

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.4.1A SOA4All Reference Architecture

Specification
Activity N: Activity 1 - Fundamentals and Integration Activity

Work Package: WP1 - SOA4All Runtime

Due Date: M12

Submission Date: 11/03/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Authors:

Reto Krummenacher UIBK
Ioan Toma UIBK
Christophe Hamerling EBM
 Jean-Pierre Lorre EBM
Francoise Baude INRIA
 Virginie Legrand INRIA
Philippe Merle INRIA
 Cristian Ruz INRIA
Carlos Pedrinaci OU
 Dong Liu OU
Tomas Pariente Lobo ATOS

Reviewers: Christopher Bussler
Juergen Vogel SAP
Elena Simperl UIBK

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public X

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2008-11-11 Initial TOC Reto Krummenacher (UIBK)

0.2 2009-02-17 Pre-final draft prepared for reviewers All

0.3 2009-02-25 Considering feedback by Ch. Bussler All

0.4 2009-02-27 Integration of feedback by J. Vogel Reto Krummenacher

0.5 2009-02-28 Integration of feedback by E. Simperl All

0.6 2009-02-28 Creation of Section 8.1 Philippe Merle (INRIA)

0.7 2009-03-03 Integration of remaining reviewer
comments

All

1.0 2009-03-06 Final release for submission All

Final 2009-03-11 Overall format and quality revision Malena Donato (ATOS)

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 3 of 69

Table of Contents

EXECUTIVE SUMMARY __ 9

1. INTRODUCTION ___ 10

1.1 INTRODUCTORY EXPLANATION OF THE DELIVERABLE ___________________ 10
1.2 PURPOSE AND AUDIENCE ___ 10

1.2.1 Purpose __ 10
1.2.2 Audience __ 10

1.3 STRUCTURE OF THE DOCUMENT _____________________________________ 11

2. ARCHITECTURE OVERVIEW ___ 12

2.1 SERVICE BUS __ 12
2.2 SOA4ALL STUDIO AND PLATFORM SERVICES ___________________________ 13
2.3 BUSINESS SERVICES (WEB SERVICES) AND PROCESSES ________________ 13

3. ARCHITECTURE METHODOLOGY __ 15

3.1 OVERVIEW ___ 15
3.2 COMPONENTS AND INTERACTION MATRIX _____________________________ 15
3.3 COMMUNICATION OBJECTS __ 15
3.4 FUNCTIONAL PROCESSES ___ 15

4. SOA4ALL CORE INFRASTRUCTURE SERVICES ___________ _________________ 17

4.1 SOA4ALL DISTRIBUTED SERVICE BUS _________________________________ 17
4.1.1 PEtALS Enterprise Service Bus __________________________________ 17
4.1.2 The ProActive Grid Technology: Quick Overview _____________________ 20
4.1.3 SOA4All Distributed Service Bus _________________________________ 20
4.1.4 Using Semantic Spaces at the SCA Application Level _________________ 24

4.2 SOA4ALL DEPLOYMENT FACILITY _____________________________________ 26
4.2.1 Motivations __ 26
4.2.2 Overview __ 26
4.2.3 The SOA4All Artefact Repository _________________________________ 28
4.2.4 The SOA4All Deployment Description Language _____________________ 28
4.2.5 The SOA4All Deployment Design-time GUI _________________________ 29
4.2.6 The SOA4All Deployment Engine _________________________________ 30
4.2.7 The SOA4All Deployment Runtime GUI ____________________________ 30

4.3 MONITORING PLATFORM __ 31
4.3.1 Raw Monitoring Data Generation _________________________________ 32
4.3.2 Monitoring Data Communication _________________________________ 33
4.3.3 Monitoring Data Storage __ 34
4.3.4 Monitoring Data Processing _____________________________________ 35
4.3.5 Monitoring and Management Interface _____________________________ 35

5. ARCHITECTURE COMPONENTS AND INTERACTION MATRIX _ ________________ 37

5.1 COMPONENTS ___ 37
5.1.1 SOA4All Distributed Service Bus _________________________________ 37
5.1.2 Semantic Space __ 37
5.1.3 WSML Reasoning Framework ___________________________________ 37
5.1.4 WSMO Data Grounding __ 38
5.1.5 Crawler ___ 38
5.1.6 Service Registry __ 38
5.1.7 Discovery ___ 39
5.1.8 Ranking and Selection ___ 39

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 4 of 69

5.1.9 Design-Time Composer __ 39
5.1.10 Template Generator ___ 40
5.1.11 Composition Optimizer ___ 40
5.1.12 Execution Engine ___ 41
5.1.13 SOA4All Studio ___ 41

5.2 INTERACTION MATRIX ___ 42

6. COMMUNICATION OBJECTS __________________________ __________________ 45

6.1 WEB SERVICE __ 45
6.2 ONTOLOGY __ 46
6.3 GOAL ___ 47
6.4 QUERY __ 47
6.5 PROCESS __ 47

7. SOA4ALL FUNCTIONAL PROCESSES ___________________ __________________ 49

7.1 THE PROCESS METHODOLOGY _______________________________________ 49
7.2 INTEGRATION METHODOLOGY _______________________________________ 49
7.3 STRUCTURE OF THE SOA4ALL ARCHITECTURE PROCESS ________________ 50
7.4 FUNCTIONAL PROCESSES ___ 51

7.4.1 Service Creation and Execution __________________________________ 51
7.4.2 Service Invocation __ 52
7.4.3 Service Discovery ___ 52
7.4.4 Service Composition (Processes) _________________________________ 52

8. IMPLEMENTATION ___ 54

8.1 THE SOA4ALL DSB IMPLEMENTATION ARCHITECTURE ___________________ 54

9. CONCLUSION ___ 57

REFERENCES ___ 58

ANNEX A. AN INTEGRATION USE CASE WITH PETALS _______________ ______ 60

ANNEX B. SCA SEMANTIC SPACE BINDING XML SCHEMA _____________ _____ 62

ANNEX C. SOA4ALL SOFTWARE AND SERVICES TO DEPLOY ___________ ____ 64

ANNEX D. A SOA4ALL DEPLOYMENT DESCRIPTION __________________ _____ 65

ANNEX E. EVENT ONTOLOGY (EVO) _____________________________________ 66

ANNEX F. ACTIVITY DESCRIPTION FORM ________________________________ 67

ANNEX G. COMPONENT DESCRIPTION ___________________________________ 68

ANNEX H. INTERFACE DESCRIPTION ____________________________________ 69

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 5 of 69

List of Figures
Figure 1: SOA4All Overall Architecture ...12

Figure 2:Internal and External Communication Flow ..14

Figure 3: The Distributed PEtALS ESB ...17

Figure 4: Federation of DSBs Relying on GCM/ProActive-based Messaging22

Figure 5: Federation of DSBs Connected with a Semantic Space Infrastructure23

Figure 6: SCA Web Services Binding ...24

Figure 7: SCA Semantic Space Component ...25

Figure 8: SCA Semantic Space Binding ...26

Figure 9: The SOA4All Deployment Facility ..28

Figure 10: Illustration of a Graphical Notation for SOA4All Deployment Descriptions29

Figure 11: Illustration of the SOA4All Deployment Runtime GUI ...31

Figure 12: DSB Node Monitoring ..34

Figure 13: Monitoring Data Aggregator ...34

Figure 14: Components of Monitoring Data Processing ..35

Figure 15: SOA4All M&M API ...36

Figure 16: Interaction Matrix of SOA4All Platform Services ..42

Figure 17 The SOA4All Process Meta Model ...50

Figure 18: Service Construction Framework at a Glimpse ..53

Figure 19: The SOA4All DSB Implementation Architecture ..55

Figure 20: The Travel Agency Scenario as an SCA Composite. ...60

Figure 21: Mapping the Travel Agency Scenario to JBI Components.60

Figure 22: An Example of SOA4All Deployment Description ..65

Figure 23: State Model Followed by EVO, see [32]. ...66

List of Tables
Table 1: Interaction Details in Terms of Discovery ..43

Table 2: Interaction Details in Terms of Process Creation ..43

Table 3: Component Implementation Release Dates ..54

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 6 of 69

Glossary of Acronyms

Acronym Definition

ADL Architecture Definition Language

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

BC Binding Component

BPEL Business Process Execution Language

BT British Telecom

CBSE Component-Based Software Engineering

CDK Component Development Kit

COP Constraint Optimization Problem

CSP Constraint Satisfaction Problem

D Deliverable

DSB Distributed Service Bus

EBNF Extended Backus-Naur Form

EIP Enterprise Information Portal

EJB Enterprise Java Beans

ESB Enterprise Service Bus

FDF Fractal Deployment Framework

FP Framework Program

FP7 The 7th Framework Program

FTP File Transfer Protocol

GCM Grid Component Model

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineerings

IST Information Society Technology

IT Information Technology

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 7 of 69

JBI Java Business Integration

JDBC Java Data Base Connectivity

JEE Java Enterprise Edition

JMS Java Messaging Service

JMX Java Management eXtensions

JRE Java Runtime Environment

M Median, Milestone

M&M Monitoring and Management

NAT Network Address Translation, Network Address Translator

NESSI Networked European Software and Services Initiative

NEXOF NESSI Open Service Framework

NEXOF-RA NEXOF Reference Architecture

OASIS Organization for the Advancement of Structured Information Standards

OMG Object Management Group

OSGi Open Service Gateway Initiative

OWL Web Ontology Language

QoS Quality of Service

RDF Resource Description Framework

REST Representational State Transfer

RMI Remote Method Invocation

SAP Systeme Anwendungen und Produkte

SAWSDL Semantic Annotations for WSDL

SCA Service Component Architecture

SD Standard Deviation; Service Discovery

SE Service Engine

SEE Service Execution Environment

SFTP Secure File Transfer Protocol

SOA Service-Oriented Architecture

SOA4All Service-Oriented Architectures for All

SOAP Simple Object Access Protocol

STP SOA Tools Platform

SWS Semantic Web Service

T Task

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 8 of 69

TC Technical Committee

UML Unified Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WP Work Package

WS Web Service

WSDL Web Service Description Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

XML eXtended Markup Language

XSLT eXtensible Stylesheet Language Transformations

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 9 of 69

Executive Summary
This is the first of two deliverables about the reference architecture of SOA4All. The second
one will follow with the month M24 milestone. The primary objective of this deliverable is to
present the SOA4All architecture from several view points. We provide a high level
description of the SOA4All platform by showing the relationship between the SOA4All core
infrastructure services (the Distributed Service Bus and Semantic Spaces that are subject to
WP1), the SOA4All Platform Services (aka components from WP3, WP5 and WP6) and the
SOA4All Studio of WP2, respectively the external third-party business services. Based on a
general architecture design methodology, we specify in more details the different
components of the SOA4All platform, and their relationships to and dependencies. Another
objective of this deliverable is to clearly determine the role of, and the links between different
components, and to define that objects that are exchanged and shared; mainly services,
ontologies, goals, and processes. These definitions are, from a conceptual point of view,
closely aligned with the recent standardization work of the OASIS SEE Technical Committee
and their SEE Reference Ontology specification. The last viewpoint that we provide on the
architecture is related to functional processes that are realized in SOA4All. This last point of
view is partly an outlook to work that will be conducted in the second year of the project, that
is to say, the definition and realization of more complex processes that involve multiple
SOA4All Platform Services; for instance, the discovery of service, or the composition of
processes to name two. The descriptions of the functional processes are given along the
lines of the NEXOF-RA requirements specification for service architectures. This alignment
with NEXOF-RA has two advantages: i) the architecture specification in terms of functional
processes is well-founded in terms of the definitions and conceptualizations of other NESSI
strategic projects, and ii) the SOA4All reference architecture is easily comparable to the
NEXOF-RA expectations and requirements, which clearly eases the exploitation of research
results in NEXOF-RA. In terms of architectural specifications, there is a short section that
outlines the expectations of WP1 in the context of the upcoming implementation task. A first
outlook to the implementation plan and the technologies to be used in WP1 are given.

As stated above, the core infrastructural services of SOA4All are subject to WP1, and are
presented in more detail (as compared to the SOA4All Studio and the SOA4All Platform
Services of work packages WP3 – WP6) in this deliverable. In other words, the SOA4All
Distributed Service Bus with its deployment facility, the monitoring platform and the Semantic
Space bindings constitutes a special component which is presented conceptually, as well as
technologically in this deliverable. Note that the Semantic Space infrastructure is presented
in Deliverable D1.3.2A and thus no technical details about spaces is given here, only the
aspects that concern the binding of spaces to the Distributed Service Bus. The same applies
to all other components of the project (i.e. the SOA4All Studio and Platform Services).

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 10 of 69

1. Introduction
1.1 Introductory Explanation of the Deliverable
The service-oriented approach to IT system has received increasing attention from both
industry and academia in the last years. The notion of service is at the very centre of this
approach, abstracting from the underlying software implementations and hardware
resources. Embracing the service-oriented paradigm rises a set of new and hard challenges,
especially in the context of large systems such as the Web. The Web itself is evolving in
what we call a Service Web, in which billions of parties are exposing and consuming services
via advanced Web technology. To realize this vision, the SOA4All project will deliver a
framework and infrastructure that integrate into a coherent and domain independent service
delivery platform the following technologies:

• Web principles and technology as the underlying infrastructure for the integration of
services at a worldwide scale.

• Web 2.0 as a means to structure human-machine cooperation in an efficient and
cost-effective manner.

• Semantic Web technology as a means to abstract from syntax to semantics as
required for meaningful service discovery.

• Context management as a way to process in a machine understandable way user
needs that facilitates the customization of existing services for the needs of users.

