

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.3.2B Distributed Semantic Spaces: A

First Implementation
Activity N: Activity 1 – Fundamental and Integration Activities

Work Package: WP1 – SOA4All Runtime

Due Date: M18

Submission Date: 14/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.1

Authors: Reto Krummenacher UIBK
Michael Fried UIBK
Fabrice Huet INRIA
Imen Filali INRIA
Laurent Pellegrino INRIA
Christophe Hamerling eBM

Reviewers: Dong Liu OU
Yosu Gorronogoitia ATOS

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 2 of 30

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2009-07-15 First TOC Reto Krummenacher (UIBK)

0.2 2009-08-03 First draft All

0.3 2009-08-10 Updated draft Reto Krummenacher (UIBK),
Fabrice Huet (INRIA),
Michael Fried (UIBK)

0.4 2009-08-17 Web service bindings Christophe Hamerling (EBM)

0.5 2009-08-18 Pre-final version Reto Krummenacher (UIBK)

0.6 2009-08-19 Internal release All

1.0 2009-09-08 Final release for submission All

1.1 2009-09-14 Final editing Malena Donato (ATOS)

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 3 of 30

Table of Contents
EXECUTIVE SUMMARY __ 5

1. INTRODUCTION __ 6

1.1 PURPOSE AND SCOPE __ 6

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 6

2. REFLECTION ON THE SPECIFICATION ___________________________________ 7

2.1 REDUNDANCY IN SEMANTIC SPACES ________________________________ 7

2.2 UPDATE FUNCTIONALITY __ 8

3. SOFTWARE DESCRIPTION __ 10

3.1 SEMANTIC SPACES API AND SERVICE BUS INTEGRATION _____________ 10

3.1.1 Semantic Space Core __ 10

3.1.2 Space WS Binding __ 13

3.2 PEER-TO-PEER DISTRIBUTION AND INDEXING INFRASTRUCTURE ______ 15

3.2.1 A generic overlay library __ 16

3.2.2 CAN implementation ___ 16

3.2.3 Chord implementation __ 18

3.3 PERSISTENCY LAYER AND OWLIM BINDINGS ________________________ 20

3.3.1 tsontology.owl __ 22

4. INSTALLATION AND CONFIGURATION __________________________________ 24

5. PERFORMANCE AND EFFICIENCY CONSIDERATIONS _____________________ 26

5.1 TRACKER SCALABILITY AND RESILIENCE ___________________________ 26

5.2 OPTIMIZED MERGE OPERATION ___________________________________ 26

5.3 IMBALANCE IN DATA STORAGE ____________________________________ 27

5.4 ASYNCHRONOUS PROCESSING OF QUERIES ________________________ 28

6. CONCLUSIONS __ 29

7. REFERENCES ___ 30

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 4 of 30

List of Figures
Figure 1: Architecture of a semantic space ...10

Figure 2: Semantic Space Core ..12

Figure 3: Space implementation as Web service ..14

Figure 4: Space to Web service binding ...15

Figure 5: Space to Overlay layer ..16

Figure 6: Example of join ..17

Figure 7: Successive splitting ...17

Figure 8: Example of conjunctive query ..18

Figure 9: Example of a Chord Overlay ..19

Figure 10 : Finger tables ...20

Figure 11 : Relation between kernel, space and data store ..21

Figure 12: Query and Response interfaces ..21

Figure 13 : Internal classes for messages in the CAN overlay ..22

Figure 14 : Example of merging without optimization ..26

Figure 15: Example of optimized merging...27

Figure 16: Imbalance in data storage ...27

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 5 of 30

Executive summary
This deliverable describes the first implementation of the distributed semantic spaces
infrastructure. The implementation yields the realization of the concepts and specifications
that were released with deliverable D1.3.2A Distributed Semantic Spaces: A Scalable
Approach To Coordination [1]. As such, this deliverable will also shortly reflect on the content
of this past report in order to clarify some of the questioned points.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 6 of 30

1. Introduction
This report on distributed semantic spaces describes the first implementation of the semantic
spaces prototype. In more detail, the implementation presented in this deliverable yields the
realization of the concepts and specifications that were released with deliverable D1.3.2A
Distributed Semantic Spaces: A Scalable Approach To Coordination [1]. The prototype
delivers the space logic implemented and deployable on top of the distributed ProActive Grid
infrastructure, and provides the space-specific parts of the SOA4All Distributed Service Bus.
This implementation thus complements the DSB prototype that is shipped with deliverable
D1.4.1B SOA4All Runtime [3]. Therefore, this deliverable focuses on the semantic spaces
infrastructure only. Further details about the incorporation with the bus and the integrated
deployment, configuration and use are given in the main architecture implementation
document (cf. deliverable D1.4.1B).

1.1 Purpose and Scope
The goal of this deliverable is to provide a written description of the distributed semantic
spaces prototype (D1.3.2B Distributed Semantic Spaces: A First Implementation). We refer
the reader to D1.3.2A for details about technical background and baseline, as well as the
architecture and design of the prototype implementation.

In addition to the information about the implementation, this deliverable yields a reflection of
some of the decisions and results that were presented in D1.3.2A, and as such complements
the updated release of the conceptualization and specification report of month M12. For this
reason, this deliverable also contains a section on performance and efficiency
considerations, as it was desired by the reviewers (Section 5).

