

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D6.5.3 Final Prototype For Adaptive
Service Composition Execution

Activity N: 2

Work Package: 6

Due Date: 31/08/2010

Submission Date: 31/08/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: CEFRIEL

Revision: 1.0

Author(s):

Reviewers:

Gianluca Ripa, Teodoro De Giorgio
(CEFRIEL), Fy RAVOAJANAHARY
(INRIA)

Maurilio Zuccalà (CEFRIEL), Yosu
Gorroñogoitia (ATOS)

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 2 of 33

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 08/07/2010 TOC defined Gianluca Ripa

0.2 14/07/2010 First draft contribution Teodoro De Giorgio

0.3 15/07/2010 Executive Summary, TOC refined Gianluca Ripa

0.4 26/07/2010 First contributions Gianluca Ripa, Teodoro De
Giorgio

0.5 31/07/2010 Merged contributions, added Section 1
and Section 5

Gianluca Ripa

0.6 02/08/2010 Transformation from LPML to BPEL Fy RAVOAJANAHARY

0.7 23/08/2010 Merged contributions, document
finalized

Teodoro De Giorgio

0.8 27/08/2010 Internal review Maurilio Zuccalà

0.9 30/08/2010 Internal review Yosu Gorroñogoitia

1.0 31/08/2010 Final version Gianluca Ripa

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 3 of 33

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 INTRODUCTORY EXPLANATION OF THE DELIVERABLE _________________ 7
1.2 PURPOSE AND SCOPE __ 7
1.3 STRUCTURE OF THE DOCUMENT ___________________________________ 7

2. DESIGN, DEPLOYMENT AND EXECUTION OF LIGHTWEIGHT PROCESSES ____ 8

2.1 COMPOSE ___ 8
2.2 DEPLOY ___ 9
2.3 DESCRIBE __ 13
2.4 PUBLISH ___ 14
2.5 EXECUTE ___ 14

2.5.1 Process invocation __ 14
2.5.2 Process execution __ 14
2.5.3 Monitor ___ 17

3. USE CASE DRIVEN EXPERIMENTS AND VALIDATION _____________________ 19

3.1 USE CASE SCENARIOS ___ 19
3.1.1 WP7 requirements and scenarios ___________________________________ 19
3.1.2 WP8 requirements and scenario ___________________________________ 20
3.1.3 WP9 requirements and scenario ___________________________________ 21

3.2 EXAMPLE OF USE OF THE EXECUTION ENGINE ______________________ 22

4. CONCLUSIONS __ 28

5. REFERENCES ___ 29

ANNEX A. TECHNICAL ANNEX __ 31

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 4 of 33

List of Figures

Figure 1 - Lightweight process life cycle .. 8

Figure 2 - BPEL fragment for human tasks ...10

Figure 3 - BPEL fragment for activities ...11

Figure 4 - BPEL fragment for data flow translation ...12

Figure 5 - BPEL fragment for Control flow condition translation ..12

Figure 6 - BPEL fragment for data flow loop translation ..13

Figure 7 – Executable Process Service interface..13

Figure 8 - Hybrid Process Execution with service adapters ..15

Figure 9 - Hybrid Process Execution with lifting and lowering support16

Figure 10 - Service Executor: adaptiveInvoke operation ...16

Figure 11 - Service Executor: adaptiveInvoke operation details ..16

Figure 12 - SPARQL query for data flow ..17

Figure 13 - SPARQL query for condition evaluation ...17

Figure 15 - WP8 Process description ...21

Figure 16 - LPML Process with parallel execution paths ...21

Figure 17 - LiLoTEST example process ...22

Figure 18 - LiLoTEST extended BPEL ..23

Figure 20 – Generated artifacts for the “LILOTest” process ..23

 List of Tables

Table 1 - Extended BPEL attributes ...10

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 5 of 33

Glossary of Acronyms

Acronym Definition

BPEL Business Process Executable Language

D Deliverable

DTC Design Time Composer

EC European Commission

EE Execution Engine

EE v1 Execution Engine version 1

EE v2 Execution Engine version 2

EE v3 Execution Engine version 3

HTS Human Task Service

IM Intermediate Model

JSON JavaScript Object Notation

KPI Key Performance Indicator

LPML Lightweight Process Modelling Language

MSG Mapping Script Generator

PE Process Editor

POM Project Object Model

RDF Resource Description Framework

RDFa RDF in attributes

RDFS RDF Schema

REST Representational State Transfer

SAWSDL Semantic Annotations for WSDL and XML Schema

SOAP Simple Object Access Protocol

SWS Semantic Web Service

WP Work Package

WSDL Web Services Description Language

WSMO Web Service Modelling Ontology

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 6 of 33

Executive summary

The Final Prototype for Adaptive Service Composition Execution (EE v3), released at the end
of August 2010, is the final prototype including all the planned functionalities as described in
[6] and [9]. In the final version the prototype adds no new functionalities: existing ones were
enhanced or extended taking into account:

 The feedbacks from the industrial partners of SOA4All in charge of validating the
technology through real world use case scenarios;

 The evolution of the Lightweight Process Modeling Language (LPML) [1].
The most relevant improvements in the latest version are:

 Hybrid processes support: EE v2 already allowed a process to mix WSDL/SOAP
Web services, RESTful Web services and Human tasks realizing a hybrid service
composition. This was realized by exploiting semantic annotations as described in [2].
The EE v3 extended the approach thus supporting also services described using both
the model reference attribute and the liftingSchemaMapping and
loweringSchemaMapping ttributes defined in SAWSDL and MicroWSMO
specifications.

 Support for the latest version of LPML: in the latest version of the LPML the
possibility of specifying the data flow between two activities and the conditions on
outgoing flows from gateways as XPATH or SPARQL queries was added. The EE v3
supports the execution of the latest version of LPML.

As for the integration aspects, the EE v2 was ready to be integrated with some of the other

SOA4All components (i.e., theProcess Editor, the Consumption Platform, the Analysis
platform). The integration was completed in the EE v3. The EEv3 is available with its source
code through the SOA4All SVN repository.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 7 of 33

1. Introduction

1.1 Introductory explanation of the deliverable

The first prototype of the composition framework (EE v1) [5], released on February 2009,
was built on top of SCENE [12] and incorporated a new approach for adapting service
requests to actual service interfaces through semantic annotations. The approach was
described in detail in [3] and [4].

