

Project Number: 215219
Project Acronym: SOA4ALL

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D6.4.3 Final Prototype For Service
Composition and Adaptation Environment
Activity 2: Core Research and Development

Work Package 6: Service Construction

Due Date: 31/08/2010

Submission Date: 31/08/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: ATOS

Revision: 1.0

Author(s): Yosu Gorroñogoitia, Matteusz Radzimski (Atos), Freddy Lecue
(UNIMAN), Matteo Villa, Giovanni di Matteo (TXT)

Reviewers: Sven Abels (TIE), Gianluca Ripa (CEFRIEL)

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 2 of 34

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 04/06/2010 ToC Yosu Gorroñogoitia (ATOS)

0.2 18/06/2010 First Contributions Freddy Lecue (UNIMAN), Yosu
Gorroñogoitia (ATOS), Matteo
Villa (TXT)

0.3 03/08/2010 Update Mateusz Radzimski (ATOS)

0.4 18/08/2010 Corrections after peer Review Yosu Gorroñogoitia (ATOS),
Matteo Villa (TXT)

1.0 30/08/2010 Final Editing Yosu Gorroñogoitia (ATOS)

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 3 of 34

Table of Contents

VERSION HISTORY ___ 2

TABLE OF CONTENTS _________________________________ ___________________ 3

LIST OF FIGURES __ 4

GLOSSARY OF ACRONYMS ______________________________ __________________ 5

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

2. DESIGN TIME SERVICE COMPOSITION AND ADAPTATION. ___ ______________ 8

2.1 LIGHTWEIGHT DESIGN TIME SERVICE COMPOSITION AND ADAPTATION
LIFE CYCLE. ___ 9

2.2 PROCESS SCHEMA EXTRACTION __________________________________ 11

2.3 PROCESS MODELLING ___ 17

2.4 PROCESS OPTIMIZATION ___ 25

2.5 PROCESS POST-MORTEM SCHEMA ANALYSIS _______________________ 29

3. CONCLUSIONS __ 31

4. REFERENCES___ 32

5. TECHNICAL ANNEX ___________________________________ _______________ 33

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 4 of 34

List of Figures

Figure 1: SOA4All Design Time Process Modeling Life cycle .. 9

Figure 2: Registration of a new business without ICT support ... 12

Figure 3: The Template Generator start-up screenshot ... 13

Figure 4: The templates hierarchy obtained .. 13

Figure 5: Root schema .. 14

Figure 6: Schemas “Template.0” (left) and “Template.1” (right) ... 15

Figure 7: Schemas “Template.0.0” (left) and “Template.0.1” (right) 16

Figure 8: export of the selected “Template.0.0” to the storage location in LPML format 17

Figure 6 Initial process fragment as obtained from Template Generator 19

Figure 7:Initial model after adjusted by the user (changes indicated in the yellow bubbles) 20

Figure 8: Process model after “FileCase” activity resolved .. 21

Figure 9: Process model after invoking “Resolve Process” option 22

Figure 10: Completely resolved process model ... 22

Figure 11: Process model with dataflow connectors in green (shown in LPML viewer) 24

Figure 12: Process model with dataflow connectors in green (detail) 24

Figure 13:Optimizer Interaction with Process Editor .. 26

Figure 14:Non-Optimal Process .. 27

Figure 15: Optimal Process ... 27

Figure 16: Part of the Non-Optimal Composition ... 29

Figure 17: Part of the Optimal Composition ... 29

Figure 18: The Template Generator used to verify a process schema 30

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 5 of 34

Glossary of Acronyms

Acronym Definition

DTCE Design Time Composition Environment

EE Execution Environment

PE Process Editor

TG Template Generator

LPML Lightweight Process Modelling Language

DTC Design Time Composer

SWS Semantic Web Service

I/O Input/Output

KPI Key Performance Indicator

UI User Interface

PA Public Administration

ICT Information and Communication Technology

FC Functional Classification

NFP Non Functional Property

SS Semantic Space

D Deliverable

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 6 of 34

Executive summary

SOA4All Service Composition and Adaptation Environment, also known hereafter as Design
Time Composition Environment (DTCE) is part of SOA4All Service Construction Suite,
consisting of the Studio Process Editor (PE) developed by T2.6 [7, 8, 9], DTCE itself
developed by T6.4 [4, 5] and the Execution Environment (EE) developed by T6.5 [6]. DTCE
provides full semi-assisted functional support, at design time, to model adaptive context-
aware process models using the PE, according to the Lightweight Process Modelling
methodology [1][2]. That is, DTCE offers services that complement the PE modelling
functionality with advanced features that automate complex modelling tasks, such as
process schema extraction, activity binding, data-flow generation, optimization, etc.

This document provides a general, integrated, coherent and holistic functional description of
the final prototype of DTCE, close to the modeller perspective. This description is
complemented by an enlightening modelling scenario taken from one of the use cases,
which is used to illustrate the complete SOA4All Lightweight Process Modelling methodology
at design time.

This document focuses on the functional description of the final DTCE, since we aim at
remarking the benefits of the SOA4All Lightweight Process Modelling methodology as
supported by DTCE tooling, rather than on the research and technical achievements, which
were introduced in deep detail in [4] and [5]. Nonetheless, the main technical achievements
between M24 and M30 are summaries in the Technical Annex.

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 7 of 34

1. Introduction

1.1 Purpose and Scope
This document describes the final prototype for the Service Composition and Adaptation
Environment, also known hereafter as the Design Time Service Composition Environment
(DTCE). In the previous deliverables [4], [5] and the accepted paper [13] we focused on the
detailed theoretical background and research, and on the technical design of the tools that
build the DTCE. Therefore, during the period between M12 and M24 we have been mainly
developing the DTCE tools. In the current reported period (M24-M30) we have stabilized the
DTCE tools, we have integrated new releases of dependent components provided by other
technical WPs (WP1-WP5) and we have further developed some features introduced in the
previous releases, as summarizes in the section 5.