1.2 Structure of the document
In order to best respond to the purpose of the deliverable, we structure the document into the
following sections. Firstly, in Section 2, we re-consider some of the decisions that were taken
in the specification of the semantic space infrastructure. This concerns mainly the issue of
redundancy across subspaces, and the question of a potential update operation. In this
section, we discuss our decisions and reflect on the choices made. The software release
itself is presented in Section 3. The section is divided into three parts that consider a) the
interaction model and API implementation, b) the indexing and distribution mechanisms
based on P2P technology, c) the realization of the persistency layer by means of OWLIM. In
Section 4 we present installation and configuration details. This part of the deliverable
complements the corresponding section on installation and configuration in deliverable
D1.4.1B [3]. Before concluding the deliverable with Section 6, we dedicate Section 5 to the
discussion of performance and efficiency-related considerations in terms of the P2P-based
implementation of the SOA4All semantic space infrastructure.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 7 of 30

2. Reflection on the Specification
The specification of the SOA4All semantic space infrastructure has raised a few technical
concerns. Rather then providing an update of the specification deliverable, we will explicitly
address the main two issues in this section. The first issue that we will discuss concerns
redundancy of data within multiple subspace hierarchies, as they were specified for the
semantic spaces in Deliverable D1.3.2A [1]. The second reaction was triggered by the
missing update operation that would be expected from a database-like infrastructure in order
to match the generally available CRUD (create, read, update and delete) functions.

2.1 Redundancy in Semantic Spaces
Redundancy in the context of semantic spaces refers to the maintenance of copies of
syntactically or semantically identical triples that were published by users to the space
infrastructure. Although the semantic space infrastructure allows for publishing identical RDF
triples to different subspaces, this does not create any redundancies. Such triples are not
perceived as copies but as individual pieces of information. The situation is different if the
triples are published to the same space. In those cases, the triples are considered the same,
and only one copy is maintained. This is supported by the insight that doubling a truth-value
does not make the statement any truer in the given context.

More technically spoken, subspaces create isolated containers for the sharing of semantic
artifacts – the implications of sub-spacing is discussed later in this section. Data that is
published to different spaces is thus always virtually isolated from the data in other spaces,
and in consequence perceived as a different piece of information.1 Semantic relationships
are only exploited within a given space, and not across the boundaries of virtual subspaces.
In that sense, also identical, the RDF triples are not regarded as copies, and do not cause
any redundancy problems.

While there is thus no detectable problem with redundancy in the context of disjoint virtual
spaces, the situation is slightly more complex when looking at space hierarchies and
federations. According to the specification, any two spaces can be brought in a part-of
relationship that makes sub-spaces become parts of the super-space in terms of the
published data too. All queries expressed to a super-space are in turn resolved against the
data of the entire sub-tree unless a client explicitly states that non-recursive retrieval is
required (cf. Section 2.2.2 in D1.3.2A).

A priori the same regulations apply, as they were discussed above. This is a direct
consequence of the fact that publication is always targeted to a particular space instance.
Subspaces have no influence in terms of publishing and maintenance of triples, and data that
is published to different spaces is always stored as different pieces of data together with the
space identifier. Sub-spaces and federations are only influential at retrieval time, and it is up
to the space implementation to take care of redundant triples that might match a given query.
This is however clearly a per query process and does not influence the data that is shared in
other spaces, as retrieval does not alter the state, nor remove a triple. The same accounts
for federations that are temporary read-only containers, thus similar to spaces in terms of
read access to data.

The last aspect that has to be considered in the context of redundancy is related to
operations that alter the state of a space in regards to the contained data. According to Table
2 in D1.3.2B, the semantic spaces interaction model knows one operation for removing data
from a space:

1 Note that the write operation requires a space identifier to target a given piece of data to a
particular subspace in which the data is maintained and processed.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 8 of 30

remove(URI space, Query query):
Set<Triple>

Same as the basic query operation, however this
operation does not only return the matching triples,
but removes them from the given space.

As triples that are stored in different spaces are treated as different pieces of data, there is
no cross-space consequence that has to be taken into account when a remove operation is
invoked. In this respect, it is important to note, that similar to the write operation, removal
requires the indication of a target space from which the matching data shall be deleted. This
ensures that only the triples in the given space are affected, and hence no synchronization
with data maintained in other spaces is necessary.

In summary, the specified space and interaction models do not imply any redundancy
problems, as the existence of multiple versions of the syntactically same triple only affects
the execution of retrieval operations. Neither at publication nor removal time, any other
spaces than the targeted one, and thus no other data, is affected by the execution of the
operation.

2.2 Update Functionality
The interaction model of the SOA4All semantic space infrastructure, as defined in deliverable
D1.3.2A, knows operations for publishing semantic data in form of RDF triples, and for
various ways of retrieving parts of the shared data. In addition, a simplified removal operation
operates over explicitly published data in a particular space. In order to establish the whole
set of CRUD operations, semantic spaces needed to install an update operation too. There
are several reasons for why this was not done when the infrastructure was specified in the
first year of SOA4All.

One of the prime reasons is simplicity. The goal of the interaction model is to provide a small
and simple set of operations to interact over shared semantic data. The update functionality
is in principle a combination of a remove call and a re-publish operation that should be
transactionally bound, in order to ensure atomicity across an entire semantic space. This
view on the update operation indicates two facts for which the update operations was
neglected: i) update can be primitively realized by means of the remove(URI space, Query
query) and write(URI space, Set<Triple>) methods, and ii) a clean implementation would
require support for transactionality which currently is not provided nor planned. In fact,
transactionality, although it significantly increases the expressiveness of the interaction
model, does clearly hamper the scalability expectations of the semantic space infrastructure
in distributed scenarios. As none of the currently known clients to the semantic spaces
requires transactions (SOA4All Platform Services or the use case applications), it was
preferred to concentrate on the core publish and read operations that have the most
promising consequences in terms of scalability and performance.