Building a scalable, domain independent service delivery platform requires generic solutions
for each of the challenges introduced by the Service Web vision (e.g., service discovery,
reasoning, construction). But most important, it requires a well designed, scalable
infrastructure that integrates and supports the interaction between various artefacts. A first
important step towards the realization of this infrastructure is the definition of its architecture.
It is the goal of this deliverable to specify the first version of SOA4All architecture. More
precisely it establishes and it defines the integrated technical plan for SOA4All and outlines
the process necessary to satisfy the general and detailed requirements for the design and
development of the SOA4All platform.

1.2 Purpose and Audience
1.2.1 Purpose

The purpose of this deliverable is to provide a first version of the SOA4All reference
architecture. It captures and conveys the significant architectural decisions along with their
associated architectural drivers. The deliverable provides a comprehensive architectural
overview of the SOA4All platform, using various architectural views to depict different
aspects of relevance. First, a common terminology and a conceptual model to foster
understanding across all actors involved in the development process is provided. Second,
following a pragmatic approach to architecture specification, the architecture is described
from the conceptual and technological view point. Interfaces and control flows are defined for
all components of the SOA4All. The goal of the architecture is to provide a high-level
overview of the necessary system components and their interactions, to provide
understanding of the internal processes of SOA4All, and to support developers in providing
components that can interoperate with SOA4All and its components.

1.2.2 Audience

This deliverable is relevant to all technical work packages in SOA4All (WP1-WP6). The
target audience includes: component providers, users, and any person inside or outside of
the SOA4All project interested in learning about the internal processing of the SOA4All
service delivery platform. As such this deliverable presents the technological fundament,

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 11 of 69

guidelines and technological details for the implementation of the SOA4All Runtime, the
various components and the integration of the SOA4All project infrastructure as an integrated
whole.

1.3 Structure of the document
This deliverable is organized as follows: Section 2 provides a short introduction to the overall
architecture and the various components and artefacts of SOA4All. Section 3 describes the
architecture methodology used in SOA4All. It briefly presents the set of steps that lead to the
final architecture specification, including the conceptual and technical realization of the
architecture. Section 4 contains the description of the Distributed Service Bus (DSB), the
infrastructure service and core integration platform of SOA4All. The three main technologies
and artefacts, namely the PEtALS ESB, the Semantic Spaces and the ProActive distributed
programming language are investigated and integrated in order to define the DSB.
Furthermore, Section 4 details the SOA4All deployment facility and monitoring platform that
provide deployment, monitoring and management mechanisms able to propagate and derive
detailed information about the execution of services. Following the architecture methodology
described in Section 2, sections 5 - 7 provide detailed descriptions about the major steps of
the methodology: Section 5 discusses each component of the architecture in terms of their
inputs, outputs and interaction with the other components, summarized as an interaction
matrix. Section 6 describes the communication objects exchanged between components and
Section 7 presents the functionalities the architecture supports, explained by means of the
NEXOF-RA system requirements, Section 8 provides an outlook towards the implementation
task of Year 2, and Section 9 concludes the deliverable.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 12 of 69

2. Architecture Overview
The overall architecture of SOA4All can be structured into four parts: SOA4All Studio,
Distributed Service Bus, SOA4All Platform Services, and Business Services (3rd party Web
services and light-weight processes). Each of these parts is subject to a dedicated work
package of the project, while this deliverable presents the project’s overall approach towards
a SOA4All service delivery platform and defines how the various parts integrate and interact.
Figure 1 below shows a high-level depiction of the SOA4All platform.

Figure 1: SOA4All Overall Architecture

2.1 Service Bus
In the very centre, there is the SOA4All Distributed Service Bus (detailed in Section 4.1). The
Distributed Service Bus (DSB) serves as infrastructure service and core integration platform
and is a direct evolution of the open-source PEtALS Enterprise Service Bus (ESB) that is
promoted by the OW2 Consortium1. The DSB delivers the necessary extensions and
developments of the project to augment PEtALS towards large scale, open, distributed and
hence Web-scale computing environments, as the one targeted by SOA4All. These
extensions and consequently novelties of service bus infrastructures include ease of
deployment, openness, scalability in terms of internal repositories, amongst others (consult
Section 4.1). To realize these extensions, the DSB will benefit from the internal use of the
ProActive distributed programming language also promoted by OW2.2 Problems to be solved
to augment PEtALS as required are of similar nature as those raised when programming,

1 See http://petals.ow2.org
2 See http://proactive.inria.fr

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 13 of 69

deploying, securing, monitoring, adapting a distributed application on a computing grid
infrastructure. Furthermore, the DSB is enhanced to incorporate a scalable Semantic Space
infrastructure. The Semantic Space infrastructure is used as a shared memory to build
repositories, as cooperative access to monitoring data, and as communication infrastructure
to enhance the traditionally message-oriented bus towards a publication infrastructure for
anonymous and asynchronous service communication with a notion of event-driven
architecture; something currently neither available from openly-accessible ESB technology
(cf. Section 4.1.4 and Deliverable D1.3.2A).

In addition, the Deployment Facility (Section 4.2) provides a uniform, declarative, user-
friendly, and automatic support for the management and distributed deployment of all
software composing the whole SOA4All service computing environment (i.e., DSB, Studio,
and platform services). Finally, the Monitoring Platform of the SOA4All DSB (Section 4.3)
collects monitoring data about the usage of SOA4All Platform Services and traditional 3rd
party Web services.

2.2 SOA4All Studio and Platform Services
Around the integration platform, the SOA4All Distributed Service Bus, there are the SOA4All
Studio and the SOA4All Platform Services. These are the components that are delivered by
other research and development work packages in the project. The SOA4All Studio is
defined in WP2 and delivers the a fully Web-based user front-end that enables the creation,
provisioning, consumption and analysis of the platform services and various 3rd party
business services that are published to SOA4All. The studio supports different types of users
at different times of interaction. As Figure 2 depicts, SOA4All knows two major groups of
users: i) a large group of service consumers that use SOA4All for the consumption of
functionality that is provided by either platform services or by business services, and ii) a
significantly smaller group of (administrative) users that exploits the capabilities of the
platform services (via the SOA4All Studio) to annotate, select and compose Web services.

The platform services are products of WP3, 5 and 6 and deliver service discovery, ranking
and selection, composition and invocation functionality, respectively. These components are
exposed to the SOA4All Distributed Service Bus as Web services and hence consumable as
any other published service. Their functionalities are used by the SOA4All Studio to offer
clients the best possible functionality, while their combined activities (i.e., discovery,
selection, composition and invocation) are coordinated via the DSB. The ensemble of DSB,
SOA4All Studio and platform services delivers the innovative, fully Web-based and Web-
enabled service experience of the SOA4All project: global service delivery at the level of the
bus, Web-style service access via studio, and advanced state-of-the-art service processing,
management and maintenance via platform services.

2.3 Business Services (Web Services) and Processes
The third part shown in Figure 1 is the semantic service descriptions and processes
(composed services) that are created and processed by means of the SOA4All infrastructure.
First, there are available Web services that are exposed either as traditional RESTful
services, or as traditional WSDL-based services (lower parts of the figure). These are
invokable third-party business services that SOA4All enhances in terms of automation,
composition and invocation. Second, the top-left of Figure 1 depicts the semantic annotations
of the business services, so-called Semantic Web services. The semantic descriptions are
published in the Service Registry, and used for reasoning with service capabilities
(functionality), interfaces and non-functional properties, as well as context data. These
semantic descriptions are the main enablers of the automation processes related to
Semantic Web services. Third, in the top-right corner, light-weight processes and mash-ups
are shown that are the basis for the definition and execution of composed services (the
SOA4All definitions of the concepts process and mash-up is given in 6.5). Both, mash-ups
and semantic descriptions of service compositions are published to shared Semantic

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 14 of 69

Spaces, and become a public good for automated large-scale service computing.

Figure 2:Internal and External Communication Flow

Before turning to the more detailed presentation of the architecture, we provide with Figure 2
a more communication-centric overview of the SOA4All infrastructure. It depicts the main
building blocks: the SOA4All Studio, the Distributed Service Bus, the Platform Services and
3rd party business services. The figure shows that all communication is conducted via the
Distributed Service Bus, while humans access the SOA4All platform solely via the studio, no
matter if service users, or administrators that annotate services, create processes or analyse
service executions.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 15 of 69

3. Architecture Methodology
3.1 Overview
In order to define the architecture of SOA4All, we are taking a pragmatic approach by
depicting the various components of SOA4All (platform services and artefacts) and putting
them into context of the overall objectives and developments of the project. The goal of this
deliverable is to define the integrated technical plan for SOA4All and to outline the process
necessary to satisfy the requirements for the design and development of the SOA4All
platform. This includes the definition of a common terminology and the conceptual model to
foster understanding across all actors involved in development. Furthermore, it is the task of
the architecture to align the interfaces and control flows for all components of the SOA4All
platform, and to present a common framework for future roles: i) the developers of the
SOA4All platform, and ii) the clients of the infrastructure.

The following sections shortly present the architecture methodology that is assumed for the
SOA4All project. We shortly introduce the various steps before addressing them in more
detail in subsequent chapters of the deliverable.

3.2 Components and Interaction Matrix
In a first step we present the components and an interaction matrix to showcase the
invocation and communication dependencies. Primary infrastructure components of the
architecture are the SOA4All Distributed Service Bus with is integrated monitoring
infrastructure, and the Semantic Spaces (Deliverable D1.3.2A). Moreover, we provide the
reader with a clear idea of the functional and technological aspects of the SOA4All Platform
Services and show how they integrate by means of an interaction matrix. The interaction
matrix helps to understand the dependencies between the various components of SOA4All,
and is an important tool to describe the communication links, and consequently the
communicated objects of SOA4All: service descriptions, ontologies, processes.

3.3 Communication Objects
The section of communication objects presents the various artefacts that are exchanged and
shared amongst SOA4All Platform Services. While the components part discusses the
interfaces of the individual components and which interfaces rely on which objects, this
section lists the normative set of communication objects and provides more detailed
definitions and links to the respective technical deliverables. The definitions of the objects are
aligned with the conceptual model of the OASIS Semantic Execution Environment TC (SEE),
and in a more terminological sense with the SOA4All Glossary (see Deliverable D1.1.1),
which is a SOA4All-dedicated version of the NEXOF-RA Glossary.3

3.4 Functional Processes
This first release of the SOA4All architecture does not give any details about the realization
and implementation of complex functional processes that will be offered by the SOA4All
infrastructure. Such functional processes embed the whole life-cycles of Semantic Web
services and their compositions. In a first iteration, we specify a methodology that will ease
the creation and implementation of SOA4All functional processes during the second iteration
of the architecture specification. This methodology will moreover allow partners to ensure
that the project as a whole is appropriately equipped to deliver integrated results that fit the
SOA4All overall architecture, and the needs of the project’s use cases (specified and
realized in WP7-WP9).

3 http://www.nexof-ra.eu/?q=node/187

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 16 of 69

Furthermore, in the context of the functional processes, we present a first set of
functionalities that the architecture should support. The functional processes are explained
by means of the NEXOF-RA system requirements that were specified in their deliverable
“D7.3 Conceptual Architecture View” [8]. Note that the architecture specification released
with this deliverable does not yet include the documentation of complete processes that
require the integration of multiple platform services, but considers those rather in isolation.
Still, in Section 7.4 we provide some high-level indications and explanations of how the most
relevant processes in a service-oriented architecture can be realized in SOA4All. We
introduce the SOA4All view and approaches on aspects such as the creation, publication,
discovery, composition and invocation of services.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 17 of 69

4. SOA4All Core Infrastructure Services
4.1 SOA4All Distributed Service Bus
4.1.1 PEtALS Enterprise Service Bus

PEtALS is an Open Source (LGPL License) Enterprise Service Bus provided by the OW2
middleware consortium4. PEtALS is built with and on top of agile technologies such as:

− The Java Business Integration (JBI) v1.0 specification [11]. This is the Java standard for
enterprise application integration. PEtALS has recently been certified by SUN
Microsystems as a valid JBI implementation.

− The Fractal Software Component Framework provided by the OW2 consortium5. Fractal
is a modular and extensible component model that can be used with various
programming languages to design, implement, deploy and reconfigure various systems
and applications, from operating systems to middleware platforms and to graphical user
interfaces [5] [6]. From the PEtALS’s point of view, all the container services (such as
service registry, message router, message transporter, discovery, etc.) are implemented
as Fractal components. This is a major feature which allows core developers to
specialize a PEtALS distribution by choosing the software components to be used for
specific needs.

The main PEtALS feature is the extension of the JBI specification by providing a distributed
support for the JBI platform.

Figure 3: The Distributed PEtALS ESB

Figure 3 shows that several PEtALS containers distributed across several nodes are
equivalent to a single unified PEtALS container. This transparent distribution approach
ensures that all services remain accessible just as in a typical standalone JBI environment.
When other JBI implementations provide a distributed approach by connecting their JBI
containers with the use of JBI Binding Components plus huge configurations, PEtALS
provides this feature natively without any additional configuration. This distributed behaviour
is provided by the following software components:

− The technical registry. The PEtALS JBI services, endpoints, interfaces, WSDL [21]
descriptions and container location (physical network address) are stored in the technical
registry. This registry is used by the PEtALS container to register services and to route

4 See http://petals.ow2.org
5 See http://fractal.ow2.org

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 18 of 69

the JBI messages to the right endpoint. The registry entries are replicated among all the
PEtALS nodes using a Distributed Hash Table over a multicast channel. This is
equivalent to data flooding between registries, i.e., when an entry is added to the registry,
the data is sent to all the network registries. In this way, all the registries have a complete
view of the services hosted by all the containers. This approach is the base of the unified
bus but the currently used multicast technique is not scalable. In SOA4All, we will tackle
this current scalability issue by using the OW2 ProActive technology as described in next
Sections 4.1.2 and 4.1.3.

