

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.5.3B Testbeds Validation Update

Activity N: 1

Work Package: 1

Due Date: 29/04/2011

Submission Date: 28/04/2011

Start Date of Project: 01/03/2008

Duration of Project: 38 Months

Organisation Responsible of Deliverable: HANIVAL

Revision: 2.0

Author(s): Bernhard Schreder (Hanival), Juan Luis Prieto Martínez (ATOS),
Matteo Villa (TXT), Giovanni Di Matteo (TXT), Claudio Stella
(TXT), Fabrice Huet (INRIA), Elton Mathias (INRIA)

Reviewers: Alex Simov (Ontotext), Maurilio Zuccalà (CEFRIEL)

Project co -funded by the European Commission within the Sev enth Framework Programme (2007 -2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 2 of 44

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 15/07/10 ToC Bernhard Schreder (Hanival)

0.2 30/07/10 Section 2 added Bernhard Schreder (Hanival)

0.3 04/08/10 Updates to Section 2.2 Claudio Stella (TXT), Matteo
Villa (TXT)

0.4 05/08/10 Updates to all sections Bernhard Schreder (Hanival)

0.5 10/08/10 Section 3.2 Fabrice Huet (INRIA)

0.6 11/08/10 Updates to Section 2 and 3 Elton Mathias (INRIA)

0.7 27/09/10 Updates to Section 2 and 3 Juan Luis Prieto Martínez
(ATOS)

0.8 29/09/10 Conclusion and final updates, version
sent to reviewers

Bernhard Schreder (Hanival)

1.0 30/09/10 Final version

1.1 20/02/11 Add Test Plan Section All

1.2 03/03/11 Updates to Section 3 Elton Mathias (INRIA)

1.3 20/04/11 Final updated version Bernhard Schreder (Hanival)

2.0 26/04/2011 Final check for submission Julia Wells (ATOS)

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 3 of 44

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

1.3 ALIGNMENT TO SOA4ALL EVALUATION ______________________________ 8

2. SOA4ALL TESTBED INFRASTRUCTURE ____________________ ______________ 9

2.1 OVERVIEW OF THE TESTBED INFRASTRUCTURE: SERVICE PARKS ______ 9

2.2 WEB SERVICE GENERATION ______________________________________ 11

2.2.1 Genesis ___ 11

2.2.2 REST Services Support for Genesis ________________________________ 11

2.2.3 Technical Implementation ___ 12

2.2.4 Installation ___ 16

2.2.5 An Example ___ 16

3. TEST PLAN AND VALIDATION PROCESSES ________________ _____________ 19

3.1 SOA4ALL RUNTIME INFRASTRUCTURE _____________________________ 19

3.1.1 fDSB Evaluation __ 19

3.1.2 Distributed Space Evaluation ______________________________________ 21

3.2 SOA4ALL SERVICE LOCATION _____________________________________ 23

3.3 SOA4ALL SERVICE CONSTRUCTION ________________________________ 26

4. SOA4ALL RUNTIME EVALUATION RESULTS ________________ _____________ 30

4.1 FDSB EVALUATION __ 30

4.1.1 Single-Client Service Invocations ___________________________________ 30

4.1.2 Multiple-Client Service Invocations __________________________________ 31

4.2 SEMANTIC SPACES EVALUATION __________________________________ 34

4.2.1 Insertion of random data, single peer ________________________________ 34

4.2.2 Insertion of random data, multiple peers _____________________________ 35

4.2.3 Queries using BSBM data __ 36

4.3 COMPARISON WITH OTHER SOLUTIONS ____________________________ 39

5. CONCLUSIONS __ 41

6. REFERENCES ___ 42

ANNEX A. __ 44

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 4 of 44

List of Figures
Figure 1: GENESIS Architecture ..11

Figure 2: REST Service Generation with GENESIS ...12

Figure 3: Genesis for REST logical architecture ...13

Figure 4: Diagram of new classes ..14

Figure 5: Execution of .bat files ..18

Figure 6: Final deployment ...18

Figure 7: Testbed deployment ..20

Figure 8: fDSB Service Invocation Path ..21

Figure 9: Mean query answering time against increasing number of Web service descriptions
for three query sizes. ..24

Figure 10: Low Latency fDSB Service Invocation (1 client) ...31

Figure 11: Low Latency fDSB Service Invocation (10 clients) ...32

Figure 12: Low Latency fDSB Service Invocation (50 clients) ...32

Figure 13: High Latency fDSB Service Invocation (1 client) ..33

Figure 14: High Latency fDSB Service Invocation (10 clients) ..33

Figure 15: High Latency fDSB Service Invocation (50 clients) ..34

Figure 16: Individual time for sequential insertion of random statements on a single local peer
 ...35

Figure 17: Individual time for sequential insertion of random statements on a remote peer ..35

Figure 18: Insertion of 1000 statements for variable number of peers, 1 thread (left) and 32
threads (right) ...36

Figure 19: Evolution of the time for concurrent insertion on a 100 peers overlay36

Figure 20: Custom queries with BSBM dataset on various overlays, execution time (left) and
message overhead (right). ..39

Figure 21 Gateways Scenario ..40

List of Tables
Table 1: Experimental fDSB Deployment Resources ..20

Table 2: fDSB Average Invocation Times ...30

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 5 of 44

Glossary of Acronyms

Acronym Definition

API Application Programming Interface

D Deliverable

DSB Distributed Service Bus

EC European Commission

EPR Endpoint Reference

ES Enterprise Service

ESB Enterprise Service Bus

EU European Union

fDSB Federated DSB

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

OSS Operations Support System

REST Representational State Transfer

SLA Service Level Agreement

SOA Service Oriented Architecture

SUT System under Test

URI Uniform Resource Identifier

VM Virtual Machine

WADL Web Application Description Language

WAR Web Application Archive

WP Work Package

WS Web Service

WSDL Web Service Description Language

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 6 of 44

Executive summary
Task 1.5 is concerned with the technical evaluation of the project, and its results can be used
to validate the major technical objectives of SOA4All, including scalability and performance of
the developed solutions. In this deliverable, we continue with the development and
deployment of a testbed environment for SOA4All, which was first described in deliverable
D1.5.1. This deliverable describes the final setup of the testbed environment and contains an
evaluation of the results obtained through performing different sets of tests and comparing
the results to alternative solutions. The deliverable is divided into two main sections.

The first part of the deliverable describes the overall testbed infrastructure, which enables
testers and component owners to define configurable testbeds and services according to a
collection of service templates, and consists of a diverse deployment of fDSB nodes over
various domains.

The second major part of the deliverable defines the various test plans and validation
processes used for performance testing of the SOA4All runtime environment. The test plan
for each runtime component is described, along with any metrics suitable for the tests. The
results of the tests for the fDSB and the semantic spaces have been collected in this
deliverable as well and are evaluated according to the metrics defined previously in
deliverable D1.5.2. Related solutions for both the fDSB and the semantic spaces, which are
the main technical results of WP1, are briefly described and available performance
measurements are compared to the results obtained by the tests.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 7 of 44

1. Introduction
This deliverable describes the continuation of the work in the scope of Task 1.5, the SOA4All
Testbed infrastructure and evaluation of project results. According to the work done and
described in deliverable D1.5.1 [5] and D1.5.2 [6], the testbed infrastructure has been
developed. This deliverable now continues to describe the final set-up of the testbed
environment.

In addition, the deliverable describes the different evaluation scenarios and test cases
developed for the validation of the runtime environment, as well as the results of those tests.
This also includes a comparison to other available solutions, in order to properly evaluate the
results obtained by the performance experiments.

1.1 Purpose and Scope
As mentioned above, this deliverable describes the different activities to realise a testbed
environment and is separated in two main sections.

The evaluation of the SOA4All runtime is based on the deployment and management of
nodes of the Distributed Service Bus. The deliverable provides a detailed description of the
set-up of the testbed infrastructure, based on the deployment of DSB nodes, in order to
achieve the necessary scope to evaluate the scalability and performance of the SOA4All
runtime.

The testbed infrastructure also enables testers and component owners to define configurable
testbeds and services according to a collection of service templates, which are described in
this deliverable and are aligned to the SOA4All Use Case storyboards (as detailed in [3], [7]
and [2]).

The second major part describes the test plans and validation processes for the SOA4All
runtime environment, as well as evaluation scenarios, specific test cases and other
information for the actual evaluation of the runtime environment. The section collects the
results of these tests and the evaluation of these results based on the metrics defined
previously and comparable technical solutions.