The Advanced Prototype For Adaptive Service Composition Execution (EE v2), released on
February 2010, was the new updated version of EE that was in charge of translating the
LPML models into executable processes, exposing them as services and executing them.
The EE v2 was extended in order to support REST services invocation and the support for
the adaptation of SOAP service requests to REST service interfaces through semantic
annotations as described in [2].

This document contains the description of the software release of the EE v3.

1.2 Purpose and Scope

This document aims to describe the Execution Engine v3, with specific emphasis on the
realization of some example based on the SOA4All Use Case scenarios.

1.3 Structure of the document

Section 2 briefly recaps the use case requirements and scenarios that drove the design and
implementation of the prototype. Section 3 describes the main functionalities of the Execution
Engine V3 focusing on the new aspects. Section 4 describes the realization of the use cases
scenarios focusing on the execution aspects. Finally, section 5 draws some conclusion.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 8 of 33

2. Design, deployment and execution of lightweight
processes

This section describes the composition, deployment and execution of hybrid processes
involving REST services, SOAP services and Human tasks as required by the three use
case scenarios described in the followin section 3.

The lifecycle of the process is depicted in Figure 1.

Compose

Deploy

DescribePublish

Execute

Figure 1 - Lightweight process life cycle

2.1 Compose

At design time, SOA4All offers a complete suite for Service Composition and Adaptation that
is also known as Design Time Composition Environment (DTCE), and whose research
achievements and technical design have been reported in [13] and [14]. [15] provided a
holistic functional description of the final DTCE prototype, intended for end modellers.

SOA4All Service Composition at design time follows a Lightweight Process Modelling
methodology and principles that are intrinsically adopted by the Lightweight Process
Modelling Language (LPML). LPML is the language intensively used by the DTCE tooling
throughout the whole design and deployment life cycle. [10], [11], [12] report the LPML
metamodel, methodology and principles. LPML design principles are: a) light semantics as
the basis for the description of processes and their elements, b) coarse-grain description of
the requirements for process and activities, c) extensive reuse of abstract modelling blocks,
such as process fragments and templates, d) contextual adaption, e) semantic enabled data
flow, f) multiple activity bindings, etc.

LPML offers a very concise modelling language intended to offer a simple graphical
vocabulary to model business process. The SOA4All Studio Process Editor (PE) offers the
graphical layout of the language. DTCE tools complement Process Editor, by automating
some tedious and cumbersome modelling tasks at design time.

During the design time phase, a modeller produces an optimal executable process model
ready for deployment. In this phase, two DTCE tools are involved: Design Time Composer

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 9 of 33

(DTC) and Optimizer. This phase includes two parts:

 An iterative semi-assisted process-modelling phase, supported by the Process Editor

tool and the DTC service. During this phase, the modeller produces a suboptimal

executable process model, since she focus on the modelling aspects: work and data

flow. DTC service automates some cumbersome modelling tasks, such as binding

SWS to activities, expanding unbound activities with matching sub-processes,

creating the data flow connectors, checking the semantic I/O compatibility, adapting

the process model to contextual information, etc.

 A process-optimization phase, supported by the Process Editor and the Optimizer

service. During this phase the modellers optimizes the process model created in the

previous phase. Optimizer service replaces the current binding set for each activity

within the process with a new one that offers a better global cost function for the

process according to both the semantic quality between the I/O of correlated activities

and some global KPI specified by the modeller.

The optimized process model is ready for deployment within the SOA4All Execution

Environment (EE) using the Deployer service through the Process Editor.

2.2 Deploy

The deployment phase translates the process graphically described using the Process Editor
in combination with the DTCE tools, which is not immediately executable, to an Executable
Process. Thus, the process is translated into an extended BPEL, defined in [10], through a
transformation chain based on the Eclipse project called Mangrove1. Leveraging this project
allows us to realize a complete transformation from an LPML process to an executable
BPEL2.0 process (described in detail in [9]). The serialization purpose is to identify the
specificity of each LPML step and generate its BPEL counterparts. That includes basic
service call and more conceptual and complex activities such as semantic activities or
human tasks. The transformation transports, on the one hand, static attributes:

 Activity name: The name of the activity on the LPML process

 Activity Id: The unique activity identifier

 RoleOwner: The Role of the user which asks for the execution of the process

 Parameters: All the static value which will be used as input on the BPEL process

 Service reference for conversation: The endpoint of the process

On the other hand, it transports dynamic attributes (described in detail in [1] and [10]) used to
support the dynamic binding and service substitution at runtime:

replacementCondition This attribute represents an element in a taxonomy
that defines the set of pre-defined replacement
conditions. The replacement conditions are the
situations in which the execution engine will try to
substitute a service with another. Examples of

1 http://www.eclipse.org/mangrove/

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 10 of 33

replacement conditions are: fault and timeout.

selectionCriteria The selection criteria is the criteria applied by the
engine for selecting a substitute service from a list of
alternatives. Examples of selection criteria are: price,
response time and service rating.

alternativeServiceList This element lists the services that can be used as
alternatives in the service substitution.

It is a list of alternativeService subelements:

 This element is an URI that points to the
service description specification.

Table 1 - Extended BPEL attributes

In detail, an activity defined by the process editor during the composition specifies the
execution of some unit of work and will be bound to concrete services. The concrete service
is selected by analysing the semantic annotations, and the selectionCriteria.

While the selectionCriteria defines the ranking of services in the service list, the
replacementCondition defines when to replace a selected service.

During the deployment phase a lot of tasks are performed automatically for translating the
process model in LPML into an executable BPEL document.

1. Human tasks

Human tasks in the LPML are translated into a BPEL fragment as depicted in Figure 2.