− The message transporter. This layer is not defined in the JBI specification. Its role is to
exchange JBI messages between containers. In a standard JBI implementation, the
Normalized Message Router gets the local endpoint reference from the local registry and
sends the message to local JBI endpoint. In the PEtALS approach, once the endpoint is
retrieved from the local registry, the message and the endpoint reference are sent to the
transport layer which is in charge to deliver the message to the JBI endpoint independent
of the location of the container (local or remote).

PEtALS is not only a standard JBI container but in addition provides various frameworks,
components and tools for extension, service integration, management and monitoring
purposes:

1. The Component Development Kit (also named CDK) is a software framework which
abstracts all the JBI related API and provides an easy way to develop high
performance JBI components (Service Engines and Binding Components) with a
small set of Java classes.

2. All JBI components are based on the previously cited CDK framework. The actual
collection of PEtALS JBI components is composed of binding components (provide
connectivity to/from external services) such as SOAP, FTP, JDBC, and, as planned in
SOA4All, to the Semantic Space, and service engines (provide internal technical
services) like BPEL, BPMN, XSLT, EIP, RULES, or SCA.

3. The WebConsole is a Web GUI used to monitor and manage the PEtALS containers
(further detailed in Section 4.3). This tool provides a single access point to monitor
and manage all the distributed containers. The console is connected to the containers
through a JMX based data collector which is a mediator between the console and all
the PEtALS containers.

Beside JBI, PEtALS also supports the Service Component Architecture (SCA) [7] [16] as
standardized by the Open Composite Services Architecture (CSA) section of the OASIS
consortium6. SCA is promoted by a group of major companies including IBM, IONA, Oracle,
SAP, Sun and TIBCO working together in the Open Service Oriented Architecture (OSOA)
collaboration7.

SCA is a set of specifications for building distributed heterogeneous applications and
systems using the principles of Service Oriented Architectures (SOA) and Component-Based
Software Engineering (CBSE). SCA proposes a programming language-independent
hierarchical component model where components offer services, make references to
services supplied by others, provide configurable functional properties, and are combined
together by composites which wire references to services. Wire references declaratively
apply bindings for communication methods and apply policies for aspects such as security
and transactions. As any hierarchical model, an SCA component can be implemented either
by primitive programming language entities (e.g., a Java class) or by an SCA composite.
SCA composites are declarative based on an XML-based architecture description language

6 http://www.oasis-opencsa.org
7 http://www.osoa.org

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 19 of 69

(ADL [13]). SCA extends and complements prior approaches to implementing services, and
SCA builds on open standards such as Web services.

Four main principles underlie the design of SCA and are meant to define a distributed service
computing environment which is as independent as possible from the underlying
technologies:

1. Independence from programming languages . SCA does not assume that
components are implemented with a unique programming language. Rather, several
language mappings are supported and support programming SCA components in
Java, C/C++, BPEL, Spring, COBOL, to name a few.

2. Independence from interface definition languages . SCA components provide
services and require references through precisely defined interfaces. SCA does not
assume that a single interface definition language (IDL) will fit all needs. Rather,
several IDL are supported such as WSDL and Java interfaces.

3. Independence from communication protocols . Although Web Services are the
preferred communication mode for SCA components, this solution may not fit all
needs. In some cases, protocols with different semantics and properties may be
needed. For such cases, SCA does not assume a fixed set of supported
communication protocols and it provides the notion of binding: a service or a
reference will be bound to a particular communication protocol such as SOAP for
Web Services, Java RMI, Sun JMS or REST.

4. Independence from non-functional properties . Non functional properties may be
associated to an SCA component with the notion of policy set (also referred to with
the term of intent). The idea is to let a component declares the set of policies (non-
functional services) that it depends upon. The platform is then in charge of
guaranteeing that these policies are enforced. So far, security and transactions have
been included in the SCA specifications. Yet, developers may need other types of
non-functional properties. For that, the set of supported policy sets may be extended
with user-specified values.

These four main principles make SCA an industrial SOA-centric model and standard
appropriate for SOA4All reference architecture, integration, and implementation activities.
SOA4All platform services designed and implemented in WP3 to WP6 and
compositions/orchestrations of business third-party services addressed in WP6 can be easily
encapsulated into SCA composites and components in order to benefit from the four main
SCA principles previously mentioned.

The support of SCA in PEtALS [22] is done in the context of the SCOrWare project8 [14]
founded by the French national research agency. This support is composed of two parts: 1)
An SCA deployment facility translating XML-based SCA descriptors into JBI deployment
descriptors and especially mapping SCA bindings to JBI binding components and 2) an SCA
SE hosting and executing SCA composites and components implemented in Java. Both
parts are implemented by reusing the LGPL open source FraSCAti SCA platform hosted by
the OW2 Consortium9 and mainly developed by INRIA. As PEtALS, FraSCAti is implemented
on top of the Fractal component model enhancing its extensibility and reconfigurability [18].

Annex A illustrates a simple integration use case showing how agile a system is built on top
of the PEtALS ESB.

8 http://www.scorware.org
9 Available at http://frascati.ow2.org

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 20 of 69

4.1.2 The ProActive Grid Technology: Quick Overview

ProActive hosted by the OW2 consortium10 and developed at INRIA, is a 100% pure Java
solution. More precisely, it is an asynchronous RMI such as active-object based library that
offers the notion of asynchronous calls with futures (a future is a promise to get back a
response) among distributed objects, extended with the possibility to handle transparently
group of objects [1] [2] and security (authentication, encryption, etc.) for inter-object
communications. The transport layer communication protocol used by ProActive remote
method invocation can be chosen at will (e.g., RMI, RMI over SSH, or pure HTTP, amongst
others). ProActive also implements a component-oriented programming model: a grid
extension of the Fractal model [3], also used within PEtALS, named Grid Component Model
(GCM). Active objects and components can be exposed as Web services if needed.

ProActive runtimes act as containers for active objects. Those runtimes are grid-aware in the
sense that they can be started remotely from any machine, using any remote access
protocol, taking in charge if needed all the required file transfers (i.e., Java version, ProActive
bundles, etc.) at the remote places using any file transport protocol. To cope with potential
firewalls or NAT addressing within an administrative domain, that may refrain from direct
point-to-point communication between any pair of ProActive runtimes, the description then
enactment of the deployment process can include some ProActive runtimes launched
typically on front-end machines and acting as relays for incoming and outgoing messaging at
the application level. The ProActive suite also includes a resource manager gathering
existing ProActive runtimes started automatically, e.g., at boot time to form an underlying
peer-to-peer network, ready to be used by applications on demand (what is called a peer-to-
peer computing grid). Such a peer-to-peer like computing infrastructure is the underlying
support for the SOA4All architecture.

ProActive runtimes, active objects and components are all equipped with some monitoring
capabilities: JMX-based probes are placed at the level of runtimes, and monitoring statistics
are gathered at the level of active objects or components. All those information can be
collected in a distributed, parallel way, using an extension of JMX connectors
(ProActive/JMX) [4], and are typically shown within some Eclipse-based application, the
ProActive-based IC2D tool.

4.1.3 SOA4All Distributed Service Bus

The aim of this section is first to explain how the DSB can benefit from ProActive features,
thus offering a grid-enabled extension of PEtALS and as a result the notion of a federation of
service busses. It also addresses for which purpose and how the DSBs interact with the
Semantic Space.

DSB and Federation of DSBs

The SOA4Alll Distributed Service Bus is the core infrastructure of the SOA4All project. One
of the WP1 main goals is to be able to address billions of services. In order to achieve this
goal, the SOA4All Distributed Service Bus will be based on robust technologies such as the
PEtALS Enterprise Service Bus and the combined use of ProActive. The current PEtALS
ESB will be extended in order to handle services at the Web scale (potentially billions of
services) where it is actually limited to the enterprise scale (hundreds to thousands of
services, and several tens of PEtALS containers). In more detail, we think the following is a
reasonable calibration of the expected scale:

• Billions of third-party services may exist, some of them are associated with a
semantic description and some are not, some are stored in the SOA4All Semantic

10 Available at http://proactive.ow2.org

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 21 of 69

Space and some are not; in any case, they exist and can be invoked independently
from SOA4All ;

• Thousands of SOA4All users are interacting with the SOA4All Runtime through the
SOA4All Studio (a tool that should offer more than one entry point into the DSB for
robustness and availability).

• Those users create several thousands of new SOA4All composite services involving
probably only a fraction (e.g., the most popular) of the billions of third-party services
and existing composite services. However, those composite services are hosted by
the SOA4All DSB, require one JBI endpoint per invoked external service, and their
semantic description and related information are stored and further looked for in the
Semantic Space.

• Besides, the DSB hosts all SOA4All Platform Services (e.g., the WP6 Execution
Engine), that might be available in several copies for robustness, availability and
performance.

The planned overall architecture of the SOA4All runtime is that of a federation of DSBs.
Indeed, we expect that some operators around the Internet (e.g., SAP, BT, Amazon, Yahoo,
and others) will allocate some computing resources hosting a middle-scale DSB, offering one
or several access points to their respective SOA4All end-users. The challenge is to
interconnect all such DSBs together so that SOA4All end-users benefit from the Internet wide
SOA4All infrastructure, and in a totally seamless manner. A composite service should be
able to use any existing third-party or SOA4All hosted composite service without being aware
of the actual location of it (local to the same DSB or hosted onto a remote one). The same
applies for the SOA4All Platform Services: sharing of load among these services of the same
type must be possible, without visible impact for the clients of such services, except an
improvement of the quality of service.

Our proposition is to rely on the GCM/ProActive distributed programming technology for
supporting the required extensions for the PEtALS bus acting as the core SOA4All
infrastructure. Key element in this idea is that PEtALS containers rely on GCM/ProActive
components in place of Fractal components whenever needed, in particular for the inter-
container message transport module of PEtALS. It might be necessary to define and to
implement a set of standardized APIs allowing the integration of a new DSB into the
federation. From an implementation viewpoint, this results in dynamically configuring the
underlying GCM/ProActive messaging application so that it includes the necessary routing
information to deliver messages to/from this new partner.

To be able to scale, the PEtALS ESB needs improvements on how it handles services
references. According to Section 4.1.1, a main limitation is the way the technical registry
replicates the service references in all the registries of the PEtALS network, based on
multicast. This requires that the bus is deployed within a single administrative domain, and it
is not very scalable, when several thousands of entries for services references must be
replicated in all the registries at the level of a single DSB, and even worse at the level of the
federation of DSBs.

The distributed registry management part of PEtALS will be redesigned and implemented as
a GCM/ProActive based application: message exchanges required by registry operations will
be handled as ProActive communications, thus benefiting from parallel, asynchronous,
secured interactions among remote containers. Additionally, to reduce the volume of
messages needed to maintain a coherent view of distributed registries over the federation,
transport of messages will be organized in a hierarchical manner. This means that the
transport module on which PEtALS containers of the federation will rely on a distributed and
hierarchically organized application capable to handle point-to-point and collective
communications be they intra or inter-DSBs. The use of GCM/ProActive for building such an
application has been validated previously [12] in a rather different setting: a runtime for a

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 22 of 69

parallel programming MPI-like library, using GCM/ProActive components.

Figure 4 below summarizes this vision. It also illustrates that the end-user through the
SOA4All studio, and the Generic API, will connect to the virtually flat and unique SOA4All
infrastructure. However, it will connect to its ‘preferred’ DSB. Whenever an endpoint
reference of a service hosted by PEtALS (in the figure: circles at the bottom of the JBI
components) indicates that the service is remote, then, a message to the service must be
triggered. It will be transported by the GCM/ProActive messaging module, using inter-DSBs
interconnections if needed.

Figure 4: Federation of DSBs Relying on GCM/ProActive-based Messaging

DSB and Semantic Space Interconnection

We just briefly recall the arguments that drive our motivation to connect the federation of
DSBs to the Semantic Space infrastructure (see Deliverable D0.1 and Deliverable D1.3.1A
for additional details).

1. It will serve as a shared store of semantic information associated to services,
(interfaces semantic description, monitoring, annotations information, etc), specifically
to SOA4All composed services that are hosted by the DSBs.

2. It can serve as an event-driven publish-subscribe mechanism in order to define an
alternative to the client-server service interaction mode. Section 4.1.4 further
develops how a service composition along the SCA model, relying on semantic-space
based publish-subscribe interaction protocol can be effectively expressed, and further
translated according to the JBI specification in PEtALS.

We will develop two complementary ways to exploit Semantic Spaces in the context of
PEtALS ESB:

• Implementing a specific JBI Binding Component. The Binding Component is then in

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 23 of 69

charge of translating JBI messages to/from triples and then interacting with the space.
The component needs to be configured to listen to the space and to publish data into
the space. This configuration is based on the JBI Service Unit capabilities. An example
of configuration could be ‘the JBI endpoint E publishes JBI messages to the space into
a triple with pattern P’ or ‘the component listens to space notification with pattern P and
sends JBI messages to the JBI service S’.

• Implementing a new inter-container message transporter. Thanks to the agile PEtALS
architecture, a new message transporter based on the space message transport
facilities can be plugged to the bus. This approach is not JBI compliant and needs
evolutions on the PEtALS side but is more flexible and needs fewer configurations than
the Binding Component solution one. We can imagine that all the activated endpoints
are then reachable from any JBI service consumer on a 1 to N communication way.
This approach will lead us to an event-driven architecture. To satisfy this, when a JBI
endpoint is activated on one PEtALS container, the endpoint activation service
registers specific space listeners. The listeners must take care of the JBI endpoint
definition (a service name, an endpoint name, an interface name and a WSDL
description). As a result, once a message is published into the space by a PEtALS
container, which means that a JBI service is invoked, listeners will be triggered and the
associated JBI services will be invoked.