1.2 Structure of the document
This document is structured as follows: following this introductory section, Section 2 of this
document describes the overall testbed infrastructure, which enables testers and component
owners to define configurable testbeds and services according to a collection of service
templates, and consists of a diverse deployment of fDSB nodes over various domains.

Section 3 of the deliverable then defines the various test plans and evaluation scenarios
used for performance testing of the SOA4All runtime environment. Each test plan focuses on
a part of the overall runtime architecture, including the fDSB, semantic spaces, service
location and service construction. The results of these tests have been collected in Section 4
and are evaluated according to the metrics defined previously in deliverable D1.5.2. Related
solutions for both the fDSB and the semantic spaces, which are the main technical results of
WP1, are briefly described and available performance measurements are compared to the
results obtained by the tests.

Finally, the deliverable concludes with a summary of the obtained results from the
experiments and evaluation of the SOA4All testbed infrastructure.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 8 of 44

1.3 Alignment to SOA4All Evaluation

The testbed infrastructure specified in this deliverable has been used to evaluate the main
objectives of the project from a technical perspective. The main roadmap for evaluation was
first summarised as part of deliverable D2.5.1 [4], and includes a set of metrics and
performance indicators for the technical evaluation. Results from the evaluation process
concerning these indicators are reported in this deliverable as well.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 9 of 44

2. SOA4All Testbed Infrastructure
In order to demonstrate the distributed nature of the SOA4All infrastructure, the project
established by month M18 a Distributed Service Bus implementation across three distinct
nodes at three different locations. There are currently bus nodes, with co-located semantic
space nodes, installed at eBM WebSourcing in Toulouse, France, at INRIA in Sophia
Antipolis, France, and at the University of Innsbruck in Austria. While this is sufficient for a
first implementation and to showcase the distributed nature of the SOA4All infrastructure, a
three-node deployment is not considered well enough for evaluation and future uses. In
particular, elements such as scalability and performance cannot adequately be measured,
analysed and evaluated.

In this section, we therefore present the different testbeds that were used for a multi-level
deployment plan for SOA4All that allows flexible scaling out in terms of machines that share
the Distributed Service Bus. We first present the overall approach that is envisaged, and in a
second subsection we present in more detail the various projects involved.

2.1 Overview of the Testbed Infrastructure: Service Parks
As presented in [10], one of the main goals of the fDSB is to offer a communication layer
connecting service parks in a transparent way, despite of network configurations that might
prevent direct connection of nodes hosting DSB nodes. Implementation details, installation
and configuration are detailed in [11].

In this section, we present more details about the testbed used in the evaluation of the
Federated DSB (fDSB). In order to asses the worthiness and performance of the fDSB, we
carried out a series of experiments involving service parks deployed in different
administrative domains, with different network configurations and access policies. This
environment is composed by three service parks, each one deployed in a different
administrative domain, including INRIA Sophia Antipolis, the Amazon EC2 cloud platform
and Grid5000, the French experimental Grid infrastructure.

INRIA – Sophia Antipolis cluster

The INRIA private cluster used in the testbed is composed by 20 nodes with 1Gb Ethernet
connectivity. Each node has 16GB of memory and two Intel E5335 processors, for a total of
8 cores on each node.

Because of INRIA network security, cluster nodes (and therefore the DSB which is running
on these nodes) cannot be accessed by nodes outside of the secured INRIA network. The
only available entrypoint is a gateway machine which only supports SSH connections. In
spite of that, cluster nodes can access the external network (i.e. the Internet).

At the federation level, the fDSB had to be configured to handle SSH message tunneling and
forwarding from the federation to cluster nodes, passing through the INRIA SSH gateway.

Amazon EC2

Rented Amazon EC2 instances also integrate SOA4All testbed. In order to simplify the
inclusion of Amazon EC2 instances, a special Amazon Machine Image (AMI) was prepared
including software and configuration required for the execution of Petals DSBs and the fDSB.

Amazon offers a range of instances with different amount of memory, CPU and I/O
performance and pricing. The amount of CPU that is allocated to a particular instance is

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 10 of 44

expressed in terms of these EC2 compute units (according to Amazon, one EC2 compute
unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. I/O only presents an indicator and can be moderate or high or very high.

Two of the most used Amazon EC2 instances were used in fDSB experiments:

- Small Instance has 1.7 GB memory, 1 EC2 Compute Unit (1 virtual core with
1 EC2 Compute Unit), 160 GB instance storage (150 GB plus 10 GB root
partition), as a moderate I/O performance and is a 32 bit platform

- High-CPU Extra Large Instance has 7 GB of memory, 20 EC2 Compute Units (8
virtual cores with 2.5 EC2 Compute Units each), 1690 GB of instance storage,
high I/O performance and is a 64 bit platform.

Amazon EC2 allows users to define custom network configuration, which may include firewall
and NAT configuration. Connection to Amazon EC2 domain is, therefore, straightforward
because there is no special restriction on the usage of resources. Since public IPs are
available under payment of a fee, we rented a public IP address and associated it to one of
the Amazon EC2 instances, which acts as an entrypoint to the Amazon EC2 service park.

An fDSB router, deployed in Amazon EC2, was configured to access other service parks. No
special configuration is required to access the Amazon EC2 service park. One of the
parameters that influence performance experiments on this testbed is the AWS region to be
used (e.g., Europe/Singapore/US). For benchmarking purposes, selecting a different region
will produce different results.

Grid’5000

The Grid'5000 is national French Grid platform. It gathers 9 sites geographically distributed in
France featuring a total of 5000 processors. To form our testbed, we selected three clusters
with different performances over two Grid5000 sites: two of them at INRIA Sophia Antipolis
and the other at INRIA Lille

- INRIA Sophia-Antipolis Suno cluster: composed by 45 nodes, interconnected
through a Gigabit Ethernet network. CPU of suno cluster is the quad-core Intel
Xeon E5520 (Xeon Nehalem) and 32 GB of memory.

- INRIA Sophia-Antipolis Azur cluster: composed by 49 nodes, interconnected
through a Gigabit Ethernet network. CPU of azur cluster is the AMD Opteron 246
(with 2 cores) and 2 GB of memory.

- INRIA Lille Chuque cluster: composed by 52 nodes, interconnected through a
Gigabit Ethernet network. CPU of chuque cluster is the AMD Opteron 248 (with 2
cores) and 4 GB of memory.

The different Grid5000 sites are connected through the Renater-4 dark fiber backbone,
connected to the same VLAN at 10Gbps speed.

Regarding fDSB configuration, Grid5000 is more complex than the other platforms, because
machines are completely isolated from the Internet. Therefore, DSB nodes running in
Grid5000 can only be accessed by the fDSB through SSH message tunneling and
forwarding. The same is required for nodes to contact the fDSB.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 11 of 44

2.2 Web Service Generation
2.2.1 Genesis

GENESIS1 has been developed to solve a major problem in the current state of the art of
software development for Service-oriented Architecture (SOA). So far, software testing in the
SOA domain has been mostly concentrated on checking individual Web services regarding
their performance, stability, fault tolerance, and other quality attributes. In our opinion not
enough effort has been invested into supporting the testing of complex SOA components,
which operate on (possibly large-scale) service-based environments

GENESIS [1] was introduced and described in detail in deliverable D1.5.1. Currently, a new
version is being developed by the Vitalab group, but it’s not available yet for download
(promised release date by end of 2010). For the new version of GENESIS high priority has
been assigned to a seamless extensibility of the framework in order to emulate arbitrarily
structured testbeds composed of diverse SOA components, and to program their behavior.

Figure 1: GENESIS Architecture

REST services support is still missing, so the need for an extension is still required. The
following sections describe the work performed by TXT to design and to develop an
extension to GENESIS in order to support REST services generation .

2.2.2 REST Services Support for Genesis

The main goal of the REST extension for GENESIS is to self generate/simulate new REST
services, based on a similar approach to the existing WSDL Services generation in
GENESIS

The activities performed in order to extend the platform are the following:

• Study of the existing Genesis architecture

1 http://www.infosys.tuwien.ac.at/prototype/Genesis

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 12 of 44

• Definition of new required features

• Definition of a new technical architecture

• Development of the required extensions

More in detail the work performed on the GENESIS platform is the following:

1. Modification of the Genesis configuration file, in order to let end-users specify desired
REST resources

2. Modification of the Genesis classes to parse and to process such new configuration file

3. Modification of the Genesis classes to self-generate WADL files out of the information
provided in the configuration file

4. Modification of the Genesis classes to self-generate REST services based on the WADL
file

5. Modification of the Genesis classes to self-deploy REST services based on the
information provided in the configuration file

Thanks to such extensions, Genesis can now support both WSDL and REST services.