Figure 2 - BPEL fragment for human tasks

2. Activities

Process activities are translated into a BPEL fragment as depicted in Figure 3.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 11 of 33

Figure 3 - BPEL fragment for activities

For each activity in the LPML, the following parameters are reported into BPEL
variables.

 serviceRequest: represents the input of the activity in RDF; the value of this variable
is assigned at runtime, and at deploy time it is initialized with an empty value.

 serviceDescription: all the information required by the execution engine for the
invocation of the service bound by the DTC or by the Optimizer for the execution of
the activity:

o serviceDescriptionURL;

o serviceName;

o serviceOperationName;

o liftingSchemaURL: is the URL to the specifying lifting mappings between
semantic data and service data;

o loweringSchemaURL: is the URL to the specifying lifting mappings between
XML and service data and semantic data.

 alternativeServiceList: a list of alternative services for this activity that contains for
each alternative service the same elements of the serviceDescription element; this
service can be bound to the activity in case a replacementCondition occurs;

 replacementCondition, e.g. fault, no response;

 selectionCriteria, e.g. rating.

3. Mapping script

In case the serviceDescription and/or an alternativeService inside the
“alternativeServiceList” does not have a lifting and lowering schema URL, a mapping
script is generated in order to allow service substitution at runtime through the service
adapter as depicted in Figure 8 and described in [9];

4. Data flow

The mechanisms for managing the data flow inside the LPML, described in [18], [13]
and [11], are translated into a standard BPEL assign element. In case of activities
bounded to services that manage RDF through the lifting and lowering mechanism
the BPEL fragment depicted in Figure 4 is generated.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 12 of 33

Figure 4 - BPEL fragment for data flow translation

5. Thus, in case of RDF mapping it is required to invoke the QueryEngine SPARQL-
based [26] able to understand and manipulate the RDF parameters.Control flow

Standard control flow mechanisms (e.g., gateways, conditions) described in [18] and
[12] are translated into a standard BPEL fragment.
When services bound to the activities manage RDF as input and output, the
conditions are resolved using the SPARQL Query engine. In such settings, each flow
in the LPML is annotated with a SPARQL query. The corresponding BPEL fragment
generated in this situation is the one depicted in Figure 5.

Figure 5 - BPEL fragment for Control flow condition translation

6. Loops

Another important aspect associated with Data flow is loop, in case of loops in the
process by executing a SPARQL Query it is possible to repeat a sequence until the
result of the query is false, the input of the query can be both received as input from
the process or as output parameters from an activity execution. A typical loop
translation is represented in Figure 6.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 13 of 33

Figure 6 - BPEL fragment for data flow loop translation

The process is finally exposed as service, so the process can be used by invoking it as a
normal service by the Consumption Platform through the conceptual layer. Indeed, EE v3
allows to hide the service implementation and to dialogue with a process at an higher level of
abstraction by means of semantic descriptions. In order to achieve this goal the modeler has
to add further semantic annotation to the WSDL as described in the next section.

2.3 Describe

During the description phase the process interface is described to enable the reuse of the
process for other composition in the SOA4All Composer. The deployed lightweight process is
encapsulated in a standard WSDL/SOAP interface and available as service. An example of a
possible interface of the executable process service is shown in Figure 7. For each process
the corresponding WSDL is automatically generated.

Figure 7 – Executable Process Service interface

Input and output of the service process can be both RDF and XML data types.

In case of RDF, as for every other web service, the WSDL of the process must be annotated
with two attributes:

 http://www.w3.org/ns/sawsdl#liftingSchemaMapping for the input parameter;

 http://www.w3.org/ns/sawsdl#loweringSchemaMapping for the output parameter.

The two attributes point respectively to the lifting and lowering mapping URI. The mapping
for the input parameter is between the semantic data represented in RDF in the input of the
process and the input service parameters of the first activity inside the process. The mapping
for the output parameter is between the output service parameters of the last activity inside

http://www.w3.org/ns/sawsdl#liftingSchemaMapping
http://www.w3.org/ns/sawsdl#loweringSchemaMapping

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 14 of 33

the process and the semantic data represented in RDF for the output of the process.

In general, the WSDL of the process can be semantically annotated in conformity to the
SAWSDL recommendation and it is ready for the publication. Thus each element of the
WSDL of the process can be also annotated with a modelReference2 attribute for facilitating
the reuse of the process in other contexts. For this purpose two different SOA4All Studio
tools are available:

- the SOWER Editor, that could be used to annotated WSDL and

- the data grounding editor to create lifting and lowering schemas.

2.4 Publish

The Executable Process Service interface, that is a Semantically Annotated WSDL, is
published by the modeler on iServe3, the SOA4All tool in charge of acting as service
repository.

2.5 Execute

After the publishing the process is accessible as a Web Service. Through the Consumption
Platform it is possible to invoke the executable process. Service selection and replacement
at runtime is performed assuming that all implementations of an abstract service have
different interfaces or adopt different communication protocols.

2.5.1 Process invocation

The invocation of the services inside the process is provided with an exchange of messages,
typically in XML as the traditional SOAP services, but they might also be through invocation
of URLs and involving other format of responses such as JSON or other in REST services.
To start the execution of the process the Consumption Platform invokes the appropriate
operation in the executable process exposed as a service. The Consumption Platform
handles input and output data at a conceptual-level and is able to lower and lift to and from
invocation-level messages, thanks to the grounding information attached to the services
description. Since, as described above, deployed processes are exposed as WSDL services
that can be annotated with lifting and lowering schemas, the Consumption Platform is able to
invoke the processes as any other service.

2.5.2 Process execution

This section describes what happens during the execution of the executable process
described with the extended BPEL described in [11]. The execution can proceed in two
different ways depending on the kind of services involved in the process.

The first approach, already described in [2] and [9], is depicted in Figure 8. The service
adapter is the component delegated to invoke the services. It receives an abstract service
request inside a SOAP message; the request is based on an abstract service interface.
Service adapter is able to analyze the request and adapt the abstract request to the concrete
service request for performing the service invocation to the appropriate service type and
return as the service response of the real service invocation in the adapted SOAP message.