Figure 5: Federation of DSBs Connected with a Semantic Space Infrastructure

The Semantic Space itself is defined in Deliverable D1.3.1A and its foreseen implementation
will be achieved by using the ProActive technology and programmed using active objects.
Nodes constituting the back bone of the Semantic Space will thus be ProActive nodes
(depicted by dotted lines rectangles in Figure 5 above). The back bone itself will be a
possibly growing set of machines (along peer-to-peer grid computing or cloud computing
principles). Note that ProActive nodes hosting the PEtALS containers and those hosting the
Semantic Space nodes will not have to be co-located on the same computers. Of course,

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 24 of 69

from the DSBs federation viewpoint, the space will be a virtually unique and flat object and
the space binding component will be the gateway to access it. The precise definition of the
API to be offered by this new binding component will be conducted in the next months (it will
enable to store and lookup information in the space, or to register to events). Its
implementation will have to comply with the technology used to deliver the space. As the
space will be developed using ProActive, resulting messages have the BC or the message
transporter interact with the space (small black arrows in Figure 5) will be in fact ProActive
messages.

4.1.4 Using Semantic Spaces at the SCA Application Level

Traditionally, distributed service-oriented applications are built on top of WSDL, SOAP and
HTTP technologies. As shown in Figure 6, a service is described with WSDL and
implemented by a provider, and then consumers use the same WSDL service contract to
interact with the service through a SOAP/HTTP communication channel.

Communication via
SOAP over HTTP

Consumer
Component

ConsumerComposite

Reference Provider
Component

Service

ProviderComposite

WSDL
Service Contract

providesrequires

Communication via
SOAP over HTTP

Consumer
Component

ConsumerComposite

Reference Provider
Component

Service

ProviderComposite

WSDL
Service Contract

providesrequires

Figure 6: SCA Web Services Binding

Even if this traditional approach is widely accepted, it raises some issues:

• Only a client/server communication style . This approach only allows client/server
communication interactions where a consumer (or a set of) invokes the service provider.
But other communication styles like publish/subscribe or event-based ones can be more
appropriate for certain distributed service-oriented applications.

• Only a common service interface . This approach imposes that the consumer uses the
same WSDL service contract that the provider implements. However, in integration use
cases, an already existing consumer can have a different interface and then an adapter
between the consumer and provider interfaces is required.

• Only known service provider endpoints . Consumers need to know the exact service
provider endpoint (or physical network address) in order to invoke the service. This
avoids dealing with load balancing of consumer requests between different providers, or
fault tolerance when the provider crashes; an issue with traditional SOAP/HTTP.

• Synchronicity . The provider must always be active (under execution) when consumers
send service requests. However, it could be useful to allow consumers to send requests
before the provider is active, and then these requests must be buffered by the
communication layer until the provider is available.

• A weakly adaptable approach . Finally, we could expect that a large-scale distributed
service computing environment as the SOA4All DSB provides more adaptability than
traditional Web services technologies. For instance, providing different communication
styles (client/server, publish/subscribe, event-based, semantic-based, etc.), allowing
having different WSDL contracts at both sides and making the adaptation transparent,
load balancing of consumer requests between various providers, supporting anonymous
and asynchronous service interactions, selecting the service provider according to the
context of service consumers.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 25 of 69

To address these issues, the SOA4All DSB integrates Semantic Spaces (specified in
Deliverable D1.3.1A) as a large-scale distributed support for interaction and coordination
between service providers and consumers. The rest of this section presents two
complementary approaches for integrating Semantic Spaces and SCA: 1) the SCA Semantic
Space Component and 2) the SCA Semantic Space Binding.

The first approach, called SCA Semantic Space Component and illustrated in Figure 7, must
be used when SOA4All platform services or composite services require using the complete
Semantic Space API to realize their functionalities, e.g., using Semantic Spaces as a shared
RDF metadata repository. This approach consists of encapsulating the implementation of
SOA4All Semantic Spaces into an SCA component. This approach inherits all benefits from
SCA like 1) providing a declarative architectural view of the integration thanks to the XML-
based SCA ADL and existing Eclipse STP SCA graphical tooling11, 2) configuring the
behaviour of the Semantic Spaces implementation via SCA component properties, and 3)
applying non-functional properties (like security, transactions, or logging) via SCA intents and
policy sets. This SCA component provides the API of Semantic Spaces defined in
Deliverable D1.3.1A as an SCA service. It must be included into all SCA composites
requiring using Semantic Spaces, and then it can be seen as a local access point to
distributed Semantic Spaces. Consumer and provider components are wired to their local
SCA Semantic Space Component and use directly the whole API of Semantic Spaces to
interact and coordinate.

Figure 7: SCA Semantic Space Component

The second approach, called SCA Semantic Space Binding and illustrated in Figure 8, must
be used when SOA4All platform services and composite services would like to interact
through services invocations transported by a Semantic Space but they do not require using
the Semantic Space API directly. This approach consists in providing a new SCA binding
using Semantic Spaces as SCA communication channels. The main idea is to bind provider
services and consumer references to a same Semantic Space in order to transparently
deliver consumer requests to the service provider. From the provider’s point of view, binding
an SCA service to a Semantic Space means subscribing to this Semantic Space for
receiving incoming requests, then handle Semantic Space notifications as service
invocations, and writing back to the Semantic Space the result of the service invocation.
From the consumer’s point of view, binding an SCA reference encompasses the translation
of service invocations into a triple written in the Semantic Space, and then subscribing to the
Semantic Space to receive the result of service invocations. Then, service invocations of the
SCA consumer component are transparently sent to the SCA provider component. Annex B
provides the specification of the XML Schema for SCA Semantic Space Binding and
illustrates its usage on the definition of SCA provider and consumer composites.

11 see http://www.eclipse.org/stp/sca

Consumer
Component

ConsumerComposite

Provider
Component

ProviderComposite

SOA4All
Semantic Spaces

SOA4All
Semantic Spaces

SemanticSpace
Component

SemanticSpace
Component

Consumer
Component

ConsumerComposite

Provider
Component

ProviderComposite

SOA4All
Semantic Spaces

SOA4All
Semantic Spaces

SemanticSpace
Component

SemanticSpace
Component

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 26 of 69

Figure 8: SCA Semantic Space Binding

The two complementary approaches presented in this section will be implemented in the
OW2 FraSCAti SCA platform which is integrated into the OW2 PEtALS distributed ESB as
discussed in Section 4.1.1.

4.2 SOA4All Deployment Facility
4.2.1 Motivations

At runtime, the SOA4All distributed service computing environment is composed of various
software technologies: the SOA4All DSB composed of PEtALS nodes, Semantic Space
nodes and the ProActive middleware running on top of Java Runtime Environments (JRE),
SOA4All platform services deployed on and accessible via the SOA4All DSB, web servers
running the whole SOA4All Studio and its components, semantic repositories, database
servers, and so on. The SOA4All Deployment Facility provides an automated support for the
deployment of all the software involved in the SOA4All distributed infrastructure (cf. Annex C
for a complete list).

Deployment encompasses all the activities to upload, install, configure, and launch software
and service artefacts onto physical nodes automatically. These artefacts are at least
business services, components, processes, and workflows, but also encompass the whole
underlying runtime infrastructure containing system libraries, language runtime, database
servers, middleware services, application servers, process/workflow engines, and all their
software dependencies.

Deployment of service-oriented systems as the SOA4All environment on large-scale
infrastructures like the Web poses difficulties for users as they have to deal with a lot of
deployment issues (often manually): 1) the heterogeneity of physical nodes (e.g., various
operating systems and network protocols) where software is deployed, 2) the diversity of
service-oriented technologies used to develop and deploy services (e.g., SCA [16], JBI [11],
OSGi [17], JEE [19], .NET, etc.), 3) the efficient orchestration of all the deployment activities
(uploading, installation, configuration, launching, etc.) required to place individual
software/service artefact or complete stack onto a target system, 4) the correct management
of dependencies between services and underlying infrastructure software, 5) the static
verification of software deployment configurations in order to early detect errors before
enacting deployment activities, and 6) the scalability to tackle large scale systems composed
of thousands of physical nodes. Currently, large-scale deployments are a significant
challenge for end-users as they must deal with all these issues manually, i.e., this is often
error-proven and time consuming. The SOA4All Deployment Facility targets to address all
these previously mentioned challenges.

4.2.2 Overview

The SOA4All Deployment Facility provides a uniform, declarative, user-friendly, and
automatic support for the deployment of all software composing the SOA4All infrastructure
(i.e., SOA4All DSB nodes, SOA4All platform services, and SOA4All Studio servers – cf.
Annex C for more details). Based on a graphical language and its associated design-time
GUI, users are aided in describing i) the set of physical nodes composing the distributed
target system and their properties (their network address, supported network protocols,
operating system, etc.), and ii) the software/service artefacts to deploy and their properties

SOA4All
Semantic Space

SOA4All
Semantic Space

Consumer
Component

ConsumerComposite

Reference Provider
Component

Service

ProviderComposite

SOA4All
Semantic Space

SOA4All
Semantic Space

Consumer
Component

ConsumerComposite

Reference Provider
Component

Service

ProviderComposite

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 27 of 69

(the target node, the location of artefacts to upload, the installation place, software/service
configuration parameters, and dependencies to other software and services). The SOA4All
Deployment Facility enables execution of these users’ descriptions in order to deploy
SOA4All software stacks onto the distributed target system automatically, i.e., without
requiring human interventions. The SOA4All Deployment Facility supports:

• The diversity of service-oriented technologies – In a world-wide multi-providers
context as SOA4All, several service-oriented technologies are used to develop and
deploy SOA4All services. The SOA4All Deployment Facility supports commonly used
technologies as BPEL, JBI, SCA, OSGi, JEE, etc. However the SOA4All Deployment
Facility is extensible by plug-ins to support any other kind of technologies. A particular
attention will be provided to support deployment of the SOA4All DSB, platform services,
Studio, and of technologies used by SOA4All use cases (WP7, 8 and 9).

• The orchestration of deployment acts – Deploying software/services automatically
requires executing several kinds of activities like installation of software and service
artefacts onto target nodes, configuration of services and software, as well as launching
them. Installation refers to making the provisioned service or software stack known or
available to the operating system on target nodes. Installation can encompass sub
activities like uploading service and software artefacts onto distant target nodes via
remote file transfer protocols, unpacking/uncompressing software archives into the right
target directory, etc. Installed software stacks and services might not be ready for use.
Configuration is making installed services or software stacks ready for use. Configuration
typically requires setting both system-specific and business-specific information of the
installed software and services. Finally, launching is making software and services
available for runtime use. The SOA4All Deployment Facility provides an extensible
support for commonly used deployment activities such as installation, uploading,
uncompressing, configuration, and launching services. New activies can be added as
plug-ins as required.

• The management of software and service dependencies – One software or service
often depends on others or underlying software stacks (e.g., an SCA business composite
must be executed on top of an SCA-compliant runtime platform, or a service can use a
database hosted by a database server). The SOA4All Deployment Facility provides the
capability to describe dependencies between services and underlying software stacks,
and to manage them automatically during distributed deployment.

• The variety of software and service artefact packag ing formats – Various formats for
packaging and delivering software and service artefacts exist (e.g., .zip, .tar, .tar.gz, and
.rpm archives). The SOA4All Deployment Facility supports these commonly used
packaging formats, and support for other formats will be added as plug-ins as required by
SOA4All use cases.

• The heterogeneity of network protocols and operatin g systems – In a distributed
system at the scale of the Internet, several network protocols are available to transfer
service and software artefacts and to submit atomic deployment commands to remote
target nodes. The SOA4All Deployment Facility supports commonly used protocols like
FTP, HTTP, JMX, SCP, SFTP, SSH, and Telnet. Other protocols will be supported as
plug-ins according to requirements of SOA4All use cases.

As shown in Figure 9, the SOA4All Deployment Facility is composed of the following five
elements:

• The SOA4All Artefact Repository

• The SOA4All Deployment Description Language

• The SOA4All Deployment Design-time GUI

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 28 of 69

• The SOA4All Deployment Engine

• The SOA4All Deployment Runtime GUI

Figure 9: The SOA4All Deployment Facility

4.2.3 The SOA4All Artefact Repository

The SOA4All Artefact Repository is a repository where software and service artefacts (e.g.,
archives, binaries, etc.) can be stored and retrieved. At development time, this repository is
filled by developers providing software and service artefacts and their associated metadata
(e.g., name, version, author, system requirements, artefact dependencies, etc.). At
deployment time, the SOA4All Deployment Engine queries this repository for retrieving
software and service artefacts according to metadata defined into SOA4All deployment
descriptions.

Different implementations of this component are to be considered as standard HTTP or FTP
servers, Maven repositories, file systems, or databases to store SOA4All artefacts. We will
build this component on top of the SOA4All Semantic Spaces (Deliverable D1.3.1A) in order
to store semantic metadata attached to SOA4All artefacts and retrieve them via semantic
queries.

4.2.4 The SOA4All Deployment Description Language

The SOA4All Deployment Description Language allows users to express SOA4All
deployment descriptions, and can be seen as a kind of Architectural Definition Language
(ADL [13]). With this language, SOA4All administrators describe the distributed service-
oriented systems they want to deploy. These descriptions contain i) the set of physical nodes
composing the distributed target system and their properties (their network address,
supported network protocols, operating system, etc.), and ii) services to deploy and their
properties (the target node, the required artefacts to upload, the installation place, service
configuration parameters, and dependencies to other services and software). The SOA4All
Deployment Engine consumes these descriptions in order to deploy described distributed

SOA4All
Deployment
Description

SOA4All
Artefact

Repository

SOA4All
Deployment

Engine

target
system
before

target
system
after

S1 S2

S3 S4 S5 S6

Design-time GUI Runtime GUI

Generates

Consumed

Controls

SOA4All
Deployment
Description

SOA4All
Artefact

Repository

SOA4All
Deployment

Engine

target
system
before

target
system
after

S1 S2

S3 S4 S5 S6

Design-time GUIDesign-time GUI Runtime GUIRuntime GUI

GeneratesGenerates

Consumed

ControlsControls

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 29 of 69

service-oriented systems automatically.

