
      

Project Number: 215219 
Project Acronym: SOA4ALL 

Project Title: Service Oriented Architectures for All 

Instrument: Integrated Project 

Thematic 
Priority: 

Information and Communication 
Technologies 

D1.2.1 WSMO grounding in SAWSDL 
Activity N: 1 Fundamental and Integration 

Work Package: 1 Service Web Architecture 

Due Date: M6 

Submission Date: 27/08/2008 

Start Date of Project: 01/03/2006 

Duration of Project: 36  Months 

Organisation Responsible of Deliverable: UIBK 

Revision: 1.0 

Author(s): Jacek Kopecký, Adi Schütz UIBK 
 

 

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013) 

Dissemination Level 

PU Public X 

PP Restricted to other programme participants (including the Commission)  

RE Restricted to a group specified by the consortium (including the Commission)  

CO Confidential, only for members of the consortium (including the Commission)  

 

 

 

 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 2 of 28 

 

Version History 

Version Date Comments, Changes, Status Authors, contributors, 
reviewers 

0.1 2008/07/16 Initial version Jacek Kopecký 

0.2 2008/07/24 Filling in more  Jacek Kopecký, Adi Schütz 

0.9 2008/07/25 A complete draft, ready for review Jacek Kopecký, Adi Schütz 

0.95 2008/07/19 Review comments incorporated Elisabetta Di Nitto,  
Marin Dimitrov,  
Jacek Kopecký 

1.0 2008/07/23 Version to be submitted Jacek Kopecký 

 

 

 

 

 

 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 3 of 28 

Table of Contents 
 

EXECUTIVE SUMMARY ____________________________________________________ 5 

1. INTRODUCTION ______________________________________________________ 6 

1.1 SCOPE AND STRUCTURE OF THIS DOCUMENT _______________________ 7 

2. UNDERLYING SPECIFICATIONS_________________________________________ 9 

2.1 WSMO __________________________________________________________ 9 
2.2 WSDL __________________________________________________________ 10 

2.2.1 Web Service Interface _________________________________________ 11 
2.2.2 Web Service Endpoints, Bindings_________________________________ 12 
2.2.3 WSDL Documents ____________________________________________ 12 
2.2.4 Note on the differences between WSDL 2.0 and WSDL 1.1 ____________ 13 

2.3 SAWSDL _______________________________________________________ 13 
2.3.1 Model references _____________________________________________ 14 
2.3.2 Schema mappings ____________________________________________ 14 

2.4 XSPARQL_______________________________________________________ 14 

3. SAWSDL GROUNDING OF WSMO CHOREOGRAPHIES ____________________ 16 

3.1 COMPARISON WITH WSMO-BASED GROUNDING _____________________ 19 

4. DATA GROUNDING: LIFTING AND LOWERING ___________________________ 21 

4.1 LIFTING AND LOWERING WITH XSPARQL____________________________ 21 
4.2 DESCRIPTION OF WSMO DATA GROUNDING TOOL ___________________ 24 

5. CONCLUSIONS______________________________________________________ 27 

6. REFERENCES_______________________________________________________ 28 

 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 4 of 28 

Glossary of Acronyms 

 

Acronym Definition 

D Deliverable 

EC European Commission 

GUI Graphical User Interface 

HTTP HyperText Transfer Protocol 

HTTPS Secure HTTP 

MEP Message Exchange Pattern 

OWL Web Ontology Language 

RDF Resource Description Framework 

SAWSDL Semantic Annotations for WSDL and XML Schema 

SEE Semantic Execution Environment 

SOAP not an acronym, used to mean Simple Object Access Protocol 

SPARQL SPARQL Query Language for RDF 

URI Uniform Resource Identifier 

WP Work Package 

WSDL Web Services Description Language 

WSML  Web Service Modeling Language 

WSMO Web Service Modeling Ontology 

WSMX Web Service (Modeling) Execution Environment 

XML Extensible Markup Language 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 5 of 28 

Executive summary 
WSMO is a framework for semantic descriptions of Web services, independent from 
underlying communication technologies. WSDL is the standard language for describing the 
syntactical and networking aspects of Web services. Grounding is the mechanism that ties 
service descriptions in WSMO and WSDL together, so that a semantic tool that processes 
WSMO descriptions can also invoke the services, as prescribed in WSDL.  

In its set of specifications, WSMO provides a direct grounding to WSDL, putting the 
grounding information in the description of a service choreography. In this deliverable, we 
provide an alternate grounding mechanism that puts the grounding information in the WSDL 
document, using SAWSDL, a standard for semantic annotations of WSDL. This way, the low-
level infrastructure that deals with WSDL has a more direct link to the semantic description in 
WSMO.  

Also, this deliverable describes a simple way to use a new proposed language, XSPARQL, 
to describe the data grounding, a problem which was up to now unresolved in WSMO. 
Beside this manual approach to data grounding, we also discuss a GUI tool which will be 
developed within Deliverable 1.2.2. 

The grounding defined in this deliverable will be used in SOA4ALL WSMO-based service 
descriptions present in the distributed service bus (Task 1.4) and in test collections built on 
the SOA4ALL testbeds developed in Task 1.5. 

 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 6 of 28 

1. Introduction  
Web services are, in general, systems that provide certain functionality to their clients and 
communicate with them by exchanging XML data over computer networks. In order to 
interoperate successfully, the client and the service must agree on what kinds of messages 
can be exchanged and when, and what exactly the message exchanges will mean. In other 
words, the client and the service must agree on a common interface. 

In most cases, the service provider decides what the interface will look like, and the client 
has to understand the interface and comply with it. The interface must specify at least the 
following components: 

• message types – what types of messages can be exchanged, 

• message serialization – how information is serialized into bits and bytes ready for 
network exchange, 

• message exchange – who can send messages to whom and when, 

• party obligations – what are the responsibilities of the parties involved in the 
message exchange. 

In the area of Web services, XML Schema [XMLSchema] and Web Services Description 
Language [WSDL] are used together to describe the different aspects of the interface. In 
particular, XML Schema constrains the message types in XML tree-based structure and 
WSDL specifies simple message exchanges (operations) and provides the message 
serialization details. WSDL does not formally specify the ordering and meaning of the 
operations; this is usually either described by plain text documentation or even only implied 
by operation names instead. This is sufficient for human operators to create clients that can 
correctly use the Web services. 

To enable automatic discovery and invocation of Web services, the Web Services Modeling 
Ontology (WSMO) describes functional and behavioural aspects of Web services using an 
approach based on logics and knowledge representation techniques. First, to enable Web 
service discovery and composition, WSMO focuses on describing what Web services do 
using service capabilities. Second, to make it possible for clients to determine how to 
communicate with discovered services, WSMO specifies the interface of a Web service using 
the service choreography. 