2 http://www.w3.org/ns/sawsdl#modelReference

3 http://iserve.kmi.open.ac.uk/

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 15 of 33

Activity 1

Activity 2

SOAP

Service

REST

Service

SOAP request

Adapted SOAP

response

SOAP request

Adapted SOAP

response

Extended

BPEL

Service
Adapter

Adapted HTTP GET or POST

XML as HTTP response

Service
Adapter

Adapted SOAP

request

SOAP response

Figure 8 - Hybrid Process Execution with service adapters

Another approach is used when invoked services use the lowering and lifting mechanisms for
mapping the input and output of the service from and to the conceptual layer (i.e., from and
to RDF triples). In this scenario the SOAP requests bodies always contain RDF triples. The
EEv3 is able to manage RDF and, using the lifting/lowering Service, to convert the RDF in a
concrete service request and finally to invoke the actual service. Then, after invocation, the
EE v3 is able to apply the lifting mechanism and to manage the result of the invocation as
RDF.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 16 of 33

Activity 1

Activity 2
SOAP

Service

REST

Service

SOAP request

with RDF

SOAP response

(with RDF)

SOAP request

with RDF

SOAP response

with RDF

Extended

BPEL

HTTP GET or POST

XML/JSON as HTTP

response

Lowering
service

Lifting

service

Lowering
service

Lifting

service

SOAP request

SOAP response

Data Flow as
SPARQL Query

Figure 9 - Hybrid Process Execution with lifting and lowering support

This mechanism is implemented by a service executor service. The WSDL interface of the
service executor is described in Figure 10 and in Figure 11.

Figure 10 - Service Executor: adaptiveInvoke operation

Figure 11 - Service Executor: adaptiveInvoke operation details

As described in the previous section, EE v3 is able to generate request to the SPARQL
Engine by sending some RDF as input and the appropriate SPARQL query (obtained at
deploy time from the LPML annotations). Figure 13 shows the execution of the data flow
through the SPARQL query engine.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 17 of 33

SPARQL Engine SOAP WrapperActivity 1

Activity 2

SOAP request(RDF, SPARQL query)

Data flow

SOAP response: RDF

Extended

BPEL

Figure 12 - SPARQL query for data flow

Furthermore, as described in the previous section, the EE v3 provides also a way to evaluate
the conditions expressed as SPARQL queries. Figure 13 shows the evaluation of conditions
through the SPARQL query engine.

SPARQL Engine SOAP WrapperActivity 1

Activity 2

SOAP request(RDF, SPARQL query)

Condition
evaluation

SOAP response: boolean

Extended

BPEL

Figure 13 - SPARQL query for condition evaluation

Of course, as defined in the standard BPEL 2.0 specification4, XPATH expressions are
natively supported in EE v3. The modeler can choose which language to use according the
kind of services involved in the composition.

2.5.3 Monitor

The execution of the processes makes possible the monitoring of the activities and services
involved and the other lightweight processes. EE v3 is integrated with the Analysis Platform
by receiving and sending meaningful information (monitoring events). The EVOPublisher

4 http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 18 of 33

component, already described in [9], is an extension of the component developed in the
SUPER IP project and it is responsible of sending monitoring events to the Analysis Platform.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 19 of 33

3. Use case driven experiments and validation

In this chapter we describe some experiment used for validating the EE v3 derived from the
use cases proposed by the industrial partners of SOA4All.

3.1 Use case scenarios

Each use case scenario given by the SOA4All industrial partners has very specific
requirements as for process design and execution. This section gives a short description of
part of the use case requirements and scenarios related to the process execution focusing
on the driven the developments of the new version of the EE. In detail:

 The WP7 description focuses on the need for combining SOAP services and human
tasks inside a lightweight process [21];

 The WP8 description focuses on REST service support through lifting and lowering
schema provided by the service provider as part of the service description and on
data flow described by the modeler as SPARQL queries;

 The WP9 description focuses on the process structure (parallel execution).

The three set of requirements, described in more detail in the following sections, added to
the ones already described in previous deliverables [8] and [9], propose a lot of challenges
as for service execution. The identified solutions, described in Section 2 and 3, are
implemented in the EE v3. The implementation of the scenarios is realized following the
lightweight process life cycle presented in Section 2.

3.1.1 WP7 requirements and scenarios

WP7 is one of the three SOA4All use cases and has the public sector as its target domain. It
envisions an integrated service delivery platform realized based on the technologies and
tools developed in SOA4All. It is a lightweight business processes composed of public Web
services (hosted by 3rd party service providers), and human activities (to be executed by end
users) [10].

The WP7 use case is not completely new since it is described already in [9] with no
significant modification. We briefly report here the description of the scenario for the sake of
completeness.

WP7 use case includes one scenario that builds an open service platform for the public
sector that can be used by the public servants of an administration to model and execute
administrative procedures. In [20] they illustrate a typical scenario by a concrete example
following the approach of narrative storyboards for describing use cases: the administrative
procedure to register a new business at the responsible public administration of the City of X,
Germany.

This new business registration process is complex enough to be modeled and executed by
civil servants who have no previous expertise on process modeling using SOA technologies.
However, the SOA4All approach based on Lightweight Process Modeling Language (see
[12]) and accompanying tooling support (see [19], [10]) lowers this barrier imposed to model
business processes.

In this scenario, the new business registration process is modeled following an iterative semi-
assisted approach, where manual and automatic changes are introduced in the model along
each iteration. Moreover, the model intensively reuses modeling fragments (templates,
SWSs) retrieved from existing knowledge repositories. Afterwards, the model is optimized,
deployed and activated for execution upon demand.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 20 of 33

The new registration business process is differentiated from other use case scenarios, not
only for its complexity (it uses mostly all the modeling primitives available in LPML), but also
because it uses human tasks (see [11], [9]). Human tasks are special process tasks that are
performed not by external SWS, but by humans. Typically, a human task receives some
input information (documents, forms, links, etc.) that are analyzed by an external reviewer
who, upon task completion, returns a report (task acceptance, explanation, fulfilled form, etc).

When a process reaches a human task, it registers it within the Human Task Server (HTS)5
and blocks the execution until the task is evaluated and validated by an appropriate reviewer.
Human tasks are registered for a particular role. Human task reviewers access the Human
Task Server through the Human Task Client, which lists pending human task according to
the role of the reviewer. The reviewer analyzes each task individually, considering its input
information and producing an approval/disapproval report.