Annex D gives an example written with a user-friendly but extremely simple SOA4All
Deployment Description Language. However, this language can take more complex forms
like EMF meta-models, XML-based Schema, or EBNF, but then descriptions could become
less human-readable.

4.2.5 The SOA4All Deployment Design-time GUI

The SOA4All Deployment Design-time GUI is the user interface that allows SOA4All
administrators to graphically design their SOA4All deployment descriptions instead of writing
them directly with the SOA4All Deployment Description Language. Before deployment time,
administrators use this GUI to define graphically the distributed service-oriented systems
they want to deploy, and the GUI generates SOA4All deployment descriptions conform to the
syntax of the description language.

The following image (Figure 10) illustrates a possible ad hoc graphical notation for designing
SOA4All deployment descriptions. This example represents a complex distributed SOA-
based travel agency system composed of two Web applications running on two Tomcat
containers and ten JBI components distributed on three PEtALS servers, the whole system is
deployed on three physical nodes. In the context of such complex distributed systems, the
graphical notation must allow administrators to focus firstly on the composition of the whole
system (i.e., dependencies between services and software, relations between software and
physical nodes), and secondly on the properties of each individual service/software/host.

Figure 10: Illustration of a Graphical Notation for SOA4All Deployment Descriptions

Moreover, the SOA4All Deployment Design-time GUI must also apply static verifications on
users’ descriptions to avoid describing systems not deployable. This encompasses checks to
verify that 1) all mandatory properties of each service/software/host are set like the host,
archive, home, host, hostname, petals, transfer, protocol properties in the
example of Annex D, and 2) no conflicts between service/software to deploy exist like
deploying a Java-based service on a node where no JRE is deployed, or deploying two
services using same Internet ports to receive client requests, etc.

Various graphical notations could be considered for the SOA4All Deployment Design-time
GUI. We will focus next implementation efforts to support the non standard graphical notation
used in Figure 10, but also the more standard and widely accepted OMG UML Deployment
Diagrams graphical notation [15]. This GUI will be implemented on top of the Eclipse IDE in
order to benefit of its portability and graphical capabilities. Note that this GUI can not be

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 30 of 69

included into the SOA4All Studio as one of its components because this GUI will be used to
describe how to deploy the whole SOA4All platform including the SOA4All Studio and so
before the SOA4All Studio and its components are deployed and available to use.

4.2.6 The SOA4All Deployment Engine

The goal of the SOA4All Deployment Engine is to deploy distributed service-oriented
systems automatically. At deployment time, SOA4All administrators provide SOA4All
deployment descriptions as inputs for the SOA4All Deployment Engine. This engine queries
the SOA4All Artefact Repository to retrieve required software and service artefacts according
to metadata defined in SOA4All deployment descriptions. Finally, this engine executes the
deployment onto the distributed target system automatically, i.e., uploading and installation of
software artefacts, configuration and launching software and services according to their
dependencies.

The SOA4All Deployment Engine can be accessible as a service, allowing for instance the
SOA4All Deployment Runtime GUI and any other programs to control it remotely. Moreover
the SOA4All Deployment Engine can be distributed on several nodes for addressing load
balancing and efficiency issues. Finally, this engine must be extremely extensible in order to
support various deployment technologies, deployment acts, network transfer and access
protocols, service artefact packaging formats, etc.

For all these reasons, the SOA4All Deployment Engine is implemented on top of
DeployWare/FDF, an open source framework12 developed by INRIA and dedicated to
deployment of large-scale distributed and heterogeneous software systems [9] [10].
DeployWare is a deployment-specific meta-model to specify any kind of distributed and
heterogeneous software system deployments and to verify some safety properties statically.
FDF is the virtual machine to execute and manage concrete deployments addressing
heterogeneity, orchestration, and scalability challenges. As PEtALS, FDF is implemented on
top of the Fractal component model [5] [6] in order to be highly extensible and dynamically
configurable.

4.2.7 The SOA4All Deployment Runtime GUI

The SOA4All Deployment Runtime GUI is the user interface to control the SOA4All
Deployment Engine. This interface allows SOA4All administrators to load SOA4All
deployment descriptions into the SOA4All Deployment Engine, and to control the deployment
of the described distributed service-oriented systems. Figure 11 illustrates what the look and
feed of the GUI would be. The left panel allows users to navigate into SOA4All deployment
descriptions loaded in a SOA4All Deployment Engine. The right panel provides a graphical
view of the dependencies between services, software, and physical nodes. A toolbar and
popup menus allow users to execute deployment acts, as installation, starting, stopping, and
deinstallation of services and software stacks.

12 A preliminary version is available at http://fdf.gforge.inria.fr.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 31 of 69

Figure 11: Illustration of the SOA4All Deployment Runtime GUI

The implementation of the SOA4All Deployment Runtime GUI will be based on the existing
DeployWare/FDF Explorer GUI, and will be extended to be a Web 2.0 user interface
integrated into the SOA4All Studio.

4.3 Monitoring Platform
SOA4All envisions a Web of services where billions of services are seamlessly provided and
consumed by billions of users over the Web. This ambitious goal necessarily requires the
inclusion of advanced monitoring and management mechanisms able to propagate and
derive detailed information about the execution of services as well as offering the means for
controlling or adapting the runtime infrastructure to better deal with ongoing situations. In this
section we shall present the architectural decisions adopted in order to provide fully
advanced monitoring and management facilities for SOA4All. This will be provided by what
we refer to as the monitoring platform which will support the monitoring and management of
the SOA4All infrastructure, the monitoring and management of SOA4All composite services
(processes or mashups), and the monitoring of external services invoked through the
SOA4All runtime infrastructure.

The information generated by the monitoring platform is required and consumed by the
Service Analysis Platform, described in D2.3.1. Among these requirements we can find:

• Scalable storage and querying of monitoring information

• Notification mechanism of monitoring events

• Execution of management commands

To address these requirements, the DSB will provide several data collectors which will be
accessible to other parts of the architecture, specially the Analysis Platform of the SOA4All
studio.

• Bus collector. Includes the higher level information of the nodes hosting the DSB.
This kind of information can be obtained through the current PEtALS data collector,
which works as a monitoring entry point in a PEtALS bus architecture, allowing
collecting data about the message exchanges among the service components;
finding the containers involved in a specific service, and collected statistics related to

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 32 of 69

this service. This kind of collector will be extended along with the DSB
implementation, permitting to extend this statistics collector to the federation of DSBs.

• Grid collector. Details about the infrastructure used by the DSB architecture. This
includes nodes and clusters used for hosting the DSB services. This kind of
information can be obtained from the ProActive nodes hosting the DSB and the
Semantic Space through JMX notifications which can be subscribed by a client
application (for example, IC2D), and derive lower-level details like process load in the
machines, CPU/memory usage, or number of nodes involved in a computation.

• Engine collector. Information on the services accessible through the SOA4All runtime,
which can be single services currently hosted on the DSB, external third-party
services which are being accessed through the DSB facilities, or compositions of
services which are also finally hosted on the DSB. For capturing information on these
compositions, the implementation SCA composites can be instrumented with probes
and actuators that gather information on the involved components and expose this
information to the collector.

In the remainder of this section we will present these details by addressing i) the techniques
for generating raw monitoring information; ii) the technologies utilised for propagating this
information to interested components; iii) the approach for processing the information; iv) the
means for storing this information; and v) the ways through which monitoring and
management functionality will be offered to applications.

4.3.1 Raw Monitoring Data Generation

Raw monitoring data generation is concerned with the generation of information at runtime
about the ongoing execution of software components. As previously introduced, three main
kinds of components being monitored are distinguished: SOA4All composite services,
external services being invoked through the SOA4All runtime as part of the execution of
some composite service, and the SOA4All runtime infrastructure. The nature and the control
over each of these types of components differ, thus, the capability for controlling what
information can be generated varies.

Data Generation for Composite SOA4All Services

Monitoring composite services (processes or mashups) defined within SOA4All is a must
from the perspective of the user or company that defined the service in the first place, as well
as from the perspective of the user or company consuming it. Composite services have the
particularity that they are domain-specific user-defined orchestrations of services. There are
therefore (virtually) no limits with respect to the kinds of orchestrations that can be defined
and nothing can be assumed about them. On the other hand however, they are specified
using SOA4All technologies and executed by SOA4All components. We therefore know their
definition (what process they have to perform) and we have control over the components
orchestrating their enactment (e.g., Process Execution Engine, Discovery Engine).

We previously defined in the context of the project SUPER (IST-026850), the Core Ontology
for Business pRocess Analysis (COBRA), and a reference Events Ontology (EVO) that
provides a set of definitions suitable for capturing monitoring information from a large variety
of systems [32]. EVO was successfully applied in SUPER and used to monitoring business
processes enacted by an open source BPEL execution engine [36]. We shall therefore reuse
the same conceptual model as a starting point for capturing logs of composite services within
SOA4All. To do so, it will be necessary to ensure that the Process Execution Engine devised
in WP6 generates logs in the aforementioned format which will be adapted for being
represented in RDF/RDFS. As a result we shall be able to ensure that an important part of
previous research can be used as a solid basis for supporting monitoring in SOA4All. More
details how these conceptual models will be used for supporting higher-level analysis are
presented in Section 4.3.4 when it comes to architectural and infrastructural concerns and in

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 33 of 69

D2.3.1 for user-defined domain-specific monitoring and analysis.

Data Generation for External Services

The execution of simple or composite services defined within SOA4All will eventually involve
the invocation of services (Web Services, RESTful services, or any service provided by the
PEtALS ESB connectors) owned by a third party and deployed in a server we do not have
access to other than for service invocation. For this kind of services, the only aspects we can
monitor are therefore the interactions the SOA4All runtime infrastructure has during the
enactment of SOA4All services.

The information we shall capture is therefore the messages exchange with remote services.
Messages both sent to and received from external services during invocation through the
DSB will be forwarded to the monitoring infrastructure.

Data Generation for the Runtime Infrastructure

Monitoring the SOA4All infrastructure can address the needs for IT personnel devoted to
identify problems or bottlenecks. We understand as runtime infrastructure both the
communication and storage platform provided by the DSB as well as the infrastructural
services such as the Discovery Engine or the Process Execution Engine. Both cases have
the specificity that they are designed and developed within the project. We can therefore
ensure that they generate the monitoring information we may require using the protocols and
formats we establish. Furthermore, as we shall describe in more detail in Section 4.3.4, we
know what their purpose is and how they work internally and we can therefore devise specific
monitoring modules for controlling them.

Infrastructural services can basically be seen as very specific and well-known processes that
are recurrently enacted for supporting the interactions with the user. This includes the
execution of user-defined composite services, or intermediate activities like discovering
services. The generation of monitoring information about the execution of infrastructural
services will be implemented by the container, which produces logs in container format and
transforms into EVO based format. The information logged shall constitute the basis for
analysing the execution of infrastructural services, with the particular specificity that the
process is well-known in advance and we can therefore embed additional knowledge for
detecting, diagnosing and correcting deviations. The service container also exposes specific
APIs for access to the monitoring data of infrastructural services.

4.3.2 Monitoring Data Communication

The information gathered at runtime using the techniques outlined in the previous section
need to be forwarded to interested components for further processing. This includes
monitoring data processing components that aggregate the data or process it in order to
detect, predict and possibly correct relevant situations (e.g., anomalies, etc), as well as
monitoring data visualization software that will take both raw and derived information and will
display it in a form that is better suited for being analysed by humans (e.g., charts).

Indeed, neither all captured information is relevant to every component, nor relevant
information does not always need to be processed at the same time. Critical information
should be available for further processing as soon as possible whereas information which is

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 34 of 69

not that important can be processed at later stages. Finally, there may be several distributed
components interested about certain monitoring data. In order to cater for this, monitoring
data will be communicated by two main modes i) on demand by querying for concrete
monitoring data through the monitoring API (see Section 4.3.5); and ii) automated notification
when relevant monitoring information has been generated.

Figure 12: DSB Node Monitoring

Because the SOA4All infrastructure will immerse in a Web-based open environment, Fractal
monitoring service exposes WS-Notification (WSN) [26] based monitoring API which can be
consumed by monitoring tools such as the PEtALS Web GUI (as shown in Figure 12). WSN
specify the interaction based on publish/subscribe pattern which can be used alongside the
fundamental request/response pattern in service-oriented system. Fractal monitoring service
will play a role as notification producers stated in WSN specification, while either the Web
GUI or data aggregator (vide infra) will work as notification consumers.

Due to the inevitable Heisenberg Effect [27] resulting from the intrusiveness of software
based monitoring, data communication should be controllable and configurable. Thanks to
the additional benefits brought by WS-Topics [28], another member of WSN family, the
category hierarchies of events can easily be described, and subscriptions can be appended
by a topic filter which is used to restrict monitoring data propagation to the degree to which
the service bus can endure the invasion. Consequently, risks of over-consumption of system
resources are reduced.

Figure 13: Monitoring Data Aggregator

In order to implement global monitoring, a data aggregator is set up (as shown in Figure 13),
which works as the notification broker defined in WS-Brokered Notification [29]. A notification
broker can be regarded as both notification producer and consumer, namely, it subscribes to
notifications produced by some producers (the PEtALS containers) and also publishes them
to some other consumers (the monitoring console). As a result, the proposed data
aggregator subscribes to events produced the aforementioned bus, grid and engine
monitoring data collector and transfers them to the Web console.

