
RDF Data Based Storage and Retrieval
In Structured P2P Networks

Imen Filali, Fabrice Huet, Laurent Pellegrino
INRIA Sophia-Antipolis, Université de Nice Sophia-Antipolis, CNRS - I3S
2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex, France

{last.first@sophia.inria.fr}

Abstract—Since its appearance, the Peer-to-Peer communica-
tion model has gained a significant interest due to its ability to
build large scale distributed applications, such as file sharing, dis-
tributed computing. In spite of the diversity of such applications,
the crucial issue is the data storage and retrieval mechanisms:
how the data should be stored to be efficiently retrieved. Some
P2P approaches, such as structured P2P systems, focus on a
logical organization, sometimes supported by network topology,
in order to efficiently store data items. These approaches are
usually suitable for exact searches but do not support complex
queries. Unstructured P2P overlays, on the other hand, can
handle arbitrary complex queries at the cost of a higher overhead.
Others solutions are focused not only on the network topology
but also the semantic of stored items, moving from plain data
storage to a predefined model of data description such as the
Resource Description Framework (RDF).

In this paper, we propose a fully distributed P2P architecture
that combines a hierarchical P2P model with an RDF data
storage model to come up with an efficient infrastructure for
a reliable RDF data storage and retrieval. While the upper layer
indexes the semantic nodes in chord like overlay network, the
lower layer, a CAN-based overlay, exploits the RDF triple format
to efficiently store triples in a fully distributed 3-dimensional
space. The proposed architecture takes into account the dynam-
icity of the P2P network and supports the management of both
simple and complex queries. 1

Index Terms—Peer-to-Peer Overlays, CAN, Chord, RDF, Se-
mantic Data Storage

I. INTRODUCTION

The Peer-to-Peer (P2P) communication model has been as-
serted as a key solution to build robust and scalable distributed
systems. While unstructured P2P systems like Gnutella [1] are
not scalable because they generally rely on flooding search
based approaches, structured P2P networks such as CAN
[2], Chord [3], Pastry [4], Tapestry [5] have been shown,
through many empirical studies, to be an efficient network
topology model for data storage and retrieval in fully de-
centralized environment. However, all these DHTs approaches
have flat topologies, without any hierarchical routing model.
Even though they are considered as scalable systems with
guaranteed logarithmic search complexity, the hierarchical P2P
approaches can improve this complexity [6] [7]. Researches
on P2P networks have focused not only on the network
architecture but also on the semantic of the stored data, moving

1The presented work is funded by the EU FP7 NESSI strategic integrated
project SOA4All; http://www.soa4all.eu

from simple keywords based data storage to more sophis-
ticated RDF (Resource Description Framework) [8] based
data format. In their simplest form, RDF based data items
are described as triples <subject, predicate, object> where
the subject identifies the resource to describe, the predicate
presents the specific property in the statement and finally the
object is the property value of the predicate. The RDF data
model is flexible, i.e., it is simple to express any data in such
format. Hence, a need has arisen to efficiently support storing
and querying of RDF data.

Taking advantage of both technologies, a fully distributed
P2P semantic infrastructure is proposed where P2P technol-
ogy and RDF data model are working together to come up
with a scalable P2P infrastructure. The proposed architecture
provides complex and extendable descriptions of resources
and allows the management of atomic, conjunctive and range-
based queries. The contributions of this paper are:

• The design of a fully decentralized and hierarchical P2P
infrastructure relying on Chord [3] and CAN [2] overlay
networks

• A scalable storage infrastructure that allows the dis-
tributed storage of RDF triples.

• A distributed query processing and optimization based on
SPARQL-like query language.

This paper is organized as follows: Section II briefly surveys
related approaches. Section III presents the proposed solu-
tion of RDF data storage in fully decentralized peer-to-peer
system and details the data indexation and query processing
mechanisms. Section IV concludes the paper and outline future
directions.