3.1.2 WP8 requirements and scenario

The scenario described in [25] is based on a service called Offers4All which could be a
service offering of a retail division of a telco such as BT Retail or a non-telco company. For
the purposes of the description we will assume that Offers4All is provided by the OfferNet
company that in the Telco 2.0 sense can be seen as an upstream customer of BT.

In the scenario, a composition is created allowing one user to contact nearby users by the
best means (see Figure 14).

In this scenario the requirements are:

• REST service support: create process and bind REST services to it;

• Loops: take multiple outputs from one service and call other services for each of
these;

• Wait: only proceed when a condition is met (could use polling service).

The REST services used in the WP8 scenario are provided with a semantically annotated
service description that includes lifting and lowering schemas. Lifting and lowering schemas
provided are scripts that can be executed in order to translate a service request or response
in an RDF format according to a specific ontology.

5 Human Task Server is a Intalio Tempo instance. Both Human Task Server and Human
Task Client are developed in the context of WP7

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 21 of 33

Offers4All:
Translate ID

Composed Service:
Contact nearby users
by best means

Service: Foursquare - Checkins
Method: GET
URL:

http://api.foursquare.com/v1/c
heckins
Input: geolat, geolong
Output: recent checkins from
friends (includes ID)

Output format: XML, JSON
Authentication: OAuth

Foursquare:
Get Users

near location

Offers4All:
Get Contact

Method

Ribbit: SMS

Ribbit: Call

For each user, get
corresponding Offers for all ID

Depending on the output,
for each user, call the
appropriate Ribbit service

Message Text

Message Audio

Service: Offer4sAll - TranslateID
Method: tbd
URL: tbd

Input: foresquare ID
Output: offers4All ID
Output format: tbd
Authentication: tbd

Service: Offers4All -
GetContactMethod
Method: tbd

URL: tbd
Input: offers4All ID
Output: contact
method
Output format: tbd

Authentication: tbd

Service: Ribbit – Send SMS
Method: POST
URL: https://rest.ribbit.com/
rest/1.0/messages/<guid>/ou
tbox
Input: User guid, Recipient,
Message
Output: Message Location
Output format: XML, JSON
Authentication: OAuth

Ribbit: Login

Ribbit: Login

Service: Ribbit – Login
Method: GET
URL: https://rest.ribbit.com/

rest/1.0/login/
Input: username, password,
secret key, consumer key
Output: User guid
Output format: XML, JSON

Authentication: OAuth

Service: Ribbit – Call
Method: POST
URL: https://rest.ribbit.com/

rest/1.0/calls/<guid>
Input: UserGUID, call legs (nos.)
Output: Location of new call

Ribbit:
PlayMediaToCall

Service: Ribbit – Play Media to Call
Method: POST
URL: https://rest.ribbit.com/rest/1.0/calls/<callID>
Input: media file, callID
Output: playing?

Listen for call
established event

Figure 14 - WP8 Process description

3.1.3 WP9 requirements and scenario

The work package 9 scenario described in detail in [23] and [24] shows how the SOA4All
results may be applied in the eCommerce domain. A web shop catalogue is updated from
three different sources that provides a service, with different interfaces but similar
functionalities, for retrieving a list of products. Thus, the WP9 scenario needs parallel
execution flows and synchronization via a gateway for invoking the three services and merge
the results in a single list of products. Basically this means to model and execute a process
similar to the one depicted in Figure 15.

Figure 15 - LPML Process with parallel execution paths

The translation of the diagram should basically be to execute the 3*2 activities in parallel and
afterwards to invoke the last activity. Activities in the WP9 scenario are realized using SOAP
services.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 22 of 33

3.2 Example of Use of the Execution Engine

The lightweight process life cycle presented in section 2 is used in this section for explaining
the use cases implementation. The following sections describe the artifacts generated and
used by the SOA4All tools in all the phases involved from the composition to the execution of
a process focusing on the deployment and execution phase. This sequence of tasks has to
be executed for implementing each of the three use case scenarios described above. When
present, differences in the implementation between the use case scenarios are highlighted in
each section.

3.2.1.1 Compose

The composition phase is described in detail in [15] and [19]. This section describes briefly
the case of the creation of a very simple process composed of only one activity. First of all,
the user creates the process depicted in Figure 16 using the Process Editor. This process
invokes the getProduct operation of ProductWebService6.

Figure 16 - LiLoTEST example process

Optionally the Optimizer and the DTC can be used in order to optimize the process and to
bind the activity to a different service, respectively.

This step must be performed for each process and thus in all the three use case scenarios
implementations.

3.2.1.2 Deploy

Once completed the process model, from the PE, the user invokes the LPM Deployer
Service7 in order to deploy a process in the EE. The PE generates, and LPM Deployer
Service receives, a SOAP request similar to the one depicted in Listing 1. In Listing 1 the

URL http://soa4all.eu/execution/lpm/LiLoTEST.lpm points to a LPM model

serialized in XML generated by the PE.

When this request is received a batch procedure starts and it prepares and deploys several
different artifacts or it generates an error message for the PE in case of problems in the
model. This phase is described in detail in [9], below the description of the artifacts
generated during the deploy phase for the LiLoTEST process is reported.

6 The Product Service is one of the service involved in the WP9 scenario. It is available at the
following URL: http://coconut.tie.nl:8181/services/productWS?wsdl

7 http://demo.cefriel.it:8084/axis2d/services/LPMDeployer?wsdl

http://soa4all.eu/execution/lpm/LiLoTEST.lpm

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 23 of 33

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:lpm="http://soa4all.eu/execution/lpm">

 <soapenv:Header/>

 <soapenv:Body>

 <lpm:deployServiceLPM>

 <lpm:LPMName>LiLoTEST</lpm:LPMName>

 <lpm:LPMURI>http://soa4all.eu/execution/lpm/LiLoTEST.lpm</lpm:LPMURI>

 </lpm:deployServiceLPM>

 </soapenv:Body>

</soapenv:Envelope>

Listing 1 – SOAP Request LPM Deployer Service

The first part of the deployment is the LPM2BPEL translation, during this transformation
Activity1 is translated into an Extended BPEL. In Figure 17 is depicted a BPEL fragment
generated with the execution of the first activity.