4.3.3 Monitoring Data Storage

Monitoring data storage refers to publishing both the raw monitoring data and analysis
results to the Semantic Space. As specified in D1.3.2A, the Semantic Space infrastructure
provides an open, scalable and distributed storage approach for semantic data. RDF
encoded monitoring data and analysis results will be accessible both internally and externally
so as to achieve runtime monitoring from an overall point of view.

The Web Service Distributed Management OASIS working group has published a set of
specifications which define how to use Web Services to manage modules and how to
manage Web Services with Web Services. These specifications will be used in the
monitoring platform to define the format of the monitoring data. As stated, COBRA and EVO
are two well-established ontologies and also will be re-used as the metadata of monitoring

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 35 of 69

data so that allows the instantiations to be serialized in RDF. Refer to Annex E for more
details about EVO. With support of Semantic Space, data aggregator or Web console can
retrieve relevant information by executing either triples pattern-based or SPARQL queries.

4.3.4 Monitoring Data Processing

The following components participate in processing gathered monitoring data, as shown in
Figure 14:

• Message Exchange Pattern (MEP) Detector

• Event Pre-Processor

• Notification Dispatcher

Figure 14: Components of Monitoring Data Processing

A MEP Detector recognizes patterns of message exchange during invocation of external
services and maps them to concepts in COBRA or EVO ontologies. MEP describes both
provider and consumer involved in a service call or operation and can be recognized by a
template of the sequence of message exchange. The W3C has already formalized Web
services message exchange into a set of patterns, i.e. In-Only, Out-Only, In-Out, Out-In,
Robust In-Only, Robust Out-Only, In Optional-Out, Out-Optional-In, etc [24][25]. In addition to
these pre-defined patterns, others adopted by the MEP detector will be documented in the
way proposed in [23].

The Event Pre-Processor carries out the necessary steps of event processing before it
arrives at the analysis platform, for instance, transforming event into the proper description
format. Furthermore, engines with support of active rules or event-condition-action rules (e.g.
Drools) can also help implementing diverse monitoring events processing modes:
continuous, on-demand and periodically. In this way, administrators can respectively specify
proper monitoring mode for every monitored object.

The Notification Dispatcher deals with issues of WSN-based notifications receiving and
forwarding. It also accepts subscription requests from the SOA4All Web Console.

4.3.5 Monitoring and Management Interface

The SOA4All Distributed Service Bus is based on monitorable and manageable technologies
such as PEtALS ESB or ProActive framework. The SOA4All monitoring and management
interface (namely SOA4All M&M API) will encapsulate these tools APIs (called low level
APIs) and add new functionalities so that it will be possible to manage and monitor all from a

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 36 of 69

common API.

As a result, the M&M API will expose entire or part of:

• The PEtALS management API: The PEtALS management API is built on top of the
JBI management API which provide capability to install/start/stop/uninstall JBI
components, activate/inactivate JBI endpoints, and perform other operations of JBI
endpoints.

• The ProActive management API: The ProActive monitoring and management API
uses a JMX connector to monitor the nodes, active objects or components hosting a
grid application, and obtain low-level data of the infrastructure. It is also able to
trigger actions on the provided Mbeans. Client applications, like the SOA4All M&M
API can subscribe to these events to get grid level information.

• SOA4All specific API. This API part provides all the capabilities which are not offered
by the low level ones and which have been introduced in the previous sections e.g.
monitoring data access, managing components, applying rules and filters, to name a
few.

The second M&M API part will expose monitoring data generated from low level APIs and
from SOA4All level data. Like in other monitoring modules introduced before, it is a good
choice to use the WSN specification family so that monitoring consumers can subscribe to
specific notifications/events provided by the bus. As an illustration, the PEtALS Enterprise
Service Bus JMX monitoring API provides data on service response time, service usage,
message content and more. The SOA4All monitoring layer will get this data and pre-process
it (filtering, statistics) before WSN API exposition.

The global monitoring API will embed some advanced processes which will be activated by
the management part of the M&M API. These processes will potentially correlate data from
different low level APIs to get more knowledge about how services and infrastructure
interacts together. Rules and filters can be applied to this correlated data, and triggers can
be registered to throw monitoring events/alarms when some goal is reached (alarms on CPU
or memory usage is a good example). As a result, we can imagine that services will be
migrated between nodes, new nodes will be deployed, or some runtime parameters will be
adaptively adjusted. In a coherent way, all of these processes and adaptations will be
activated with the help of the SOA4All management API.

Figure 15: SOA4All M&M API

As shown in the Figure 15, the SOA4All M&M layer wraps, processes, aggregates the low
level APIs and exposes a common monitoring and management API. Clients will connect to
this agnostic API to manage the DSB and to monitor it.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 37 of 69

5. Architecture Components and Interaction Matrix
5.1 Components
In the following we present briefly the different components of the SOA4All platform. The first
two are core infrastructure services that are delivered by WP1 and that are presented in
more detail in this deliverable and in D1.3.2A. The subsequent components are SOA4All
Platform Services, focused mostly to service provisioning respectively service composition
tasks. Besides a brief outline of the functionality and role of each component, the paragraphs
depict the objects a component consumes (i.e., takes as input), the objects it produces (i.e.,
offers to other components), and a list of the components it interacts with (as consumer or
producer of communication objects). The interactions between the various components are
explained in more detail in Section 5.2, while the conceptual models and further technical
details of the communication objects are given in Section 6.

5.1.1 SOA4All Distributed Service Bus

The Distributed Service Bus is the core infrastructure service of SOA4All and serves as
communication broker for the integration of the SOA4All Platform Services and third-party
business services.

• Consumes: JBI BC invocations, depending on the message format

• Produces: JBI BC invocations, depending on the message format

• Interactions: SOA4All Studio (Analysis Platform), all possible services

5.1.2 Semantic Space

The Semantic Space infrastructure serves as a global communication and coordination
infrastructure in which any piece of RDF data can be stored and shared. The infrastructure is
accessible via SOA4All DSB, and is thus exposed as an integral part of the core SOA4All
service infrastructure. The Semantic Spaces are for instance used to store semantic
annotation of Web services (cf. Service Registry). Furthermore it is also used to store
process descriptions, monitoring data or other semantic artefacts in RDF.

• Consumes: Service Descriptions (in RDF), Processes (in RDF), any artifacts in RDF,
SPARQL queries

• Produces: Service Descriptions (in RDF), Processes (in RDF), any artifacts in RDF

• Interactions: Distributed Service Bus (Monitoring), Service Registry, Design-Time
Composition, SOA4All Studio (Provisioning Platform, Process Editor)

5.1.3 WSML Reasoning Framework

This is a framework of robust and scalable reasoning components tailored for each of the
WSML language variants. A variety of interfaces allow for schema/instance reasoning,
satisfiability/entailment checking and query answering. The reasoning framework is mainly
used during discovery and composition, and is available as service to any entity in need of
reasoning support. The reasoning framework has links to the Service Registry, and the
Semantic Space infrastructure to load the necessary service descriptions and ontologies to
conclude the desired reasoning processes.

• Consumes: Service Descriptions (in WSML, RDF), Ontologies, Queries

• Produces: Answers to Queries (variable bindings, concept/instance values)

• Interactions: Service Registry, Semantic Space, Ranking, Discovery, Composition
Optimizer

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 38 of 69

5.1.4 WSMO Data Grounding

The data grounding component provides data lowering and lifting support for interoperability
between WSML and XML. There will be two types of data grounding implemented: runtime
and design time. The runtime grounding component will be used before and after invocation
of services and will provide two operations: Lowering - WSML message serialised to XML
using the pre-defined mapping schema (XSLT) -, and lifting - transforming the input XML
message into WSML using a predefined mapping schema (XSLT) -. The design time
mapping component provides functionality for semi-automatic generation of an ontology and
a mapping schema from an WSDL input description. From the input WSDL (more specifically
the XML schema describing the format of messages exchanged) a WSML ontology will be
auto-generated, together with the lifting/lowering mapping definitions that allow the
translation between the source XML and the target WSML. Additionally a GUI component will
be provided that will allow the user to "beautify" the auto-generated ontology and mappings.

• Consumes:

• Design time: Service description (WSDL), lifting/lowering mappings (XSLT,
XSPARQL)

• Runtime: Lifting/lowering mappings (XSLT, XSPARQL), XML or Ontologies
(WSML)

• Produces:

• Design time: Ontologies (auto-generated WSML), lifting/lowering mappings
(XSLT, XSPARQL)

• Runtime: XML, Ontologies (WSML)

• Interactions: Execution Engine (at runtime), SOA4All Studio (Provisioning Platform, at
design time)

5.1.5 Crawler

A crawler takes care of detecting technical descriptions associated with Services including all
related documents such as homepage, documentations, pricing and licensing information
etc. on the Web. The resulting output of this component is offered as a service to SOA4All
partners, but the component as such is not exposed as a Web service to the core SOA4All
platform. The resulting output from this component can be obtained in the form of (1) RDF
metadata stored in the Service Registry, or (2) data stored in Heritrix archive files. We
additionally develop a set of the simple access methods (crawler API) facilitating access to
both metadata and data. We consider currently to either providing Java API or the REST
endpoint with the set of methods allowing for retrieval of the crawled documents. The user
interface of the crawler allows defining all necessary parameters and requirements for the
crawler.

• Consumes: All necessary parameters to schedule focused crawl. Set of algorithms
allowing detection of required documents on the Web and deciding which links to
follow, and which to abandon.

• Produces: Service Description (WSDL) plus related documents, RDF metadata about
the documents, Service Description (WSMO-Lite, MicroWSMO)

• Interactions: SOA4All Studio (Provisioning Platform), Service Registry

5.1.6 Service Registry

The Service Registry is closely bound to the Discovery service, and is a dedicated
infrastructure to store and manage service descriptions. The provisioning platform upon user-
driven creation of a service annotation, and possibly the Crawler, publish service descriptions

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 39 of 69

in the repository, while the discovery service, but also the process generation components
access the repository. While the repository has no dedicated storage infrastructure bound to
it – this is up to a given repository realization – in SOA4All we apply the Semantic Space
infrastructure to store service annotations in RDF.

• Consumes: Service Descriptions (in WSMO-Lite, MicroWSMO), Service Identifiers

• Produces: Service Descriptions (in WSMO-Lite, MicroWSMO), SPARQL queries

• Interactions: SOA4All Studio, Discovery, Semantic Space

5.1.7 Discovery

The service discovery component enables users to find service appropriate for their needs.
For this purpose, it provides two types of discovery mechanisms, full text based discovery
and semantic discovery. Full text based discovery uses the Web service descriptions
(WSDLs) and related documents that were crawled by the crawler and allows users to
search for services by entering keywords (much like typical Web search engines). The
semantic discovery component allows users to enter a more structured goal (service
classification, pre-conditions and effects) and finds the service that match the goal by using
the reasoning facilities provided by WP3.

• Consumes: Service Descriptions (in WSMO-Lite, MicroWSMO), Goal, Keywords,
Service Identifiers

• Produces: Service Identifiers, Service Descriptions (in WSMO-Lite, MicroWSMO)

• Interactions: Service Registry, Crawler, Ranking, Design-Time Composer,
Composition Optimizer, Execution Engine, SOA4All Studio (Consumption Platform)

5.1.8 Ranking and Selection

The service ranking and selection component is responsible for ranking services according to
user preferences on the non functional properties of the services. This component offers two
types of ranking techniques (1) context-independent ranking and (2) context-dependent
ranking. The context-independent ranking component ranks the services on the basis of non-
functional properties that are of global nature whereas the context-independent ranking also
takes the user preferences into account

• Consumes: Service Descriptions (WSMO-Lite, MicroWSMO), User Preferences
(NFP),

• Produces: Service Descriptions (WSMO-Lite, MicroWSMO; ordered list)

• Interactions: Discovery, SOA4All Studio (Consumption Platform)

5.1.9 Design-Time Composer

The design-time composer component will carry out two closely related activities, namely
process adaptation and composition, offering thus two external interfaces, the Service
Composer and the Service Adapter.

• The Service Composer perspective is a scalable system for the flexible and ad-hoc
creation of complex services, the environmental context information, and user needs
(expressed using the lightweight modelling language).

• The Service Adapter is a subsystem for service context-based adaptation at design-
time. The first and basic usage of this tool is the adaptation of services according to
context (e.g. personal preferences, business rules, etc.), but also more advanced
dynamic adaptation procedures. Mechanisms such as incremental revealing of
services descriptions imply that not all the service characteristics have to be revealed
at once, but require a reciprocal knowledge, trust and a negotiation process between

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 40 of 69

parties.

The two activities are closely related, since both composition and adaptation will share the
same core of functionalities that are provided by a parametric design engine which will use a
catalogue of generic knowledge-level service templates and context-dependant
configuration.

• Consumes: Process, User goals and requirements

• Produces: Process

• Interactions: Discovery, Composition Optimizer, Template Generator, Execution
Engine, SOA4All Studio

5.1.10 Template Generator

In several complex industrial situations it is not possible to define an "a priori" template for a
process, either due to the complexity of the real situation or to the high effort required to
formalise such a template. The problem is thus to understand what is the typical workflow
followed by the various activities, in order to formalise their sequence in a composed
schema. The Template Generator will be able to analyse service execution logs and to
generate a hierarchy of process schemas (at different levels of complexity/completeness)
and a taxonomy of possible process templates (at different levels of abstraction), in order to
support end-users in the selection of the most suitable one. Such a tool will exploit state-of-
the-art process mining, process abstraction and clustering techniques in an innovative way,
in order to present the end-users with the most suitable template representations and let
them choose the one that most fits their needs. The selected template (described with the
SOA4All light-weight process language - D6.3.1) can be further validated, adapted or refined
by end-users thanks to the SOA4All Process Editor developed in Deliverable D6.2.1.