Re-considering the user requirements that were expressed by the developers of the platform
services, and the providers of the use case demonstrators reveals that updatability is not
(yet) a required feature. Generalizing this absence of need in the context of the current status
of SOA4All, resulted in not having an update operation specified for the semantic spaces
infrastructure.

In the following, we shortly discuss the most prominent usage scenarios of semantic spaces
in the SOA4All that are the storing of service descriptions, and the sharing of monitoring
data. Further uses such as the sharing of user profile data might have new requirements and
will have to be considered during the refinement phase of the semantic space infrastructure
specification that is due between the months M13 and M18 of the project.

Storing semantic service descriptions: The storage of semantic service descriptions, and
similarly the management of semantic process descriptions, is governed by the service
registry component, respectively a process registry. In terms of updatability, it is important to

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 9 of 30

note that differing descriptions about the same service implementation are treated in
SOA4All (per definition) as different Semantic Web services. In other words, no matter if the
differences result from a different view point by another annotator, or because of an updated
version of a description, the former release of the Semantic Web service will not be altered
(though possibility deleted) but kept in parallel in the registry. In consequence, the
management of semantic service description and processes in SOA4All does not require any
update functionality.

Sharing monitoring data: The monitoring platform of SOA4All is described in the deliverables
D1.4.1A [2], respectively D1.4.1B [3] in what concerns the implementation. Monitoring is a
continuous process and the different monitoring components store up to date information to
the space infrastructure. An update of a monitoring state, is in fact a new snapshot of the
current status of the observed entity, be it infrastructure, communication or service endpoint
qualities. Although, we refer to updates of states here, in terms of the stored data, it is not an
update in the CRUD sense, but the addition, and thus the publishing, of additional
information about the observed object. Again, publishing and sharing monitoring data does
not require an update operation, but only extends the monitoring data graph.

In summary, it is correct that the operations which are defined for semantic spaces could
include an update method in order to cover the whole range of CRUD functionalities. This is
not yet the case, as the focus of the interaction model was to cover the requirements of the
space users with an as simple and as small set of operations as possible. Still, we will have
to reconsider the set of operations based on the results of the first integrated prototype of the
SOA4All infrastructure. Insights gained from this first consolidated realization, and new
requirements from various platform services, the SOA4All Studio or use case
implementations, might in fact reveal the need for an update operation that goes beyond the
currently simplified approach with remove and write. A follow-up investigation of this matter
will be released with deliverable D1.3.3A in month M24.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 10 of 30

3. Software Description
This section describes the semantic spaces software package. In order to provide a well-
structured approach to the software, we divide the overall software package into three parts:

• API specification and mappings for the service bus integration,

• Peer-to-peer distribution and indexing infrastructure, and

• Storage layer bindings to BigOWLIM.

The corresponding implementation architecture is shown in Figure 1 below.

 Figure 1: Architecture of a semantic space

The combination of these three components is referred to as a kernel from now on.

3.1 Semantic Spaces API and Service Bus Integration
The Semantic Spaces API offers multiple operations to perform various queries on the
underlying persistency layer. The implementation follows the specification in Section 2.2 of
Deliverable D1.3.2A. The core functionality in terms of implementation will be explained in
this section.

3.1.1 Semantic Space Core

The Semantic Space API is realized by the ISemanticSpace interface (cf. Figure 2), which
groups the various operations of the semantic space into three functional areas:

1. Space management operations:

Space management operations handle the creation and deletion of spaces as well
as the relations between spaces. The following methods described in deliverable

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 11 of 30

D1.3.2A have been implemented:

• createSpace(URI space): creates a new space

• createSpace(URI space, URI parent): creates a new space which is a
child of parent

• joinSpace(URI space): joins a space

• leaveSpace(URI space): leaves a previously joined space

• listJoinedSpace(): lists all currently joined spaces

• URI createFederation(Set<URI> spaces): combines multiple spaces to a
single space URI to query them at once

• deleteFederation(URI fed): deletes a previously created federation

• createSpaceRelation(URI sSpace, URI relation, URI oSpace): creates a
relation between spaces. The relations that are part of the ontology of
deliverable D1.3.2A can be expressed when specified as given in Section
3.3.1.

2. Storage access operations:

Per specification, RDF statements can only be written to a previously joined
space. The remove operation also returns the deleted triples. The following
methods described in Deliverable D1.3.2A (Section 2.2 and Section 3.2) have
been implemented for the current prototype release:

• write(URI space, Set<Statement> triples): writes a set of triples to a
previously joined space.

• Set<Statement> remove(URI space, Query query, long maxTimeout):
removes and returns the queried triples from only the given space.

3. Query operations:

The space implementation accepts two different types of requests. First, the
retrieval operations can be called by means of standard SPARQL SELECT or
CONSTRUCT queries. These queries result either in sets of triples to be returned
(construction) or in a set of bound variables according to the query, in the case of
SELECTION. A second possibility that the space implementation offers, is the
specification of the data to return by means of more simple triple patterns. The
simplicity of the triple patterns not only eases the specification of a request, but
also the resolution of the request within the distributed space infrastructure. Triple
patterns do not require the manipulation of joins or optional patterns as they are
offered by the SPARQL specification. While SPARQL queries are directly passed
on to the underlying distributed storage platform, triple patterns are adapted by
the internal Query Logic Component to match the SPARQL syntax before being
forwarded. For instance, the triple pattern “?s ?p ?o” will be transformed to the
following SPARQL query:

 CONSTRUCT {?s ?p ?o}
 WHERE {
 GRAPH <spaceURI>
 {?s ?p ?o} . }.

As stated above, the query operations are not only divided in two subgroups in
regards of the query specification formalism, but also in terms of the applied query
type. The operation ‘query’ supports SPARQL CONSTRUCT and triple pattern
queries, while the ‘queryV’ operations support SPARQL SELECT queries and

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 12 of 30

bind the variables (v) of the request in an answer set.