II. RELATED WORK

Many P2P solutions have been proposed to ensure a dis-
tributed storage for RDF data. Some of them are built on top
of super-peer-based infrastructure such as Edutella [9] which
is a distributed RDF repository. In this approach, the network
is composed of a set of super peers nodes. Each super peer
is connected to a number of leaf nodes. Super-peers nodes
manage local RDF repositories and are responsible for queries
processing. This approach is not scalable for two main reasons.
First, the super peers nodes are a single point of failure.
Second, it uses the flooding-like search mechanism to route
queries between super-peers.



By using DHTs (Distributed Hash Tables), other systems,
such as RDFPeers [10], address the scalability issue in the pre-
vious approach. RDFPeers is distributed repository built on top
of Multi-Attribute Addressable Network (MAAN) [11]. Each
triple is indexed three times by hashing its subject, its predicate
and its object. This approach supports the processing of atomic
triple patterns as well as conjunctive patterns limited to the
same variable in the subject (e.g., (?s, p1, o1) ∧ (?s, p2, o2)
which indicates any subject with the given predicates and
objects). The query processing algorithm intersects the can-
didate sets for the subject variable by routing them through
the peers that hold the matches to each pattern. The approach
proposed in [12] is similar to [10] in the sense that each
triple is also stored three times. P-Grid [13] is a binary tree
structured P2P overlay in which each p ∈ P is associated
with a leaf node of the binary tree. Each leaf corresponds to
a binary string π ∈ Π such as Π is the entire key partition.
Keys are generated using an order preserving hash function.
Each peer is responsible for storing keys that fall under its
current key space (key ∈ π(p)). Every peer’s position is
determined by its path. Peer’s path indicates the subset of the
tree’s overall information that it is responsible for. Peers also
maintain references to others peers in the binary tree. Queries
are resolved by prefix matching. Thus, if a peer receives a
query on key k that can not be locally resolved, it forwards
the query to a peer, among its references, that prefixes k at
most. Regarding the fault tolerance and query load balancing,
multiple peers can be associated with the same key partition.
GridVine [14] is build on top of P-Grid and uses the semantic
overlay for managing and mapping data and metadata schemas
on top of a physical layer. GridVine reuses two primitives
of P-Grid: insert(key,value) and retrieve(key) for respectively
data storage and retrieval. Triples are associated with three
keys based on their subjects, objects and predicates. A lookup
operation is performed by hashing the constant term(s) of the
triple pattern. Once the key space is discovered, the query will
be forwarded to peers responsible for that key space.

III. SYSTEM ARCHITECTURE

As already mentioned, we aim to provide a scalable dis-
tributed infrastructure for storing and retrieving of semantic
data. In this regard, a natural solution to support these features
is to exploit the DHT based peer-to-peer approaches. Since
the proposed P2P architecture is relayed on CAN and Chord
structured overlays networks, we first introduce these two
overlays as well as the RDF data model. Then, we detail the
P2P semantic space infrastructure and different algorithms for
both data indexation and querying.

A. Background

CAN. In [2], Ratnasamy et al. describe a structured P2P
network based on a d-dimensional Cartesian coordinate space.
This Cartesian space is dynamically partitioned among all
peers in the system such that each node “owns” a zone in
the overall space. This virtual coordinate space is used to store
(key, value) pairs. For instance, to store the (key, value) pair,

the key k is deterministically mapped onto a point p in the
coordinate space. The (key, value) pair is then stored at the
node that owns the zone which the point p lies in. The lookup
process of a value v associated to a key k is achieved by
applying the same deterministic function on k in order to map
it into p. The query then will be routed through intermediate
nodes in the overlay until it reaches the peer’s zone containing
p. When a peer joins the CAN overlay, it picks a random
point p′ belonging to the Cartesian coordinate space and a
JOIN QUERY will be routed to the zone that contains that
point. A zone will then be allocated to the new peer by splitting
the current peer’s zone in half: keeping half for the current
peer owner and allocate the other one to the new peer. On the
average, each node keeps information about O(d) neighbors
and a routing path involves O(dN1/d) overlay hops such as
d is the space dimensionality and N is the number of nodes
in the network.
Chord. In [3], peers are organized in a logical ring topology.
Each Chord node has an identifier id that represents its
position in a circular identifier space of size N . A node keeps
m = log(N) routing entries, called fingers. For 1 ≤ i ≤ m, a
finger[i] of a node n contains the address of a node whose
identifier equals to n+2i−1. During a retrieve(key) operation,
a peer forwards a query to the finger with the largest id that
precedes the key value. The process is repeated from peer to
another until the peer preceding the key is reached, which is
the “closest” peer to the key.

