

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D8.6 Web 21c Prototype v2

Activity N: 3

Work Package: 8

Due Date: 30/11/2010

Submission Date: 30/11/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: BT

Revision: 1.0

Author(s): Alistair Duke (BT), John Davies (BT), Carlos Pedrinaci (OU),
Jacek Kopecký (OU), Guillermo Álvaro Rey (iSOCO)

Reviewers: Sven Abels (TIE), Georgi Pavlov (SAP)

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 2 of 29

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 18.11.2010 First draft

Alistair Duke , John Davies,
Carlos Pedrinaci, Jacek
Kopecký, Guillermo Álvaro
Rey

0.2 22.11.2010 Second draft for internal review Alistair Duke

0.3 29.11.2010 First release version following internal
review

Sven Abels (TIE), Georgi
Pavlov (SAP)

1.0 30.11.2010 Final revision format Julia Wells (ATOS)

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 3 of 29

Table of Contents

EXECUTIVE SUMMARY __ 5

1. INTRODUCTION __ 6

2. OFFERS4ALL SCENARIO _______________________________ _______________ 7

2.1 SOA4ALL BENEFITS ___ 9

3. DESCRIPTION OF PROTOTYPE __ 11

3.1 ANNOTATION AND STORAGE OF SERVICES _________________________ 14

3.2 CONSUMPTION OF SERVICES _____________________________________ 16

3.3 OFFER PROVIDER FRONT-END ____________________________________ 17

3.4 STORAGE APIS __ 19

3.5 OFFERS4ALL PROCESSES __ 22

3.6 OFFERS4ALL ANDROID APPLICATION ______________________________ 23

4. NEXT STEPS __ 26

5. CONCLUSION ___ 27

APPENDIX 1 - EXAMPLE OF OFFERS4ALL SEQUENCE DIAGRAM _______________ 28

APPENDIX 2 – USE OF SOA4ALL COMPONENTS ____________ _________________ 29

Table of Figures

Figure 1. Offers4All Architecture ...14

Figure 2. The Ribbit Calls WSDL undergoing annotation in SOWER15

Figure 3. Using the grounding editor to create mappings between domain ontology and XML
schema. ..16

Figure 4. SPICES Consumption Platform ...17

Figure 5. Screenshot from offer provider portal...18

Figure 6. Screenshot showing details of offer ...19

Figure 7. Structure of data managed by the storage APIs ..21

Figure 8. ‘Play audio to call’ process shown in the Process Editor ..22

Figure 9. Data flow editor ...23

Figure 10. “Offers4All Android app” navigation menus ...25

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 4 of 29

 Glossary of Acronyms

Acronym Definition

API Application Programme Interface

CeBP Communication-enabled Business Process

D Deliverable

EC European Commission

EE Execution Engine

GUI Graphical User Interface

I/O Input/Output

PE Process Editor

ReST Representational State Transfer

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SAWSDL Semantic Annotations for WSDL

SDP Service Delivery Platform

SOWER SWEET is nOt a Wsdl EditoR

SMS Short Messaging Service

SPARQL SPARQL Protocol and RDF Query Language

SPICES Semantic Platform for the Interaction and Consumption of Enriched
Services

SWEET Semantic Web sErvice Editing Tool

UML Unified Modelling Language

WSDL Web Services Description Language

WSMO Web Services Modelling Ontology

XML eXtensible Markup Language

XSLT XML Stylesheet Transformation

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 5 of 29

Executive summary
This deliverable describes the 2nd prototype of the BT Case Study in SOA4All.

We introduce the Offers4All scenario as an example of a many-sided business model
adhering to the Telco 2.0 approach aspired to by Telcos. The need for and use of SOA4All
technology in the prototype are described.

Finally we look ahead to the remainder of the project where we will evaluate the technology
against the requirements of BT Strategy’s work on Communication-enabled Business
Processes.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 6 of 29

1. Introduction
This deliverable describes the second prototype of the BT Case Study. The aim of the case
study is to show how SOA4All technology can enable telecommunications companies and
their partners to generate value through building and offering innovative services to their
customers in an agile way. SOA4All technology delivers the following key benefits:

1. It will allow such services to be developed and updated with greatly reduced software
development effort;

2. It will promote open innovation by 3rd parties, increasing the exploitation of services
by widening the number of people and organisations who are able to partake;

3. It will allow services to be operated in a scalable, efficient manner;

4. Finally, the above will contribute to reduced time-to-market and costs and a higher
quality of service.

Closely related to this is the Telco 2.0 initiative as described in D8.5 (Telco 2.0
Recommendations). Here telecommunications companies (telcos) are looking to develop
many-sided business models by allowing customers and partners to create value by building
services that i) are based around telecoms infrastructure exposed via APIs; ii) are built using
service creation environments and hosted on service delivery platforms and iii) exploit the
relationship with and knowledge about the millions of customers of the telco.

Within BT we have aligned the SOA4All project with BT Strategy’s work on Communication-
enabled Business Processes (CeBP). CeBP is an embodiment of BT’s effort to adopt the
Telco 2.0 initiative. The central theme of CeBP is that supporting business processes is a
higher value exercise than providing a pure communication channel i.e. if telcos can ensure
that business processes result in a satisfactory outcome, then customers will be willing to
pay more for the communication channel than they would otherwise. By allowing
communication to be closely integrated into the business process and by using the
knowledge that telcos hold about their customers, telcos can increase the efficiency of
processes and reduce the friction that often results between service providers and their
customers.