A WSMO choreography is a state machine, with its states described using ontologies, in 
terms of concepts, their instances and the relations between them. Inputs and outputs of the 
Web service are represented as instances of certain concepts that can be read or written by 
the client communicating with the service. The purpose of WSMO grounding is to describe 
the exact mechanism, using which the client writes or reads the accessible instances. 

The state of the art for Web service interface description is WSDL 2.0. It is thus important 
that infrastructure for Semantic Web services is able to communicate with existing Web 
services described with WSDL. In the context of WSMO-compliant execution environments, 
only Web services with a WSMO description are available for the operations of discovery, 
composition, invocation, etc. Therefore, it is necessary that a service has both WSMO and 
WSDL descriptions and that they are linked. In WSMO, grounding is this link. The anatomy of 
the complete service description together with links between WSMO and WSDL is shown in 
Figure 1, adopted from the original WSMO grounding specification. 

 

 

 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 7 of 28 

 

Figure 1: Semantic Service Anatomy 

 

 

In this figure, we distinguish two modelling levels of the service description, namely semantic 
level and invocation level. 

• Semantic Level represents the semantic model for services used in various stages of 
execution process run on middleware. For this purpose, we use the WSMO service 
and ontology model. WSMO defines service semantics including non-functional 
properties, functional properties (capability description) and interfaces (behavioural 
definition) as well as ontologies that define the information models on which the 
services operate. 

• Invocation Level describes the physical environment used for service invocation. In 
our architecture, we use the Web Services Description Language WSDL. 

In order to perform invocation of Web services, we must define grounding from semantic 
descriptions to the underlying WSDL and XML Schema definitions, especially including data 
transformations between XML (used by the messages of the Web service) and the 
corresponding semantic data. Definition of such grounding can be placed in the WSMO 
descriptions (as defined in [WSMOD24.2]) at the WSMO service interface level, or the 
grounding can be in the WSDL descriptions as semantic annotations. 

The standard WSDL 2.0 language has an extension called Semantic Annotations for WSDL 
and XML Schema (SAWSDL). This specification defines simple hooks for attaching 
semantics and data transformations to Web service descriptions. In this deliverable, we show 
how the SAWSDL hooks can be used to implement WSMO grounding. 

 

1.1 Scope and Structure of this Document 
The purpose of this deliverable is to describe how WSMO service descriptions can be 
grounded to WSDL, using SAWSDL annotations. There are two aspects to this problem: 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 8 of 28 

• Choreography Grounding: WSMO choreography specifies that the client can access 
some choreography state data (and thus it can communicate with the Web service), 
but in WSDL, the client and the service send the data to each other in the form of 
messages. The grounding must describe what messages are supposed to be sent by 
the client, and when the client should expect messages from the service. Above that, 
the grounding must also provide the necessary serialization and networking details, i.e. 
what underlying protocol (e.g. SOAP, HTTP) should be used for passing the 
messages, how the XML data is encapsulated in the underlying protocol, and where 
exactly the data should be sent. Choreography grounding is described in Section 3. 

• Data Grounding: while the data model of the input and output messages for WSDL 
services is defined using XML Schemas, the data model for a WSMO service is 
defined using the conceptual model provided by WSMO ontologies. This leads to the 
need to map between the ontological data in the state machine and its representation 
as XML messages (lowering from ontology instances to XML, lifting from XML to 
ontology instances). Data grounding is discussed in Section 4. 

First, however, Section 2 presents the underlying technologies – WSMO, WSDL, SAWSDL 
and XSPARQL.  



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 9 of 28 

2. Underlying Specifications 
In order to describe WSMO grounding in SAWSDL, we need to first review the underlying 
specifications; namely WSMO, WSDL, SAWSDL and XSPARQL. 

 

2.1 WSMO 
The Web Service Modeling Ontology [WSMO] is a conceptual model for describing the 
semantics of Web services and related entities, for the purpose of automating some aspects 
of service discovery and usage. WSMO is complemented by the Web Service Modeling 
Language [WSML], a concrete language that implements the conceptual model and fleshes 
out the details. In the following, all statements about WSMO also apply to WSML. 

WSMO has four main building blocks: 

• Ontologies for knowledge representation. 

• Web services represent the semantics of services. 

• Goals represent user requests that can be satisfied with services. 

• Mediators represent components that bridge any heterogeneities. 

Ontologies and ontological instances (data) are used in all the other parts of WSMO. For 
representing ontologies with varying levels of expressivity and reasoning complexity, WSML 
provides several fragments: WSML-Core allows basic modeling supported by most 
knowledge representation technologies. WSML-Flight and WSML-Rule extend WSML-Core 
with techniques of Logic Programming for advanced reasoning with axioms and rules. 
WSML-DL extends WSML-Core with modeling constructs coming from Description Logics. 
And finally, WSML-Full unifies both branches (logic programming and description logics) and 
thus provides the most expressive language. The following figure illustrates the relationships 
between the various fragments of WSML: 

 

Figure 2. WSML Ontology Language Fragments 

 

 

Mediators are used where different descriptions express similar meaning differently. For 
instance, ontology mediators can be used to import OWL ontologies into WSML, or to map 
between different, yet semantically overlapping terminologies. 

Finally, goals and Web services describe what users want and what Web services provide. In 
WSMO, descriptions of goals and Web services have the same structure, therefore in the 
following, we will only talk about Web service descriptions, in terms of what a service 
provides, and the reader may also read it in terms of what a client requests. 

A Web service description captures the functional semantics (the capability) of a Web 
service, i.e. what the service does, and the behavioral semantics (the interface), i.e. how the 

WSML-Core WSML-Flight WSML-Rule 

WSML-DL WSML-Full 

description  
logics 

logic 
programming 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 10 of 28 

service communicates with other parties.  

Functional semantics are expressed with a capability construct that specifies the 
preconditions and assumptions that must be valid before the service can be used, and the 
postconditions and effects which are expected to be valid after the service is successfully 
invoked. 

The interface of a Web service (the behavioral semantics) has two aspects: external 
behavior called choreography, i.e. how the clients talk to the service, and internal behavior 
called orchestration, i.e. how the service uses other services to implement its functionality.  

The following figure illustrates the structure of WSMO Web service (and goal) descriptions: 

 

Figure 3. Structure of WSMO Web Service Description 

 

 

A WSMO choreography is a state machine, with its states described using ontologies, in 
terms of concepts, their instances and the relations between them. Inputs and outputs of the 
Web service are represented as instances of certain concepts that can be read or written by 
the client communicating with the service. Each concept in the choreography state ontology 
can be assigned to a role which determines whether the clients may read or update (or both) 
the values of instances of that concept. We will call these concepts and instances accessible.  

The accessible concepts must be available to the client using some underlying messaging 
protocol. Therefore, a choreography definition includes grounding, which defines the protocol 
for reading and writing of the accessible concepts by the clients; in other words, the 
grounding specifies how the client may communicate with the service. The basic grounding is 
specified in [WSMOD24.2]. 