The following sequence diagram shows how Genesis can generate REST services (RS):

Figure 2: REST Service Generation with GENESIS

2.2.3 Technical Implementation

Genesis New Architecture:

The following picture shows the modified logical architecture of GENESIS:

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 13 of 44

Figure 3: Genesis for REST logical architecture

Genesis Configuration File:

The Genesis configuration file is the starting point to build REST services. For the definition
of SOAP services, the existing configuration file uses the XML element “service” as child of
“host” element; to configure a REST service the new XML element to use is:
“<application> ”.

Once that a host element has been created and its address has been defined, it is possible
to build the REST service. In contrast to SOAP services, there is no one endpoint per
service, so each host can contain a maximum of one REST service. Furthermore, each
REST service (or application) can have unlimited resources, so inside the “application”
element we can define several <resource> elements corresponding to all the resources we
need using a different path for each one of them.

Complex types can be defined in two ways: in an external “.XSD” file to import or inline,
inside the “<schema> ” element.

To define a new method, it’s necessary to add the XML element “<method> ” as child of the
element “<resource> ”; it’s mandatory to specify the HTTP name of the method in the
attribute “name” which can be POST / GET / PUT / DELETE and it is necessary to define an
“id ” for the method.

To set the input parameters of a method just add the child element “<input> ” inside the
element “<method>” then add parameters inside “input”, using the attribute “type ” to set the
input type of your parameter.

In case of GET methods, it is necessary to set the output result by adding the child element
“<output> ” inside the element “<method>”. As for input parameter, use attribute “type ” to set
the return type of the method.

The attribute “param-type ” specifies the type of the input parameter: possible values are:
path, query, matrix, header, cookie, form. All of these values denote differnet possibilities to
provide input data to the REST service.
Finally, the attribute “path ” is used to define a sub-resource

By default, the configuration file that Genesis automatically reads is configuration.xml

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 14 of 44

located in directory: /conf.

When we define a new host in the configuration file, by default only 8060, 8070 or 8080 ports
are allowed.

Classes:

New classes have been created inside Genesis, while other existing have been modified.
The most relevant changes are in package: at.ac.tuwien.vitalab.genesis.model. They are
represented in the following class diagram:

Figure 4: Diagram of new classes

Package: at.ac.tuwien.vitalab.genesis.model

Added Classes:

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 15 of 44

• Application : Is the model Class that contains the information about an Application
(REST Service), starting from the definition in the configuration file.

• Resource : Is the model Class that contains the information about a Resource.

• Method: Is the model Class that contains the information about a resource’s Method.

Updated Classes:

• Host: Is the model Class that contains the information about an Host. This class has
been modified to include not only SOAP Web Services (Service) but also REST Web
Services (Application)

• MessageType: Is the model Class that maps XML Schema types to Java types. This
class has been modified to provide the XML response of a GET method.

Package: at.ac.tuwien.vitalab.genesis.server

Added Classes:

• AWebApplication: it is responsible of deployment and undeployment of a REST
Service (Web Application). Here is where the REST endpoint is created.

• AWebApplicationGenerator: generate and compile the java source code of the REST
Service (Web Application)

Updated Classes:

• GeneratorService: this class has been modified to include the generation of a REST
Service (Web Application)

• AWebServiceGenerator: this is the old “Generator” class, it has only been renamed to
remark the contrast with AWebApplicationGenerator

• GeneratorConfig: added the logic to work with REST service

Package: at.ac.tuwien.vitalab.genesis.server.jaxws

Added Classes:

• DeployApplication: added to enable the deploying of REST services

• DeployApplicationResponse: added to provide the Response for DeployApplication
invocation

• UndeployApplication: added to enable the undeploying of REST services

• UndeployApplicationResponse: added to provide the Response for
UndeployApplication invocation

• ListApplications: added to enable the listing of REST services

• ListApplicationsResponse: added to provide the Response for ListApplications
invocation

Package: at.ac.tuwien.vitalab.genesis.client.jaxws

Updated Classes:

• Genesis: added 3 Web Method to enable Genesis to work with REST services

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 16 of 44

2.2.4 Installation

The modified GENESIS code is located here:

https://svn.sti2.at/soa4all/trunk/etc/GenesisREST.zip

To install it, just unzip the file.

• Pre-requisite: Apache ANT, JRE 1.6 or higher.

2.2.5 An Example

The first step is to create the configuration file: we start by defining a new “application” called
“DemoApplication” with two resources, as shown:

<configuration>

 <environment>

 <host address="http://localhost:8070/WebServices/GeneratorService">

 <application name="DemoApplication">

 <resource name="CustomerResource" path="customer">

 </resource>

 <resource name="ItemResource" path="item">

 </resource>

 </application>

 </host>

 </environment>

</configuration>

We then create two complex types, defining them inline:

<schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:complexType name="person">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 <xs:element name="zip” type="xs:long" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="item">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="cost" type="xs:double"/>

 </xs:sequence>

 </xs:complexType>

</schema>

These complex types, can be used as input parameter or output result of our methods.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 17 of 44

We create a POST method called “addCustomer”, with “person” as input parameter:

 <method name="POST" id="addCustomer">

 <input>

 <data type="person"/>

 </input>

 </method>

We also define a GET method called “getCustomer”

 <method path="id" name="GET" id="getCustomer">

 <input>

 <id type="xs:string" param-type="path"/>

 </input>

 <output type="person"/>

 </method>

Next step is to launch the appropriate “GeneratorService”. There are three “.bat” files to start
three different Generators; only the ones described in the configuration file need to be
started.

• for a host with the address:

o http://localhost:8060/WebServices/GeneratorService

the following script should be executed: ant8060.bat

• for a host with the address:

o http://localhost:8070/WebServices/GeneratorService

the following script should be executed: ant8070.bat

• for a host with the address:

o http://localhost:8080/WebServices/GeneratorService

the following script should be executed: ant8080.bat

For each of the script files that has been launched, one has to wait until the shell shows
something like this:

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 18 of 44

Figure 5: Execution of .bat files

Now deployment.bat , can be launched in order to deploy the described services. If there’s
no error in the configuration file the generator service will start to generate then compile and
finally deploy the services. If no errors occur, something like this will be shown:

Figure 6: Final deployment

The last lines show the URL of the REST Service (Application) and the URL of the WADL
related to the REST Service.

The REST service is now ready to be used (by any REST client) for testing.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 19 of 44

3. Test Plan and Validation Processes
In this section we summarize a consolidated test plan and outline the validation processes
that were undertaken for the different parts of the SOA4All runtime infrastructure. The
SOA4All runtime includes the service bus and semantic spaces implementation of WP1, the
service location components, mainly discovery, from WP5 and the components that make up
the service construction suite from WP6.

The distributed service bus and the spaces provide a baseline communication and
coordination infrastructure for Internet-wide service computing, and hence properties such as
distribution, decentralization and performance are the determining factors when validating
the project outcomes. Essentially, these core infrastructural services have to be evaluated in
terms of scalability under increasing network size (number of nodes), changing network
heterogeneity – i.e., cross-domain communication, aka inter-service park communication –
and increasing service invocation load. To this end, the semantic descriptions have no
relevance when testing the SOA4All infrastructure from WP1.

While for the service bus evaluation setting the number and physical location of service
endpoints is important, in regards to service location (WP5), the focus is on the number of
service annotations and the complexity of service descriptions; discovery does neither care
about the location of a service nor about how it is implemented. Distribution, and hence the
number of service discovery engines is not the primary target of our evaluation, although,
experiments in decentralized and cloud-based settings complete the picture. Decisive factors
are the query answering times and the precision and recall under changing and increasing
numbers of service descriptions taken into account.

The task of service discovery is to find a matching service via its descriptions out of a
collection of several thousands of service annotations. In service construction, the number of
services taken into account is linearly dependent on the number of actions in a process; and
hence, for all our use cases and scenarios is limited to a low countable number. Rather than
by scalability, the evaluation of WP6 results is driven by suitability and applicability tests. In
other words, service location components are responsible for reducing the number of
relevant service descriptions to a small enough number so that the service construction suite
can provide optimal service to process modelers from an initial goal to a final deployment on
the distributed service bus and the invocation via service bus.