In our first prototype we focussed on using SOA4All technology to allow general users of the
web to create telecommunications-based service mashups for their own use or for use in
their community. In the second prototype described in this deliverable, the emphasis is very
much on supporting businesses to create value generating services for their customers. It is
in this kind of scenario that we see the greatest opportunities for exploitation of SOA4All
technology within BT.

This deliverable is structured as follows. Section 2 provides a description of the Offers4All
scenario we have adopted in the case study. This has a many-sided business model at its
core and includes business processes enabled through communications. Section 3 describes
the prototype we have developed which illustrates how SOA4All technology can be used to
realise the Offers4All service. In Section 4 we outline the next steps including further planned
use of SOA4All technology and how we will evaluate and exploit the work in BT.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 7 of 29

2. Offers4All Scenario
In this section we introduce the Offers4All scenario, describe how this would be realised
without SOA4All technology and the problems therein and then show the benefits of the
application of SOA4All technology and how it addresses the problems identified.

We have developed the Offers4All scenario as an example of how BT and a partner (which
could be a third party or a product line of BT) can collaborate to develop a business with
communication enabled processes at its heart. SOA4All technology will greatly enhance
such a business by allowing the partner to quickly build, reconfigure and deploy business
processes that integrate BT and third party services.

Offers4All could be a service offering of a retail division of a telco such as BT Retail or a non-
telco company. For the purposes of the description we will assume that Offers4All is provided
by a company OfferNet who in the Telco 2.0 sense can be seen as an upstream customer of
BT, that is they are using BT’s infrastructure to generate value for end users (who can be
described as downstream customers).

The Offers4All service allows companies e.g. retail organisations, entertainment providers,
travel / hotel companies to advertise offers to subscribers of the service. These offers might
be “last-minute” travel or entertainment deals or predefined campaign offers from retail
organisations. The Offers4All service allows an offer provider to create a new offer by
describing what the offer is and who and how many people it wants to target with the offer.
An appropriate set of subscribers are then chosen and are made aware of the offer via a
communication channel. Offer providers pay to use the service but subscribers do not.
Possible charging models for offer providers include:

• Flat rate per offer

• Variable rate based on number of people contacted

• Variable rate based on number of people contacted and communication
channel used

• Variable rate based on number of conversions to sales

• A combination of the above

When generating the offer, the offer provider describes the offer they wish to make including:

• A categorisation of the offer (using an Offers4All taxonomy)

• When (dates and times) the offer should be made

• Number of subscribers to make the offer to

• Nature of subscribers to make the offer to e.g. target age group, gender,
location, interests, salary range

• Content associated with the offer e.g. text description, audio content,
multimedia content

• Preferred communication channel

• Terms and conditions of the offer including instructions for taking up the offer
e.g. voucher codes, sales channel, etc.

• An indication of whether the offer should be specific to a user (e.g. via a
unique code) or whether it can be shared by subscribers i.e. allowing viral distribution.

Based on this information a set of subscribers are chosen to receive details of the offer. On
joining the service subscribers will be invited to provide information on their interests and

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 8 of 29

willingness to receive certain kinds of offers. This will be incorporated with data already held
by BT such as address, age, devices and contact details to form a profile. The profile is then
used to match subscribers with appropriate offers and determine an appropriate
communication channel for the offer message. A key element of value add for the service
from BT is that the communication channel could be selected based upon what BT knows
about the current status of the user e.g. they may have signed up to location based services
allowing BT to determine their location and suitability for the offer on those terms.
Alternatively, they may have recently used their home phone and would probably be
contactable via this medium. The service is attractive to customers because they get to hear
about offers that are relevant to them using the medium that they prefer but also because
they do not need to share any personal details with offer providers. Since their details are
held by one central trusted party i.e. BT, they have more control over the flow of information
to them and can be sure that their personal data is not abused.

The data that BT holds about its customers is an important differentiator which allows them
to retain competitive advantage in this kind of scenario vs. a new entrant who would just use
basic communication channels. By communicating with users via the most appropriate
device and increasing the likelihood of a successful communication occurring, more value
can be attached to the service.

In addition to the central offers distribution service, additional services will be required to
allow offer providers to track the take-up of offers and adjust the nature of existing offers and
to allow subscribers to adjust their profiles and browse for existing offers. OfferNet will
require monitoring services to assess quality of service, conversion rates, etc.

In considering how a service such as Offers4All could be built using existing technology, we
note the following trends:

• Telcos are providing access to their services and infrastructure via publicly available APIs
(as described in deliverable D8.5), an example of this being BT’s Ribbit.

• 3rd parties i.e. non-telcos also expose their services via APIs e.g. Facebook, Amazon,
Twitter, Google, etc. These are typically SOAP/WSDL or RESTful APIs but could also be
abstractions of these based around programming languages such as Java or PHP.