However, this deliverable will focus on providing a comprehensive and coherent functional
description of the DTCE as a whole, highlighting the main features offered by DTCE tools to
support the Lightweight Process Modelling Methodology [1][2] at design time as it should be
perceived from the process modellers’ perspective, driven by a concrete example taken from
the SOA4All use cases.

This deliverable aims at offering an appealing picture of the SOA4All tool support at design
time for the modelling of optimized process models throughout meaningful and illustrating
experiments performed in the context of the SOA4All use case scenarios.

1.2 Structure of the document
The rest of this document is structured as follows. In section 2.1, we introduce the complete
design time life cycle for the modelling of optimized processes according to the Lightweight
Process Modelling Methodology. Furthermore, this section elaborates possible usages of
this life cycle at different stages of modelling projects, depending on their purpose. Following
subsections further elaborate the concrete phases within the general life cycle, illustrated
with a common process-modelling scenario. Section 2.2 explains the process-schema
extraction phase, which populates the process template repository with historic knowledge,
in order to be reused in future process-modelling projects. Section 2.3 explains the semi-
assisted, light annotated driven, context-adapted process-modelling phase. Section 2.4
explains the optimization of processes based on KPI and semantic quality. Section 2.5
introduces a post-mortem analysis of the execution of the optimized process model, aiming
at comparing the actual execution with the intended modelling. We highlight the main
conclusions in section 3. Section 5 summarizes the main last technical achievements
introduced in the DTCE tools during the period M24-M30 and points at the software
repository and installation instructions.

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 8 of 34

2. Design Time Service Composition and Adaptation.
This section provides a detailed functional description (from the perspective of the modeller
of the composition) of the SOA4All lightweight process modelling methodology and the
DTCE tooling support, illustrated throughout a complete and practical modelling experiment
on a concrete SOA4All use case scenario. Next section 2.1 introduces the overall modelling
life cycle. Following sub-sections further develop for each concrete modelling phase.

DTCE tool consists of the following tools and services: Template Generator tool, Design
Time Composer (DTC) service and Optimizer service. Studio Process Editor, included within
the SOA4All studio and reported in [7], [8] and [9] completes the suite.

The SOA4All lightweight process modelling methodology is aimed by the same modelling
principles that drove the specification of the Lightweight Process Modelling Language
(LPML) [1][2][3]. That is:

• light semantics as the basis for the description of processes and their elements,
including the data flow,

• coarse-grain description of the requirements for a process and their activities,

• extensive reuse of modelling blocks, such as process fragments and templates,

• contextual adaption,

• multiple activity bindings, etc.

Those modelling principles will address the semi-assisted modelling methodology illustrated
in next sections.

SOA4All –FP7 – 215219

© SOA4All consortium

2.1 Lightweight Design Time Service Composition and Ada ptation
life cycle.

The SOA4All Lightweight Process

(*) optional

This iterative methodology distinguish
different time, within different modelling projects

• A phase for process schema extraction
repository of process schemas that model existing
their fragments. Domain
expertise to analyse pre
their execution logs,
Generator tool and the Process Editor tool

• A phase for process modelling:
models in the context of
within the same or a different domain, but leveraging on the knowledge extracted in

Template Generator

Template Generator

analysis (*)

Figure 1: SOA4All Design Time Process Modeling Life cycle

Process Schema
Extraction Phase

Process Modelling
Phase

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

Lightweight Design Time Service Composition and Ada ptation

rocess Modelling methodology is depicted in the next

(*) optional

This iterative methodology distinguishes two main phases, which can
, within different modelling projects and not necessarily by the same role

schema extraction: its purpose is to populate a knowledge base
repository of process schemas that model existing running domain

Domain-specific process providers, who have
expertise to analyse pre-executed processes through the post-mortem analysis of

 perform this task to extract the schemas
and the Process Editor tool support this phase.

process modelling: in this phase, modellers create new optimal process
models in the context of the same or other (ongoing or future) modelling projects

the same or a different domain, but leveraging on the knowledge extracted in

Design Time
Composer/Process Editor

OptimizerTemplate Generator

Template Generator

Process
schema

extraction

Semi-
assisted
Process
Design

Process
optimization

Process
post-

mortem
schema

analysis (*)

SOA4All Design Time Process Modeling Life cycle

ition and Adaptation Environment

Page 9 of 34

Lightweight Design Time Service Composition and Ada ptation

odelling methodology is depicted in the next figure.

can be performed at
and not necessarily by the same role:

purpose is to populate a knowledge base
domain processes and/or

specific process providers, who have enough domain
mortem analysis of

o extract the schemas. The Template

modellers create new optimal process
modelling projects,

the same or a different domain, but leveraging on the knowledge extracted in

Composer/Process Editor

SOA4All Design Time Process Modeling Life cycle

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 10 of 34

previous phase. The Process Editor tool, the Design Time Composer (DTC) service,
the Optimizer service, and optionally the Template Generator tool support this phase.

This second main phase is properly the process-modelling phase itself. During this phase, a
modeller produces an optimal executable process model ready for deployment. Optionally,
executions corresponding to the deployed process can be analysed by post-mortem
techniques in order to derive concrete execution schemas that are compared to the intended
and modelled process, in order to understand how far the actual executed process differs
from the modelled process.

The process-modelling phase consists of two main sub-phases (excluding the
aforementioned optional post-mortem process analysis phase):

• An iterative semi-assisted process design phase, supported by the Process Editor
tool and the DTC service. During this phase, the modeller produces a suboptimal
executable process model, since she focus on the modelling aspects: control and
data flow.