3.1 SOA4All Runtime Infrastructure
The WP1 Test Plan consists of two separate parts, in order to evaluate the two main results
of this work package. The first section discusses the various tests and experiments to
evaluate the fDSB, while the second section summarizes the tests for the Semantic Space.

3.1.1 fDSB Evaluation

In order to evaluate the performance/scalability of the fDSB, we have performed a series of
experiments involving the testbed infrastructure developed in T1.5. Initially, we performed
deployment experiments to verify DSB and fDSB integration. Then, we performed
experiments to verify performance (and quantify overhead) of fDSB invocations in relation to
local DSB invocations. Finally, the service generator GENESIS was used to provide a
realistic amount of test services for additional performance and scalability tests.

3.1.1.1 fDSB Deployment and Integration Tests

For testing the fDSB deployment and integration, we carried out a large deployment of more
than 700 DSB nodes over the testbed resources. In order to obtain a realistic environment for
this deployment scenario, the federation deployment consisted of three service parks

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 20 of 44

integrated by the fDSB infrastructure, deployed over Amazon EC2 resources, Grid5000 and
an INRIA private cluster. The table below shows the number of deployed nodes in our tests.

 Physical nodes (cores) DSB nodes / node Total DSB Nodes

INRIA eon cluster 20 4 80

Grid5000 146 4 584

Amazon EC2 2 (instances) 2 4

TOTAL 168 - 668

Table 1: Experimental fDSB Deployment Resources

3.1.1.2 fDSB Communication and Scalability Tests

Figure 7 shows the organization of deployments on the testbed infrastructure. This multi-
domain deployment presents well-defined gateway nodes in each of the Service Parks.
Thanks to the fDSB infrastructure and multi-protocol communication, every DSB node is
logically connected to other federation nodes.

Figure 7: Testbed deployment

The service invocation experiments make use of a popular service benchmarking tool called
SOAPUI. SOAPUI was configured to perform service invocations over a local DSB and
according to the test to be performed (local DSB communication or fDSB communication),
services were either deployed locally or remotely. Performance results of such invocations
were collected and analyzed to verify the expected overhead of the fDSB layer.

Local service invocations and fDSB invocations follow different paths in the fDSB. While local
services are invoked directly through the Petals transport layer, fDSB invocations travel
through the fDSB transport layer. Figure 8 shows the path of invocations where the client is
located in the same administrative domain as the INRIA DSB and the invoked Web Service
is located on (i.e. bound to) an Amazon EC2 instance. Initially, a message is sent to the

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 21 of 44

SOAP Binding Component of one of the INRIA DSB nodes and then it performs a lookup
locally. If the service is not available in local DSB, a lookup process happens in the context of
the federation by using the fDSB; the reply to this lookup is an endpoint which is not available
locally; so, when sending a message to this endpoint, it will be forwarded to the federation,
(the lookup query result is cached) and then sent through the fDSB transport to the Petals
transporter of the other federated DSB; the last step consist in delivering the message to the
real Web Service.

Figure 8: fDSB Service Invocation Path

In addition to single-client experiments, we carried out experiments involving multiple clients.
These experiments evaluate the performance of the fDSB under different load conditions,
which is obtained by the increment on the number of clients and number of threads by client.

In Section 4.1, we present more details on the experiments and performance results of such
invocations and analyze the result to verify the expected overhead of the fDSB layer.

3.1.2 Distributed Space Evaluation

3.1.2.1 Performance and Scalability Measurements

In order to validate the distributed space architecture, we have performed extensive
experiments. The goal was twofold. First, we wanted to evaluate the overhead induced by
the distribution and the various software layers lying between the repository and a user.
Second, we wanted to evaluate the benefits of our approach, namely the scalability in terms
of concurrent access and overlay size.

• Insertion of random data: the first set of experiments inserts 1000 randomly
generated statements in an overlay made of 1 to 100 peers.

• Queries using BSBM data: to evaluate distributed queries, we have used a subset of
the BSBM benchmark to generate meaningful data and queries. These experiments
have been performed with 100 peers.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 22 of 44

3.1.2.2 Design-Time Configuration and Scalability-Minded Analysis

To avoid performance and scalability limitations at runtime, it is important that relevant
functional and non-functional properties of semantic spaces, such as latency, availability, or
completeness, are analyzed at design time. It is difficult to detect and correct scalability
problems by system testing only [13] – especially when problems are caused by conceptual
flaws. Considering user and infrastructure requirements/constraints, such as available
processing cycles or the storage size, allows for modeling the design-time evaluation as a
constraint satisfaction problem (CSP, [17]).

For semantic spaces, we developed a CSP-based scalability analysis tool taking as variables
the non-functional properties of a space, as constraints user requirements, system
constraints and trade-offs between functional and non-functional properties [16]. In fact, the
analysis of potential space realizations was reduced to a particular configuration design
problem referred to as parametric design. In parametric design, a configuration is determined
by pre-defined parameter template that defines the solution in terms of variables, possible
value assignments and the design space given by requirements and constraints over the
parameters. The outcome of the design task is the set of instantiated parameters that satisfy
the design requirements and constraints, and in our case, offers a suggestion for a fit-for-
purpose space implementation plan.

More technically speaking, parametric design is a search problem. Searching in complex
domains is a knowledge-intensive reasoning task that is addressed by means of problem-
solving methods that, through sophisticated knowledge models, resolve global solutions,
often based on locally optimized search results. Our tool is based on a generic approach to
parametric design problem-solving presented in [17] that leverages four independent
knowledge models, ontologies, referred to as TMDA: Task, Method, Domain, and
Application. The task model represents the parametric design task; the method ontology
models the problem solving artifacts, while the domain is semantic spaces and the
application the analysis tool. Building on TMDA, the tool is implemented as Web application
running over the Internet Reasoning Service IRS-III that is developed at Open University
[13]. A Web form allows space architects to specify their functional and non-functional
requirements and preferences, as well as infrastructure constraints, such as available
machines, and resource-related characteristics such as the overall targeted capacity of a
distributed space or the use of the space; i.e., publication-intensive or retrieval-dominated
access.

The evaluation of the tool was conducted qualitatively via expert consultations. The selected
experts are the architects of different applications that rely on semantic space technology for
improving the flexibility and scalability of their implementations, or that have concrete plans
to do so. While the applications were very different in their purpose, scope and non-
functional requirements, they all share the need for an infrastructure for large volumes of
semantic data. The four scenarios were the European Patient Summary, Life Science Data
Integration, Multimedia Content Marketplace, and the SOA4All Service Bus Monitoring
Platform.

We assessed the tool in terms of program evaluation, impact, and efficiency/ cost-benefit.
Prior to the interviews, the expert studied the user manual to get familiar with the objective,
the promised functionality and the conceptual models of the tool. After clarifying the baseline,
the experts had the possibility to test and play with the tool for 15 to 30 minutes. While
playing with the tool, the experts were assisted if required, and could ask questions about the
tool and its implementation. The evaluation interviews were conducted immediately after the
testing phase by means of 17 open-ended questions covering all three aspects of the
evaluation. The experts highlighted the simplicity and the automated transformation of

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 23 of 44

requirements into a realization plan. The quick access to an infrastructure proposal was
considered to be very powerful. From a usage perspective, the tool is seen to be very easy to
use, and well-assisted with limited parameters; there is no need for much training. The
results of the impact evaluation showed that finding a proposal for a space realization by
means of an analytic tool is much more cost effective, safer and of significant impact. The
evaluators agreed that the benefit of the tool is significantly higher than the costs. This is not
surprising, as the tool was deployed as Web application with the reasoning engine running
on a public server hosted by a third party. Further details about the tool, its implementation
and ontologies as well as the evaluation are to be found in [16].

3.2 SOA4All Service Location
Given that service descriptions crawled by seekda mainly represent the information derived
from WSDL service descriptions, we decided to synthesize rich semantic service descriptions
in a fairly large scale to perform our measurements. Therefore, for the evaluation of the (non-
distributed) semantic service discovery approached developed during the project, we created
a set of randomly generated service descriptions with varying size ranging from 5,000 to
30,000 descriptions, which is approximately the number of currently available Web service
according to seekda2. We used the Semantic Web for Research Community (SWRC)
ontology as domain knowledge to model service descriptions. It provides classes and
properties to express individual types and conditions.

Query sizes tested in the experiment.