In order to build the service, OfferNet must identify the existence of the various APIs that
meet their needs. The amount of APIs and services exposed is considerable which is
complicating the location of suitable services. Existing approaches for discovery tend to be
rather ad hoc e.g. searching for a page describing the API. Once identified they need to
understand how to interact with the API itself and also ensure they have an understanding of
the supporting technology or programming language which of course differs widely amongst
service/API providers. There are also various authentication approaches which must be
adhered to. Typically, an organisation will have a product or solution designer who will design
and describe the requirements of an application or service including the necessary
components. It is then up to software developers to take the design and generate an
implementation based upon it. The resulting software is then validated to ensure that the
requirements are met. This is often an iterative process. In addition, subsequent changes to
the design require that the process is carried out again.

Once the software development process is complete, the service must be deployed. OfferNet
could choose to use their own infrastructure or they may make use of virtualised
infrastructure and there are positives and negatives in both of these approaches. However,
both of them have the drawback that the deployment, management and monitoring of the
service itself (rather than the infrastructure) is left to OfferNet and they are faced with the
need to deploy and run tools to allow them to carry out these functions. More support is
provided by Service Delivery Platforms (SDPs) that are offered by telcos and others.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 9 of 29

However, today’s SDPs tend to be optimized for the delivery of a service in a given
technological or network domain rather than focused on supporting multi-disciplinary services
operating on diverse networks.

More generally, the dynamicity of the Web is such that there is a race for innovation,
whereby companies are trying to release new innovative solutions with a significant
anticipation of potential competitor activity. This dynamicity will also call in the future for
highly adaptive technical solutions so that changes on used APIs or even their
disappearance won’t provoke failures of otherwise successful solutions and business
models. Existing software development approaches for building such solutions would appear
to be too slow, brittle and expensive.

2.1 SOA4All Benefits
We will now reconsider the Offers4All scenario with the use of SOA4All technology. The key
aim is to show that by offering a platform based around the technology, BT can massively
ease the complexity faced by partners such as OfferNet and its own market-facing units in
developing and deploying services. A BT platform based on SOA4All technology would
enable the creation of a community with an interest in creating communications related
services. Such a platform would provide OfferNet with access to a service repository and
discovery mechanism based on semantics, allowing them to identify services and APIs that
meet their needs. Obviously, this is dependent upon the services being semantically
described. The assumption here is that BT’s own services such as those offered by Ribbit
would be semantically described by people in BT with the appropriate skills. 3rd party i.e. non
BT services and APIs would either be described by BT in the case where the service is seen
as vital in supporting platform users’ requirements or by the 3rd party service provider where
they are keen to increase take-up of the service via the BT platform. In the future, as the
number of services offered grows, having proper annotations will be a competitive advantage
in itself allowing more people to retrieve them and make use of them.

The effort required is thus transferred from OfferNet to BT as the platform provider or to the
3rd party service provider. A key point though is that the effort for the description is required
only once compared with the much larger effort required for each partner to develop software
against the service’s (non-semantic) API. As the use of these kind of services grow, more
and more annotations will be available based either on provider annotations or simply on
third parties like OfferNet who have gone through a similar process. Annotating them at this
stage should require less effort arguably.

The BT platform based on SOA4All technology will also include a service creation
environment providing non-software developers with the ability to create processes using an
intuitive interface. The service descriptions allow the complexity in building processes from
multiple services using diverse technologies and approaches to be diminished. This can
greatly reduce the time and cost involved in developing and launching new applications. The
product designer is able to generate the necessary processes themselves without the need
to write down requirements for software developers to code against. The iterative cycle for
the creation of processes is removed as are the communication issues involved in
transferring requirements between people.

Once the processes have been developed they can then be deployed using a Service
Delivery Platform including SOA4All’s federated infrastructure. This will allow OfferNet to
deploy in a manner appropriate for their needs (e.g. ensuring that latency which is an issue
with real-time services can be reduced), to manage the deployment based on changing
requirements and to monitor aspects of service delivery such as quality of service.

The end result is that the technology enables OfferNet to develop services in a more cost
effective and timely manner and increases the likelihood of the many-sided business models

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 10 of 29

aspired to by telcos being successful.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 11 of 29

3. Description of Prototype
In this section we describe the M33 prototype based on the Offers4All scenario. In
developing the prototype we have deemed it necessary to act simultaneously as BT and
OfferNet answering the questions: ‘What does it take for BT to provide a platform allowing
partners to create processes based on BT and 3rd party services?’ and ‘What does it take for
OfferNet to build such processes?’

From BT’s perspective it is essential that the platform allows partners to discover and use
appropriate semantically described services. To achieve this we have carried out the steps
described below. Some of these are directly relate to the SOA4All methodology (steps 3-6)
whist others (steps 1 & 2) are supporting activities that must be carried out in order to enable
benefits of the SOA4All approach to be realised.