Figure 17 - LiLoTEST extended BPEL

In case of WP7 scenario the AssignInput2ServiceRequest and the
AssignAdaptiveInvokeResponse2Output represent standard XPATH expressions that copy
part of an XML message to and from the input and output messages of a service.

In case of WP8 and WP9 scenarios, where REST and SOAP services with lifting and
lowering schema annotations in the description are used, the AssignInput2ServiceRequest
and the AssignAdaptiveInvokeResponse2Output are XPATH expressions that copy the RDF
input and output messages from and to BPEL variables.

At the end of the deployment phase, the process is exposed as a service in the EE v3. All the
generated artifacts, depicted in Figure 18, are deployed in the in the appropriate location in
the Apache Ode installation that is part of the SOA4All EE.

Figure 18 – Generated artifacts for the “LILOTest” process

After this operation the Process is available at its endpoint. At the following URL, a list of all
the processes deployed in the EE deployed at the CEFRIEL premises is available:

 http://demo.cefriel.it:8085/ode/services/listServices address.

http://demo.cefriel.it:8085/ode/services/listServices

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 24 of 33

3.2.1.3 Describe

Supported by the SOWER Editor8 the users can add semantic annotations to the WSDL
process interface description. In case of WP7, at least, the user has to annotate the input
and output operation parameters of the WSDL service with the lowering and lifting schema.

<xsd:element name="ProcessResponse"

sawsdl:loweringSchemaMapping="http://coconut.tie.nl:8080/storage/repositories/eCommerce_Ground

ing_V2/files/productws_lowering_mapping_schema.xsl"

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element minOccurs="1" name="serviceDescriptionURL" type="xsd:string"/>

<xsd:element minOccurs="1" name="serviceResponse" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name="ProcessRequest"

sawsdl:liftingSchemaMapping="http://coconut.tie.nl:8080/storage/repositories/eCommerce_Groundi

ng_V2/files/productws_lifting_mapping_Schema.xsl"

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="input" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Listing 2 – Semantic Annotations of “LiLoTEST” process description

In case of WP8 and WP9 the lifting and lowering schemas are empty since the input of the
first service and the output of the last service invoked in the process are available as RDF.

3.2.1.4 Publish

At this stage the service description can be published on iServe at the following URL:

 http://iserve.kmi.open.ac.uk/browser.html.

3.2.1.5 Execute

In order to execute the process the user has to invoke a service published in iServe. The
user is not necessarily aware that he is invoking a process since it is not different from any
other service. The following endpoint can be retrieved from iServe and used in order to
execute the LiLoTEST process:

 http://demo.cefriel.it:8085/ode/services/LiLoTEST?wsdl

An example of SOAP Request for the invocation is reported in Listing 3. When the EE
receives a request in the format depicted in Listing 3, a process instance is started and
during its execution some service has to be invoked. During the execution of the LILOTest
process, a real service involved in the WP9 scenario is invoked. Listing 4 shows the SOAP
request generated by the EE.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

8 A SOA4All tool that is part of the SOA4All Studio.

http://demo.cefriel.it:8085/ode/services/LiLoTEST?wsdl

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 25 of 33

 xmlns:soa4="http://soa4all.eu/execution/LiloTEST">

 <soapenv:Header/>

 <soapenv:Body>

 <soa4:LiLoTESTRequest>

 <soa4:input>

 <![CDATA[<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:oms="http://ecommerce.soa4all.eu/products/v1/"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >

 <rdf:Description rdf:about="http://anonymous.generated/iOnto#_omsProduct3211ScullerJeans90">

 <oms:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">ScullerJeans</oms:name>

 <rdf:type rdf:resource="http://ecommerce.soa4all.eu/products/v1/Product"/>

 <oms:price rdf:datatype="http://www.w3.org/2001/XMLSchema#string">90</oms:price>

 <oms:id rdf:datatype="http://www.w3.org/2001/XMLSchema#int">32</oms:id>

 </rdf:Description>

 <rdf:Description rdf:about="http://anonymous.generated/iOnto">

 <owl:imports rdf:resource="http://ecommerce.soa4all.eu/products/v1/"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>

 </rdf:Description>

</rdf:RDF>]]>

 </soa4:input>

 </soa4:LiLoTESTRequest>

 </soapenv:Body>

</soapenv:Envelope>

Listing 3 - LiLoTEST Process SOAP Request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:exec="http://soa4all.eu/execution/executor">

 <soapenv:Header/>

 <soapenv:Body>

 <exec:adaptiveInvokeRequest>

 <exec:serviceRequest>

<![CDATA[<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:oms="http://ecommerce.soa4all.eu/products/v1/"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >

 <rdf:Description rdf:about="http://anonymous.generated/iOnto#_omsProduct3211ScullerJeans90">

 <oms:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">ScullerJeans</oms:name>

 <rdf:type rdf:resource="http://ecommerce.soa4all.eu/products/v1/Product"/>

 <oms:price rdf:datatype="http://www.w3.org/2001/XMLSchema#string">90</oms:price>

 <oms:id rdf:datatype="http://www.w3.org/2001/XMLSchema#int">32</oms:id>

 </rdf:Description>

 <rdf:Description rdf:about="http://anonymous.generated/iOnto">

 <owl:imports rdf:resource="http://ecommerce.soa4all.eu/products/v1/"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>

 </rdf:Description>

</rdf:RDF>]]>

 </exec:serviceRequest>

 <exec:service>

 <exec:serviceDescriptionURL>

 http://coconut.tie.nl:8181/services/productWS?wsdl

 </exec:serviceDescriptionURL>

 <exec:serviceName>ProductWebServiceService</exec:serviceName>

 <exec:serviceOperationName>getProduct</exec:serviceOperationName>

 <exec:liftingSchemaURL>

http://coconut.tie.nl:8080/storage/repositories/eCommerce_Grounding_V2/files/productws_lifting

_mapping_Schema.xsl

 </exec:liftingSchemaURL>

 <exec:loweringSchemaURL>

http://coconut.tie.nl:8080/storage/repositories/eCommerce_Grounding_V2/files/productws_lowerin

g_mapping_schema.xsl

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 26 of 33

 </exec:loweringSchemaURL>

 </exec:service>

 </exec:adaptiveInvokeRequest>

 </soapenv:Body>

</soapenv:Envelope>

Listing 4 – Service Executor SOAP Request

This SOAP request is interpreted by the Service Executor that lowers the input from RDF to
XML and invokes the Product Web Service9. The Product web service response is depicted
in Listing 5. And finally the LiLoTEST process response is depicted in Listing 6.