When a new peer p joins the network, a set of keys
previously assigned to p’s successor will be assigned to p.
Inversely, when p leaves the network, all keys assigned to it
will be reassigned to its successor. These are the only changes
in key assignments that have to occur in order to maintain a
load balancing between peers.
RDF Data Model. Resource Description Framework [8] is
recognized as a standard for storing and exchanging infor-
mation on the Semantic Web. All resources have unique
identifiers presented as Uniform Resource Identifiers (URIs).
These resources are described through properties and property
values. Consequently, RDF data model can represent simple
statements about resources, their properties and values. It de-
fines the so-called RDF statements which consist of a subject,
a predicate, and an object: triple=<subject,predicate,object>.
These statements can be created by different users and widely
distributed on the Web. With the increasing use of RDF
statements, there is a need to support efficient retrieval of RDF
data in large scale distributed environment.

B. A Semantic Space P2P infrastructure

1) Semantic Spaces: Semantic Spaces are considered as
a new type of communication platform that has recently
gained a significant interest in the middleware community, as
a response to the raising challenges of data sharing and service
coordination in large scale distributed and highly dynamic Web
environment.

A Semantic Space exposes a set of operations for the
publication and querying of RDF data, via SPARQL-like [15]



query language. It also offers subscription to published events
in form of queries or triple patterns. Furthermore, a set of
management operations aiming at the creation and deletion of
spaces is also provided. Information stored in the space are
represented in RDF data model.

Architecturally speaking, the Semantic Space infrastructure
is build on top of peer-to-peer overlays. It exploits peer-to-
peer communication model to distribute the RDF triples that
are published and stored in the infrastructure.

2) CAN overlays for RDF storage: A Semantic Space
is implemented using a 3-dimensional CAN overlay with
lexicographical ordering. The three dimensions of each CAN
coordinate space represent respectively the subject, the pred-
icate and the object of the stored RDF triples. Thus, a triple
directly represents a point in the CAN space without the use
of hash functions. This preserves common prefix between
elements of different triple and gives a form of clustering.
Elements with a common prefix will be localized close to each
other. If necessary, the number of dimensions can be increased
to handle meta-information for each RDF triple.

Figure 1 depicts a CAN overlay where axis represent
the RDF triples elements. As an example, the figures
shows the indexation of triple (CAN,creator,ratnasmy). The
peer managing the zone where the point with coordinates
(CAN,creator,ratnasmy) falls is responsible for the storage of
that triple.

Fig. 1. Three-dimensional CAN space. Axis present the subject, the predicate
and the object of RDF triples.

3) Chord overlay for Spaces organization: Using a struc-
tured overlay to implement a Space can limit the scalability.
As the number of peers increases, handling churn can have a
high cost. We thus offer a two level design based on dinstinct
CAN overlays accessible through a unified view, giving the
impression of a single Space. At the lowest level, a set of
individual Spaces are implemented using CAN overlays. At
the higher level, they are all linked together using a Chord,
as shown in Figure 2. Each node of the Chord overlay (e.g.,
{S1, S2, S3, S4} in Figure 2) stores references to individual
Semantic Spaces and maintains references to a set of peers
that may belong to different CAN overlays. In others words,
the individual spaces in Chord layer are disjoint, and the write
operations are targeted at a particular space by means of the
SpaceURI which is considered as the unique identifier of a
Semantic Space maintained at the Chord level.