• A process-optimization phase, supported by the Process Editor and the Optimizer
service. During this phase the modellers optimizes the process model created in the
previous phase.

In both cases, the modeller uses the Process Editor tool to manually :

• Create the control flow of the process model.

• Describe the process model (globally) and its modelling elements (locally) through
lightweight semantic annotations.

• Bind suitable SWS to activities.

• Create the data flow mapping, etc.

The modeller invokes, through the Process Editor, the DTCE services (DTC and Optimizer)
in order to automate some modelling tasks, leveraging on the lightweight semantic
annotations she included manually in the process model and on the available domain-
specific knowledge bases (repositories) populated with information about SWS descriptions,
process fragments and templates, ontology models, context models, etc.

During the process-modelling phase, the DTC service automates some cumbersome
modelling tasks, such as binding SWS to activities, expanding unbound activities with
matching sub-processes, creating the data flow connectors, checking the semantic I/O
compatibility, adapting the process model to contextual information, etc.

During the optimization phase, the Optimizer service replaces the current binding set for
each activity within the process with a new one, which offers a better global cost function for
the process, according to both the semantic quality between the I/O of correlated activities
and some global KPI specified by the modeller.

The optimized process model is ready for deployment within the SOA4All Execution

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 11 of 34

Environment [6] using the Deployer Service through the Process Editor UI.

This completes the overall description of the Lightweight Process Modelling methodology at
Design Time, as supported by the DTCE tools. Next sections will go deeper into the details
of each phase describing the creation of a process model corresponding to one of the
SOA4All use cases, using the DTCE tools.

2.2 Process schema extraction

We show in this section how the Template Generator is used in order to create new
processes schemas or templates1.

We will go through a concrete example: the scenario is derived from the SOA4All WP7
scenario “Registration of a Business” [10], but it is referred to the situation prior to the
adoption and use of the SOA4All tools. In this scenario, we have the public administration of
the “City of X” dealing with requests from citizens to open new activities / businesses.

In the initial situation, requests from constituents are arriving to the public administration
(PA) offices in several ways, and not following a precise order:

• via written form
• via e-mail
• via fax

Sometimes requests also arrive by phone; although this is not considered as the proper way,
the PA is still handling such requests as “exceptional cases” of urgency.

Depending on the way the requests arrive, further actions may be necessary:

• in case of requests via e-mail, it may happen that e-mails have a valid digital
signature, but in most of cases this is not happening, so PA employees have to get in
contact with the requesting citizen to get confirmation about his identity. In most of
cases, email turn to be sent just for spam purposes, or the citizen identity cannot be
verified.

• in case of written, fax or e-mail requests, the PA is performing a check on the
requested location for the new business, based on the information provided on the
request form

• in case of requests via phone, the PA is directly checking the location with the citizen
over the phone

A further set of checks by the PA civil servant takes place, as described in [10] check
general lawfulness, check identity of the constituent, check legal form of the new business,

1 Schemas or templates are used in this document with the same meaning. While process
schema is more appropriate in the Template Generator context, process template is more
commonly used during the modelling phase.

SOA4All –FP7 – 215219

© SOA4All consortium

and a final check on the operation allowance. If some of these checks is not passed the
process is terminated with a failure.

If checks are passed, the PA gets
citizen sending an invoice. Currently the PA is contacting the citizen in the same way he
provided his requests, so either by written reply, by fax, by mail or by phone.

Anyway, in case of phone req
via phone with the citizen.

The scenario is represented in the following picture:

Figure 2: Registration of a new
business without ICT support

Step #1:

From the SOA4All Studio Process Editor, Barbara can launch the template editor, select the
input logs she needs, and run the self

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

and a final check on the operation allowance. If some of these checks is not passed the
process is terminated with a failure.

If checks are passed, the PA gets informs the tax office and communicates the result to the
citizen sending an invoice. Currently the PA is contacting the citizen in the same way he
provided his requests, so either by written reply, by fax, by mail or by phone.

Anyway, in case of phone requests, the PA is calling back the citizen to perform the checks

The scenario is represented in the following picture:

egistration of a new

As we can see, the whole process turns out to be very
inefficient. The goal of the PA is
supported by proper ICT tools. Barbara is the modeller
who is supposed to perform this task

We will show now how the Template Generator can
help Barbara in the initial phase of the re
process, by generating a set of possible process
schemas, which will support Barbara when working
with the SOA4All Process Editor.

In fact, a complete manual process design can imply
high effort, especially in situations
described in this example, when the process structure
is not so clearly evident.

On the other hand, Process Mining techniques can
help but are not sufficient, as they
specialist knowledge: Barbara need
identify simplification and rationalisation areas
Template Generator allows to automatically build and
identify process schemas at different complexity
versus completeness leveles, and it allows to s
and to create process templates, which
used in the SOA4All Process Editor

The benefits for Barbara are a: quicker and e
initial process design (less effort, better

From the SOA4All Studio Process Editor, Barbara can launch the template editor, select the
run the self-generation of schema.

ition and Adaptation Environment

Page 12 of 34

and a final check on the operation allowance. If some of these checks is not passed the

informs the tax office and communicates the result to the
citizen sending an invoice. Currently the PA is contacting the citizen in the same way he
provided his requests, so either by written reply, by fax, by mail or by phone.

uests, the PA is calling back the citizen to perform the checks

the whole process turns out to be very
inefficient. The goal of the PA is to re-engineer it ,
supported by proper ICT tools. Barbara is the modeller
who is supposed to perform this task

We will show now how the Template Generator can
tial phase of the re-design of the

process, by generating a set of possible process
which will support Barbara when working

anual process design can imply
, especially in situations like the one

described in this example, when the process structure

Process Mining techniques can
as they require a too

needs support to
fication and rationalisation areas. The

allows to automatically build and
dentify process schemas at different complexity
versus completeness leveles, and it allows to select

which can be then

: quicker and easier
initial process design (less effort, better quality)

From the SOA4All Studio Process Editor, Barbara can launch the template editor, select the

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 13 of 34

Figure 3: The Template Generator start-up screenshot

As a result, she obtains the following structure:

The root of the tree
represents the most
complete schema, while
leaves are specific sub-
cases.