As already described a lot of complex mechanisms can be added to the process in order to
allow runtime service substitution, condition evaluation, loops and data flow between
activities.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <ns1:adaptiveInvokeResponse xmlns:ns1="http://soa4all.eu/execution/executor">

<ns1:serviceDescriptionURL>http://coconut.tie.nl:8181/services/productWS?wsdl</ns1:serviceDesc

riptionURL>

 <ns1:serviceResponse>

 <![CDATA[<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:oms="http://ecommerce.soa4all.eu/products/v1/"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://anonymous.generated/iOnto">

 <owl:imports rdf:resource="http://ecommerce.soa4all.eu/products/v1/"/>

 </owl:Ontology>

 <oms:Product rdf:about="http://anonymous.generated/iOnto#_omsProduct3216IBMLaptop1300.0">

 <oms:id rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >3216</oms:id>

 <oms:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >IBMLaptop</oms:name>

 <oms:price rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >1300.0</oms:price>

 </oms:Product>

</rdf:RDF>]]>

 </ns1:serviceResponse>

 </ns1:adaptiveInvokeResponse>

 </soapenv:Body>

</soapenv:Envelope>

Listing 5 – Service Executor SOAP Response

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soa4="http://soa4all.eu/execution/LiloTEST">

 <soapenv:Body>

 <soa4:LiLoTESTResponse>

 <soa4:output>

 <ns1:adaptiveInvokeResponse xmlns:ns1="http://soa4all.eu/execution/executor">

<ns1:serviceDescriptionURL>http://coconut.tie.nl:8181/services/productWS?wsdl</ns1:serviceDesc

riptionURL>

 <ns1:serviceResponse>

<![CDATA[<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:oms="http://ecommerce.soa4all.eu/products/v1/"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

9 http://coconut.tie.nl:8181/services/productWS?wsdl

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 27 of 33

 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://anonymous.generated/iOnto">

 <owl:imports rdf:resource="http://ecommerce.soa4all.eu/products/v1/"/>

 </owl:Ontology>

 <oms:Product rdf:about="http://anonymous.generated/iOnto#_omsProduct3216IBMLaptop1300.0">

 <oms:id rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >3216</oms:id>

 <oms:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >IBMLaptop</oms:name>

 <oms:price rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >1300.0</oms:price>

 </oms:Product>

</rdf:RDF>]]>

 </ns1:serviceResponse>

 </ns1:adaptiveInvokeResponse>

 </soa4:output>

 </soa4:LiLoTESTResponse>

 </soapenv:Body>

</soapenv:Envelope>

Listing 6 - LiLoTEST Process SOAP Response

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 28 of 33

4. Conclusions

This document describes the Final Prototype for Adaptive Service Composition Execution
(EE v3). It highlights the main facets of the EE v3 focusing on the novelties of the last version
and it describes the lifecycle of a process from the design to the execution phase. It focuses
mainly on the deploy and execution phase since the composition is already described in
detail in [15]. The EE v3 is part of the SOA4All Service Construction Suite that includes also
the tools used at design time for the creation of the process models.

The EE v3 implements all the functionalities needed for executing processes described in
LPML and for satisfying the requirements of all the three SOA4All use cases:

 support for human tasks;

 support for WSDL/SOAP and REST services exploiting both model reference
annotations and lifting and lowering schema annotations;

 support for data handling inside a process using both XML data types and RDF;

 support for gateways, conditions and loops as using both XPATH and SPARQL.

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 29 of 33

5. References

[1] Schnabel, F., Gorroñogoitia, Y., Radzimski, M., Lecue, F., Mehandjiev, N., Ripa,
G., Abels, S., Blood, S., Mos, A., Junghans, M., Agarwal, S., Vogel, J.,
“Empowering Business Users to Model and Execute Business Processes”, to
appear in BPMS2’10, Hoboken, 2010.

[2] De Giorgio, T., Ripa, G., and Zuccalà, M., “An Approach to Enable Replacement of
SOAP Services and REST Services in Lightweight Processes”, to appear in
Composable Web 2010, Proceedings of the ICWE 2010 workshops, Vienna,
Springer Press, 2010.

[3] De Giorgio, T., Ripa, G., and Zuccalà, M., “SAWSDL for Self-adaptive Service
Composition”, in Beyond SAWSDL 2009, Proceedings of the OTM 2009
workshops, Vilamoura, Springer Press, 2009, pp. 907–916.

[4] Cavallaro, L., Ripa, G. and Zuccalà, M., “Adapting Service Requests to Actual
Service Interfaces through Semantic Annotations”, in PESOS Workshop,
Vancouver, IEEE Computer Society Press, 2009.

[5] Cavallaro, L. and Di Nitto, E., “An approach to adapt service requests to actual
service interfaces”, in SEAMS ’08, Proceedings of the 2008 international workshop
on Software engineering for adaptive and self-managing systems, New York, NY,
USA, ACM Press, 2008, pp. 129–136.