1. We have created an RDFS taxonomy describing the nature of currently available
telco and telco-related services. The taxonomy is based upon the results of the
extensive survey carried out on current activity in the area (see deliverable D8.5). The
taxonomy, containing around 80 concepts is available at:

http://ngwr.labs.bt.com/Ontologies/TelcoAPITaxonomy.rdfs

2. We have created an RDFS ontology describing the data requirements of the APIs of
telco services. We have used the Ribbit API as a guide and generated an ontology
with 13 classes and 110 properties that describe the domain. This is available at:

http://ngwr.labs.bt.com/Ontologies/TelcoAPI.rdfs

3. We have created semantic service descriptions for the Ribbit API. Ribbit provides a
RESTful API1 as well as abstractions from the API using various programming
languages. We have used the project’s SWEET tool to generate MicroWSMO
descriptions for all the Ribbit services which refer the domain ontologies. There are 8
Ribbit services with around 40 operations within them that have been described. In
addition to this we have also used the Ribbit Java API to create code that we have
then wrapped as WSDL services. These WSDL services have been semantically
described using SOWER to relate them to the domain ontologies and to generate
WSMO-Lite descriptions. In addition, the Grounding Editor has been used to describe
the service input and output and used to generate lifting and lowering transformations
for data between the semantic and non-semantic levels. The two-pronged approach
of using both RESTful services and Java wrapped as WSDL has been necessary
since the project’s support for WSDL services is far more advanced than that for
RESTful services. It is not currently possible to execute RESTful services (other than
those using the GET method) using the Execution Engine and Consumption Platform.
In addition the wrapping allows us to handle the authentication required for the
services more easily

4. We have uploaded semantic descriptions of services to the project’s service registry,
iServe2 which, using the WSMO-lite annotations adds descriptions of message parts
for the services that are required by the Process Editor.

5. We have annotated 3rd party services. In addition to the Ribbit services, BT must also
ensure that there are sufficient services available via the platform to create a critical
mass of potential service offerings. In this spirit we have identified the services

1 http://docs.ribbit.com/restful-api
2 http://iserve.kmi.open.ac.uk/browser.html

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 12 of 29

required to realise the processes in the Offers4All scenario and created service
descriptions for these. These include support for Facebook and Foursquare
interaction and ancillary services such as billing and offer vetting and
recommendation. In practice the addition of these services may be requested by the
partner and described by BT and then hosted (privately) on the platform for
integration into processes.

6. We have executed these services in the SOA4All Studio via the Consumption
Platform

From OfferNet’s perspective, the aim is to use the platform to generate processes which are
then integrated with their front (i.e. customer facing GUIs) and back end systems (i.e. data
persistence). To achieve this, we have carried out the following steps. Step 5 directly relates
to the SOA4All methodology whilst the other steps are supporting activities.

1. We have developed a set of processes that are required to realise the Offers4All
scenario. These processes have been represented as UML sequence diagrams,
which although not a requirement of the SOA4All methodology helps in the definition
of actors, their roles and the services and infrastructure needed to support them.
There are 17 processes in all which identify interaction by offer providers and users
and the required response to that interaction. One such sequence diagram is shown
in Appendix 1. In addition there are processes dealing with interactions instigated by
OfferNet (such as billing and monitoring) which also have a required response.

2. We have developed a domain ontology that describes the Offers4All scenario
focussing on the data requirements of the various services involved. The ontology
contains about 25 classes and 50 properties and includes the Nepomuk contact
ontology3 which is used to handle the contact information associated with offer
providers and users and the W3C Geo ontology4 which is used to handle location
information. This is available at:

http://ngwr.labs.bt.com/Ontologies/Offers4All.rdfs

3. We have developed front-end infrastructure, which is a GUI allowing offer providers to
enter and edit their details, describe offers and track the progress of offers and a GUI
allowing users (i.e. offer receivers) to enter their details including preferred
communication channels, describe their interests, and browse for and respond to
offers. The GUIs have associated Web Applications hosted by Tomcat which call the
composed processes of the scenario as WSDL services (see 5. below). Further
details are provided in section 3.3

4. We have developed back-end infrastructure, which is a set of APIs and associated
persistence to enable the creation, deletion and editing of user data (for both offer
providers and offer receivers), offer data and consumption data i.e. which users have
interacted with which offers. These are RESTful services which conform to the
Offers4All ontology. The persistence is provided by an OWLIM triplestore instance.
The project’s Semantic Spaces, which are public, have not been used here since the
data is private to OfferNet. There are three APIs with associated storage. One stores
user details (both offer provider and end-users) including contact details, location,
preferences, etc. A second stores offer details i.e. a descriptions of the offers
including what kinds of users they are targeted at. Finally, a third is a consumption
API that records which users have consumed which offers or forwarded offers to

3 http://www.semanticdesktop.org/ontologies/nco/
4 http://www.w3.org/2003/01/geo/

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 13 of 29

others. Further details are provided in Section 3.4

5. We have developed a set of processes which satisfy the requirements identified in
the sequence diagrams described in Figure 1. These processes have been initially
developed using Java to handle the control and data flow between services and then
exposed as WSDL services which consume and produce RDF instance data,
allowing them to be called by the front-end infrastructure. Alongside the Java
processes we have also developed processes using SOA4All technology as this has
become available to meet the needs of the case study. This involves building
processes using the Process Editor, binding activities in the process to service
operations described by semantic annotations in iServe, defining the data flow in the
process using the message part descriptions associated with the service annotations
and finally deploying the process to the Execution Engine resulting in composed
WSDL services using semantic I/O which can then be called by the front-end
infrastructure. The Java-based processes allow us to illustrate the required
functionality of the scenario but will be replaced by those developed using the
Process Editor as the capabilities for process deployment and execution increase.
Further details are provided in Section 3.5