The specific structure
obtained can be changed
by changing some tool
parameters: the initial
parameters configuration
is optimised to get the
best compromised
between simplicity and
completeness of the tree
structure.

Figure 4: The templates hierarchy obtained

Logs selection

Parameters
wizard: basic and
advanced

Schema
generation button

Logs filtering

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 14 of 34

Step #2: By clicking on ”Template” Barbara can visualise the process schema associated to
the root of the whole hierarchy, which represents the most complete but also the most
complex schema, including all possible branches and activities. Such schema is represented
in the following picture:

Figure 5: Root schema

We can observe how this schema includes all the possible cases and sub-cases described
in the scenario (requests from phone, email, etc...). Barbara is not satisfied with this schema,
as it looks un-necessarily complex – in fact, some of the situations here represented should
not be considered after the re-engineering phase, like phone handling of requests.

Step #3: Barbara decides to look at the first level of the tree. Schema “Template.0” (left
picture) shows a schema where the phone call cases are not taken into account – in fact
such cases are represented into “Template.1” (right picture):

SOA4All –FP7 – 215219

© SOA4All consortium

Figure 6: Schemas “Template.0” (left) and “Template.1” (right)

Step #4: Phone calls are considered as exceptional cases, so they should not be taken into
account in the future re-engineered process, and so she decides to drop such cases from
the schemas. Anyway, schema “Template.0” still appears too complex, as it includes al
the cases of email request, including the steps required to verify emails sender. She decides
to explore “Template.0.0” (left) and “Template.0.1” (right).

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

: Schemas “Template.0” (left) and “Template.1” (right)

Phone calls are considered as exceptional cases, so they should not be taken into
engineered process, and so she decides to drop such cases from

the schemas. Anyway, schema “Template.0” still appears too complex, as it includes al
the cases of email request, including the steps required to verify emails sender. She decides
to explore “Template.0.0” (left) and “Template.0.1” (right).

ition and Adaptation Environment

Page 15 of 34

Phone calls are considered as exceptional cases, so they should not be taken into
engineered process, and so she decides to drop such cases from

the schemas. Anyway, schema “Template.0” still appears too complex, as it includes also
the cases of email request, including the steps required to verify emails sender. She decides

SOA4All –FP7 – 215219

© SOA4All consortium

Figure 7: Schemas “Template.0.0” (left) and “Template.0.1” (right)

Step #5: Email-based requests are now separated from the other procedures (fax and
printed forms). She realizes that schema
include exceptional behaviors that will not be replicated in the future process.
digging into “Template.0.0” and she gets to the leaves of the hierarchy tree: schemas
“Template.0.0.0” (left) and “Template
finally selects “Template .0.0

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

: Schemas “Template.0.0” (left) and “Template.0.1” (right)

based requests are now separated from the other procedures (fax and
printed forms). She realizes that schema “Template.0.0” is a good candidate, as it does not
include exceptional behaviors that will not be replicated in the future process.

and she gets to the leaves of the hierarchy tree: schemas
“Template.0.0.1” (right) represent too specific cases so

.0.0” .

ition and Adaptation Environment

Page 16 of 34

: Schemas “Template.0.0” (left) and “Template.0.1” (right)

based requests are now separated from the other procedures (fax and
is a good candidate, as it does not

include exceptional behaviors that will not be replicated in the future process. She continues
and she gets to the leaves of the hierarchy tree: schemas

(right) represent too specific cases so she

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 17 of 34

Figure 8: export of the selected “Template.0.0” to the storage location in LPML format

Step #6: Barbara can now save this schema to the Process Templates repository based on
the 2.4 storage system (see Figure 8), which is also used by the process editor allowing a
seamless integration. As such, the schema can be further re-called into the Process Editor to
define it at a more specific level, as explained in next sections.

2.3 Process Modelling
Previous section has explained the techniques SOA4All offers to populate the process
template storage with process fragments that are extracted by process mining techniques
from past process execution logs. This population process can be performed within any time
frame by any organization department in order to increase its business process knowledge
base.

The same or a different department further reuses this knowledge base in ongoing or future
modelling projects. That is, they intensively reuse the knowledge base of process fragments
and templates in new modelling projects within the same or similar application domain.

In this and next section, we describe the features offered by the SOA4All tooling to semi-
automate the context-aware adaptive modelling of new business process, at design time, by
reusing existing domain knowledge, such as the aforementioned process template storage,
but also other domain specific knowledge: domain models (ontologies), contextual
information, service repositories, etc. The integrated service construction suite (i.e. Process
Editor, Design Time Composer, Optimizer) supports this semi-automated modelling phase.
Process Editor [8] is used to collect, from the modellers (such as Barbara), the process
model information that DTC and Optimizer need to automate some modelling tasks.

This section describes the automated features provided by final prototype of DTC while next
section describes the final prototype of Optimizer.

Button to export the selected
schema in LPML format to
the storage location.

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 18 of 34

DTC provides context-aware adaptive automation of common modelling tasks, using
knowledge intensive techniques as describe in [4] and [5]:

• It binds activities to SWSs whose semantic descriptions match the activity
annotations.