• Consumes: Services execution logs and monitoring data

• Produces: Process (abstract)

• Interactions: Distributed Service Bus (Monitoring), Design-Time Composer, SOA4All
Studio (Process Editor), Semantic Spaces (Execution Logs)

5.1.11 Composition Optimizer

Given an abstract lightweight process the composition optimizer aims at discovering an
optimal and executable lightweight process of Semantic Web services that achieves a
specific goal. Since an abstract lightweight process consists of generic goals, each goal
requires to be assigned with a relevant and executable Semantic Web service in order to
compute such an optimal and executable lightweight process. To this end, the composition
optimizer considers an innovative and extensible quality criteria model by coupling non-
functional quality of service and semantics of the executable lightweight process. On the one
hand the non-functional criteria of Web services are valued by means of Quality of Services
(e.g. execution price, response time, reliability, availability) while on the other semantics is
valued along the semantic links (i.e. data flow in an executable lightweight process) between
Web services. The latter criterion requires the WSML reasoning framework to i) give an
estimation of semantic matching between functional output and input parameters of services
and ii) estimate robustness issues (through a non-standard Description Logics inference) in
data flow of any executable lightweight process. In regards to the latter criteria the problem is
formalized as a Constraint Satisfaction Problem (CSP) with i) multiple constraints and ii) a
function to optimize. Towards such an issue we model an optimization problem COP
(Constraints Optimization Problem), adapted from CSP. Since one of our main concerns is
about optimization of large-scale executable lightweight process (i.e., many services can
achieve a same goal or functionality), we suggested to follow a Genetic Algorithm-based
approach which is faster than applying Integer Linear Programming.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 41 of 69

• Consumes: Process, Preferences (NFP), Monitoring data

• Produces: Refined Process

• Interactions: Design-Time Composition, Discovery, Reasoning Framework, Execution
Engine.

5.1.12 Execution Engine

The execution engine is an execution infrastructure for lightweight processes, adaptive to
environmental changes and flexible enough to allow its context-dependent self-
reconfiguration. In SOA4All the term "execution infrastructure for lightweight processes"
mainly refers to model and execute composite services and processes in a lightweight
manner as described in Deliverable D6.3.1. This execution infrastructure will exploit a set of
basic mechanisms such as dynamic discovery, selection, adaptation, invocation, monitoring
developed in the other work packages, for supporting the dynamic and adaptive
reconfiguration in reaction to environmental changes.

• Consumes: Process, Execution Values, Monitoring Data

• Produces: Effect of the execution

• Interactions: Design-Time Composer, Composition Optimizer, Discovery, Distributed
Service Bus, Data Grounding

5.1.13 SOA4All Studio

The SOA4All Studio consists of three main subcomponents that are described independently
of each other in the following for clarity.

Provisioning Platform: The Provisioning Platform has two main purposes. First, it provides
the necessary tools to annotate services, either WSDL services via WSMO-Lite, or REST
APIs via MicroWSMO. Second, it incorporates a Process Editor (Composer) that allows
users to create, modify, share, and annotate executable process models based on the
lightweight process modelling language defined in D6.3.1. The functional and technical
specification of the Provisioning Platform can be found in D2.6.1 (Process Editor)
respectively D2.1.3.

• Consumes: User Input (via GUI), Service Descriptions (WSMO-Lite, MicroWSMO,
WSDL, HTML), Process

• Produces: Service Descriptions (WSMO-Lite, MicroWSMO), Processes, User
Feedback (RDF)

• Interactions: Discovery and Location, Design-Time Composition, Template Generator

Consumption Platform: The Service Consumption Platform (D2.2.1) is the gateway for
users to the service world when they act as consumers. The platform allows them to
formalise their desires in several ways, defining and refining goals that can be used to
discover and invoke the services that fulfil their needs. The platform stresses the
characteristic of personalisation, making use of contextual factors to offer a more suitable
service consumption to the users, adapting the services and some characteristics in the
platform as well (e.g., the recommended Goals for different users, based on their past
experience within the platform).

• Consumes: User Input (via GUI), Goal, Service Descriptions

• Produces: Effect of execution, Execution Log (RDF)

• Interactions: Discovery, Ranking and Selection, Semantic Spaces

Analysis Platform: The Analysis module obtains information (monitoring events) from the
monitoring subsystem and performs processing in order to extract meaningful information.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 42 of 69

Monitoring events should come from data collectors that perform basic aggregation from
distributed sources in the runtime infrastructure; they can be JMX (or SOAP etc) notifications
coming from the DSB, the underlying grid and the execution engine. Other inputs contain
requests from SOA4All Studio components that will include the name of the
services/processes that need to be represented with analysis information.

• Consumes: Monitoring events (Execution Engine, Distributed Service Bus).

• Produces: Monitoring data (RDF)

• Interactions: Repository, Execution Engine, Distributed Service Bus, SOA4All Studio

5.2 Interaction Matrix
In this section we consider the various components of the SOA4All architecture in their
context to the other core infrastructure and platform services.

Figure 16: Interaction Matrix of SOA4All Platform Services

Figure 16 provide an interaction matrix that shows that dependencies between the different
components. The indicators ‘Produces’ and ‘Consumes’ have the same meaning as in
Section 5.1:

• Produces: the component to the left offers some object(s) to the component at the top
of the table; and

• Consumes: the component to the left takes as input some object(s) from the
component at the top of the table.

The relationships that are depicted in the interaction matrix are explained in terms of two
main process of SOA4All (cf. Section 7.4): discovery of a (semantic) service, and creation of
process.

The discovery process is triggered at the level of the SOA4All Studio where a user can
indicate a request (either some keywords for full text-based search, or a goal description of is
objectives). In other words, the SOA4All Studio provides a query interface for services to the
users, which is bound to the discovery component. Note that all interactions between various
services are performed via the SOA4All Distributed Service Bus. The discovery component
makes either use of crawled data (if keyword-based search was chosen), or uses the
reasoning framework in the case of goal-driven discovery. The service descriptions,
ontologies and further facts are loaded by the reasoning framework upon request by the

DSB Space WR DG C SR D R DTC EE TG CO Studio

DSB (Monitoring)
Produces Produces

Consumes/
Produces

DSB (Semantic Space)
Produces

Consumes/
Produces

Consumes/
Produces

Produces
Consumes/
Produces

WSML Reasoning (WR)
Consumes Consumes Produces Produces Produces

Data Grounding (DG)
Produces Produces

Crawler (C)
Produces Produces Produces

Service Repository (SR)
Consumes/
Produces

Produces Consumes Produces
Consumes/
Produces

Discovery (D)
Consumes Consumes Consumes Produces Produces Produces Produces Produces

Ranking (R)
Consumes Consumes Produces

Design-Time Composer (DTC)
Consumes/
Produces

Consumes Produces Consumes Produces Produces

Execution Engine (EE)
Consumes Consumes Consumes Consumes Consumes

Template Generator (TG)
Consumes Produces Produces

Composition Optimizer (CO)
Consumes Consumes Consumes Consumes Produces

SOA4All Studio
Consumes/
Produces

Consumes/
Produces

Consumes Consumes
Consumes/
Produces

Consumes Consumes Consumes Consumes

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 43 of 69

discovery engine. While the service descriptions are maintained in the service registry in
terms of WSMO-Lite and MicroWSMO data, the ontologies and facts are directly loaded from
the Semantic Space infrastructure. Note, that the service registry, too, is realized on top of
Semantic Spaces. However, it provides further functionality like indexing or the
transformation from WSMO languages to RDF. In order to publish and query RDF data, the
Semantic Spaces expose a SPARQL interface via the SOA4All Distributed Service Bus.
There is one more SOA4All Platform Service (indirectly) involved in the discovery process,
the crawler. The crawler gathers the WSDL files that are, in form of annotations, stored in the
Service Registry, and moreover collects further facts about services that are stored in the
Semantic Space and consumed by either the discovery component or loaded by the
reasoner. A summary of these interactions is given in Table 1.

Table 1: Interaction Details in Terms of Discovery

SOA4All Studio � Service Description ; Keyword, Goal � Discovery

SOA4All Studio � WSDL, HTML Crawler

SOA4All Studio � Service Description � Service Registry

SOA4All Studio � Service Description Ranking & Selection

Ranking & Selection � Service Description Discovery

Ranking & Selection � Answer ; Query � Reasoning

Discovery � Answer ; Keyword � Crawler

Discovery � Answer ; Query � Reasoning

Discovery � Service Description Service Registry

Reasoning � Service Description Service Registry

Reasoning � Ontology (RDF) Semantic Space

Crawler Service Description � Service Registry

Service Registry � Service Description (RDF) � Semantic Space

A further component that was not mentioned above is the ranking and selection one (given in
Table 1). Ranking and selection is invoked by the SOA4All Studio in order to retrieve ranked
or even pre-filtered discovery results.

The second interaction flow that we consider is built around the first one, i.e. the creation of
process relies on the service discovery procedure described above (cf. Table 2). The first
access point for the SOA4All Studio is the design-time composer that transforms graphical
descriptions of service compositions into process objects (cf. Section 6.5). All subsequent
components use the processes to refine the composition. The composition optimizer takes
context and monitoring information into account to optimize the chosen service bindings
under given constraints – this is an optional step. Eventually the execution engine takes over
the process and binds all remaining Semantic Web services in order to expose and invoke a
composed service. Although the precise definition of a process changes depending on the
component handling it at a given time, the object shared amongst all the named components
remains the same – a process. In order to store process descriptions persistently there is
RDF formalism planned, which allows the publication of processes to the Semantic Space
infrastructure.

In order to ease the creation of processes, the template generator creates abstract process
descriptions (templates) from past compositions and execution logs. The template generator
thus offers processes to either the user at the level of the studio or directly to the design-time
composer.

Table 2: Interaction Details in Terms of Process Creation

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 44 of 69

SOA4All Studio � Process � Design-time Composer

SOA4All Studio � Process Template Generator

Design-time Composer � Process Template Generator

Design-time Composer � Process Composition Optimizer

Design-time Composer � Process Execution Engine

Design-time Composer � Service Description Discovery

Design-time Composer � Process � Semantic Space

Composition Optimizer � Process Execution Engine

Composition Optimizer � Service Description Discovery

Composition Optimizer � Monitoring Data Distributed Service Bus

Composition Optimizer � Answer ; Query � Reasoning

Execution Engine � Service Description Discovery

Execution Engine � Monitoring Data Distributed Service Bus

The remaining connections depicted in Figure 16 are related to the analysis platform of the
SOA4All Studio (access to monitoring and user data at the level of the bus and the spaces),
and the lifting and lowering of XML respectively WSML representations. However, as stated
in the component description (Section 5.1.4), grounding is not a SOA4All Platform Service,
but rather a software component that is embedded at the level of the execution engine
respectively the studio – for transforming annotations.

In the next section we present the objects that are exchanged in more details.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 45 of 69

6. Communication Objects
This section presents in more detail the objects that are exchanged and shared amongst the
various SOA4All components presented in Section 5.1: services and their descriptions, goals
(as user objectives), ontologies, queries (to the reasoner framework or the discovery engine),
and processes as composition of services and goals.

6.1 Web Service
SOA4All assumes the service concept as it is defined in the Reference Ontology for
Semantic Service Oriented Architectures by the OASIS Semantic Execution Environment
(SEE) TC, which in turn is based on the reference model specification of the OASIS SOA
Reference Model TC: a service is “a mechanism to enable access to one or more
capabilities, where the access is provided using a prescribed interface and is exercised
consistent with constraints and policies as specified by the service description.” This
specification identifies four aspects of services that are essential in any service-oriented
architecture:

• A service enables access to one or more capabilities;

• A service enables access through a prescribed interface;

• A service is opaque to the service consumer except from the information and
behavioural models in the interface and the information requires to assess if a service
meets the requesters needs;

• Consequences of invoking a service should either be response information to the
invocation or a change to the shared state of the defined interface.

It is important to note that the cited reference model makes a clear distinction between the
capability of a service and the point of access where the capability can be consumed.

The semantic service-oriented architecture reference ontology considers thus the service
capability, and the service interface to be the two core elements of a Semantic Web service.
The reference ontology moreover states clearly that the service descriptions contain both
functional notions, including behavioural aspects, and non-functional notions.

From a more technical perspective, SOA4All supports two kinds of Web services: traditional
WS-* services that are described with WSDL and usually communicate via SOAP protocol,
and emerging Web-based services that are often called RESTful APIs. WSMO-Lite
(Deliverable 3.4.2) defines a minimal RDF model that captures Web service structures, along
with a high-level ontology for service semantics, which is combined with domain ontologies in
the descriptions of concrete services.

The minimal service model of WSMO-Lite has a top-level concept ‘service’, which offers any
number of ‘operations’. The service is a coarse-grained unit of discovery: it offers a specific
functionality and it comes from a single provider. An operation is a unit of interaction between
a client and a service. Depending on the message exchange pattern, an operation can have
an input message, an output message, and also fault messages (as input or output).

On top of this model, WSMO-Lite describes service semantics of four categories: functional
semantics (expressed on the level of a service) convey what the service does, or in other
words, what functionality it offers. Non-functional semantics, also on the level of a service,
describe policies, QoS parameters and restrictions and similar information, commonly used
for ranking based on user constraints and preferences. Behavioral semantics, expressed on
service operations, guide the semantic client in its invocation of the service. And finally,
information model semantics, attached to the messages of operations, describe the data that
is exchanged between the client and the service.