The following methods have been implemented:

• Set<Statement> query(URI space, Query query, long maxTimeout):
queries a space and all its subspaces.

• Set<Statement> queryNonRecursive(URI space, Query query, long
maxTimeout): queries only the given space.

• Set<Statement> query(Query query, long maxTimeout): queries all
spaces.

• TupleQueryResult queryV(URI space, Query query, long maxTimeout):
queries a space and all its subspaces.

• TupleQueryResult queryVNonRecursive(URI space, Query query, long
maxTimeout): queries only the given space.

• TupleQueryResult queryV(Query query, long maxTimeout): queries all
spaces.

• Set<Statement> query(URI space, URI relation, Query query, long
maxTimeout): queries a space and all spaces in given relation to this
space.

• TupleQueryResult queryV(URI space, URI relation, Query query, long
maxTimeout): queries a space and all spaces in given relation to this
space.

Figure 2: Semantic Space Core

All the query operations, as well as the remove operation are blocking; i.e., they only return if
matching triples are found. Either the matches must already be published at request time, or
newly written triples appear while the retrieval operation is still pending. In order to avoid
deadlocks, the operations accept a timeout parameter, and return with an empty result set

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 13 of 30

when reaching the maximum timeout without discovering any data that matches the query. In
other words, an empty result set suggests that the indicated timeout has been reached and
that no matching data has been was discovered prior to the expiration of the timeout period.
However, if the timeout was set to 0, a non-blocking request is performed, and the empty
result set is suggesting the non-existence, or rather non-discoverability of matching data.

The query(URI federation, Query query) and queryV(URI federation, Query query) methods
have not been implemented separately. As already stated in Deliverable D1.3.2A, they are
redundant in terms of the data source identifier (the URI space and the URI federation are
the same from a technical point of view). The federation specific operations are thus covered
by the operations query(URI space, Query query) and queryV(URI space, Query query)
respectively.

With respect to exception handling, the actual implementation extends the specification from
Deliverable D1.3.2A. All exceptions are defined in the semantic space core implementation
and are all derived from one generic top level semantic space exception. An exception is
thrown when a SPARQL query is not valid or a triple pattern is not formatted according to the
pattern “?s ?p ?o”. It is also prohibited to create an already existing space or to perform any
operation on a non-existing space. Additionally an exception occurs when writing triples to a
space that has not been joined to.

The following exceptions can occur when the Semantic Space API is accessed and these
are, as mentioned above, all derived from the generic top level SemanticSpaceException:

• QueryStringException: to indicate that a SPARQL query is not valid or a triple
pattern is not formatted according to the standard RDF pattern; e.g., ?s ?p ?o.

• SpaceException: to indicate a problem in the execution of the semantic space
logic; this is a generic space exception.

• SpaceAlreadyExistsException: to indicate that the caller is trying to create a
space that already exists.

• SpaceNotExistsException: to indicate that a caller is trying to perform any
operation on a space that does not exist.

• SpaceNotJoinedException: to indicate that a caller is trying to write to a space
that was not joined by the selected kernel; i.e., the kernel that is used to
execute the publication of some semantic data.

3.1.2 Space WS Binding

At the level of the SOA4All Distributed Service Bus, the Semantic Space API is exposed as a
standard Web service with the help of the DSB integration facilities. The currently deployed
version that enables the implementation presented above is published at:

 http://<HOST>/petals/services/SpaceService?wsdl,

where <HOST> refers to a SOA4All DSB node.

For example:

 http://SOA4All.ebmwebsourcing.com/petals/services/SpaceService?wsdl
 http://SOA4All-runtime.sti2.at/petals/services/SpaceService?wsdl

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 14 of 30

The space implementation is exposed to DSB clients as a Web service and uses the DSB
integration facilities to do so; i.e., the space is treated the same way as SOA4All platform
service.

Figure 3: Space implementation as Web service

In Figure 3, it can be seen how the space implementation runs in a separate software
module, as the DSB node. This implementation provides different types of API. The Web
service API is bound to the service bus with the help of the SOAP binding component
provided by the Distributed Service Bus. Once bound, the Web service exhibits the
characteristics of a platform service at the level of the DSB. This means that all platform
services can use it, and that it is exposed to bus-external application and business services
via that binding component. In the current integration, the space service (bullet in Figure 3) is
exposed as a Web service to external DSB clients. This provides the capability to:

• manage and monitor messages which are exchanged between consumers and
providers

• update the space implementation without any impact at the consumer side
(platform services or external clients)

• move the space implementation runtime location. If the space implementation is
bound to another DSB node, it remains accessible at the same DSB endpoint
address.

The Web service implementation is split into two parts, the API realization and the service
functionality:

1. The WS-API consists of the following classes:

• BindingTO is a helper class to install name to value bindings. This is needed
to map the Web service protocol onto OWLIM classes, as the Web service
cannot communicate those objects directly.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 15 of 30

• BindingValuesResultTO is a helper class to wrap the variable bindings that
are returned as result of a queryV operation

• HashMapAdapter for the marshall and unmarshall bindings.

• HashMapEntryType

• HashMapType

• SemanticSpaceException is the Web service-side equivalent to the exceptions
of the semantic space implementation. This exception is thrown if an
exception occurs during a space access via the Web service interface.

• SemanticSpaceWS is the JAX-WS interface of the Web service.

• TripleTO is used to convert RDF statements of the space implementation to a
purely String-based representation. As above, this is necessary, as the Web
service cannot communicate OWLIM objects directly.