• It expands activities with process fragments whose semantic descriptions match the
activity annotations.

• It creates the data-flow connectors that wire the data input of some activities with the
data output of predecessor activities.

• It checks the semantic compatibility of the I/O of the process activities and their
bound SWSs according to the data flow, filtering incompatible bindings.

• It manages contextual information that adapts the changes introduced by DTC in the
process model.

DTC exploits the semantic annotations introduced by the modeller in the process model.
Annotations may take the following forms:

• Local annotations, which describe concrete modelling elements such as activities,
gateways and flows: FC, I/O, NFP (requirements, preferences).

• Global annotations, which describe the whole process model: contextual information
requirements and preferences.

These annotations are analysed by DTC during composition phase in order to ensure that
the overall process is consistent. If at some stage of composition local annotations are
incompatible with global user requirements, such process model will be rejected.

In the rest of this section, we continue with the WP7 scenario we use as illustrative modelling
example throughout this document.

DTC assists a modeller (such as Barbara or another) to create a process model for the WP7
business registration process [10]. A common process-modelling project does not start, if
possible, from a blank process model, but tries to reuse some common domain existing
knowledge. In this example, the modeller starts from one of the process fragments
(templates) extracted by the TG and stored into the process template storage, as explained
in the previous section. Initial draft process models can be located from the template storage
using two methods. On the one hand, the modeller can browse the template repository by
hand using the Process Editor and load candidate templates by name. On the other hand,
the modeller can create a very simple process with only one activity (described by single
annotations) that describes the desire draft model, and ask DTC to look for the best process
fragment that suits the single activity. Regardless the approach, the modeller gets a process
fragment that uses as the initial draft model. In our example, the modeller browses the

SOA4All –FP7 – 215219

© SOA4All consortium

storage and selects the process fragment for business registration process cre
as describe in previous section, as shown in next figure.

Figure 9 Initial process fragment as obtained from Template Generator

In most of the cases, starting from a template model will require some manual
since the process template is intended for a wide range of usages. Therefore, the modeller
needs to adapt manually the process fragment to its actual usage, which may imply to adapt
partially the work-flow and likely some domain specific local
annotations. Using the PE the modeller has modified
into two (“Preliminary Check” and
annotations modified.

When resolving an activity or the whole process, DTC considers not only the local activity
annotations, but also the global annotations added by the modeller to the process. Global
annotations can be requirements and preferences

2 Note that the modeller can edit and modi
being stored within the template repository. In this case, the process template generated in
the previous section and the one load here differ since the modeller simplified the former one
in order to be more generic.
3 In this document we refer to requirements and preferences in order to follow the common

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

the process fragment for business registration process cre
as describe in previous section, as shown in next figure.

Initial process fragment as obtained from Template Generator

In most of the cases, starting from a template model will require some manual
since the process template is intended for a wide range of usages. Therefore, the modeller
needs to adapt manually the process fragment to its actual usage, which may imply to adapt

flow and likely some domain specific local (activity) and global (process)
Using the PE the modeller has modified the draft model: check activity is split

” and ”Check”), annotations have been added, I/O parameter

vity or the whole process, DTC considers not only the local activity
annotations, but also the global annotations added by the modeller to the process. Global
annotations can be requirements and preferences3, as described in [4]

Note that the modeller can edit and modify process templates generated by the TG, before
being stored within the template repository. In this case, the process template generated in
the previous section and the one load here differ since the modeller simplified the former one

In this document we refer to requirements and preferences in order to follow the common

ition and Adaptation Environment

Page 19 of 34

the process fragment for business registration process created by TG2

Initial process fragment as obtained from Template Generator

In most of the cases, starting from a template model will require some manual amendments,
since the process template is intended for a wide range of usages. Therefore, the modeller
needs to adapt manually the process fragment to its actual usage, which may imply to adapt

(activity) and global (process)
the draft model: check activity is split

annotations have been added, I/O parameter

vity or the whole process, DTC considers not only the local activity
annotations, but also the global annotations added by the modeller to the process. Global

[4] and [5]. In our

fy process templates generated by the TG, before
being stored within the template repository. In this case, the process template generated in
the previous section and the one load here differ since the modeller simplified the former one

In this document we refer to requirements and preferences in order to follow the common

SOA4All –FP7 – 215219

© SOA4All consortium

example, the modeller have manually added some annotations: a
cost-free SWSs, a preference on the notification channel
concerning the preferable payment method for the particular local government department
that is modelling this process.

Figure 10:Initial model after adjusted by the user (changes indicated in the yellow bubbles)

Once the initial draft model is ready, the modeller can start trying to bind some abstract
activities (described by annotations, but already
it manually (using PE features) or
the modeller selects the FileCase activity and invokes DTC.bindActivity menu in PE.
However, DTC does not return a solution since it has
SWS based on the available knowledge

naming convention used in Service Discovery
preferences were denoted as constrains and requirements, fo
specification.
4Current PE prototype does not support the automatic insertion of contextual information
obtained from contextual sources such as the user profile, whereby the modeler introduces
contextual annotations by hand.

Modified global process
annotations (context,

process requi

Split one activity into two,
and added FC and I/O
annotations

Added new control flow
with

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

the modeller have manually added some annotations: a requirement
, a preference on the notification channel and some contextual information

concerning the preferable payment method for the particular local government department
that is modelling this process.

Initial model after adjusted by the user (changes indicated in the yellow bubbles)

Once the initial draft model is ready, the modeller can start trying to bind some abstract
activities (described by annotations, but already not bound to concrete services).