 

2.2 WSDL 
The Web Services Description Language [WSDL] describes Web services in two levels – an 
XML-based reusable abstract interface and the concrete details regarding how and where 
this interface can be accessed. All descriptions in WSDL are centered on the Web service 
and all terminology follows the service's point of view, for example input messages are 
messages coming into the service from the network and output messages are messages 

Web Service 

Capability (functional semantics) 

preconditions 

assumptions effects 

postconditions 

Interface (behavioral semantics) 

Orchestration 
(using other services) 

Choreography 
(interface for clients) 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 11 of 28 

generated by the service and sent to the network. The first three subsection below talk about 
various aspects of WSDL descriptions, based on WSDL version 2.0, namely about abstract 
Web service interfaces (Section 2.1.1), binding them to concrete wire protocols and 
endpoints (Section 2.1.2) and finally about the overall organization of WSDL documents 
(Section 2.1.3). The fourth subsection details the relevant differences to the older version, 
WSDL 1.1. 

2.2.1 Web Service Interface 

On the abstract level, a Web service interface is described in terms of data schemas and 
simple message exchanges. In particular, WSDL models interfaces as sets of related 
operations, each consisting of one or more messages. For example an interface of a ticket 
booking Web service can have operations for querying for a trip price and for the actual ticket 
booking: 

 

Listing 1. Illustrative example of a WSDL interface 

01  <interface name="BookTicketInterface"> 
02    <operation name="queryPrice" pattern="http://www.w3.org/ns/wsdl/in-out"> 
03      <input element="tns:TripSpecification"/> 
04      <output element="tns:PriceQuote"/> 
05      <outfault ref="tns:TripNotPossible"/> 
06    </operation> 
07    <operation name="bookTicket" pattern="http://www.w3.org/ns/wsdl/in-out"> 
08      <input element="tns:BookingRequest"/> 
09      <output element="tns:Reservation"/> 
10      <outfault ref="tns:CreditCardNotValid"/> 
11      <outfault ref="tns:TripNotPossible"/> 
12    </operation> 
13    <fault name="TripNotPossible" element="tns:TripFailureDetail" /> 
14    <fault name="CreditCardNotValid" element="tns:CreditCardInvalidityDetail" /> 
15  </interface> 

 

In WSDL, an operation represents a simple exchange of messages that follows a specific 
message exchange pattern (MEP). The simplest of MEPs, "In-Only", allows a single 
application message to be sent to the service, and "Out-Only" symmetrically allows a single 
message to be sent by the service to its client. Somewhat more useful is the "Robust-In-
Only" MEP, that also allows a single incoming application message but in case there is a 
problem with it, the service may reply with a fault message. Perhaps the most common MEP 
is "In-Out", which allows an incoming application message followed either by an outgoing 
application message or an outgoing fault message. Finally, an interesting MEP commonly 
used in messaging systems is "In-Optional-Out" where a single incoming application 
message may (but need not) be followed either by a fault outgoing message or by a normal 
outgoing message, which in turn may be followed by an incoming fault message (i.e. the 
client may indicate to the service a problem with its reply). 

To describe their content, particular messages (incoming, outgoing) in an operation 
reference XML Schema element declarations. Fault messages, however, reference faults 
defined on the interface level (see above the <outfault> element), with the intention that 
semantically equivalent faults can be shared by different operations. Additionally, there may 
be multiple fault references for the same MEP fault message – in effect WSDL faults are 
typed and one operation can declare that it can result in any number of alternative faults 
(apart from the single success message). 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 12 of 28 

2.2.2 Web Service Endpoints, Bindings 

In order to communicate with a Web service described by an abstract interface, a client must 
know how the XML messages are serialized on the network and where exactly they should 
be sent. In WSDL, on-the-wire message serialization is described in a binding and then a 
service construct enumerates a number of concrete endpoint addresses. 

A binding generally follows the structure of an interface and specifies the necessary 
serialization details. The WSDL specification contains two predefined binding specifications, 
one for SOAP (over HTTP) and one for plain HTTP. These bindings specify how an abstract 
XML message is embedded inside a SOAP message envelope or in an HTTP message, and 
how the message exchange patterns are realized in SOAP or HTTP. Due to extensive use of 
defaults, simple bindings only need to specify very few parameters, as in the example below. 
A notable exception to defaulting in binding are faults, as in SOAP every fault must have a so 
called fault code with two main options, Sender or Receiver, indicating who seems to have a 
problem. There is no reasonable default possible for the fault code. 

Bindings seldom need to contain details specific to a single actual physical service, therefore 
in many cases they can be as reusable as interfaces, and equivalent services by different 
providers only need to specify the different endpoints, sharing the interface and binding 
descriptions. 

The service construct in WSDL represents a single physical Web service that implements a 
single interface. The Web service can be accessible at multiple endpoints, each potentially 
with a different binding, for example one endpoint using an optimized messaging protocol 
with no data encryption for the secure environment of an intranet and a second endpoint 
using SOAP over HTTPS for access from the Internet. 

 

Listing 2. Example of a WSDL binding and service 

01  <binding  
02           name="SOAPTicketBooking"  
03           interface="tns:BookTicketInterface" 
04           type="http://www.w3.org/ns/wsdl/soap" 
05           wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/" > 
06      <fault ref="TripNotPossible" wsoap:code="soap:Receiver"/> 
07      <fault ref="CreditCardNotValid" wsoap:code="soap:Sender"/> 
08  </binding> 
09   
10  <service  
11           name="DERITicketBooking" 
12           interface="tns:BookTicketInterface"> 
13      <endpoint  
14                name="normal" 
15                binding="tns:SOAPTicketBooking" 
16                address="http://deri.example.org/tickets" /> 
17  </service> 

 

2.2.3 WSDL Documents 

Apart from the interfaces, bindings and services described above, WSDL documents can 
contain further elements, enclosed in the root <description> element. 

In order to facilitate true reuse of interfaces or bindings, WSDL documents can be 
modularized by using include and import mechanisms. When a WSDL document is parsed, 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 13 of 28 

imports and includes are resolved so the resulting model is not aware that some pieces may 
have come from different actual files. 

As a container for data type information, WSDL documents have a section called <types>. 
Actual schemas can either be embedded directly in this section or referred to using the 
appropriate import statements, for example external XML Schema documents can be 
imported by putting the <xs:import> element directly in the <types> section. By default, WSDL 
uses XML Schema to describe data, but WSDL extensibility allows other data type systems 
to be used instead. 

Finally, every element in a WSDL document can be annotated with documentation elements 
or it can contain extensibility elements or attributes. 