Comparing with the flat topology, the proposed semantic
space infrastructure takes advantage of the P2P hierarchical in
many aspects:

Fig. 2. Peer-To-Peer Semantic Space Infrastructure.The upper layer is Chord
based overlay (semantic spaces). CAN axis represent the subject, the predicate
and the object of RDF triples.

• Individual spaces can be created and managed based on
semantic properties of data (e.g., all data regarding a
particular topic).

• The complexity of the Space infrastructure is hidden by
the Chord layer, the only one visible by a user.

• The Chord layer is more stable since it presents a virtual
organization of Semantic Spaces. In other words, the
Chord node associated with a CAN overlay is not affected
when an “ordinary” peer at the level of CAN layer joins
or leaves the semantic space. In that case, only the CAN
overlay has to deal with the peer join and failure and
the update of peers’ zones. We believe that the Chord
layer maintenance cost is low since it is only responsible
for Semantic Spaces indexation and all RDF triples are
managed at the CAN level.

Figure 3 depicts a high level overview of the internal archi-
tecture of a peer. Both CAN and Chord peers share the same
building blocks.

The user API enables a client to publish and access the
information in the Semantic Space. This includes write, read,
delete operations.

Each node that shares a given space has its own query
engine that resolves user requests against the locally stored
data. It takes care of reasoning and optimizing the query
before being executed, as well as the query distribution across
different peers in the Semantic Spaces. Each node of the P2P
network is associated to a local RDF data store called OWLIM
[16]. It provides basic and efficient reasoning facilities for
efficient and effective retrieval of RDF data. The overlay layer
composed of Chord and CAN process incoming data and route
queries to relevant peers.

While the basic idea appears simple, there are many issues
that have to be considered such as distributed data storage,
overlay maintenance and processing. These points will be
discussed in the remainder of this paper.



Fig. 3. Peer architecture

C. RDF Data Processing

1) Data Indexation: As mentioned earlier, a client will
query a space at the Chord level. This operation will
be performed through write(SpaceURI uri, triple
t). As a consequence, a write operation runs in two phases.
First, the query is routed to the appropriate space at the
Chord level by means of the spaceURI. Second, once
the space is discovered, the triplet is routed towards the
appropriate peer in the CAN overlay, i.e., it is routed to the
peer that manage the zone where the point p indexed by
(tsubject, tpredicate, tobject) falls.

2) Data processing: Query resolution algorithm takes into
consideration the complexity of the query. As we maintain a
lexicographic order on the CAN axis, the proposed architecture
allows not only the resolution of simple atomic queries but
also the conjunctive and disjunctive range queries. Unlike,
write operation that can be only resolved against one particular
space, read operations can either resolved against one semantic
space or an undetermined set of spaces.
Atomic queries. are triples where the subject, the predicate
and the object can either be variables or constant values. They
are answered by first looking to the constant part(s) for the
triple pattern. As an example, the query q = (si, ?p, ?o) looks,
for a given subject si, for all possible objects and predicates.
To resolve this query pattern, the query will be routed on
the subject-axis of the CAN overlay looking for the subject
value si. Once the peer responsible for the specified value si

is found, it forwards the query only to its neighbors that are
most likely in the direction of peers storing the corresponding
triples based on the peer zone’s coordinates.
Conjunctive queries. are expressed as a conjunction of a set
of atomic triple patterns (sub-queries), atomic triples will be
processed first. Their results set would be returned and the
intersection will be handled by the peer which has originally
received the query.

Range queries. can be efficiently supported due to the preser-
vation of lexicographic order at the CAN axis. As an example,
we consider the following query q=(< s >< p >?o FILTER
(v1 ≤?o ≤ v2)) with a given subject s and predicate p. It
looks for a set of objects, given by the variable ?o, such as
v1 ≤ o ≤ v2. The routing process starts by finding the constant
part(s) of the query. After that, it locates the lowest and the
highest values by going over the object axis. If all results are
found locally, they are returned to the requester. Otherwise,
the query is forwarded to neighbors that may contain other
potential results.