6. We have built an application for Android phones. The application allows users to
browse and act upon offers that are relevant to them. It interacts with the processes
to get details of offers and to launch appropriate communication with Ribbit services
when users choose to do so. The Android app allows us to illustrate how mobile
users can interact with the Offers4All service, meeting their location-based
requirements. Further details are provided in Section 3.6

An architecture of the prototype is given in Figure 1 below. It illustrates the major
components of the Offers4All service and the BT and 3rd party services that are necessary to
support it. The left and right blocks of the architecture show the front-end infrastructure of the
service supporting the offer providers and users. The top block shows examples of Ribbit,
Offers4All and 3rd party services that are used to create the processes. The bottom block
illustrates the back-end persistence required by the service including the triple store and the
various storage APIs. Finally, the centre block shows the processes required by Offers4All.
These components rely on SOA4All technology, from the use of SWEET and SOWER to
semantically describe the services, the iServe repository to store these descriptions allowing
them to be discovered, SPICES, the consumption platform, allowing the services to be found,
executed and rated, the Process Editor allowing services to be composed and the Execution
Engine, allowing composed services to be executed. The architecture also illustrates how the
SOA4All provided elements fit with those that are outside the direct scope of the project but
nevertheless have been constructed for the scenario in order to allow the full benefits of the
SOA4All approach to be shown i.e. the storage APIs and infrastructure and the user
interfaces.

A table providing full details of the usage of SOA4All technology is provided in Appendix 2.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 14 of 29

Figure 1. Offers4All Architecture

3.1 Annotation and Storage of Services
BT, as the provider of a platform based on SOA4All technology must ensure that there is a
rich set of services available for users of the platform to build novel mashups and processes.
Each service must be annotated such that it can be used by the design-time tools of
SOA4All. WSDL services can be annotated using SOWER, the WSMO-Lite editor, which
allows ontological annotations to be inserted into the WSDL using SAWSDL model
references. Figure 2 shows an example of a WSDL service – the RibbitCalls service being
annotated in SOWER. The WDSL description is shown on the right-hand-side. One or more
ontologies can be opened in the left-hand panel and concepts within the ontologies can be
dragged to elements of the WSDL resulting in an annotation being made. In the Figure the
User concept from the TelcoAPI ontology has been associated with ribbitUserName which is
an input type of the ‘playMediaToCall’ method in the RibbitCalls service. This creates the
sawsdl model reference as shown at the bottom of the Figure.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 15 of 29

Figure 2. The Ribbit Calls WSDL undergoing annotation in SOWER

Annotations on Restful services are carried out using the SWEET tool as shown in
Deliverable 8.4 which describes the first prototype. This results in a MicroWSMO description
of the service.

For both WSDL and Restful services it is necessary to generate lowering and lifting
transformations. This allows RDF instance data (defining the inputs to a service) to be
lowered to XML and service output data expressed as XML to be lifted back to an RDF
format.

Figure 3 shows a screenshot from the Grounding Editor where the RibbitCalls service is
being mapped to the TelcoAPI ontology. The ‘ribbitUserName’ input of the playMediaToCall
operation is shown being related to the hasLogin property of the User concept in the
ontology. Once a full set of mappings have been made the lifting and lowering
transformations can be generated as XSLT (XML stylesheet transformation) files. In
SOWER, these XSLT files can be related to the WSDL descriptions, again using a SAWSDL
model reference. The complete annotated descriptions can then be uploaded to the iServe
repository which is able to process them and generate the message partonomy so they can
be used in the Process Editor.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 16 of 29

Figure 3. Using the grounding editor to create mappings between domain ontology and XML
schema.

3.2 Consumption of Services
The SPICES consumption platform allows individual services to be found, executed and
added to a list of favourite services and operations. Figure 4 shows a screenshot from
SPICES. The left-hand panel allows the user to perform various actions such as searching
for services, browsing by service categorisation, managing favourites and accessing
recommendations. Results of the actions are shown in the right-hand panel. In the
screenshot the ‘Ribbit Send SMS’ service has been selected from the list of favourites. A
form is created on the right-hand-side allowing the user to enter the required inputs and
execute the service. The favourites list is available throughout the SOA4All Studio allowing

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 17 of 29

favourite services to be selected within other tools such as the Process Editor.

Figure 4. SPICES Consumption Platform

3.3 Offer Provider Front-end
The prototype includes a front-end, which incorporates a graphical user interface and an
associated Web Application that illustrates how offer providers can enter new offers and
manage existing offers. The front-end communicates with the processes that are defined by
OfferNet using SOA4All technology. In practice, companies such as OfferNet would need to
either build such interfaces and connect them to processes or adapt existing interfaces to do
so. In SOA4All, processes built using the Process Editor are exposed as WSDL services in
their own right, hence the Web Application is able to call these WSDL endpoints and handle
the response, reflecting this in the GUI.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 18 of 29

The front-end has been built using the Google Web Toolkit5 which provides facilities for
building browser-based applications. This interacts with a Java-based Web application. Both
are hosted on Apache Tomcat.

Figure 5, shows a screenshot from the offer provider front-end. Here an offer provider is
shown their current offers and their contact and location details. Upon selecting an offer they
are shown the detail of that offer which can be seen in the screenshot in Figure 6.