2. The Web service implementation uses the Apache CXF framework
(http://cxf.apache.org), which is an open source services framework. CXF helps to
build and develop services using front-end programming APIs, like JAX-WS.
These services can communicate via a variety of protocols such as SOAP,
XML/HTTP, RESTful HTTP, or CORBA. The implementation consists of the
following classes:

• SemanticSpaceFacade is a mirror interface ISemanticSpace, but relies solely
on standard Java classes that are compatible with the Web service
communication protocols.

• SemanticSpaceFacadeImpl handles the conversions and mappings between
the methods specified in the SemanticSpaceFacade and the actual semantic
space interface ISemanticSpace that uses OWLIM-specific classes.

• SemanticSpaceWSImpl is the actual Web service implementation that is
accessed via the SemanticSpaceFacade.

Figure 4: Space to Web service binding

3.2 Peer-to-Peer Distribution and Indexing Infrastructure
The peer-to-peer infrastructure of the semantic spaces implementation is delivered by the
Overlay layer (cf. Figure 5). The Semanic Space Core accesses the Overlay component via
the SemanticSpaceOverlayKernel class.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 16 of 30

Figure 5: Space to Overlay layer

The peer-to-peer infrastructure is based on a layering of two structured overlays: CAN [4]
and Chord [5]. Their implementation is established on top of the ProActive middleware that is
also exploited as basis for the bus implementation and distribution. Among all existing
structured overlays, the main differences lie in the way peers handle connections to other
peers and how messages are routed between peers. As a fundamental component to the
peer-to-peer implementation, we have developed a generic layer, which provides the
common operations, found in any overlay: receiving/transmitting messages, maintaining
connection to neighbors and storing/retrieving data. The specific CAN and Chord overlays
respectively are implemented by adding the required code for its specific operations.

3.2.1 A generic overlay library

The basic building block is the ProActive library, which provides high-level primitives for
communication and tools for deploying and debugging applications. It offers the concept of
Active Object, a subsystem with a unique thread and its data.

A peer is implemented as an Active Object and possesses, among other things, an object of
the abstract class Overlay that describes the overlay it is part of. In order to implement a
specific overlay, it is necessary to subclass Overlay to provide an implementation for the
following mechanisms:

• joining or leaving the overlay

• receiving and sending messages

The messages are also dependent on the overlay considered and are also specialized.

3.2.2 CAN implementation

A first component of the semantic space distribution and discovery infrastructure, as
described in deliverable D1.3.2A, is a CAN overlay. The peers are organized in a 3-
dimensional space corresponding respectively to the subject, predicate and object of the

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 17 of 30

maintained RDF data, and each peer is assigned a zone in the space. The coordinates are
encoded using Unicode. An RDF triple is considered as a point in the 3D-space and thus,
inserting a triple results in finding the peer responsible for the zone where the corresponding
point lies in.

We will now describe the specific operations involved in our CAN overlay and present some
architectural details.

Coordinates: As mentioned, a coordinate is an RDF triple interpreted as a Unicode triple.
We use lexicographical order in each coordinate. One common operation in CAN involves
finding the middle of a segment, e.g., the middle of [a,z]. This operation is performed using a
radix-216 division because of the 216 Unicode characters possible. The only drawback of this
operation is that it sometimes gives non-printable characters but this does not affect the
indexing and management of the stored data.

Bootstrapping and tracker: The first peer of the overlay, considered to be the creator of the
space, assumes the control of the whole space and registers itself into a known tracker,
specified in a configuration file. The goal of this tracker is to provide an entry point to the
overlay that allows new peers to join in (Figure 6). There could be many trackers for a single
overlay, for load balancing and fault tolerance purpose, as explained in Section 5.1.

Figure 6: Example of join

Joining and splitting: When a peer wants to join an existing overlay, it contacts the tracker,
which gives a reference to an existing peer in the space overlay. The peer sends a Join
message and if successful, the zone will be split in two equal parts, each one under the
responsibility of one of the peers. This procedure might require some data movement, as
illustrated by Figure 7. The peer P2 tries to join an overlay and contacts P1. Each peer gets a
new sub-zone and existing data has to be moved from peer P1 to P2. When P3 joins the
network, the same process takes place but no moving of data is necessary, as all data that
was maintained by peer P2 remains in P2’s zone.

Figure 7: Successive splitting

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 18 of 30

Searching: A search is performed using a Query message containing the SPARQL query.
When receiving such a query a peer checks whether it can be matched by data in its zone. If
so, it executes the query against the local storage and returns the result to the caller. If not, it
forwards the message to a neighbor along the specified coordinates; specified by bound
resources in the query triple patterns.

A peer can process atomic or range queries. Conjunctives queries must first be decomposed
into atomic ones by the originator peer, which eventually has to combine the results before
handing them over to the requester. Figure 8 illustrates the decomposition of a conjunctive
query by peer P1. The two resulting independent queries are treated separately and later,
the results are merged by P1 before sending them to the caller.

Figure 8: Example of conjunctive query

Leaving and merging: If a peer wants to leave the overlay, it chooses a neighbor and that
merges the zones and accepts the data the leaving peer had stored. When the moving of the
data is completed, the peer can leave the overlay. Some care has to be taken here because
a peer performing a leave is still part of the overlay but cannot answer queries because of
the moving of the data. Thus, its neighbors must hold requests until the end of the leave and
then transmit them to the new zone holder. This implies synchronization with all the
neighbors.