D. Peer churn

As the data management operations, the JOIN operation
exploits the multi-layer structure of the P2P network. As each
Chord node can reference a set of CAN overlays, it stores
references to a set of CAN peers. More specifically, when
a peer p wants to join a specific Space, it asks an arbitrary
Chord node. This information is maintained by a tracker which
stores references to Chord nodes currently in the system. After
finding the Chord node identified by hash(spaceURI), the
joining peer obtains references to CAN nodes and contact them
to join the overlay. When a peer p leaves the CAN overlay,
we have to ensure that its zone is taken over by its neighbors.
To do so, each peer stores the last direction of its zone split
operation. Before leaving, the peer p splits each zone on n
sub-zones such as n is the number of neighbors on the side
of the last split direction. Each sub-zone is assigned to one
neighbor.

Note also that the Chord protocol itself has a stabilization
algorithm periodically executed by each node to check if
there is new Chord node joining or leaving the network. This
results in an update of the finger tables and the successor and
predecessor pointers.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an RDF-based P2P ap-
proach for RDF data storage and retrieval in fully distributed
environment. We have also presented a set of algorithms in
order to efficiently store and process complex RDF queries.

Currently, we are working on the implementation of this
P2P architecture using ProActive middleware. We aim to
evaluate different algorithms in a real benchmark data set
using a simple and complex queries while taking into account
dynamicity of the peer-to-peer network.

REFERENCES

[1] “Gnutella,” http://www.gnutella2.com/gnutella2.
[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,

“A scalable content-addressable network,” in Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM ’01), vol. 31, no. 4. ACM
Press, October 2001, pp. 161–172.

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications (SIGCOMM
’01). New York, NY, USA: ACM, 2001, pp. 149–160.



[4] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Middle-
ware ’01: Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg. Springer-Verlag, 2001, pp.
329–350.

[5] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: a resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, 2004.

[6] I. Martinez-Yelmo, R. Cuevas, C. Guerrero, and A. Mauthe, “Routing
performance in a hierarchical dht-based overlay network,” Euromicro
Conference on Parallel, Distributed, and Network-Based Processing.

[7] L. Garcs-erice, E. W. Biersack, P. A. Felber, K. W. Ross, and G. Urvoy-
keller, “Hierarchical peer-to-peer systems,” in Proceedings of ACM/IFIP
International Conference on Parallel and Distributed Computing (Euro-
Par), 2003, pp. 643–657.

[8] “Resource Description Framwork,” http://www.w3.org/RDF/.
[9] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,

M. Palmer, and T. Risch, “Edutella: A P2P networking infrastructure
based on RDF,” in Proceedings of the 11 International World Wide Web
Conference, Honolulu, USA, May 2002.

[10] M. Cai and M. R. Frank, “RDFPeers: a scalable distributed RDF
repository based on a structured peer-to-peer network,” in WWW, 2004,
pp. 650–657.

[11] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN: A multi-attribute
addressable network for grid information services,” in Journal of Grid
Computing, vol. 2, 2003.

[12] R. Giuseppe, D. G. Federico, D. N. Pierluigi, S. Antonio, and D. M. J.
Carlos, “A peer-to-peer architecture for distributed and reliable RDF
storage,” in First International Conference on Networked Digital Tech-
nologies (NDT), July 2009, pp. 94–99.

[13] A. D. Z. D. M. H. M. P. Karl Aberer, Philippe Cudre-Mauroux and
R. Schmidt, “P-grid: A self-organizing structured p2p system,” 2003.

[14] K. Aberer, P. Cudr-Mauroux, M. Hauswirth, and T. V. Pelt, “GridVine:
Building Internet-Scale Semantic Overlay Networks,” in International
Semantic Web Conference, 2004.

[15] E. Prud’hommeaux and A. Seaborne, “SPARQL Query
Language for RDF,” W3C Recommendation, January 2008,
http://www.w3.org/TR/rdf-sparql-query/.

[16] “Owlim,” http://www.ontotext.com/owlim/.


