction. By integrating mechanism to generate
LPML process fragments from other modelling languages such as BPMN, we have achieved
better integration and reuse of certain existing modelling artifacts with our service modelling
platform. We have introduced the loop handling to address iterative processing requirement
in the language. By refining the dataflow mapping in the language, we have improved data
oriented process modelling in the language with the benefits of integrating this task
seamlessly in process editor for easy user interaction.

We believe that in its current version, LPML can be used in the SOA4All Service
Construction Platform that provides the necessary functionalities to demonstrate how it is
used for the benefit of a wide spectrum of users, from laymen to professionals. It provides
the essential leverages to help to boost the service platform and the project’s reach as a
whole to a wider process user community and general public.
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Annex A. BPMN to LPML Transformation Walk-Through
This section illustrates the automatic transformation from a BPMN process designed in
Eclipse to one or more LPML files corresponding to it. The transformation mechanism is
outlined in Section 2.6.

We illustrate the transformation with a simple BPMN process that is depicted in Figure 20.

Figure 20: BPMN Sample Process

The first step that a user must take for generating the corresponding LPML is to select this
file in the Eclipse workspace and “right-click” on it in order to display the contextual menu,
where the LPML generation can be found, as shown in Figure 21.

Figure 21: Contextual Transformation Menu

Selecting this option will trigger the chain of actions involved in the transformation and the
user will be presented with feedback on the transformation status with the help of pop-up
dialog boxes. This information is depicted in the order in Figure 22 below.
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Figure 22: BPMN to LPML Progress Display

After the entire execution sequence is completed, the generated LPML file[s] will be added to
the workspace and made available on the file system. In this example scenario, only one file
is selected as the BPMN process consists of a single pool. For multiple pools, the
transformation will generate one LPML file per pool, during a single transformation process.

The LPML file generated for this example is presented in Figure 23, as displayed by the
LPML viewer.

Figure 23: Generated LPML
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Annex B. Proposed Extensions to Partonomy Model
As motivated above for dataflow and conditions, it is necessary to know how HTTP status
codes and header fields will be included in the partonomised message model. We
recommend the following extensions, which would be compatible with our SPARQL-based
approach:

First the most consistent means to extend, beyond the SOAP/HTTP message body, the
message lifted would be to explicitly model, with message parts, all parameters in which
information can be communicated in RESTful service interaction:

:BodyParameter rdfs:subClassOf :MessagePart .

:SOAPMessage rdfs:subClassOf :BodyParameter, :Message .

:URIPathParameter rdfs:subClassOf :MessagePart .

:substitutes rdfs:domain :URIPathParameter ;

             rdfs:range rdf:Literal .

:URIQueryParameter rdfs:subClassOf :KeyValueParameter .

:KeyValueParameter rdfs:subClassOf :MessagePart .

:hasKey rdfs:domain :KeyValueParameter ;

        rdfs:range rdf:Literal .

:hasDefaultValue rdfs:domain :KeyValueParameter ;

                 rdfs:range rdf:Literal .

:URIMatrixParameter rdfs:subClassOf :KeyValueParameter .

:HeaderParameter rdfs:subClassOf :KeyValueParameter .



SOA4All –FP7 – 215219 – D6.3.3 Final Design and Evaluation of LPML

© SOA4All consortium Page 48 of 48

Second, we could make more use of the standard W3C HTTP in RDF vocabulary by
extending Message with the following:

http:Response rdfs:subClassOf :Message .

  # therefore subject of http:responseCode

:hasOutput rdfs:domain :Operation ;

          rdfs:range http:Response .

:hasOutputFault rdfs:domain :Operation ;

          rdfs:range http:Response .