 Small Medium Large

Query size

 Variables 6 9 12

 Relations 9 12 15

 NFRs 2 4 6

We measured the mean query answering time of the reasoner on a quad core Xeon CPU
(2.33GHz) powered machine. Queries of three different sizes (small, medium, large) were
sent to the reasoner. Small, medium, and large conjunctive queries with various numbers of
inputs/outputs, and relationships among them within precondition and effects, were tested in
this experiment. The Table above lists the precise number of terms of the individual queries.
As depicted below, the time to answer these queries range from 2.8s, 4.2s, 5.0s with 5,000
service descriptions to 17s, 23s, 33s with 30,000 descriptions for small, medium, large sized
queries, respectively.

2 http://webservices.seekda.com/about/web_services

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 24 of 44

Figure 9: Mean query answering time against increasing number of Web service descriptions
for three query sizes.

Note that the purpose of the figure above is to show the feasibility of the presented discovery
approach. It is clear, that query answering time measure highly depends on size and
structure of the used domain ontologies, size and complexity of the query and service
descriptions. Nevertheless, these results can be significantly improved by the introduction of
indexing structures, increasing the computational power, and distributing either the reasoning
process or, independently, the processors carrying out discovery.

As sketched at M30 in Deliverable 5.4.2 (as well as D5.3.2), the integration of the discovery
and ranking approaches in DisCloud, and specifically the creation of a repository for service
templates (i.e., not just for service descriptions) has allowed a distributed approach to
discovery and ranking to be investigated in the latter stages of the project. Evaluation of this
approached has proceeded, as planned, based on the KIT component of the OpenCirrus
cloud computing research testbed3. As planned, the implementation of this prototype has
been carried out using Hadoop, though management of the cluster for testing and
(scalability-oriented) evaluation has used the OpenNebula overlay (an open source cloud
management toolkit, with significant contribution from EU-funded research) rather than the
planned (commercial solution) Eucalyptus.

At the same time, work on Linked Open Services that has emerged from, and been
supported by, SOA4All4 as a Linked Data-oriented exploitation of project results, has
motivated that the service models developed in the project be used in combination with the
SAWSDL-compliant annotation scheme to link to data-centric service descriptions with input
and output based on SPARQL graph patterns [13]. Motivated also by feedback from the
project’s tool user/functional evaluation, the distributed discovery/ranking approach has
therefore concentrated on matches between service descriptions and templates using such
graph patterns, and has accommodated a new notion of ‘partial match’, based both on
predicate subsets in the graphs and on identified resource subsets.

The full results of the evaluation are communicated in the updated version of the Service
Ranking Prototype in D5.4.3 (introduced in project Description of Work v19). In order to
illustrate the approach taken to scalability-related evaluation, however, the details of the

3 https://opencirrus.org/
4 http://www.linkedopenservices.org/events/tutorials/ISWC2010/

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 25 of 44

updated (graph pattern based) service description and template generation algorithms are
reproduced here.

Firstly a set of global parameters are set, as follows:

t The number of templates to be generated

s The number of service descriptions to be generated

p The number of predicates in the ‘global pool’ (there is no need to separate
predicates into different named graphs, so these will simply be expanded as:
P = {http://www.example.com/vocabulary#predicate1,

 http://www.example.com/vocabulary#predicate2,
 …,
 http://www.example.com/vocabulary#predicatep}, so that |P| = p

r The number of identified resources in the ‘global pool’. Again
R = {http://www.example.com/vocabulary#resource1, …}, |R| = r

imin, imax,
omin, omax

Respectively the lower and upper bounds on the number of input triple
patterns and output triple patterns per service description/template

pmin, pmax Respectively the lower and upper bound on the number of predicates in each
local pool, Pj, per service description/template, used in generation

rmin, rmax Respectively the lower and upper bound on the number of resources in each
local pool, Rj, per service description/template, used in generation

vmin, vmax Respectively the lower and upper bound on the number of variables in each
local pool, Vj, per service description/template, used in generation

ivs, ivp,
ivo, ovs,
ovp, ovo

The probability (0 <= ivs, ivp, ivo, ovs, ovp, ovo <= 1) that a variable
will be used in the subject, predicate and object positions, respectively, for
each input and output triple pattern

Based on these parameters, as each service description/template, j, is generated, the
following local parameters (i.e., applying only to that description or template) is generated:

pj The number of predicates in the ‘local pool’ for the description/template
(pmin <= pj <= pmax), leading to randomly-selected Pj � P, |Pj|= pj

rj The number of resource in the ‘local pool’ for the description/template, again:
(rmin <= rj <= rmax), leading to randomly-selected Ri� R, |Rj|= rj

vj The number of variables in the ‘local pool’ for the description/template. Simply
vmin <= vj vmax and Vj = {?v1, ?v2, ..., ?vvj} (Trivially, then |Vj| = vj)

ij, oj The number of input patterns and output patterns, respectively, for the
description/template

The algorithm to generate pairs of graph patterns, for inputs and outputs, based on these
parameters in contained in D5.4.3. Values for ivs, ivp, ivo, ovs, ovp, ovo are fixed for all
evaluations, based on experience with existing Linked Open Services. For the other
parameters three consistent sets of values are chosen, representing: simple descriptions
(low imax, omax and vmax) for limited domains (low p and r); simple descriptions for broad
domains (high p and r); complicated descriptions (low imax, omax and vmax) for broad domains.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 26 of 44

For each of these three groups the evaluation is carried out on a non-distributed ‘cluster’ (1
node), a small Hadoop cluster (3 nodes), a medium cluster (10 nodes) and a large cluster
(100 nodes).

The results for each set of parameters, on each four cluster configurations, will be
decomposed into the time taken to compute six metrics:

• The degree of subset matching of the set of predicates used in each template input graph
versus each service description input graph;

• The degree of subset matching of the set of predicates used in each service description output
graph versus each template output graph;

• The degree of subset matching of the set of identified resources in subject and object position
used in each template input graph versus each service description input graph;

• The degree of subset matching of the set of identified resources in subject and object position
used in each service description output graph versus each template output graph;

• The satisfaction (a binary judgment, based on an ASK query) between the input graph pattern
of the service description by the skolemization of the template input pattern;

• The satisfaction (a binary judgment, based on an ASK query) between the output graph
pattern of the service template by the skolemization of the service output pattern.

For a given template these six metrics can be used to decorate the service description
dynamically as non-functional properties (as are the seekda monitoring results, as presented
in D5.4.2), and included – with relative weightings defined according to the established
preference model – in subsequent ranking of services. This also allows the scalability
evaluation of the semantic ranking approach (for which there were previously too few
services to test).

3.3 SOA4All Service Construction
The SOA4All WP6 Service Construction package outcomes that were obtained along with
the project lifetime until the M30 milestone are evaluated in D6.5.4. This deliverable validates
the results of the light-weight and adaptive composition techniques in terms of applicability
and suitability as well as other criteria.

The SOA4All Construction Platform outcomes require to be assessed in order to ensure that
the main objectives and requirements have been achieved and the principles observed.
Deviations of the SOA4All Service Construction platform features from the objectives and
requested requirements must be identified and measured, and corrective actions or
improvements proposed in order to minimize the user experience and the successful
exploitation of the SOA4All results.

Hence, this evaluation process aims to: a) define the evaluation scope (in the context of the
general SOA4All evaluation approach), b) identify and define the evaluation criteria that it is
use to assess the Service Construction, c) use these evaluation criteria to assess the most
relevant technical features of the Service Construction from an holistic view, collecting and
analyzing the evaluation results, d) provide a detail analysis and explanation of the
evaluation results, proposing improvements for future work that overcome the non-positive
aspects of the evaluation.

In the early stage of the project, the SOA4All usability evaluation work was defined in D2.5.1.
This work defined the SOA4All evaluation process, jointly accomplished by some technical
and the case studies work packages. Moreover, this document identified the main SOA4All
objectives and their potential evaluators: end users, use cases and technology, and, based
on those beneficiaries, the sort of possible evaluations, respectively: usability, fit-for-purpose
and technical. In this context, the internal WP6 Service Construction evaluation should

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 27 of 44

complement the aforementioned overall evaluation schema.

In this sense, WP6 evaluation is essentially a technical heuristic evaluation of the Service
Construction features, attending to internal (to WP6) scientific and technical requirements,
and other criteria explained in next paragraphs, based on the experience gained during the
development of the tools and the use case scenarios. However, the process modelling
assisted features, supported by Design Time Composer (DTC) and Optimizer have been
also evaluated experimentally within the use case scenarios measuring their performance
and behaviour with regard to the scale of the knowledge bases used. Since the use cases
knowledge bases are small, additional experiments were run using programmatically created
knowledge bases, containing service and process descriptions, and process models.