Figure 5. Screenshot from offer provider portal.

In Figure 6, the offer provider is shown changing the status of the offer from ‘Prelaunch’ to
‘Launched’. This action results in a back-end processes being executed which identifies the
most relevant end-users to send the offer to, finds the contact details for those people and
then initiates the appropriate communication service to notify them of the offer.

5 http://code.google.com/webtoolkit/

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 19 of 29

Figure 6. Screenshot showing details of offer

3.4 Storage APIs
The data used in this prototype is stored in a triple store, accessible through a SPARQL
endpoint and through a set of specific RESTful APIs tailored for read-write access and
manipulation of concrete parts of the data. There are three such APIs in the system: Users
API, Offers API, and Consumption API.

Each of the APIs is a set of linked resources (hypertext, RESTful), with inputs and outputs
mostly in RDF. To illustrate, the following is an operation-oriented view on a part of the Users
API, listing the functionalities available for managing users and how they map to the
resources of the service. In the list, the words GET, POST, PUT and DELETE are HTTP
methods available on the following URIs; and terms of the form uc:* are classes and
properties of the use case ontology.

• listUsers – GET /users – returns RDF that lists the instances of uc:User as
dereferencable pointers of the form /users/{id}

• addUser(instance-based triples) – POST /users – adds a user; the input should
contain a single blank node of type uc:User which describes the user to be added
(using triples about that node); the method returns the newly-assigned identifier for
the instance

• getUser(id) – GET /users/{id} – returns RDF that describes the user; plus it

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 20 of 29

includes graphs (sets of reified6 statements, further discussed below) that point out
where to add new properties and where to delete existing ones;

• addToUser(id, property-based triples) – POST /users/{id} – allows adding any kind
of RDF property to the user record, the input must have triples that originate from the
user instance identifier

• getUserLikes(id) – GET /users/{id}/likes – returns RDF that contains all the
uc:likes statements (“user likes an offer”) about the given user (plus their reification
graphs to indicate where each statement can be deleted)

• addUserLike(id, uri) – POST /users/{id}/likes – adds a uc:likes statement and
returns its reification to indicate where it can be deleted

• deleteAllUserLikes(id) – DELETE /users/{id}/likes – removes all uc:likes
statements

• deleteUserLike(like-id) – DELETE /users/{id}/likes/{like-id} – removes a
single uc:likes statement (the URI with like-id is known from the reifications above)

• Dislike – the same four operations above for uc:dislike statements about offers the
user dislikes

• Interest – the same four operations for uc:hasInterest statements
• Disinterest – the same four operations for uc:hasDisinterest statements
• Contact – the same four operations for uc:hasContact statements
• deleteUserValue(v-id) – DELETE /users/{id}/v/{val-id} – removes a single

statement other than those specially identified above; the val-id is known from
reifications returned by getUser(id)

For offer providers (instances of uc:OfferProvider), also managed by the Users API, the API
contains the same type of operations but focusing on uc:hasOffer, uc:hasContact,
uc:hasVenue and uc:hasDefaultVenue statements (no liking, no interests). The Offers API
has the same structure, working with instances of uc:Offer and its properties (e.g.
uc:description, uc:hasOfferCode, uc:hasOfferStatus etc.), and the Consumption API deals
with offer forwards, offer recommendations, offers sent to users, and user responses to
offers, again with the same structure of operations.

Figure 7 explains the structure of the data managed by the APIs, especially including the
reification graphs for manipulating the statements. When a new user record is submitted to
/users , a new ID is assigned to it, in the Figure /users/1345 . (Note that the Figure assigns
the identifier /users/1345#this to the instance and /users/1345 to the enclosing graph,
so as to avoid confusion between the users and the documents that describe them; however,
this distinction is not yet implemented in the system).

In Figure 7, the following information was submitted about a new user:

_:x a uc:User;
 uc:likes ex:Amazon, ex:Google;
 uc:hasInterest ex:Cars;
 uc:hasWealth "56".

On the user graph resource (/users/1345), a client can invoke GET to retrieve all the data,
POST to add new properties about this instance, and DELETE to remove the user.

6 A “reified statement” is a set of statements that describes this statement. For example, for a
statement that A Likes B, its reification is “a statement whose subject is A, whose predicate is
Likes, and whose object is B”. We use the term “reification graph” later as a graph that
contains statements.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 21 of 29

Figure 7. Structure of data managed by the storage APIs

For properties that the system is configured to call out (for users it's the properties uc:likes,
uc:hasInterest etc. as listed earlier), it creates graphs such as /users/1345/likes and
/users/1345/interests , where the client can invoke GET to retrieve all the statements of
that particular property, POST to add a value with the given property to the instance, and
DELETE to drop all the values for the given property (currently not implemented).

For every particular statement (such as _:x uc:likes ex:Amazon), the system creates a
reification graph like /users/1345/likes/43905 that the client can GET to retrieve that
particular statement (but that's not particularly useful), DELETE to remove that statement
from the system, and PUT to replace the value (not currently implemented).

For statements that do not use the specifically called-out properties (here _:x

uc:hasWealth “56” is an example of such a statement), the reification graphs have URIs
like /users/1345/v/5943 , where the client can again invoke GET, DELETE and PUT as
above.