2.2.4 Note on the differences between WSDL 2.0 and WSDL 1.1 

This note details the differences between WSDL version 1.1 [WSDL11], a specification 
authored by several companies and submitted to the W3C as the basis for standardization 
work, and WSDL version 2, the resulting draft standard. While this document uses the 
cleaner version 2 of WSDL, actual deployment prefers WSDL 1.1 because WSDL 2 is not yet 
widely implemented. This note aims to limit any confusion stemming from the situation that 
some readers may only be familiar with WSDL 1.1. 

The first notable difference is that several constructs from WSDL 1.1 were renamed in WSDL 
2. In particular, portType in WSDL 1.1 is known as interface in WSDL 2 and port in WSDL 1.1 
(occurring within a service) is now known as endpoint. Also, the WSDL document root element 
is called definitions in WSDL 1.1 and description in WSDL 2. Importantly, the intention of all 
these renamed constructs is unchanged between the two WSDL versions. 

A larger difference is that while WSDL 2 uses XML Schema element declarations to describe 
messages, WSDL 1.1 had a special construct, message, that contained potentially several 
parts, each referencing a single XML Schema element or type declaration. However, the use 
of multiple parts in a single message is usually translatable to a single element containing a 
sequence of elements (one for each part), making the different approaches in WSDL 1.1 and 
in WSDL 2 equivalent for all practical purposes. 

 

2.3 SAWSDL 
Semantic Annotations in WSDL and XML Schema [SAWSDL] is a W3C specification that 
defines how to add semantic annotations to Web Service Description Language and to XML 
Schema [XMLSchema]. It defines extension attributes that can be applied to elements in 
both WSDL and XML Schema in order to annotate WSDL interfaces, operations and their 
input and output messages. SAWSDL is the first step towards standardization in the area of 
Semantic Web Services. 

Semantic annotations in WSDL and XML Schema are used for these purposes: 

• associating WSDL interfaces with some taxonomical categories to help semantic Web 
service discovery, 

• describing the purpose or applicability of WSDL operations to help discovery or 
composition, 

• linking and mapping inputs, outputs and faults of WSDL operations to semantic 
concepts to help facilitate mediation and service discovery and composition. 

While the semantic annotations are used to point to taxonomies, ontologies or mappings, 
SAWSDL is independent of any particular ontology language or mapping language. The 
mechanism only requires that the concepts in the semantic models can be identified with 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 14 of 28 

URIs. 

SAWSDL can be split in two parts: semantic model references from elements in WSDL or 
XML Schema to concepts in a semantic model (usually an ontology or taxonomy), and data 
mappings between XML and semantic models. These two parts are described in the 
following two subsections. 

2.3.1 Model references 

The first major part of SAWSDL is an attribute called modelReference. The value of the attribute 
is a list of URIs that reference concepts in a semantic model. SAWSDL defines how model 
references can be used on WSDL interfaces, operations, faults, and on XML Schema 
element declarations or type definitions. 

On a WSDL interface, a model reference can provide a classification of the interface, for 
example by pointing into a products and services taxonomy like eCl@ss (eCl@ss 
Standardized Material and Service Classification, http://eclass-online.com/). 

Model references on a WSDL operation define what the operation does. This can be done 
with a direct reference to a verb concept or to a logical axiom or by specifying the operation's 
preconditions and effects. Known techniques like planning (automatic composition) can then 
use this information. On a WSDL fault, model references define what kind of failure the fault 
means, so that the fault can be handled more appropriately by the client. 

Model references on XML Schema element declarations and type definitions define the 
semantics of the inputs or outputs of WSDL operations. These annotations can, for example, 
complement the preconditions and effects from the operation for the purpose of planning, or 
the types can be used to verify type correctness of compositions. 

In general, model references can have many uses, and indeed, SAWSDL does not limit the 
applicability of the attribute. 

2.3.2 Schema mappings 

Schema mappings transform between XML data described with XML Schema and semantic 
data described by a semantic model. Mappings can be used for example to support 
invocation of a Web service from a client that works natively with semantic data. 

SAWSDL defines two extension attributes – liftingSchemaMapping and loweringSchemaMapping. 
These attributes are used to point from a schema element declaration or type definition to a 
mapping that specifies (in any suitable mapping language, e.g. XSPARQL) how data is 
transformed from XML to the semantic level (lifting) or back (lowering). 

A lifting schema mapping defines how an XML instance document conforming to the element 
declaration or type definition specified in a schema is transformed to data that conforms to a 
semantic model. The input to the transformation is an XML element that represents a Web 
service message and the output will be semantic data (for example an RDF graph). 

Similarly, a lowering schema mapping defines how data in a semantic model is transformed 
to XML instance data. The input is some semantic data and the output will be an XML 
element that forms a Web service message. 

Lifting and lowering schema mapping annotations can only be specified on global (top-level) 
XML Schema element declarations and type definitions. This is because the input of a lifting 
mapping and the output of a lowering mapping always form the whole Web service message, 
therefore only global (top-level) XML Schema can be used to validate it. 

 

2.4 XSPARQL 
There are two machine-oriented data representation technologies standardized specifically 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 15 of 28 

for the Web: the Extensible Markup Language XML and the Resource Description 
Framework RDF. XML is very popular as a data exchange format, because its hierarchical 
structure maps very well into programming language structures and database records; on the 
other hand, RDF is a less constrained graph data model designed for combining and 
querying freely data from diverse sources. 

XML and RDF have coexisted for nearly a decade now, and until recently, there has been a 
gap between XML and RDF because there were no tools that could gracefully handle 
transformations between the two technologies. The standardization of the RDF query 
language SPARQL and the XML query language XQuery has spurred the development of 
XSPARQL [XSPARQL], a combination of these two query languages that natively supports 
both XML and RDF, and thus enables relatively easy transformations between the two data 
formats. 

XQuery is a functional programming language for querying (through XPath expressions) and 
creating XML documents. A single query can reach into multiple documents and produce a 
single XML document as its output. Due to the important role of literal data (numbers, strings 
etc.) in XML, XQuery has a powerful operator and function library for manipulating such data. 

SPARQL is a declarative query language for RDF data; a single query can combine multiple 
RDF data sources and produce either a single yes/no answer, a list of variable bindings, or a 
new RDF graph. SPARQL provides only limited means for manipulating literal data, which is 
often seen as a drawback. 

XSPARQL can process inputs in XML (using XPath expressions) and in RDF (using 
SPARQL graph patterns). Literal data from RDF is converted into the XQuery/XPath data 
model, which allows it to be subjected to the full power of the XQuery operator and function 
library. As the output, an XSPARQL query can produce either an XML document or an RDF 
graph. 

In summary, XSPARQL is especially suitable for transforming between XML and RDF (as 
discussed in Section 4) and for combining XML and RDF inputs. More detail on the 
XSPARQL language can be found in the technical report at http://xsparql.deri.ie, and this 
deliverable contains example XSPARQL queries for transformations between XML and RDF 
in Section 4. 