WP6 evaluation approach is also holistic, focusing on the most relevant global functionality
offered by the Service Construction rather than on individual components separately. The
Service Construction main functionalities evaluated are the following:

• the balance between light-weightness, expressivity, complexity, correctness and
executability for process modelling, since this balance was one of the main driven
criteria for the specification of the LPML.

• the easiness on process modelling, including assisted features provided by DTC
since SOA4All Service Construction targets unskilled end-users.

• the modelling by knowledge intensive reusability, since this modelling approach is
also a driven criteria for the specification of the LPML and the assisted modelling
support for Template Generator and DTC.

• context-awareness process adaptation, since context was one of the four main
SOA4All principles, and in particular a driven criteria for Service Construction

• process optimization, as one of the most relevant modelling assisted features.
• process deployment adaptation, autonomous capabilities for process execution and

hybrid process execution support as the most important Execution Environment
features.

The balance between light-weightness, expressivity, complexity, correctness and
executability concerning LPML has been evaluated heuristically. In particular, we have
compared LPML with most relevant modelling languages used in the SOA context: BPMN
and BPEL, targeting typical end-users: IT experts and business analysts; results of this
evaluation are presented in D6.5.4 LPML has been also evaluated in the context of a user
evaluation survey, using the metrics as well are grouped into technical, individual,
organisational, and economic metrics. LPML correctness (syntactic, semantic, uniqueness
and canonical, exchangeable format, coherency of different layers) is successful evaluated
using static analysis of the LPML meta-model. LPML completeness and expressiveness is
also evaluated in terms of ontological completeness and a pattern-based analysis. The
results of this evaluation are as well collected in D6.5.4, Table 5..

The adaptability and extensibility of the LPML is analysed statically according to the design
science. In general the semantic annotation allow for adjusting and extending the LPML. In
D6.5.4, Table 6 discusses the LPML adaptability and extensibility facing the public sector
extensions.

The usability evaluation of LPML is strongly aligned with the simplicity and understandability
evaluation. First, a heuristic evaluation is performed based on literature criteria addressing a
static evaluation according to the design science. Afterwards, an observational analysis is
described in terms of a user survey and workshops focussing on the evaluation of the design
of the LPML. The heuristic usability evaluation is based on heuristics for usability engineering
focusing on user interfaces. These usability heuristics are applied to the LPML. D6.5.4 Table

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 28 of 44

7 describes the static analysis of these heuristics.

The easiness on process modelling, including assisted features provided by DTC is
evaluated heuristically using the machine and human based computation principle. The
behaviour of DTC assisting features concerning scalability and efficiency (performance)
criteria are evaluated heuristically and experimentally. Heuristically we discuss architecture
choices to adapt a single DTC service to scale up with the size of the knowledge base of
service and process descriptions. Experimentally, we analyse the performance of DTC
methods processing the models proposed in the eGovernment use case scenario. In order to
test the DTC methods with scales exceeding the knowledge bases of the use cases, we
have prepared programmatically a randomly generated knowledge base of service and
process descriptions where we control their number. KB sizes in our experiments range from
103 to 2·104 descriptions. Similarly, we have prepared a controlled number of input process
models and templates whose number of tasks is also configurable. We have invoked activity-
level DTC methods 50 times and process-level DTC methods 10 times. BindActivity and
resolveActivity methods answer within [0, 10] seconds for KB sizes ranging [103, 2 ·104],
response times compatible with Web applications. ResolveProcess method answers within
[10, 45] seconds for the same KB sizes. The response in case of resolveProcess method
strongly depends on the number of design models posted by DTC onto its blackboard, and
on whether DTC found a complete design model with data flow generated (in this case the
SLO service is also invoked). In case the solution space is traversed resolveProcess
execution time can get extremely high (some minutes, depending on the solution space
size). Guard conditions can be programmed in DTC in other to guarantee a reasonable
processing time, relaxing the completeness of the returned solution: Future work to improve
DTC will limit the number of posted design models or just returned the best-found model
solution within a pre-determined processing time. Experimental details are given in D6.5.4,
section 3.3.

The modelling by knowledge intensive reusability feature is supported by the Template
Generator and DTC. This feature is evaluated heuristically with regards to the template-
based composition, reusable, composability, distributed, openness, ontology based,
centrality of mediation, usability, autonomous criterions. This evaluation criterion identifies
the main limitations and drawbacks of this approach and proposes improvements for future
work.

Context-awareness process adaptation is also heuristically evaluated. Despite of the fact
context awareness was one of the four pillars for SOA4All, it has received little interest, and,
indeed context-awareness process adaptation feature has been only partially implemented in
DTC (design time) and the Execution Environment (runtime). We discuss the few available
results for context-awareness process adaptation in some of the eGovernment scenarios; we
remark the limitations of this approach and propose improvements as future work.

Process optimization evaluation has been driven along three main directions: i) scalability, ii)
optimization performance and iii) quality of optimization. The latter criteria are the most
relevant to evaluate the optimizer component and to run comparisons with existing
approaches. Since optimization problems are NP-Hard, it is crucial to evaluate the behaviour
of our component in the context of SOA4All i.e., thousands of services. In addition, this level
of evaluation has been motivated by the analysis of state-of-the-art approaches that all
consider performance analysis with a large amount of services. In D6.5.4 we analyse the
performances of our approach by

 - discussing the benefits of combining QoS and functional criteria;

 - comparing the evolution of the composition quality’s factors over the GA (Genetic
Algorithms) generations by considering both static and dynamic constraint penalties;

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 29 of 44

 - observing the evolution of the composition quality over the GA generations by
varying the number of tasks and candidate services;

- studying the behaviour of our approach regarding large scale compositions;

 - evaluating performance, after decoupling the GA and the (on-line) DL reasoning
processes which are both required in our approach;

 - comparing, GA with IP (Integer Programming)-based approaches; and

 - focusing, on the performance of the GA process by comparing the convergence of
our approach with the [7].

Section 3.6 in D6.5.4 provides all the details of the results of optimization evaluation.

In addition, the evaluation of process deployment adaptation, autonomous capabilities for
process execution and hybrid process execution features supported by the Execution
Environment has been reported in D6.5.4.

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 30 of 44

4. SOA4All Runtime Evaluation Results

This section summarises the results from the evaluation process of the different parts of the
SOA4All runtime – more specifically the fDSB, as well as the Semantic Spaces. A variety of
experiments have been conducted on the different testbeds, the results of which are reported
below. A comparison to an alternative solution, similar in scope to the functionalities offered
by the fDSB is included as well, in order to provide a context to the evaluation data. Finally,
the results for the experiments of the Semantic Spaces solution developed in WP1 have
been published as a paper, with parts of the findings reported in this section. The complete
paper has been attached to this deliverable.

4.1 fDSB Evaluation
As explained in Section 3.1.1, we carried out experiments in the SOA4All testbed presented
in section 2.1. The main goal of this evaluation is to compare performance of service
invocations between different service parks and local service invocations and to test the
scalability of the fDSB with a growing number of clients.

4.1.1 Single-Client Service Invocations

In these first experiments, we evaluate the global invocation times for single-client
invocations in different scenarios. The main goal of these experiments is to evaluate the
impact of the fDSB usage in comparison with scenarios without the usage of the fDSB. It is
worthy of notice that only scenarios involving local invocations (i.e. client and server in the
same domain) are possible, because Petals does not allow inter-domain invocations.

Table 2 summarizes the average invocation times in the different configurations. The first
column indicates the origin of the service invocations and the other columns the destination.
Cells intersecting the same domains (e.g. INRIA-INRIA) present the times for local invocation
without and with the fDSB, respectively.

Comparing local invocations with and without the federation, we notice the overhead is about
14% in average. Invocations between distant DSBs are naturally slower than invocation
between local DSBs because they go through the Internet, passing through gateway nodes.
In the best case (between INRIA and Grid 5000, due to the fact that they are in the same
Internet backbone) the average overhead was 7.3%, while in the worst case (between
Grid5000 and Amazon EC2 that goes through Internet between France and US), the
overhead was 107.5% in relation to local fDSB calls, which is not negligible but acceptable
considering that service invocations happens across the Internet.