Fault handling: A space must be resilient to peer failures. The current implementation
maintains the integrity of the space: if a peer leaves the network without performing the
previously described protocol, its zone is taken by another one. Each peer sends periodic
heartbeat messages to all its neighbors. If a peer does not reply within a given timeframe, it
is assumed to be faulty. Among all its neighbors, one has to overtake its zone to maintain the
overlay consistency. An election is started among all the potential new peers to designate the
new owner and ensure a correct update of all the involved neighbor peers. Although there is
no mechanism for ensuring data resilience, some form is provided by the data storage layer
and the persistent storages (see Section 3.3). It is possible to have data redundancy (i.e.
duplicate the data of a peer somewhere else in the space), which improves the reliability of
the network, but greatly increases the complexity of the implementation. Moreover, this has
an important impact on the performance.

3.2.3 Chord implementation

Chord is the second layer of the spaces infrastructure and is used to indexes spaces. In
Chord, peers are organized in a ring and have a unique identifier. All data has an associated
key that is used to find the peer which should store it.

Node and data identifier: Nodes and data have unique identifiers, called ID for nodes and

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 19 of 30

key for data. They are generated using the SHA-1 algorithm. Nodes are spread around an
identifier ring modulo 2^m (m represents the number of bits in the identifier) ordered by the
ID. The ring must be large enough to avoid hash collisions. The value m depends on how
many nodes the system has to handle, but a value of 160 is large enough to maintain more
than every computer in the world. Keys and node identifiers use the same number of bits.
Since nodes will store references to spaces, we will use the hashed value of the space URIs
as keys.

Routing information: The node located next to a node in the identifier order, is called the
successor whereas the previous node is called the predecessor. For example, in Figure 9,
the successor of node N8 is node N12 and its predecessor is N1. Queries can be forwarded,
through each successor, until they reach the node with the closest id to the searched key.

Figure 9: Example of a Chord Overlay

To improve the lookup process, Chord keeps information about nodes whose IDs are
calculated exponentially and called fingers. Each node contains a finger table. Fingers are
kept in a table of m entries: the ith entry in the table is defined as successor(n + 2i-1) with 1 ≤
I ≤ m.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 20 of 30

Figure 10 : Finger tables

Storing spaces in Chord: As mentioned earlier, the Chord overlay will be used to store
references to spaces. There are two different ways to implement this behavior. The first one
is to have a unique association between a Chord peer and a space, the key behind then
equal to the peer id. This implementation is simple because the peers will not have any
associated storage, as they can only store a single reference. However, the number of Chord
peers will be equal to the number of spaces and although it is possible to put many peers on
a single host, the overhead will be significant.

The second solution is to have a full-fledged Chord implementation and consider spaces as
data which can be stored anywhere on the Chord. In this scenario, a peer can store
references to multiple spaces, depending on their respective hash values. This is the
approach we have chosen as it is more scalable, and has a better fault resilience.

3.3 Persistency Layer and OWLIM Bindings
Each kernel has a local repository to maintain and query the published semantic data.
BigOWLIM was chosen as persistency layer because it operates with file-based indices,
which allows to scale to billions of statements whereas SwiftOWLIM performs in-memory
reasoning and query evaluation. Moreover, BigOWLIM is currently stronger maintained by
the software provider, and also exploited by the FP7 LarKC project. This synergy with LarKC
opens up means for intensified collaborations on the level of data layer progress. As the data
is being stored on a physical support (ProActive-based kernels), the persistency layer allows
for fault tolerance, as the data can be reinserted into the network after a kernel had crashed,
provided the hardware is intact. We currently use release 3.1.a7 of BigOWLIM which is built
on top of Sesame v2.2.2.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 21 of 30

Figure 11 : Relation between kernel, space and data store

Figure 11 above shows the relationship between the kernel components, the CAN peer
overlay and the local repository that is maintained by a kernel. Each peer on a CAN network
has only one reference to a kernel. However, a kernel can have references to many peers
that each represents a semantic space (a virtual share). When an operation is performed, for
example a write operation, which aims at persisting some triples, the operation will be
transferred to a space and then to a peer of this space; i.e., one of the peers that establish a
CAN overlay. Finally, all data falling in the CAN zone of a given peer, is stored to the local
repository of the associated kernel by a remote call. The goal of the persistency layer is thus
to have a direct link to an RDF repository from any peer that shares a space.

All the operations that can be performed on the local repository associated to a kernel are
implemented by the classes of the ‘datastorage’ package. For example, the concrete
implementation for BigOWLIM is implemented in the OwlimDS class by exploiting the
BigOWLIM API.

Figure 12: Query and Response interfaces

In order to access the data store, specific messages must be used. They are provided by the
messages.synchronous package. Figure 12 shows the classes and interfaces used to perform a
query and obtain results from a space. For example if a user wants to perform a RDF query,
he will instantiate an RDFQuery and use it as parameters of the Space API. Then when the
query is sent to the overlay, it will be encapsulated into internal structures and routed in the
overlay.

Figure 13 shows the class diagram for all internal messages. SynchronousMessage is an

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 22 of 30

interface which abstracts the various types of queries messages that can be handled on a
structured peer-to-peer network. All Internal asynchronous messages must extend the
AbstractQueryMessage class which contains many common information like latency,
dispatch timestamp, … for example LookupQueryMessage which is used to find a peer
which manages allows finding and returns a peer which manages a particular set of
coordinates (only used in intern in order to add a data on the network). , or
RDFQueryMessage whichencapsulates evaluates a RDF query and returns the results
foundwill trigger the creation of a Response. AbstractQueryResponse is the same for the
responses. A ResponseMessage contains a QueryMessage in order to be able to be routed by
using the same algorithm defines in the QueryMessage if necessary.

In addition to the store that was described above for the triple data that is published to a
certain space, the persistency layer holds a separate store for maintaining information about
the space logic (all spaces and the relations between them); i.e., there is a structural
metadata store installed in parallel to the data storage. The two stores can be configured by
means of the configuration file owlim_config.ttl. The stores are launched at starting time of
the semantic space infrastructure.