[6] Maleshkova, M., Kopecky and J., Pedrinaci, C., “Adapting SAWSDL for Semantic
Annotations of RESTful Services” in Beyond SAWSDL 2009, Proceedings of the
OTM 2009 workshops, Vilamoura, Springer Press, 2009, pp. 917–926,

[7] Kopecky, J., Vitvar, T., Bournez, C. and Farrell, J., “SAWSDL: Semantic
Annotations for WSDL and XML Schema”, IEEE Internet Computing, 2007

[8] SOA4All Deliverable - D6.5.1 Specification and First Prototype of Composition
Framework

[9] SOA4All Deliverable - D6.5.2 Advanced Prototype For Adaptive Service
Composition Execution

[10] SOA4All Deliverable - D6.3.1. First Specification of Lightweight Process Modelling
Language

[11] SOA4All Deliverable - D6.3.2 Advanced Specification Of Lightweight, Context-
aware Process Modelling Language

[12] SOA4All Deliverable - D6.3.3 Final Design of the Lightweight Context-aware
Process Modelling Language

[13] SOA4All Deliverable - D6.4.1 Specification and First Prototype Of Service
Composition and Adaptation Environment

[14] SOA4All Deliverable - D6.4.2 Advanced Prototype For Service Composition and
Adaptation Environment

[15] SOA4All Deliverable - D6.4.3 Final Prototype For Service Composition and
Adaptation Environment

[16] SOA4All Deliverable - D1.3.3A A Distributed Semantic Marketplace

[17] SOA4All Deliverable - D2.2.2 Service Consumption Platform First Prototype

[18] SOA4All Deliverable - D2.6.2 SOA4All Composer First Prototype

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 30 of 33

[19] SOA4All Deliverable - D2.6.3 SOA4All Composer Second Prototype

[20] SOA4All Deliverable - D7.2 Scenario Definition

[21] SOA4All Deliverable - D7.4 End User Service Implementation (First Prototypes)

[22] SOA4All Deliverable - D7.6 End User Service Annotation and Context Descriptions

[23] SOA4All Deliverable - D9.2.1 eCommerce framework infrastructure Design

[24] SOA4All Deliverable - D9.3.1 C2C e-Commerce Prototype v1

[25] SOA4All Deliverable - D10.1.2 Business Scenarios and Models v2

[26] SPARQL Query Language for RDF - http://www.w3.org/TR/rdf-sparql-query/

[27] Resource Description Framework (RDF) - http://www.w3.org/RDF/

[28] W3C: Semantic Annotations for WSDL and XML Schema. W3C Recommendation
(2007), http://www.w3.org/TR/sawsdl/

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/RDF/
http://www.w3.org/TR/sawsdl/

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 31 of 33

Annex A. Technical Annex

This section summarizes the technical changes and improvements, mostly related to the
integration with other platform services and API provided by other technical WPs. This
section also directs the user to the source code and installation instructions of the EE v3
components.

The EE v3 as the previous version uses the Subversion10
 SOA4All repository to manage its

source code and Apache Maven11
 as software project management. Software architecture

and components are described in [9] and represent the modules of the soa4all-execution-
engine part of the SOA4All project.

The SOA4All EE v3 internal components are available as library. It is possible to create the
jar file from the project sources following the procedure described in [9].

 LPM2BPEL: translate the LPM process description in LPML into the extended BPEL.

https://svn.sti2.at/soa4all/trunk/soa4all-service-construction/LPML-BPEL/

 Proxy Generator: generates the java code needed at runtime for implementing the
runtime adaptation capabilities of the EE.

https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/proxy-generator/

 Mapping Script Generator: generate mapping scripts for enabling the service
adaptation between services (SOAP and REST) during the service replacement.

https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/mapping-script-generator-
rest/

 Apache ODE Deployer: generate the artefact required for the publishing of the
process as service. It is part of the LPM Deployer service.

https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/lpm-deployer/

 Evo Publisher: component responsible of sending monitoring events generated at
runtime to the Analysis Platform.

https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/evo-publisher/

 Service Adapter: syntactic invocation of SOAP and REST Services adapt service
messages during the service replacement at runtime using mapping script

https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/service-adapter/

For the integration of the EE v3 with the SOA4All platform all these component are used in
the different phases of the process lifecycle through different web services, the first two are
available online and are:

 Service Executor SOAP Service

o Description: invoke SOAP and REST services with input and output
parameters in RDF or data type.

o Components dependencies:

10 http://subversion.apache.org

11 http://maven.apache.org

https://svn.sti2.at/soa4all/trunk/soa4all-service-construction/LPML-BPEL/
https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/proxy-generator/
https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/mapping-script-generator-rest/
https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/mapping-script-generator-rest/
https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/lpm-deployer/
https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/evo-publisher/
https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/service-adapter/

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 32 of 33

 Service Adapter

o Source code:

https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/service-executor/

o Service endpoint (SAWSDL):

http://demo.cefriel.it:8084/axis2d/services/ServiceExecutor?wsdl

 LPM Deployer SOAP Service

o Description: public service that represent the interface of the EE v3 for the
deployment of processes described in LPM.

o Components dependencies:

 LPM2BPEL

 Proxy Generator

 Mapping Script Generator

 Apache ODE Deployer

 Evo Publisher

o Source code:

https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/lpm-deployer/

o Service endpoint (SAWSDL):

http://demo.cefriel.it:8084/axis2d/services/LPMDeployer?wsdl

o

http://demo.cefriel.it:8085/ode/services/listServices

EE v3 includes many features and technical improvements in all the listed components and
services for M30:

 WP7 WP8 WP9 use case requirement and scenarios support;

 Support for the latest version of LPML;

 Integration with latest Process Editor, Consumption Platform and Analysis platform;

 Lifting and lowering support for SOAP and REST Services;

 Invocation of services with grounding component;

 SPARQL Query execution through the SPARQL Engine;

 Conditions on gateways and Loops support;

 RDF parameters mapping in Data flow.

EE v3 includes many features and technical improvements in all the listed components and
services for M30:

 WP7 WP8 WP9 use case requirement and scenarios support;

 Support for the latest version of LPML;

https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/service-executor/
http://demo.cefriel.it:8084/axis2d/services/ServiceExecutor?wsdl
https://svn.sti2.at/soa4all/trunk/soa4all-execution-engine/lpm-deployer/
http://demo.cefriel.it:8084/axis2d/services/LPMDeployer?wsdl

 SOA4All –FP7 – 215219 –D6.5.3 Final Prototype For Adaptive Service Composition Execution

© SOA4All consortium Page 33 of 33

 Integration with latest Process Editor, Consumption Platform and Analysis platform;

 Lifting and lowering support for SOAP and REST Services;

 Invocation of services with grounding component;

 SPARQL Query execution through the SPARQL Engine;

 Conditions on gateways and Loops support;

 RDF parameters mapping in Data flow.