Origin Dest. INRIA Grid5000 Amazon EC2

INRIA 45.2 / 51.5 55.3 106.95

Grid5000 57.4 27.9 / 31.5 108.4

Amazon EC2 113.03 104.4 54.21 / 62.3

Table 2: fDSB Average Invocation Times

 SOA4All –FP7 – 215219 – Deliverable report D1.5.3B Testbeds Validation Update

© SOA4All consortium Page 31 of 44

4.1.2 Multiple-Client Service Invocations

As explained in Section 3.1.1, in addition to single-client experiments, we carried out
experiments involving multiple clients, in order to evaluate the performance of the fDSB
under different load conditions. These experiments were performed In two different
scenarios: the first one contains invocations in the context of the Grid5000 platform, with very
low latency (avg. ping 0.16ms) and high bandwidth, due to the fact that client and servers are
connected through a fast backbone; and the second scenario, involving a higher latency
(avg. ping between 15 and 29ms during the experiments) and lower bandwidth (i.e. across
the Internet).

By selecting these two kinds of scenarios, we believe to provide a comprehensive evaluation,
as the main factors that contribute to invocation time in real systems are network
performances and the performance of the underlying service bus. Besides, in addition to
global invocation times, these results present partial-times for the main three steps
necessary for an invocation over the federated bus:

1. Service invocation time: this is the average time the service implementation
takes to reply back the response for the service invocation.

2. Global Petals time: this is the average time spent within Petals buses.
Considering an invocation over the federation, this time comprises the time
spend in the DSB the client is connected to and the time spent in the DSB
the server is connected to.

3. fDSB time: this is the time spent in the context of the federation layer. Since
Petals communication in intrinsically local, this time also encompasses the
time spent over lower-performance networks (i.e. the Internet), which is
considerable, especially for the high-latency scenarios.

Figure 10: Low Latency fDSB Service Invocation (1 client)

Figure 11: Low Latency fDSB Service Invocation (10 clients)

Figure 12: Low Latency fDSB Service Invocation (50 clients)

Figure 10, Figure 11 and Figure 12 show the invocation times across the fDSB in low latency
conditions. A first important remark comes from the ratio between the different timers in the
composition of the total time, where we can see that in all of the cases, the most expensive
step (in terms of time) is the service invocation.

 As expected, along with the increase of number of threads, we observe an increase of the
average time spent in each of the three steps (Global Petals time, Service Invocation Time
and fDSB time) in all of the three scenarios, which comes from the fact that resources used
by clients and server are shared.

However, in all of the three scenarios, we can observe that the growth of the Service
Invocation time (up to 628%) to be relatively higher than the growth of the other timers (355%
for Petals and 407% for the fDSB). This means that the Petals and fDSB implementations
scales slightly better than Apache Axis2 engine, the application server that hosts the service
used for this experiments.

Besides, when comparing results across these three scenarios (in Figures 10, 11 and 12),
we can see that the increase of time necessary to handle the different number of threads
remained steady, despite of the number of clients. In any case, this growth can be consider

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 33 of 44

small when considering that the number of simulated clients grew from 1 client / 1 thread) up
50 clients / 50 threads.

Figure 13: High Latency fDSB Service Invocation (1 client)

Figure 14: High Latency fDSB Service Invocation (10 clients)

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 34 of 44

Figure 15: High Latency fDSB Service Invocation (50 clients)

Figure 13, Figure 14 and Figure 15 show the invocation times across the fDSB in high
latency conditions. In a different way than the experiments in lower latency conditions, the
fDSB time is more significative in these scenarios. This comes from the fact that, unlike
Petals and Service Invocation times, which only require local communications, the fDSB is
responsible for handling the inter-domain communications, which in these experiments
influence in a bigger extent the overall communication time.

When comparing the growth in the fDSB time in the low-latency scenarios with the growth in
the high-latency scenarios that the latency does not impact in the scalability of the fDSB. For
instance, when comparing the execution with one thread, the fDSB time increases 172%
between 1 and 50 clients for the low-latency experiments and only 132% for the high-latency
experiments. However, we could not precisely assess the impact of latency as it presented
important changes (between 15 and 29ms) during the experiments, probably due to the fact
that physical resources are shared by Amazon EC2 instances and the performance depend
on the number of running instances and their communication requirements.

By comparing the total time required for the service invocation between low and high-latency
scenarios, we can notice that the impact of network latency does not increase with the
number of clients. For instance, for 1 client and 1 thread, the increase was 173% and for 50
clients and 50 threads 134%. This result is interesting in the sense that the fDSB was
created to support a federation of service buses, possibly geographically spread.

To sum up the fDSB performance evaluation, we believe that these results are very
promising, in a sense that the fDSB did not presented a large overhead, even with relatively
high load, up to the point that we could evaluate. Besides, Petals performance, which is
equally important to the global fDSB performance, has also shown to scale well.

4.2 Semantic Spaces evaluation
4.2.1 Insertion of random data, single peer

The first experiment performs 1000 statements insertion and measure the individual time for
each of them, on a CAN made of a single peer. The two entities of this experiment, the caller
and the peer, are located on the same host. The commit interval was set to 500ms (TODO:
explain) and 1000 random statements were added. Figure 16 shows the duration of each
individual call. On average, adding a statement took 1.853ms with slightly higher values for
the first insertions, due to cold start.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 35 of 44

In a second experiment, the caller and the peer were put on separate hosts to measure the
impact of a local network link on the performance. As shown in Figure 17, almost all add
operations took less than 5ms while less than 2% took more than 10ms. The average
duration for an add operation was 5.035ms.

Figure 16: Individual time for sequential insertion of random statements on a single local peer

Figure 17: Individual time for sequential insertion of random statements on a remote peer

4.2.2 Insertion of random data, multiple peers

We have measured the time taken to insert 1000 random statements in an overlay with
different number of peers, ranging from 1 to 100. Figure 18 shows the overall time when the
calls are performed using a single (left) or 32 threads (right). As expected, the more peers,
the longer it takes to add statements since more peers are likely to be visited before finding
the correct one. However, when performing the insertion concurrently, the total time is less
dependent on the number of peers. Depending on the zones various sizes and the first peer
randomly chosen for the insertion, the performance can vary, as can be seen with the 50

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 36 of 44

peers experiments.

To measure the benefits of concurrent access, we have measured the time to add 1000
statements on a 100 peers overlay, varying the number of threads from 1 to 30. Results in
Figure 19 show a sharp drop of the total time, clearly highlighting the benefits of concurrent
access.

Figure 18: Insertion of 1000 statements for variable number of peers, 1 thread (left) and 32
threads (right)

Figure 19: Evolution of the time for concurrent insertion on a 100 peers overlay

4.2.3 Queries using BSBM data

The Berlin SPARQL Benchmark (BSBM) [9] defines a suite of benchmarks for comparing the
performance of storage systems across architectures. The benchmark is built around an e-

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 37 of 44

commerce use case in which a set of products is offered by different vendors, and
consumers have posted reviews about products. The following experiment uses BSBM data
with custom queries detailed below. The dataset is generated using the BSBM data
generator for 10 products. It provides 4971 triples which are organized following several
categories:

• 289 Product Features

• 1 Producer and 10 Products

• 1 Vendor and 200 Offers

• 1 Rating Site with 5 Persons and 100 Reviews.

The queries use the following prefixes:

PREFIX bsbm: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/

PREFIX bsbm-ins: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX iso: http://downlode.org/rdf/iso-3166/countries#

PREFIX purl: <http://purl.org/stuff/rev#>

During these experiments, we have used the following queries:

Q1 : Returns a graph where producers are from Deutschland

CONSTRUCT {

 iso:DE <http://www.ecommerce.com/Producers> ?producer

} WHERE {

 ?producer rdf:type bsbm:Producer.

 ?producer bsbm:country iso:DE

}

Q2: Returns a graph with triples containing instances of Review

CONSTRUCT {

 ?review rdf:type purl:Review

} WHERE {

 ?review rdf:type purl:Review

}

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 38 of 44

Q3 Returns a graph where triples imply a rdf:type relation as predicate

CONSTRUCT {

 ?s rdf:type ?o

} WHERE {

 ?s rdf:type ?o

}

Q4] Returns a graph where bsbm-ins:ProductType1 instance appears

CONSTRUCT {

 bsbm-ins:ProductType1 ?a ?b.

 ?c ?d bsbm-ins:ProductType1

} WHERE {

 bsbm-ins:ProductType1 ?a ?b.