Figure 13 : Internal classes for messages in the CAN overlay

To maintain metadata information e.g. subspace logic, a metadata space is created. This
space (http://eu.SOA4All/metadata) is shared by each kernel. The metadata logical rules are
specified in tsontology.owl.

It is essential to call the shutdown method before terminating a kernel instance since OWLIM
repositories need to be shutdown in order to be persisted. When this is not performed, a lock
file in the storage folder (see Chapter 4) will prevent the repository from being restarted. This
lock file must be deleted manually, in order to access the repository again.

3.3.1 tsontology.owl

The tsontology.owl is an OWL ontology and part of the semantic space implementation. It
contains rules that apply to spaces and space relations. Since BigOWLIM is used as
persistency layer the following rules will be inferred automatically (the domain as well as the
range of the predicates are of type URI space, i.e., s0 and s1):

• s0 isSusbspaceOf s1 inverseOf s0 hasSubspace s1

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 23 of 30

• s0 hasSubspace s1 inverseOf s0 isSusbspaceOf s1

• s0 seeAlsoSpace s1

• transitive + symmetric property: s0 isSimilarTo s1

• transitive + symmetric property: s0 isRelatedTo s1

The relation s0 isSubspaceOf s1 will be automatically generated when calling the semantic
space core createSpace(URI space, URI parent) method.

The relation s0 isSubspaceOf s1 will be automatically generated when calling the semantic
space core createSpace(URI space, URI parent) method. Other rules in the tsontology that
do not apply to spaces, are out of scope of this deliverable and will not be discussed here.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 24 of 30

4. Installation and Configuration
The Semantic Space is accessed via WS API of the SOA4All DSB (see Chapter 3.1.2). To
successfully setup the semantic space, the DSB must be installed according to D1.4.1B. In
order to install and configure a semantic space, a Java Virtual Machine (version > 1.4) is
required. The different layers have the following software dependencies:

• SemanicSpaceCore and ProActive both part of

o http://www.ebmwebsourcing.com/download/SOA4ALL-DSB.zip

• BigOWLIM 3.1.0 or later

o Since BigOWLIM is not freely available SwiftOWLIM 3.0.x or later can be also
used. There are some minor differences in the configuration which will be
explained later in this section. SwiftOWLIM is still in beta phase and therefore
lacks some features and the full functionality of BigOWLIM cannot be
guaranteed.

o SwiftOWLIM comes bundled with all needed external libraries.

o http://www.ontotext.com/owlim/swiftowlim-3.0.beta10-sesame-2.0.zip

The core implementation of the semantic space platform consists of the following packages
and classes:

1. eu.SOA4All.dsb.space

• ISemanticSpace, SemanticSpaceImpl, ISpaceConnector, SpaceOntology

2. eu.SOA4All.dsb.space.connect

• OverlayConnectorImpl

• OwlimConnectorImpl

3. eu.SOA4All.dsb.space.exceptions

• QueryStringException, SemanticSpaceException,

 SpaceAlreadyExistsException, SpaceException, SpaceNotExistsException,

 SpaceNotJoinedException

4. eu.SOA4All.dsb.space.query

• Query, SPARQLQuery, TriplePatternQuery

5. eu.SOA4All.dsb.space.util

• TripleHelper

The Semantic Space Core interacts with ProActive Overlay layer through:

o eu.SOA4All.dsb.space.proactive.semanticspace

� SemanticSpaceOverlayKernel

Some files (examples can be found in the SOA4All-dsb/SOA4All-space/SOA4All-space-
impl/src/main/resources folder) must be available to the software package in order to
successfully run a kernel. Those files are shortly introduced below.

The file that provides the OWL ontology that contains the semantic space logic and rules for
space hierarchies and other relations: tsontology.owl file

To configure the space, an administrator has the following files at disposal. The first file is the
properties file of the semantic space implementation. It allows to specify the local storage

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 25 of 30

location. The second file contains the configuration data for the OWLIM store including the
specification of the ontology for the structural metadata schemes (cf. Section 3.3.1).

Semantic space configuration file space.properties (Java properties file):

• root.path: path where the OWLIM store is being created

OWLIM repository configuration file overlay_owlim_config.ttl (RDF Turtle notation):

• Contains configuration values for the OWLIM store.

• The line: owlim:imports "<PATH>/tsontology.owl"; must contain the FULL path to
the tsontology.owl file.

• If using SwiftOWLIM the following changes have to be done in the configuration
file: sail:sailType "owlim:Sail" has to be changed to sail:sailType "swiftowlim:Sail"
and owlim:repository-type "file-repository" to owlim:repository-type "in-memory-
repository";

The overlay layer which depends on ProActive, needs some specific JAVA permissions. For
that reason, the following jvm property must be indicated at the startup of the jvm
-Djava.policy=proactive.security.policy.

Content of proactive.security.policy;

grant {

 permission java.security.AllPermission;

};

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 26 of 30

5. Performance and Efficiency Considerations
The solutions presented in Section 3 for implementing semantic spaces rely on well-known
software and architectures. However, some care has to be taken to provide good
performance and scalability. In this section we will present the mechanisms that have been
implemented to support increasing numbers of peers and queries.

5.1 Tracker scalability and resilience
The tracker maintains a list of remote peers. However, for scalability reasons, a tracker
cannot maintain a reference to all peers in the overlay. Our first optimization consists in
having only a subset of the peers registering with the tracker. For that we use a probability
rate, which is by default fixed to 0.2 but it can easily be modified. A second optimization
consists in having the tracker return a randomly chosen peer, so that new peers do not
always contact the same one. The overall space management is thus better distributed.
Finally, to improve fault tolerance, it is possible to use multiple trackers for the same overlay.