 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 16 of 28 

3. SAWSDL Grounding of WSMO Choreographies 
For WSMO grounding, we need to connect the accessible concepts from the Web service 
choreography description with the appropriate WSDL messages so that we know how to 
transfer instances of the accessible concepts. When a client system follows the 
choreography of a Web service, the choreography dictates when certain data can be sent or 
received, and the grounding specifies how exactly the it can be sent or received. In 
grounding to WSDL, sending means that the client will form an input message of a Web 
service operation, and receiving means the client will receive an output message from an 
operation. 

SAWSDL supports, among others, model references to semantic concepts from XML 
Schema element declarations and type definitions. To ground a WSMO choreography, we 
put model references on the element declarations that are inputs or outputs of WSDL 
operations. In particular, an element that is an input message to a WSDL operation should 
contain a model reference to an "in" or "shared" concept in a WSMO choreography, and an 
output message element should have a model reference to an "out" or "shared" concept. 
Listing 3 below contains the heading of a WSMO choreography description, adapted from an 
example in [WSMOD24.2], indicating the "in" and "out" concepts on lines 25 through 30. The 
service has reservationRequest as its input, and reservation or negativeAcknowledgement as output.  

Listing 3. Example header of a choreography description, without grounding. 

01  namespace {_"http://example.org/bookTicket#", 
02      tr     _"http://example.org/tripReservationOntology#", 
03      wsml   _"http://www.wsmo.org/wsml/wsml-syntax#", 
04      po     _"http:/example.org/purchaseOntology#" 
05     } 
06   
07  ontology _"http://example.org/BookTicketInterfaceOntology#" 
08   
09    importsOntology { _"http://www.example.org/tripReservationOntology", 
10                      _"http://www.wsmo.org/ontologies/purchaseOntology" 
11      } 
12   
13    concept reservationRequest subConceptOf tr#reservationRequest 
14    concept reservation subConceptOf tr#reservation 
15    concept temporaryReservation subConceptOf tr#reservation 
16    concept creditCard subConceptOf po#creditCard 
17    concept negativeAcknowledgement 
18  
19  webService _"http://example.org/BookTicketService#" 
20   
21    interface BookTicketInterface 
22      choreography BookTicketChoreography 
23        stateSignature 
24          importsOntology _"http://example.org/BookTicketInterfaceOntology#" 
25          in  
26            reservationRequest 
28          out 
29            reservation 
30            negativeAcknowledgement 
31          controlled 
32            temporaryReservation 
33        transitionRules 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 17 of 28 

34          [...] 

 

The following Listing 4 shows the WSDL description with the SAWSDL grounding links (lines 
10, 15, 20 and 25), equivalent to the grounding information in the example in [WSMOD24.2]. 
In particular, the element BookingRequest represents the reservationRequest input message, the 
element Reservation represents the successful reservation output message, and the two fault 
elements both represent a negativeAcknowledgement output message. Additionally, note the 
liftingSchemaMapping and loweringSchemaMapping attributes on lines 11, 16, 21 and 26, indicating 
pointers to the data grounding transformations (further described in Section 4). 

On top of linking the inputs and outputs to the accessible ("in", "out" and "shared") concepts 
in the choreography description, we also need to link the WSDL service to a WSMO 
webService, because the concept links may not be sufficient to identify the webService in 
case multiple service choreography descriptions use the same accessible concepts. To link 
the WSDL service to the WSMO webService (Listing 3, line 19), we attach a SAWSDL model 
reference to the WSDL service component, as also shown in Listing 4 on line 55. 

 

Listing 4. WSDL description of the service, with SAWSDL grounding information 

01  <description xmlns="http://www.w3.org/ns/wsdl" 
02               targetNamespace="http://example.com/" 
03               xmlns:sawsdl="http://www.w3.org/ns/sawsdl" 
04               xmlns:tns="http://example.com/"> 
05 
06    <types> 
07      <xs:schema targetNamespace="http://example.com/" 
08              xmlns:xs="http://www.w3.org/2001/XMLSchema" > 
09        <xs:element name="BookingRequest" 
10                 sawsdl:modelReference="http://example.org/bookTicket#reservationRequest" 
11                 sawsdl:loweringSchemaMapping="http://example.org/BookingRequestLowering.xsp" > 
12          [...] 
13        </xs:element> 
14        <xs:element name="Reservation" 
15                 sawsdl:modelReference="http://example.org/bookTicket#reservation" 
16                 sawsdl:liftingSchemaMapping="http://example.org/ReservationLifting.xsp" > 
17          [...] 
18        </xs:element> 
19        <xs:element name="TripFailureDetail" 
20                 sawsdl:modelReference="http://example.org/bookTicket#negativeAcknowledgement" 
21                 sawsdl:liftingSchemaMapping="http://example.org/BookingFailureLifting.xsp" > 
22          [...] 
23        </xs:element> 
24        <xs:element name="CreditCardInvalidityDetail" 
25                 sawsdl:modelReference="http://example.org/bookTicket#negativeAcknowledgement" 
26                 sawsdl:liftingSchemaMapping="http://example.org/BookingFailureLifting.xsp" > 
27          [...] 
28        </xs:element> 
29      </xs:schema> 
30    </types> 
31   
32    <interface name="BookTicketInterface"> 
33      <operation name="bookTicket" pattern="http://www.w3.org/ns/wsdl/in-out"> 
34        <input element="tns:BookingRequest"/> 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 18 of 28 

35        <output element="tns:Reservation"/> 
36        <outfault ref="tns:CreditCardNotValid"/> 
37        <outfault ref="tns:TripNotPossible"/> 
38      </operation> 
39      <fault name="TripNotPossible" element="tns:TripFailureDetail" /> 
40      <fault name="CreditCardNotValid" element="tns:CreditCardInvalidityDetail" /> 
41    </interface> 
42 
43    <binding  
44             name="SOAPTicketBooking"  
45             interface="tns:BookTicketInterface" 
46             type="http://www.w3.org/ns/wsdl/soap" 
47             wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/" > 
48        <fault ref="TripNotPossible" wsoap:code="soap:Receiver"/> 
49        <fault ref="CreditCardNotValid" wsoap:code="soap:Sender"/> 
50    </binding> 
51     
52    <service  
53             name="DERITicketBooking" 
54             interface="tns:BookTicketInterface"> 
55             sawsdl:modelReference="http://example.org/BookTicketService#" > 
56        <endpoint  
57                  name="normal" 
58                  binding="tns:SOAPTicketBooking" 
59                  address="http://deri.example.org/tickets" /> 
60    </service> 
61  </description> 

 

Note: the SAWSDL specification [SAWSDL] does not describe the use of model references 
on WSDL service components, as shown in the listing above on line 52. However, the 
specification allows semantic annotations to be used on all WSDL components; it is simply 
out of scope of SAWSDL to define what model references on WSDL services mean. Since 
WSMO has the top-level concept of webService, it needs to be grounded in a WSDL service 
and a SAWSDL model reference is a mechanism for doing it. Nevertheless, we plan to 
refactor WSMO according to the structure of SAWSDL and WSDL, and we expect that such 
refactoring will only need to use SAWSDL to the extent to which it is described in the 
specification.  