(using PE features) or relying on the DTC.bindActivity method. In our example,
the modeller selects the FileCase activity and invokes DTC.bindActivity menu in PE.
However, DTC does not return a solution since it has not been possible to find

based on the available knowledge. In other words, there were not any SWS whose

naming convention used in Service Discovery [12]. Formerly in [5], requirements and
preferences were denoted as constrains and requirements, following the Parametric Design

Current PE prototype does not support the automatic insertion of contextual information
obtained from contextual sources such as the user profile, whereby the modeler introduces
contextual annotations by hand.

Modified global process
annotations (context,

process requirements)

Split one activity into two,
and added FC and I/O
annotations

Changed desired
payment type by
modifying FC and NFP

Added new control flow
with bound condition

ition and Adaptation Environment

Page 20 of 34

equirement for using only
and some contextual information4

concerning the preferable payment method for the particular local government department

Initial model after adjusted by the user (changes indicated in the yellow bubbles)

Once the initial draft model is ready, the modeller can start trying to bind some abstract
crete services). She can do

method. In our example,
the modeller selects the FileCase activity and invokes DTC.bindActivity menu in PE.

possible to find any matching
here were not any SWS whose

, requirements and
llowing the Parametric Design

Current PE prototype does not support the automatic insertion of contextual information
obtained from contextual sources such as the user profile, whereby the modeler introduces

Changed desired
payment type by
modifying FC and NFP

SOA4All –FP7 – 215219

© SOA4All consortium

MSM description fit into the activity annotations
complex to be resolved by only

An alternative is to ask DTC to resolve the activity by selecting
method in the PE menu. In this case
service, but also to expand the activity with process
the activity annotations by inspecting their existing
Semantic Space (SS) [11]. The returned model, as shown in next figure, is more complete,
since the matched template has
time a generic template is used as part of a process, the customization of the annotations of
that fragment of the process is possible to adapt its gene

Figure 11: Process model after “FileCase” activity resolved

To save time the modeller invokes the
case, DTC applies any existing domain knowledge to resolve any missing information in the
whole process model, including
expansion or SWS binding (depending of found matches).
with matching templates or
LPML allows multiple bindings. However, there are still few unbound activities (Receive
registration form, Send Confirmation

FileCase r
subprocess composed
of 2 activities

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

MSM description fit into the activity annotations. In this case, the FileCase activity was
only one existing SWS operations.

An alternative is to ask DTC to resolve the activity by selecting the DTC.resolveActivity
in the PE menu. In this case, DTC tries not only to bind the activity to a matching

to expand the activity with process fragments or templates matched against
the activity annotations by inspecting their existing semantic descriptions stored in the

. The returned model, as shown in next figure, is more complete,
since the matched template has replaced the FileCase activity. As commented before, any
time a generic template is used as part of a process, the customization of the annotations of
that fragment of the process is possible to adapt its generic usage to the particular one.

Process model after “FileCase” activity resolved

To save time the modeller invokes the DTC.resolveProcess method in the PE menu. In this
ng domain knowledge to resolve any missing information in the

including unbound activities, which are resolved by template
expansion or SWS binding (depending of found matches). As a result, DTC either expands

matching templates or binds with SWS candidates most of the activities
LPML allows multiple bindings. However, there are still few unbound activities (Receive

Confirmation).

FileCase resolved into
subprocess composed
of 2 activities.

ition and Adaptation Environment

Page 21 of 34

FileCase activity was too

DTC.resolveActivity
DTC tries not only to bind the activity to a matching

fragments or templates matched against
semantic descriptions stored in the

. The returned model, as shown in next figure, is more complete,
replaced the FileCase activity. As commented before, any

time a generic template is used as part of a process, the customization of the annotations of
ric usage to the particular one.

Process model after “FileCase” activity resolved

method in the PE menu. In this
ng domain knowledge to resolve any missing information in the

unbound activities, which are resolved by template
DTC either expands

most of the activities. Note that
LPML allows multiple bindings. However, there are still few unbound activities (Receive

SOA4All –FP7 – 215219

© SOA4All consortium

Figure 12: Process model after invoking “Resolve Process” option

Since some activities have not been
for each tries to bind them again
model is shown below.

Figure

Unbound Activity:
Receive
Registration Form

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

rocess model after invoking “Resolve Process” option

have not been bound, the modeller reconsiders their annotations and
for each tries to bind them again invoking DTC.bindActivity menu. The final bound process

Figure 13: Completely resolved process model

Unbound Activity:
Send Confirmation

ition and Adaptation Environment

Page 22 of 34

rocess model after invoking “Resolve Process” option

their annotations and
menu. The final bound process

Unbound Activity:
Send Confirmation

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 23 of 34

Next steps concerns the data flow generation. Once the process model is complete (i.e. all
the activities are bound), DTC is able to partially generate the data flow. The modeller
invokes. DTC.generateDataFlow method in the PE menu and DTC returns a modified
model with a tentative data flow generated. For each activity, the modeller should check and
amend (if needed) the generated data flow using the PE data flow editor. Together with the
dataflow generation, DTC check the I/O semantic compatibility of the whole set of binding
(for all activities), filtering (removing) those bindings which are incompatible with any
possible data flow. Note that DTC performs both tasks when the modeller invokes
DTC.resolveProcess , as soon as DTC finds a complete process model and before
returning the final process model.

Next pictures show the complete generated process model with a tentative data flow added.
Note that, by the time of writing, Process Editor cannot render LPML models that include a
data flow since that feature is under development. Therefore, we show all the LPML models
that contains a data flow and are generated in this phase and in the next one (section 2.4)
using an ad-hoc LPML Visualizer, developed since M18 [5] for tracking and debugging
purposes. Once the Process Editor M30 version is release, LPML models containing a data
flow will be supported and their data flow editable. .