5.2 Optimized merge operation
When leaving the overlay, a peer must merge its zone with one of its neighbors and transmit
its data. The algorithm presented in the original CAN paper [4] is recursive and might entail
many data movements.

Figure 14 : Example of merging without optimization

The left side of Figure 14 shows a 2D-CAN overlay with three peers and two data stored data
items (crosses). When P1 decides to leave the network, the default algorithm produces the
new repartitioning on the right. As we can see, the zone managed by the remaining peers
has changed and since data is associated to a zone, they have to be moved between peers.
The data previously owned by P3 (respectively peer P1) is now owned by P2 (respectively
P3). This requires at least two copying procedures but there might be further intermediate
data moving required. This clearly slows down the leave operation and puts a heavy load on
the network.

We have modified the algorithm to remove the recursive part and limit the data movement.
To do so, each peer has to maintain a history record of all splitting and merging involving its
zone. When merging, a peer simply revert the last split done. This adds a negligible memory
overhead but greatly improves the performance.

Figure 15 shows the result of the modified merge. To achieve this result, a single moving of
data is required: a half from peer P1 to P2 and the other half from peer P1 to P3.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 27 of 30

Figure 15: Example of optimized merging

5.3 Imbalance in data storage
The selection of a zone for storing data is base on the lexicographical order, as stated in the
previous section. Consequently, the longer a common prefix between two different pieces of
data, the more likely they will belong to the same zone and thus be stored on the same peer.
This can lead to an imbalance for which some peers have to handle a lot of data whereas
some have none at all, as shown in Figure 16. We consider a 2D-CAN where all data is
prefixed by some closely related letters on the x-axis. Although there are two zone of roughly
equal size, all the data is stored in the first one only.

Figure 16: Imbalance in data storage

First, although we do not have any control over the semantic data to be stored as RDF
triples, BigOWLIM enforces the use of URIs that start with a scheme field (http, ftp...). To
avoid having clusters of data starting with the same scheme, we ignore it and consider only
the remaining of the URI when computing the storage zone. This is done transparently and
does not modify the data, but only the indexing.

Second, to further avoid data clustering, it is possible to modify the way a zone is split. By
default, a split will generate two zones of equal size (for each dimension it is split in the
middle). Instead, we can split a zone such that the volume of stored data is the same in the
two resulting sub-zones.

Finally, it is possible to incorporate load-balancing mechanisms at runtime, which allows
peers to modify their zone to increase or decrease the volume of data they store. Our current

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 28 of 30

implementation does not support this feature but it envisaged to be added for the next major
release, if necessary.

5.4 Asynchronous processing of queries
Processing a query might require the collaboration of multiple peers for routing or searching
in the data stores. Although the Active Object model forces single threaded peers, we use
asynchronous communications to maintain better performance. A peer can thus forward a
query, perform some other operations, and receive a reply later. To do so, each peer
maintains a list of forwarded requests awaiting a reply, with a timeout to handle faults. When
a reply reaches a peer, it forwards it to the sender of the initial query If no reply is received
after a given timeout, the caller is notified of the problem by means of a dedicated warning
message.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 29 of 30

6. Conclusions
This deliverable described the first semantic space implementation. The implementation
delivers the space logic, P2P-overlay-based indexing for distribution and discovery as they
were specified in Deliverable D1.3.2A. The implementation is deployable on top of ProActive,
and provides the space-specific parts of the SOA4All Distributed Service Bus. The semantic
space prototype thus complements the bus prototype that is shipped with deliverable
D1.4.1B SOA4All Runtime.

The main focus of the deliverable was in presenting the prototype. This includes information
on how to install, configure and run the semantic space platform. Furthermore, the document
provides detailed descriptions of the different components of the prototype in order to better
understand the work done and the functionality provided. The three main components are
the space logic with the API implementation, the P2P-based indexing infrastructure and the
OWLIM storage and query engine bindings.

In addition to the core aspect of the deliverable, in Section 2, we re-visited the specification
and elaborated on two concerns that were raised by the reviewers; namely, redundancy, and
the update functionality. Moreover, this deliverable also provided some more detailed
considerations in regards to performance and scalability of the semantic space platform. This
was another issue that was insufficiently covered by the original specification in Deliverable
D1.3.2A. First evaluation results confirming these improvements are expected to be
delivered by month M24.

 SOA4All –FP7215219 D1.3.2B Distributed Semantic Spaces: A First Implementation

© SOA4All consortium Page 30 of 30

7. References
1. Reto Krummenacher, Imen Filali, Fabrice Huet, and Francoise Baude: Distributed

Semantic Spaces: A Scalable Approach To Coordination. SOA4All project deliverable
D1.3.2A, March 2009.

2. Reto Krummenacher, Ioan Toma, Christophe Hamerling, Jean-Pierre Lorre, Francoise
Baude, Virginie Legrand, Philippe Merle, Cristian Ruz, Carlos Pedrinaci, Dong Liu, and
Tomas Pariente Lobo: SOA4All Reference Architecture Specification. SOA4All project
deliverable D1.4.1A, March 2009.

3. Christophe Hamerling, Virginie Legrand, Francoise Baude, Elton Mathias, Cristian Ruz,
Michael Fried, and Reto Krummenacher: SOA4All Runtime. SOA4All project
deliverable D1.4.1B, August 2009.

4. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
Scalable Content-Addressable Network. ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, 2001: 161-
172.

5. Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan: Chord: A Scalable Peer-to-Peer Lookup Protocol
for Internet Applications. IEEE/ACM Transaction on Networking 11(1), 2003: 17-32.