The following list specifies a set of rules how a Web service designer can create a SAWSDL-
based WSMO grounding between already existing WSMO and WSDL descriptions.  

• For every operation input message (or input fault) in the WSDL service description, its 
element declaration or type definition in the XML Schema must be annotated with a 
modelReference to the appropriate “in” or “shared” concept(s) in the WSMO 
choreography, and with a loweringSchemaMapping pointing to the appropriate data 
lowering transformation. 

• For every operation output message (or output fault) in the WSDL, its element 
declaration or type definition must be annotated with a modelReference to the 
appropriate “out” or “shared” concept(s) in the WSMO choreography, and with a 
liftingSchemaMapping pointing to the appropriate data lifting transformation. 

• The WSDL service must be annotated with a pointer to the appropriate WSMO 
webService. 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 19 of 28 

 

3.1 Comparison with WSMO-based grounding 
The SAWSDL-based grounding for WSMO, as presented in this section, is a standards-
compliant alternative to the grounding from [WSMOD24.2], which we refer to as “WSMO-
based grounding”. The table below shows the correspondences between the two grounding 
approaches. It is only intended for readers who are already familiar with [WSMOD24.2].  

 

Table 1. Correspondences between the two alternative grounding approaches. 

Grounding link WSMO-based grounding SAWSDL grounding 

Linking accessible 
choreography concepts to 
messages that transfer their 
instances 

withGrounding property in 
WSMO choreography state 
signature, the value is the 
WSDL operation message 
reference component 
identifier 

SAWSDL model reference 
on the XML Schema element 
declaration which represents 
the accessible concept, the 
value of the reference is the 
concept identifier 

Providing networking and 
addressing details for 
message communication 

endpointDescription non-
functional property pointing 
from a WSMO webService to 
the appropriate WSDL 
service, the value is the 
WSDL service component 
identifier 

SAWSDL model reference 
on the WSDL service, the 
value is the identifier of the 
WSMO webService 

Data grounding – links to 
lifting and lowering 
transformations of any kind 

unspecified SAWSDL schema mapping 
annotations 

 

 

The link between a WSMO webService and a WSDL service is simply reversed between the 
two grounding forms. 

The links grounding accessible choreography concepts are slightly changed, however. The 
purpose of grounding an accessible choreography concept is to provide information on how 
the client may submit the service's "in" concepts, and how the client may read the service's 
"out" concepts. In the WSMO-based grounding, it is sufficient to point from the accessible 
concept to a WSDL message that carries instances of the concept, because data grounding 
should take care of the transformations between the message contents and the semantic 
data. When using SAWSDL, we could also annotate a WSDL message with pointers to the 
concepts that it carries, but we increase the reusability of the semantic annotations by putting 
them directly on the data that corresponds to the accessible concepts. 

Using SAWSDL for grounding, as presented in this deliverable, brings both benefits and 
drawbacks over the WSMO-based grounding, therefore we specify both approaches as 
alternatives. The following list describes the benefits and drawbacks that we are aware of: 

• (-) SAWSDL-based grounding links are in a WSDL description, however a WSMO 
semantic execution environment (SEE, e.g. the WSMX) is primarily based on WSMO. 
With the grounding in WSMO, the links are readily available whenever the SEE needs 
them. With SAWSDL-based grounding, the grounding information needs to be looked 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 20 of 28 

up by looking through all the known WSDL descriptions. This drawback can be 
mitigated heavily with optimizations. 

• (-) SAWSDL annotations are in the WSDL document, which in some environments 
may be generated automatically, e.g. from the service implementation. Extending the 
WSDL document with SAWSDL annotations may not be a viable option in such 
settings. 

• (+) The SAWSDL-based grounding highlights the relation of WSMO to Web services 
standards, making it easier for Web service users to grasp and make use of semantic 
descriptions. 

• (+) The SAWSDL-based grounding allows for partial understanding of the semantic 
description. For instance, the links from XML Schema element declarations to 
choreography concepts are not only useful when executing choreography, but can also 
be used by human-oriented tools to enhance the manipulation of the schema with 
semantic information available from the ontology, even if the tool only understands 
WSMO ontologies (and it does not understand WSMO choreography). 

• (+) SAWSDL provides schema mapping annotations to attach lifting and lowering 
transformations; this is as yet unspecified in the WSMO-based grounding. 

• (+) Our experience with the direct SAWSDL-based grounding in this deliverable helps 
us refactor WSMO to a lighter-weight annotation mechanism based on WSDL and 
SAWSDL. This refactoring should simplify the management of semantic Web service 
descriptions (currently split in WSML and WSDL documents), and it should further 
simplify the interactions between various task-oriented components of the semantic 
execution environment. 

The SAWSDL grounding, while useful on its own, is also the first step towards WSMO-Lite: a 
lightweight view on WSMO, completely in terms of SAWSDL. 

 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 21 of 28 

4. Data Grounding: Lifting and Lowering 
A semantic execution environment SEE, such as WSMX, works on the semantic level, with 
its data represented in WSML or RDF. In contrast, Web services and their clients usually 
exchange messages in XML or in a similar non-semantic structured data format. In order to 
enable the SEE to communicate with actual Web services, its semantic data must be 
lowered into the expected input messages, and the data coming from the service in its output 
messages must be lifted back up to the semantic level. 

While the WSMX uses data in WSML, there is a direct mapping between WSML and RDF, 
therefore, we further only discuss RDF data as this is more applicable, for instance in the 
future context of WSMO-Lite; the reader can substitute WSML for RDF and keep in mind the 
necessary mapping. 

If there were Web services that would accept and produce RDF data in their messages, 
lifting and lowering would be identity mappings; the SEE would only need to serialize and 
parse the data in on-the-wire messages. However, RDF-driven Web services are extremely 
rare. In fact, most Web services use XML-based messages, therefore we must support 
lowering from RDF to XML, and lifting back. In this section, we first describe the use of 
XSPARQL, described in Section 2.4, for implementing both transformation directions, and 
then we discuss a planned GUI tool that will simplify the task of specifying lifting and lowering 
mappings. 

 

4.1 Lifting and Lowering with XSPARQL 
Both lifting and lowering transformations are attached to message descriptions in WSDL, 
using the SAWSDL attributes liftingSchemaMapping and loweringSchemaMapping respectively. A 
message in WSDL is described with an XML Schema element declaration. A lifting 
transformation should accept documents valid according to the schema of the element, and 
produce the equivalent RDF data. A lowering transformation takes RDF data as its input, and 
should produce an XML document that is valid according to the schema of the message 
element. Alas, verifying that a transformation would accept all valid documents, or that all its 
possible results are going to be valid, is a known hard (if not generally impossible) problem of 
program correctness proof. Transformation authors must rely on testing. 