Figure 14: Process mode

Figure 15: Process model with dataflow

Process model with dataflow connectors in green (shown in LPML viewer)

: Process model with dataflow connectors in green (detail)

LPML viewer)

Eventually, the modeller can invoke DTC.checkIOSemanticCompatibility in PE menu to
check and filter incompatible bindings over complete models. This operation can be
performed any time the modeller manually add a new binding to check whether it is or not
compatible with the current binding set of affected activities.

The result of this design time semi-assisted modelling task is a complete, non-optimized
process model for the business registration scenario. Next section describes how the
modeller uses the Optimizer method integrated in the PE menu to optimize the model.

2.4 Process Optimization

In this section, we illustrate and describe the final prototype of Optimizer platform service
component along the WP7 Business Registration Process scenario described in [10]. The
theoretical grounding of the optimizer component has been described in [4] and [5].

The modelling process is a combination of manual modelling (using the Process Editor,) and
assisted modelling using the Optimizer service. This test explains an illustrative jointly
process modelling phase in which modeller (user) using the Process Editor, the result of the
DTC service and the optimizer service are mutually collaborating.

The optimizer component provides non-functional- and semantic-based optimization
common modelling tasks, using semantic reasoning as describe in [4] and [5]:

• It binds activities to the most appropriate SWSs whose semantic descriptions match
the activity annotations, and non-functional parameters are optimal for activities.

• It optimizes the quality if data-flow connections that wire the data input of some
activities with the data output of predecessor activities.

In the rest of this section, we continue with the WP7 scenario we use as illustrative modelling
example throughout this document.

The modeller uses the Optimizer to optimize an existing process model for the WP7
business registration process [10]. In this example, the modeller starts from one of (pre-
composed) process model inferred from successively the process fragments (templates)
extracted by the TG and DTC, as explained in the previous sections. However, the optimizer
can be applied on any process, without asking the intervention of DTC. To this end, pre-
composed process models are located from the process storage using two methods.

On the one hand, the modeller can browse the process repository by hand using the
Process Editor and load processes by name. On the other hand, the modeller can create a
very simple process with different activities (described by single annotations) and that
describes the desire composition model. Finally, the modeller can ask the optimizer to look
for the best service binding regarding the activities descriptions involved in the process.
Regardless the approach, the modeller gets a complete process that uses as the input of the
optimizer. In our example, the modeller do not need to browse the storage and selects the
process, but simply need to ask for optimization of the process designed by DTC. The
optimization is then achieved through the Process Editor, which provides the possibility to
optimize the previous service according to an “Optimize” button (right hand corner in Figure
12).

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 26 of 34

Figure 16: Optimizer Interaction with Process Editor

Before an Optimization invocation, the modeller is asked to provide the parameters she
wants to optimize in the composition by means of “Optimize” button (left hand corner in
Figure 6). For instance, the modeler could be interested in optimizing along (1) specific Key
Performance Indicators KPIs: overall availability of the process (i.e., aggregation of
availability of services), overall price, overall response time and (2) quality of semantic
connections between services: overall matching quality, overall robustness.

During the optimization process, the new bound services are automatically discovered from
the IServe repository (http://iserve.kmi.open.ac.uk/). Therefore, the modellers do not need to
specify any service repository. However, in case the modeller want to attach a service not
referred in the repository, she will need to first to describe the service in IServe and providing
a valid endpoint to it.

Using the WP7 example, the process modeller ask

After the invocation of the optimizer, the optimal process is returned given the KPIs and semantic

process modeller asks for optimization of process model (generated by DTC) in Figure 8.

Figure 17:Non-Optimal Process

After the invocation of the optimizer, the optimal process is returned given the KPIs and semantic constraints provided by the modeller.

Figure 18: Optimal Process

for optimization of process model (generated by DTC) in Figure 8.

constraints provided by the modeller.

While the input DTC is generally a rather goal-heavy process specification, the optimizer
only accepts complete process models for which it seeks a better global cost function (in
term of functional and non-functional qualities of services i.e., KPIs and quality of semantic
connections between services in the composition). The optimizer transparently transforms
compositions into their optimal versions by replacing service bindings and modifying the
dataflow but without changing the workflow (i.e., its structure – there is no difference in
control flow specification of non-optimal and optimal processes in respectively Figures 7 and
8). The only changes refer to services binding to activities as illustrated in Figures 9 and 10.
This is justified by their impact in the overall quality of the process. Indeed the services
bound to “Check Operation Allowance”, “Send Denial” and “Search and Notify Tax Office”
activities in the non-optimal process ensure a quality of:

• KPI availability: 0.085

• KPI price: 5.23

• KPI response time: 12.5

• Semantic matching quality: 0.35

• Semantic robustness: 0.68

whereas the services bound to the previous activities in the optimal process ensure a quality
of:

• KPI availability: 0.155

• KPI price: 5.03

• KPI response time: 4.5

• Semantic matching quality: 0.56

• Semantic robustness: 0.98

According to the latter figures, the optimal process has better quality than the non-optimal
one. Obviously, relevant binding of services to activities is required to optimize processes.

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 29 of 34

Figure 19: Part of the Non-Optimal Composition

Figure 20: Part of the Optimal Composition

To conclude, the modeller creates a non-optimized model in the previous phase using the
PE/DTC, then she expresses some NFP/KPI for optimization and invokes the Optimizer
using the PE menu.

2.5 Process post-mortem schema analysis

A further goal that process modellers can achieve thanks to the Template Generator is to
verify if the schema they modelled is valid and accurate, meaning if it is actually
corresponding to the process executions: in fact, a process can be modelled including
several branches which are then not used during run-time.