The various graphs are all linked: the instance graph contains the property graphs and the
/v/ value reification graphs, and the property graphs contain the called-out value reification
graphs. Every value reification graph contains a single reification with the triple of interest.

In order to replace some triple (say /users/1345 :likes ex:Amazon), the client would
DELETE the value graph that contains the reification of this statement (in this case
/users/1345/likes/43905) and then POST the new value to /users/1345/likes (or post
the whole triple to /users/1345). The return value of this POST will tell the client the URI of
the new value reification graph.

The software used to implement all these APIs is a configurable triple-store wrapper built in
Java with the Jersey framework. The wrapper implements the API resource (/users), the
instance graphs (/users/{id}), the property graphs (/users/{id}/{prop-name}) and the
value reifications (/users/{id}/{prop-name-or-‘v’}/{val-id}) as four different types of
resources. We plan to continue work on this software as we expect it to be very useful also

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 22 of 29

outside the use case.

3.5 Offers4All Processes
As stated above, in building the prototype, we have used an approach where we initially
produced composite services by using Java to manage the calls to individual WSDL or
Restful services and the flow of data between them. This allowed us to build the required
functionality of the prototype fairly quickly. Following this we have replicated these processes
using the Process Editor (PE) developed in Workpackage 6. One such process that has
been built using the PE is shown in Figure 8. This process, which enables an audio file to be
played over a phone call, uses four separate operations on the Ribbit Calls and Ribbit Media
services. The operations are as follows:

RibbitMedia:UploadMedia – Uploads an audio file to a specified folder on the Ribbit platform

RibbitCalls:CreateCall – Creates a call between two or more people

RibbitCalls:WaitForCallSetup – Waits for the call to be established

RibbitCalls:PlayAudioToCall – Plays the audio file to the call

The intention is that this process will be used by offer providers to test offer related media
over a call prior to the offer being launched. It will allow them to ensure that the audio
describing their offer is available and of sufficient quality when played over the call. This test
facility is provided in the offer provider GUI shown in Figure 6 and results in the process
described here being executed.

Figure 8. ‘Play audio to call’ process shown in the Process Editor

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 23 of 29

In Figure 8, the process with four activities is shown. Each of these activities can be bound to
a particular operation of a WSDL service or a RESTful API call. The user is able to perform
the binding by entering details of where the semantic annotations on these operations are
stored in the iServe repository or they can simply select from the list of favourites provided by
the consumption platform. Figure 8 shows the binding for the ‘Play audio to call’ activity
which is the right-most activity in the process. The activity is bound to the ‘RibbitCallsService
– play media’ operation as can be seen in the panel on the left. The inputs and outputs for
that operation which are determined from the annotations are also shown.

Once the activities have been bound, dataflow in the process can be carried out. Figure 9
shows a screenshot of the data flow editor for the ‘Wait for Call Setup’ activity. The ‘Inputs’
panel shows the inputs to the activity. The ‘callid’ input is highlighted indicating that this is the
input for which the data flow is being defined. The ‘Available outputs’ panel shows the data
outputs of preceding activities (or the start activity indicating data that is input to the
composed process) which can be selected and associated with the current input by dragging
them into the ‘Associated outputs’ panel. In Figure 9, the output ‘callid’ from the ‘Create Call’
activity has been dragged to the ‘Associated outputs’ panel and is thus associated with the
‘callid’ input to the ‘Wait for Call Setup’ activity. The data flow itself is carried out by a
SPARQL CONSTRUCT query which can be generated by clicking on the ‘Generate’ button
in the ‘Data transformation’ panel. The SPARQL query for the callid input is shown in Figure
9. Alternatively, this SPARQL can be generated automatically for the whole process when
the ‘Deploy’ button in the PE is clicked.

Figure 9. Data flow editor

3.6 Offers4All Android Application
This section discusses the development of the “Offers4All Android application”, which has

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 24 of 29

been created as a showcase of the potential that SOA4All technologies have in different
environments other than the browser. In particular, it shows how end users are able to
interact with the Offers4All service and how the back end infrastructure of the Offers4All
service is easily employed and reused in a variety of settings. We have focussed on the
increasingly popular Android Smartphone but similar solutions could easily be created for
iPhone/iPad, Blackberry or mobile browsers.

Regardless of the application environment chosen, the idea is that a simple mobile
application is able to feature a wide range of functionalities by leveraging the underlying
SOA4All technologies. In other words, even if the code of the application itself is very limited,
by interacting with SOA4All components, a powerful application can be presented to the end-
users.

The Android App allows the user choose from a set of categories, thus indicating the types of
offers that they are interested in, via a simple menu with checkboxes. Then, based on the
selected categories, and the location of the user, the application connects to the Offers4All
backend, which returns a set of suitable offers. Upon selection of an offer, the full information
for that offer is displayed. The user can opt to consume the offer via the app by a variety of
means. They can request that the offer provider calls them, visit a webpage allowing them to
consume the offer or they can choose to forward details of the offer to a friend via SMS.
Each of the actions is performed by initiating a process via the back end infrastructure. For
example, if they prefer that the offer provider calls them a process is initiated that creates a
call via the Ribbit Calls service and then records the consumption of the offer by that
particular user via the consumption API.