 ?c ?d bsbm-ins:ProductType1

}

Queries Q1 and Q4 are complex and will be decomposed into two sub-queries. Hence, we
expect a longer processing time for them. The number of matching triples is the following:

 Q1 Q2 Q3 Q4

1 100 623 7

Figure 20 shows the execution time and the number of visited peers when processing Q1,
Q2, Q3 and Q4. Note that when a query reaches an already visited peer, we count it
although it will not be further forwarded. Q1 is divided into two sub-queries with only a
variable subject. Hence, it can efficiently be routed and is forwarded to a small number of
peers. Q2 also has one variable and thus exhibits similar performance. Q3 has two variables
so it will be routed along two dimensions on the CAN overlay, reaching a high number of
peers. Since it returns 623 statements, the messages will carry a bigger payload than for the
other queries. Finally, Q4 generates two sub-queries with two variables each, making it the
request with the highest number of visited peers. On the 100 peer network, the two sub-
queries have visited more than 170 peers.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 39 of 44

Figure 20: Custom queries with BSBM dataset on various overlays, execution time (left) and
message overhead (right).

4.3 Comparison with other solutions
In this section we describe a comparison of the SOA4All solution, based on the fDSB and
Semantic Space, with a new one based on different products than the ones used for the
development and implementation of the SOA4All runtime. The architecture suggested with
this new solution will remain the same as we can see in Figure 7 with different organizations
interconnected via a federated channel between them and with a DSB deployed within the
organization infrastructure.

This solution can be applied to a cloud based service parks infrastructure based on VMs or
over physical service parks as before and there is no need for them to be directly connected
to internet as for the federation between the different infrastructures there will be a gateway
to generate the trust circle through internet.

Let’s focus on the infrastructure inside the companies. A set of service parks will be
interconnected via a Service Bus that will be able to talk to all of them and the services
deployed on them. There is the possibility of using the WSO2 ESB5 that is an open source
ESB. This ESB lets you to create internal enpoint refernces (EPRs) within the bus that can
be used to balance the calls among different service parks. By running the different tests
done above with the DSB used in SOA4All there won’t be many differences in terms of
speed as within one domain the speed is practically the same. However, this value can easily
be affected by the different rules and policies that can be applied in the ESB, as this can be
used to enforce the security or route a message based on its content extracting parameters
or changing them once the message is inside the ESB.

5 Fast, open-source ESB, based on Apache Synapse, available at http://wso2.com/products/enterprise-service-bus/

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 40 of 44

Figure 21 Gateways Scenario

In order to generate and maintain the federation between domains, a XML gateway will be in
both sides of the domains, i.e. it will be the outbound gateway for the messages sent to other
domains and it will be the inbound gateway where the messages will get through in order to
pass to the internal EBS. In the XML Gateways there are private vendors that provide this
solution such as (Vordel6, Layer77, Cisco8, Forum9).

The given solution here is formed for at least 2 subsystems. The XML Gateway that will
intercept the message, analyze it and perform some changes over it such as changing the
destination or encrypting the message in order to enforce the security, and a SAML
mechanism in order to sign the message before sending it to the other domain. By the
combination of these 2 elements we can ensure the transport of the data between 2 domains
and get a similar behavior as with the fDSB.

However even while this is a possible solution to implement in the scenario, this will penalize
the time of the operations, as the message has to go through many steps and call other
services before it is sent to the destination domain. And it will make the communication
slower than with the fDSB solution implemented in SOA4All.

6 http://www.vordel.com

7 http://www.layer7tech.com

8 http://www.cisco.com/en/US/products/ps6906/

9 http://www.forumsys.com/products/xmlgateway.php

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 41 of 44

5. Conclusions

In this deliverable, we have described the final setup of the testbed infrastructure
environment for SOA4All. This infrastructure was used as part of the overall efforts to
evaluate SOA4All project results. While the testbed infrastructure can be used by component
owners, use case partners and dedicated testers to generate testbeds, create test cases and
execute those test cases on the testbed, the main results of the evaluation efforts described
in these deliverable focus on the performance and scalability testing of the technical artefacts
developed in WP1 – i.e. the runtime environment.

We have described the test plans and validation processes for the various components of the
SOA4All runtime environment, including the fDSB, the semantic spaces, as well as the
service location and service construction components.

Finally, this deliverable includes a report on the results of conducting the experiments based
on these test plans. Finally, we investigated the possibility of using different technology than
the one developed in SOA4All, which achieves similar functionalities, albeit at the cost of
performance overheads.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 42 of 44

6. References

1. L. Juszczyk, H.-L. Truong, and S. Dustdar, “Genesis - a framework for automatic
generation and steering of testbeds of complex web services,” in Proc. 13th IEEE
International Conference on Engineering of Complex Computer Systems ICECCS
2008, March 31 2008–April 3 2008, pp. 131–140.

2. Schreder, B., Villa, M., Abels, S., Zaremba, M., Sheikhhasan, H., Puram, S.;
Deliverable D9.2.1: eCommerce Framework Infrastructure Design, SOA4All: Service
Oriented Architectures for All - 215219.

3. Vogel, J., Schnabel, F., Mehandjiev, N.; Deliverable D7.2 Scenario Definition,
SOA4All: Service Oriented Architectures for All - 215219.

4. Lecue, F., Mehandjiev, N., Wajid, U., Namoune, A., Macaulay, L.; Deliverable D2.5.1:
SOA4All Evaluation, SOA4All: Service Oriented Architectures for All - 215219.

5. Schreder, B., Cruz, S., Abels, S., Pariente, T., Richardson, M.: D1.5.1 SOA4All
Testbeds Specification and Methodology, SOA4All: Service Oriented Architectures for
All - 215219.

6. Schreder, B., Krummenacher, R., Abels, S., Pariente, T., Richardson, M., Villa, M., Di
Matteo, G.: D1.5.2 Setup SOA4All Testbeds, SOA4All: Service Oriented Architectures
for All - 215219.

7. Richardson, M., Davies, J., Stincic, S., Mehandjiev, N., Wajid, U., Lecue, F., Álvaro
Rey, G.; Deliverable D8.3 Web21c Futures Design, SOA4All: Service Oriented
Architectures for All - 215219.

8. Stinčić, S., Davies, J., Richardson, Álvaro Rey, G. , Lecue, F., M., Mehandjiev, N.,
Maleshkova, M.; Deliverable D8.4 Web 21c Prototype v1, SOA4All: Service Oriented
Architectures for All - 215219.

9. Christian Bizer and Andreas Schultz, The Berlin SPARQL Benchmark, 2009.

10. Hamerling, C., Legrand, V., Baude, F., et al. D1.4.1B SOA4All Runtime, 2009,
SOA4All: Service Oriented Architectures for All - 215219.

11. Hamerling, C. Baude, F., Mathias E., et al. D1.4.2B SOA4All Runtime v2, 2010 (to
appear), SOA4All: Service Oriented Architectures for All - 215219.

12. SOAPUI Web Service Testing. http://www.soapui.org, 2010.

13. A.-L. Burness, R. Titmuss, C. Lebre, K. Brown, and A. Brookland: Scalability
evaluation of a distributed agent system. Distributed Systems Engineering 6(4),
1999:129-134.

14. J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton, C.
Pedrinaci: IRS-III: A Broker-Based Approach to Semantic Web. Web Semantics:
Science, Services and Agents on the World Wide Web 6(2), 2008:109-132.

15. R. Krummenacher, B. Norton and A. Marte: Towards Linked Open Services and
Processes. Proc. of the Future Internet Symposium, 2010.

16. R. Krummenacher: A Parametric Design Approach to Scalability-Minded
Management of Semantic Middleware. PhD Thesis, University of Innsbruck, 2010.

17. A. Mackworth: Constraint Satisfaction, in Encyclopedia of Artificial Intelligence, John
Wiley & Sons Ltd, 1992: 285-293.

18. E. Motta: Reusable Components for Knowledge Modelling, Frontiers in Artificial
Intelligence and Applications, IOS Press, 1999.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 43 of 44

19. G.Canfora, M.Di Penta, R.Esposito, and M.L.Villani. An approach for qos-aware
service composition based on genetic algorithms. In Proceeding of Genetic and
Evolutionary Computation Conference, pages 1069–1075, 2005.

20. Y. Gorroñogoitia, F. Lecué, P. Un, G. Ripa, G. De Matteo. Evaluation of Service
Construction. SOA4All report. 2011.

 SOA4All –FP7 – 215219 – Deliverable report (enter name and number here)

© SOA4All consortium Page 44 of 44

Annex A.

The paper “CAN-Based Approach for RDF Data Management in Structured P2P Systems” by

I. Filali, L. Pellegrino, F. Bongiovanni and F. Huet has been attached to this deliverable.