To illustrate XSPARQL lifting and lowering transformations, we assume a travel (train ticket) 
reservation service with its message schemas shown in Listing 5 and the respective data 
ontology shown in Listing 6. All these examples tie to the WSDL description in Listing 3. 

We need a lowering transformation for the booking request element so that a SEE client can 
transform the data of the user goal (booking a train trip) into the appropriate XML/SOAP 
message; this transformation is shown in Listing 7. Further, we need a lifting transformation 
for the reservation response element; we show such a transformation in Listing 8. 

The lowering transformation takes parts of the request data (starting on line 24) and mostly 
puts it into the resulting XML structure in a straightforward way. For the start and destination 
locations, which may be a train station or a city, the function locationLowering puts the 
respective place names in the corresponding XML structure.  

The lifting transformation is even simpler, and it uses the input data together with the 
incoming message and constructs the reservation graph in RDF. 

 

 

 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 22 of 28 

 

Listing 5: XML Schema for the example service messages 

01   <xs:schema targetNamespace="http://example.com/bookTicket.xsd" 
02         xmlns="http://example.com/bookTicket.xsd" 
03         xmlns:sawsdl="http://www.w3.org/ns/sawsdl#" 
04         xmlns:xs="http://www.w3.org/2001/XMLSchema" > 
05     <xs:element name="BookingRequest" 
06         sawsdl:modelReference="http://example.org/bookTicket#ReservationRequest" 
07         sawsdl:loweringSchemaMapping="http://example.org/BookingRequestLowering.xsp" > 
08       <xs:complexType> 
09          <xs:all> 
10            <xs:element name="start" type="location"/> 
11            <xs:element name="destination" type="location"/> 
12            <xs:element name="dateTime" type="xs:dateTime"/> 
13            <xs:element name="passengerCount" type="xs:short"/> 
14          </xs:all> 
15       </xs:complexType> 
16     </xs:element> 
17 
18     <xs:complexType name="location"> 
19       <xs:all> 
20          <xs:element name="country" type="xs:string"/> 
21          <xs:element name="city" type="xs:string"/> 
22          <xs:element name="station" type="xs:string" minOccurs="0"/> 
23       </xs:all> 
24     </xs:complexType> 
25 
26     <xs:element name="Reservation" 
27         sawsdl:modelReference="http://example.org/bookTicket#Reservation" 
28         sawsdl:liftingSchemaMapping="http://example.org/ReservationLifting.xsp" > 
29       <xs:all> 
30          <xs:element name="confirmationID" type="xs:string"/> 
31          <xs:element name="description" type="xs:string"/> 
32       </xs:all> 
33     </xs:element> 
34   </xs:schema> 

 

 

Listing 6: Ontology for the example service message data 

01   @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
02   @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
03   @prefix xs: <http://www.w3.org/2001/XMLSchema#> . 
04   @prefix bkrdf: <http://example.org/bookTicket#> . 
05 
06   bkrdf:Reservation a rdfs:Class . 
07   bkrdf:ReservationRequest a rdfs:Class . 
08 
09   bkrdf:time a rdf:Property . 
10     # domain: either a reservation request or reservation 
11     # range: xs:dateTime 
12   bkrdf:from a rdf:Property . 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 23 of 28 

13     # domain: either a reservation request or reservation 
14     # range: either city or a train station 
15   bkrdf:to a rdf:Property . 
16     # domain: either a reservation request or reservation 
17     # range: either city or a train station 
18   bkrdf:passengerCount a rdf:Property . 
19     # domain: either a reservation request or reservation 
20     # range: xs:short 
21 
22   bkrdf:description a rdf:Property ; 
23     rdfs:subPropertyOf rdfs:comment . 
24   bkrdf:confirmationID a rdf:Property . 
25     # range: xs:string 
26 
27   bkrdf:TrainStation a rdfs:Class . 
28   bkrdf:isInCity a rdf:Property ; 
29     rdfs:domain bkrdf:TrainStation ; 
30     rdfs:range bkrdf:City . 
31   bkrdf:City a rdfs:Class . 
32   bkrdf:isInCountry a rdf:Property ; 
33     rdfs:domain bkrdf:City ; 
34     rdfs:range bkrdf:Country . 
35   bkrdf:Country a rdfs:Class . 
36   bkrdf:name a rdf:Property . 
37     # domain: train station, city, country 
38     # range: xs:string 

 

Listing 7: XSPARQL example: lowering transformation 

01   declare namespace bkrdf="http://example.org/bookTicket#"; 
02   declare namespace bkxml="http://example.com/bookTicket.xsd"; 
03 
04   declare function locationLowering ($node, $name) { 
05     for $city $country $station from <input.rdf> 
06        where { optional { $node a bkrdf:TrainStation ; 
07                                  name $station ; 
08                                  isInCity $cityNode . 
09                              $cityNode name $city ; 
10                                  isInCountry $countryNode . 
11                              $countryNode name $country . } 
12                  optional { $node a bkrdf:City ; 
13                                  name $city ; 
14                                  isInCountry $countryNode . 
15                              $countryNode name $country . } } 
16        return 
17         element { $name } { 
18            <bkxml:country>{$country}</bkxml:country> 
19            <bkxml:city>{$city}</bkxml:city> 
20            { if ($station) then <bkxml:station>{$station}</bkxml:station> else () } 
21         } 
22   } 
23 
24   for $date $count $from $to from <input.rdf> 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 24 of 28 

25   where { $x a bkrdf:ReservationRequest ; 
26              $x bkrdf:time $date ; 
27              $x bkrdf:from $from ; 
28              $x bkrdf:to $to ; 
29              $x bkrdf:passengerCount $count . } 
30   return 
31     <bkxml:BookingRequest> 
32        <bkxml:dateTime>{$date}</bkxml:dateTime> 
33        <bkxml:passengerCount>{$count}</bkxml:passengerCount> 
34        { locationLowering($from, bkxml:start) } 
35        { locationLowering($to, bkxml:destination) } 
36     </bkxml:BookingRequest> 

 

Listing 8: XSPARQL example: lifting transformation 

01   declare namespace bkrdf="http://example.org/bookTicket#"; 
02   declare namespace bkxml="http://example.com/bookTicket.xsd"; 
03 
04   let $reservation := /bkxml:Reservation 
05   for $date $count $from $to from <input.rdf> 
06   construct { 
07       :a a bkrdf:Reservation ; 
08          bkrdf:time $date ; 
09          bkrdf:from $from ; 
10          bkrdf:to $to; 
11          bkrdf:passengerCount $count; 
12          bkrdf:description { $reservation/description } ; 
13          bkrdf:confirmationID { $reservation/confirmationID } . 
14   } 

 

4.2 Description of WSMO Data Grounding Tool 
The aim for the Grounding Support Tool (SOA4ALL deliverable D1.2.2, due M18) will be to 
provide support for creating WSML ontologies from XML Schemas, using an automatic 
generation step followed by manual correction. In parallel, the tool will provide a 
transformation rule-set for instance data in XML and WSML; see Figure 4. 