This goal can be quite easily achieved thanks to the Template Generator, as illustrated in the
following picture:

SOA4All –FP7 – 215219

© SOA4All consortium

Figure 21: The Template Generator used to verify a process schema

An existing process is executed thanks to the SOA4All Executor.

The Template Generator captures execution logs and is
process schemas out of them. Such schemas will represent actual process executions.

Process modellers are able now to compare th
schemas generated out of real executions, and check the consistency of such schemas.
They can identify areas of improvement for their initial schema and change it accordingly in
the Process Editor.

215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

: The Template Generator used to verify a process schema

xecuted thanks to the SOA4All Executor.

The Template Generator captures execution logs and is able to generate an hierarchy of
process schemas out of them. Such schemas will represent actual process executions.

Process modellers are able now to compare the schema that was deployed, with the
schemas generated out of real executions, and check the consistency of such schemas.
They can identify areas of improvement for their initial schema and change it accordingly in

ition and Adaptation Environment

Page 30 of 34

: The Template Generator used to verify a process schema

able to generate an hierarchy of
process schemas out of them. Such schemas will represent actual process executions.

was deployed, with the
schemas generated out of real executions, and check the consistency of such schemas.
They can identify areas of improvement for their initial schema and change it accordingly in

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 31 of 34

3. Conclusions

This document highlights the main functionality, as perceived by the process modeller, of the
final prototype for Service Composition and Adaptation Environment, which provides semi-
assisted support for some tedious and time-consuming modelling tasks at design time. The
document introduces the tooling support at design time for the Lightweight Process
Modelling Methodology and principles. Afterwards, it dig into the details of each design time
phase and how it is supported by the different DTCE tools. We emphasize three main
features: the usage of the Template Generator tool as a mean to populate a reusable
repository of modelling templates obtained from the inspection of executed processes, the
usage of the Design Time Composer tool to semi-assist some cumbersome process
modelling tasks, and the usage of the Optimization tool to obtain full-optimized process
models.

We do an illustrative and practical modelling exercise throughout the document as a
conductor of the explanation of the main DTCE tooling features, in particular a model for the
WP7 business registration process is completely created from scratch to its final optimized
and ready for deployment version.

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 32 of 34

4. References

[1] SOA4All D6.3.1. Specification of Lightweight Context-aware Process Modelling
Language, 2008.

[2] SOA4All D6.3.2. Advanced Specification Of Lightweight, Context-aware Process
Modelling Language, 2009.

[3] SOA4All D6.3.3. Evaluation and Final Design Of Lightweight, Context-aware Process
Modelling Language, 2010.

[4] SOA4All D6.4.1. Specification and First Prototype Of Service Composition and
Adaptation Environment, 2009.

[5] SOA4All D6.4.2. Advance Prototype Of Service Composition and Adaptation
Environment, 2010.

[6] SOA4All D6.5.2. Advanced Prototype For Adaptive Service Composition Execution,
2010.

[7] SOA4All D2.6.1 Specification of the SOA4All Process Editor, 2009

[8] SOA4All D2.6.2 SOA4All Process Editor First Prototype, 2009

[9] SOA4All D2.6.3 Advanced prototype of SOA4All Process Editor, 2009

[10] SOA4All D7.2 Scenario Definition, 2008

[11] SOA4All D1.3.3B Semantic Spaces: A Second Implementation, 2010

[12] SOA4All D5.3.2 Second Service Discovery Prototype

[13] Lécué, F. et Al. SOA4All: An Innovative Integrated Approach to Services
Composition. Paper accepted at ICWS 2010

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 33 of 34

5. Technical Annex
This section summarizes the technical changes and improvements, mostly related to the
integration with other platform services and API provided by other technical WPs. This
section also refers the user to the source code and installation instructions of the DTCE
tools:

Template Generator

Software: https://svn.sti2.at:/SOA4All/trunk/SOA4All-service-construction/SOA4All-
serviceconstruction-module-templategenerator

Installation instructions:
The Template Generator code is part of the Process Editor, thus it is automatically installed
with it. The TG has no particular configuration to be set.

Technical improvements:

• integration with logs repository

• algorithm parameters wizard

• full integration with latest Process Editor

• Improvements in GUI and better schemas navigation system

• Updated LPML export

• Storage of process schema to Templates Repository

Design Time Composer

Software: https://svn.sti2.at:/SOA4All/trunk/SOA4All-service-construction/SOA4All-
serviceconstruction-dtcomposer

Installation instructions: Software: https://svn.sti2.at:/SOA4All/trunk/SOA4All-service-
construction/SOA4All-serviceconstruction-dtcomposer/install.txt

Technical improvements:

• Full integration with Process Editor

• Full integration with M30 versions of Semantic Link Operator, Reasoner, Discovery,
SemanticSpaces, WSL4J, iServe. Template Storage.

SOA4All –FP7 – 215219 –D6.4.3 Final Prototype For Service Composition and Adaptation Environment

© SOA4All consortium Page 34 of 34

• Improved support for context-based modeling, global requirements and preferences
in WSML-DMA

• Improved support for new data-flow mappings features provided by Semantic Link
Operator in the SLO-DMA

• Rewriting SD-DMA based on integrated M30 SD prototype.

• Integrated new M30 LPML API.

• Improved performance: query and model caching, multi-threaded architecture

Optimizer

Software: https://svn.sti2.at:/SOA4All/trunk/SOA4All-service-construction/SOA4All-
serviceconstruction-optimizer

Installation instructions: https://svn.sti2.at:/SOA4All/trunk/SOA4All-service-
construction/SOA4All-serviceconstruction-optimizer/install.txt

Technical improvements:

• Full integration with Process Editor

• Full integration with M30 versions of Semantic Link Operator, Discovery, iServe

• Integrated new M30 LPML API

• Consideration of new data flow manipulation