Figure 10 depicts the described functionality by the navigation between the different menus
(“Activities”, in Android programming terminology). From the main entry point (labelled 1), the
user can select the profile/categories activity (2) as well as the list of available offers (3).
Upon selection of a particular offer, a full description is presented (4), from where different
actions can be triggered, such as receiving a call from the offer provider (5). Arguably, the
application itself is not complex. The major functionality is provided by the Offers4All
processes provided by the SOA4All-powered infrastructure.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 25 of 29

Figure 10. “Offers4All Android app” navigation menus

As explained before, the application installed in the phone (or Android device) communicates
with the backend through its APIs (see Figure 1). There are two main communication points
between the application and the SOA4All-powered Offers4All backend:

1. The selection of the offers relevant for the user, meeting both the location-based
constraints and his particular preferences, is performed in (3) by querying the Offers
API. The backend returns a list of suitable offers given the constraints.

2. When a user selects one of the available actions related to an offer, a process is
initiated. Depending on the type of action, the user is required to provide more
information (for example, if the process to be launched includes a text message to be
sent) or not (for example, if the action implies a call to be received by the user). The
process triggers a communication event e.g. a call or message via Ribbit and stores
the event in the consumption API e.g. for billing purposes.

It is worth noting that including a different set of consumable actions into the application
would be very easy from the app point of view, as it would just imply linking to different
services/processes of the Offers4All service. Thus, by using SOA4All infrastructure, the
versatility of such an application is greatly increased.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 26 of 29

4. Next steps
We will continue to develop the Offers4All prototype as an example of a many-sided
business benefitting from the use of SOA4All technology.

We plan to develop a Facebook application to allow users to be made aware of and to
respond to relevant offers whilst they are using Facebook. This will illustrate how Offers4All
can support users who use social networking as their principle means of online
communication. The app will also interact with the back-end processes described above,
showing how they can be reconfigured to deal with new communication channels.

We also plan to develop a back-end service using Linked Open Data provided by the UK
Government. This will use census data linking geographic location with earnings and will
exist as a service allowing OfferNet to predict earnings based upon a user’s postcode which
can then be used to improve the targeting of offers. The service will illustrate how Linked
Services providing data can be integrated into service mashups such as Offers4All alongside
more traditional services.

We will continue to interact with the technology workpackages to ensure that our requirement
to support the use of RESTful services are met and that all Offers4All processes are
implemented using SOA4All technology.

In the remainder of the project we will evaluate the SOA4All federated infrastructure by using
it to deploy the Offers4All service. We will align our work with BT Strategy’s work on
Communications-enabled Business Processes. A traditional software development process
is underway to support a user trial in that project. With BT Strategy, we will evaluate the
technology against requirements that emerge from the trial with the aim of showing how
SOA4All technology could enhance take-up. Further exploitation routes such as Ribbit and
BT.com will also be considered.

We will carry-out a usability evaluation of the SOA4All tools and approach within BT in
collaboration with the University of Manchester. This will be reported in D8.7 and will
compare SOA4All tools in the context of the BT case study with similar tools for service
annotation and consumption and process construction. This will allow us to backup the
claims made by the project and discussed in Section 2.1of this Deliverable.

 SOA4All –FP7 – 215219 – D8.6 Web 21c Prototype v2

© SOA4All consortium Page 27 of 29

5. Conclusion
In this deliverable, we have described the 2nd prototype of the BT Case Study which is based
on the Offers4All scenario. The deliverable describes how such a scenario can be realised
by the creation of a BT platform based on SOA4All technology. The activities required that
enable the platform and the realisation of the Offers4All service upon it have been described.
This involves the use of SOA4All technology (for annotation, consumption, process creation
and execution) but also other activities that must be carried out alongside this such as
ontology creation and front-end and back-end infrastructure development.

The Offers4All scenario has been developed as an example of a many-sided business
model. Such models which include communication at the heart of their business processes
can benefit from an advanced platform provision such as that developed in SOA4All. We will
continue to adopt and evaluate the technology, aligning it with potential exploitation routes
within BT.

Appendix 1 - Example of Offers4All Sequence Diagram

Appendix 2 – Use of SOA4All Components

WP Component Usage

1 DSB Deploy Ribbit and Offers4All services

2 iServe Storage of service descriptions

2 SOWER Annotation of WSDL services

2 SWEET Annotation of REST services

2 Recommender

2 SPICES Execution of single services, adding
to favourites

2 Composer Creation of Offers4All processes

2 Monitoring Planned inclusion at M36

2 Storage Service service ontologies, services favorites

2 Authentication

3 Data Grounding Editor LiLo schemas for data I/O

3 Reasoner Used by DTC

5 Crawler & Registry

5 Discovery Used by DTC

5 Ranking and Selection

6 DTC Planned inclusion at M36

6 Optimizer Planned inclusion at M36

6 Template Generator

6 Execution Engine Executing Offers4All processes

6 LPML API Used by Process Editor

8 Offer Provider Portal Allows offer providers to add / edit
offers

8 User Portal Allows users to edit profile and
browse offers

8 Offers4All Persistence Storage of offer data, user data and
offer consumption data

8 Android app Allows users to edit profile and
browse offers