 

Figure 4: Rough work-flow of the Grounding Support Tool. 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 25 of 28 

 

 

It will have to implement the following 5 main tasks: 

1. An automatic transformation of an XML Schema to a WSMO Ontology. This includes: 
defining the conceptual mappings between XML Schema conceptual model and 
WSMO Ontology model and implementing an engine that uses these mappings to 
automatically produce a WSMO ontology out of an XML Schema. 

2. Maintain a transformation of XML data to WSML ontology instances in parallel to the 
Schema to Ontology transformation. Implement an engine which is based on the first 
step and will take as input the XML data according to the XML Schema and it will 
produce as output the WSML ontology instances. 

3. Also support the transformation of WSML ontology instances to XML data: this will be 
done with an engine which is also based on task one: it will take as input the WSML 
instances and the initial XML Schema and it will produce as output the XML data. 

4. Adapting the Ontology Mapping Tool in WSMT to support bi-directional mappings 
between XML Schema and WSMO ontologies. The aim of this task is to provide a 
graphical tool for refining the machine-generated ontology from step 1 to a proper 
hand-crafted ontology, while in parallel maintaining the instance data transformation 
rules. This will be done by the creation of an abstract view on the XML Schema to 
map. The ontology generated by the implementation developed in the first task will 
not be visible to the user but will be internally used in order to reuse the existing tool 
support for ontology to ontology mapping – i.e., the ontology mapping language and 
the run-time instance transformation engine. 

5. Integrate the results from the tasks above with the data mediation run-time engine. 
This task will assure that a complete round-trip for data lifting/lowering can be 
performed for a given XML Schema and the manually refined ontology. 

 

To achieve this, the tool will consist mainly of the following parts: 

• An automatic transformation engine that maintains the instance data mapping rules in 
parallel; it can be implemented in some XML stylesheet language. 

• An engine for transforming between instance data according to the given XML 
Schema and instances of the generated ontology. 

• A refinement procedure for the machine-generated ontology into a handcrafted nicer 
ontology while maintaining the mapping of the instance data between the original 
XML Schema and the final version of the ontology. 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 26 of 28 

• An integrated GUI for WSMT to enable the manual refinement process in a 
convenient way for the users. There will be a presentation of the XML Schema on the 
left side and the automatically generated ontology on the right side, with the 
possibility to change the ontology while maintaining the mapping between the two 
representations of the same ontology in the background. 

The focus of this tool is to provide on the one hand a simple usable GUI for converting a XML 
Schema to WSML Ontologies and on the other hand to produce transformation rules for the 
lifting and lowering transformation of the instance data. This generation of the instance 
transformation rules will be completely hidden from the user. The user will have the 
possibility to control the mappings of the schema to the ontology, but they do not have to 
think about the data transformations. 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 27 of 28 

5. Conclusions 
WSMO is a framework for semantic descriptions of Web services, independent from 
underlying communication technologies. WSDL is the standard language for describing the 
syntactical and networking aspects of Web services. Grounding is the mechanism that ties 
service descriptions in WSMO and WSDL together, so that a semantic tool that processes 
WSMO descriptions can also invoke the services, as prescribed in WSDL.  

In its set of specifications, WSMO provides a direct grounding to WSDL, putting the 
grounding information in the description of a service choreography. In this deliverable, we 
provide an alternate grounding mechanism that puts the grounding information in the WSDL 
document, using SAWSDL, a standard for semantic annotations of WSDL. This way, the low-
level infrastructure that deals with WSDL has a more direct link to the semantic description in 
WSMO.  

Also, this deliverable describes a simple way to use a new proposed language, XSPARQL, 
to describe the data grounding, a problem which was up to now unresolved in WSMO. 
Beside this manual approach to data grounding, we also discuss a GUI tool which will be 
developed within Deliverable 1.2.2. 

The SAWSDL-based grounding of WSMO highlights the relationship between WSMO and 
the underlying Web service technologies. Additionally, SAWSDL allows us to view WSMO 
from the point of view of those underlying technologies, and refactor it to produce a more 
lightweight mechanism for semantic annotations. Such refactoring work will be done in Work 
Package 3, Deliverable 3.1.1: WSMO-Lite. 

Finally, the grounding specified in this deliverable will be used in the distributed service bus 
(Task 1.4) and in the test-beds (Task 1.5) to provide the links between low-level service 
descriptions in WSDL and the semantic descriptions in WSMO. 



 SOA4All –FP7 – 215219 – D1.2.1 WSMO grounding in SAWSDL           

 

© SOA4ALL consortium Page 28 of 28 

6. References 
1. [SAWSDL] Semantic Annotations for WSDL and XML Schema. Recommendation, 

W3C, August 2007. Available at http://www.w3.org/TR/sawsdl/. 

2. [WSDL] Web Services Description Language (WSDL) Version 2.0. Recommendation, 
W3C, June 2007. Available at http://www.w3.org/TR/wsdl20/.  

3. [WSDL11] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva 
Weerawarana. Web Services Description Language (WSDL) 1.1. Technical note, 
March 2001. Available at http://www.w3.org/TR/wsdl. 

4. [WSML] Jos de Bruijn (editor): The Web Service Modeling Language WSML, version 
0.21 available at http://www.wsmo.org/TR/d16/d16.1/v0.21/ 

5. [WSMO] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. 
Polleres, C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. 
Applied Ontology, 1(1):77-106, 2005. 

6. [WSMOD24.2] Jacek Kopecký, Matthew Moran, Tomas Vitvar, Dumitru Roman, and 
Adrian Mocan. WSMO Grounding. Available at 
http://www.wsmo.org/TR/d24/d24.2/v0.1/  

7. [XMLSchema] XML Schema Part 1: Structures. Recommendation, W3C, October 
2004. Available at http://www.w3.org/TR/xmlschema-1/. 

8. [XSPARQL] Waseem Akhtar, Jacek Kopecký, Thomas Krennwallner, and Axel 
Polleres. XSPARQL: Traveling between the XML and RDF worlds - and avoiding the 
XSLT pilgrimage. In Sean Bechhofer and Manolis Koubarakis, editors, The Semantic 
Web: Research and Applications, 5th European Semantic Web Conference, ESWC 
2008, volume 5021 of Lecture Notes in Computer Science, LNCS, pages 674-689, 
Tenerife, Spain, June 2008. Springer. http://xsparql.deri.ie/  

 