WSMO-Lite is defined over WSDL descriptions of Web services, using the semantic

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 46 of 69

annotations standard SAWSDL to point to service semantics. MicroWSMO (Deliverable
3.4.3) applies the WSMO-Lite service model and semantics ontology to RESTful services by
means of the hRESTS microformat that builds the service model structure in otherwise
unstructured HTML service documentations. MicroWSMO is a SAWSDL-like layer over
hRESTS, serving to point to concrete service semantics. In effect, while WSMO-Lite builds
on WSDL and SAWSDL, MicroWSMO and hRESTS expand the reach of WSMO-Lite to
RESTful services. For more information, please refer to deliverables D3.4.2 and D3.4.3.

6.2 Ontology
Ontologies in SOA4All are defined by the ontology specification of the SEE TC reference
ontology document, and in consequence ontologies in SOA4All will be specified by means of
the WSML language. Other languages would be possible as well, e.g. OWL or even RDFS,
however, ontologies in SOA4All are used for annotating services and user goals as well.
Therefore, we follow the decision of the OASIS SEE TC and stick to the ontology definition
facilities of WSML. In fact, WSML is the only language that allows the definition of ontologies,
and attaching those to service and goal description with the same formalism.

Ontologies contain concepts, relations, instances and axioms in form of logical expressions.
The resulting specification and terminologies are then used to formalize service description
(cf. Section 6.1 above), and also user goals to later point in the project. The following
definitions of ontology elements are derived from the reference ontology release candidate
document by the OASIS SEE TC:

Concepts

Concepts provide a means for describing pieces of terminology and can be related to each
other via a subclass-superclass relationship. Concepts define attributes that range over
concepts and relations. Instances of the defined concepts then carry attribute values
belonging to those concepts and relations ranged over, allowing relationships instances to be
captured.

Relations

Relations enable the description of n-ary relationships that go beyond those captured as
conceptual attributes between instances. Unlike attributes (binary relations) there is no
source to the relationship but there is an arbitrary number (arity) of parameters typed as
concepts and other relations so that instances capture multi-party relationships between
instances.

Instances

Instances are identifiable or anonymous members of concepts and relations and also provide
values to the attributes or parameters of concepts and parameters of relations respectively.
Instances may be explicitly declared as members of concepts and relations or they may be
implicitly included as members via axioms.

Axioms and Logical Expressions

Through the use of logical expressions, axioms define constraints that must hold over all
contents of their containing ontology in order for this to be consistent. These can be used to
support an explicit style of modelling, where instances and their concept memberships are
declared explicitly and axioms merely constrain their allowed membership and attribute
values (cf. relational database constraints), or intentionally, where concepts may be implicitly
populated via axioms. In that way, logical expressions allow for formalisms that go beyond
the mere definition of term hierarchies, relationships to instances and data values and their
instantiations.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 47 of 69

6.3 Goal
The goal concept in SOA4All is identical with the goal concept of WSMO, which in turn is to
be standardized in the SEE Reference Ontology. While the SEE definition is more abstract
than the WSMO version, it is conceptually the same.

The purpose of the goal in SOA4All is the formal specification of the objective (tasks or
activities) that a user likes to have performed and for which fulfilment is sought.
Consequently, the goal is an implicit description of the service or services that have to be
executed in order to satisfy the desired request. In order to simplify the matchmaking process
between a goal (i.e. a request) and a provider service, the SEE Reference Ontology defines
a goal to be a dual model of the service description. In other words, the goal description
consists of the same elements as the service descriptions introduced above. A goal has a
capability model that represents the requested or desired functionality in terms of pre- and
post-conditions, assumptions and effects, and an interface description that determines the
interface a requester intends to use during the invocation process with a matching service.

6.4 Query
There are two different types of queries in SOA4All, at the level of two different components.
The first type is a standardized SPARQL query, or subparts of it, as a simple triple pattern at
the level of the repository infrastructure (Semantic Spaces). Spaces manage RDF data, and
therefore the infrastructure enables the RDF query language SPARQL.

The second type of query is used at the level of the discovery component in terms of the
underlying reasoning framework support. A discovery query consists of a set of WSML
concepts that a matching service should be a member of, as well as desired pre-conditions
and effects of a matching service in form of logical expressions. The expressivity of the
WSML logical expression that is allowed depends on the WSML variant that the reasoner is
set up to process. Detailed information about WSML logical expressions and the different
language variants can be found in WSML Deliverable D16.1 at
http://www.wsmo.org/TR/d16/d16.1/v1.0/.

If a WSML query is ground, i.e. does not contain variables, then the query will evaluate to
true or false, depending on whether the (WSML) knowledge-base entails this statement. If
the query contains variables then variable bindings will be returned, i.e. every unique
combination of ground values that make the statement true.

Examples:

?x memberOf Person.

� Returns all identifiers that are instances of 'Person'

?x memberOf Politician[age hasValue ?a] and ?a < 25.

� Returns IDs and ages of politicians younger than 25

In addition to the logical expression-based querying of the reasoner framework, there are
query language extensions defined in deliverable D1.4 of the SUPER project. SUPER
defines a standalone query language for WSML by extending the WSML logical expression
syntax with SQL-like aggregation functions.

6.5 Process
A process in SOA4All is an ordering of Semantic Web services and goal descriptions with
associated parameter constraints (e.g. on communication parameters) and control flow
information. Depending on the nature of the process, a process could be classified as either
executable or as abstract in terms of not yet bound task descriptions (not ready to be bound

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 48 of 69

to an invokable service). The difference is thus that an executable process has all its tasks
associated with a service, while the abstract ones have some task associated with a goal.
Note that an executable process is exposed to users as a composed service, and hence
perceived as single service and invoked as any other consumable service. Therefore,
SOA4All refers to process, as being any composition of service and goal descriptions which
jointly describe an eventually composable execution, while the final composition becomes a
singular service again.

Although the definition of a process is clear (tasks in form of goals, service, control flow data
and constraints), its representation can take various forms. At the level of the provisioning
platform (SOA4All Studio) a process is a pure graphical artefact. Subsequently, the process
is more and more refined towards an executable composition of services in course of the
manipulations in the design-time composer (DTC), the composition optimizer and eventually
the execution engine. The DTC’s role is primarily to match the graphical model of the user to
a process description of services and goals, together with the related constraints and control
flow data. The optimizer takes contextual information and monitoring data into account to
refine the process description, to define the data flow between Web services, and to optimize
the input to the execution engine; this step is however not required, and is purely an
optimization from the end-users point of view (mainly based on preferences and constraints
on services and their composition quality). Finally, the execution engine resolves all the
remaining goal descriptions and executes the whole process. At this point, as mentioned
above, the process becomes a single service that is consumable by SOA4All users.

SOA4All moreover knows two further variants of processes that are respectively termed
mash-ups and templates. Mash-ups are the simplest form of processes in that they are only
defined at the level of data flow of Semantic Web services; i.e. no goal descriptions are
embedded, nor is control flow data available. Mash-ups are executed by the Execution
Engine, but due to their simplicity, they could also be directly executed at the level of the user
interaction platform, the SOA4All Studio. Templates are available in order to simplify the
modelling process. Templates are also abstract process descriptions that are produced by
the Template Generator based on already defined processes and execution logs. Templates
simplify the design phase, as they provide starting points for users, foster reusability and
hence ease the composition process. We distinguish templates from processes, as
templates are not part of the actual composition procedures, but only input to it, and their
processing is seen to be orthogonal to the tasks of the composition components.

In SOA4All, a lightweight, context-aware process modelling language is used that is based
on a small subset of the BPMN notation to describe the control flow of a process. Within a
process model, we also specify activity goals as unbound activities that are bound to a
particular service at runtime. We further allow the users to specify constraints, such as that
certain tasks or activities in the process model must be performed by certain pre-required
semantic Web services. In short, SOA4All currently uses "starts a process flow", "ends a
process flow", "a task/activity unit", "sequence flow", "exclusive gateway", "parallel gateway",
"inclusive gateway", and "activity goal" for describing the control flow. In future, we will
specify the data flow of a process as well. Further details about the process modelling
language of SOA4All are to be found in deliverable D6.3.1.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 49 of 69

7. SOA4All Functional Processes
7.1 The Process Methodology
In the previous subsections the SOA4All technical architecture has been presented. The
architecture shows the different components that SOA4All will provide and their main
interactions. However, although the specification of the architecture shows the building
blocks in which SOA4All is founded, there is a clear need of defining the internal processes
that run across architecture components. On the other hand, the definition of a simple
methodology to ease the integration process of components in the SOA4All architecture is
also necessary.

The aim of the SOA4All process methodology is then twofold:

• To provide an explicit expression of what is meant by a SOA4All process
methodology within the project, thereby providing a vehicle for attaining and
maintaining a common understanding.

• To provide a high-level description of the functional processes onto which project
partners or other third-parties can map their existing experience and components.

This methodology will allow partners to ensure that the project as a whole is equipped to
deliver integrated results that fit in the proposed architecture. Furthermore, the definition of
SOA4All architectural processes will provide a mechanism to communicate what SOA4All is
about to others, both within or outside the project.

The need to define an overall SOA4All process integrating the different pieces of the project
into an integrated functional view was identified at an early stage in the project. All of the
different activities in the project will benefit from this overall integrated view because it will
facilitate the definition of the interfaces between the different activities.

We do not believe that this SOA4All process can be represented as a list of chronological
tasks. Therefore, the SOA4All process methodology, as we have chosen to call it, consists of
many SOA4All processes or activities which are relevant to the SOA4All view of dealing with
services.

On the other hand, this methodology has been applied already to collect the component
descriptions and interactions collected in this deliverable, and to have a preliminary view of
the functional processes.

7.2 Integration Methodology
In order to ease the process in which all these actors interact and perform their duties, the
first task of the Integration is to provide the SOA4All Architecture Process in which all the
actors can find their responsibilities and how they contribute to the final integration. The
SOA4All Architectural Process Methodology comes to aid in this task, following a centralised
approach also during the design and development phase of the project.

We follow a version of the Rational Unified Process (RUP), an iterative process model for
building software applications. The ultimate artefacts (software components) produced by
this process are to be integrated within the DSB. The main activities of this model are:

1. Specification: description of the user requirements for the components (done in each
WP).

2. Design: technical and functional description of the final solution for the artefacts cited
above (done in each WP). This design includes the definition of the interfaces and
messages with other components plus the external methods (API) of each component.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 50 of 69

3. Development: construction of the software and dependent resources for the designed
artefacts (done in each WP). The development includes the realisation of the interfaces
with the external world.

4. Testing: designing and executing of test suites that guarantees the adjustment of the
developed software with the user requirements. This phase also includes the integration
testing within the DSB and the interactions with other components.

5. Deployment: packing of the artefacts for simplifying their installation. The components
should include the necessary guidelines and steps to be deployed within the DSB when
required.

In this document we propose templates to describe the components and their interactions,
which were in its initial form already applied to populate Section 5:

1. Component description (see Annex G).

2. Interface description (see Annex H).

7.3 Structure of the SOA4All Architecture Process
The meta model for defining the SOA4All Architecture Process is kept fairly simple as it is not
the primary objective of the project to define a detailed methodology. The following diagram
gives an overview of this meta model (see Figure 17). Following, we provide a brief
description of each class of this logical model.

Figure 17 The SOA4All Process Meta Model

Activity: An activity is a collection of processes that have a common general objective or
theme (e.g. Discovery of services). It consists of tasks representing the best practices in its
domain. Activities are grouped in activity areas.

Task: A task is a process that serves the need of the activity it belongs to. A project task
represents a controllable piece of work within a specific project schedule. Based on inputs, it

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 51 of 69

produces/amends work products and delivers these as output.

Implementation: An implementation is a method for carrying out a process, e.g. a way of
performing some task or part of a task.

Tasks are often implementation-independent. In some cases, there will be several alternative
or complementary implementations for performing a task. On the other hand, some
implementations can be usefully applied to several different tasks.

Concept: The concepts explain the set of fundamental ideas that are used throughout the
SOA4All project, which underpin the implementations and activities. The concepts are inter-
related and, together, they form a coherent conceptual model.

Role: A role is a set of responsibilities and skills needed in the project.

Work product: A work product is a deliverable that is produced during the performance of
one or more tasks.

− The activity explains why you are performing some task or implementation

− A task explains what to do

− A role defines who does it

− An implementation explains how to do something

The most important step to be done is the definition of the SOA4All Activities. Within SOA4All
these activities can be clearly divided between design time (e.g. create semantic descriptions
of services, generate composite services, etc.) and runtime activities (e.g. service discovery,
execution, etc.). Currently the project is defining these activities. We propose to describe the
activities following the guidelines expressed in 0.

7.4 Functional Processes
Functional processes are the activities defined in the previous section. The following
functional processes are explained by means of the NEXOF-RA system requirements
questions that were published in deliverable D7.3 Conceptual Architecture View. This further
eases the process of feeding SOA4All results back to NEXOF-RA and facilitates the pin-
pointing of solutions to requirements. The current architecture specification of SOA4All does
not yet include the documentation of complete processes that require the integration of
multiple platform services, but considers those rather in isolation. In the previous sections of
Chapter 7, we presented a process methodology that will be applied to specify and
implement such complete execution processes for the second release of the SOA4All
architecture; those will be published and implemented in course of deliverables D1.4.2A and
D1.4.2B.

In the following sections we shortly provide high-level rules and indications concerning the
most relevant processes in a service-oriented architecture. These concern service-related
aspects such as the creation, discovery, composition and invocation of services.

7.4.1 Service Creation and Execution

The main questions of this section are: “how can a service be created?” and “how can a
service be executed?”. These two questions correspond to the NEXOF-RA requirement
categories SC, respectively SE. SC addresses the methods for service creation, which are to
a large extent not subject to SOA4All, while SE refers to the computation performed by the
provider agent upon the reception of a client request.

Regarding SC, SOA4All does not address the creation and deployment of services, meaning
delivering and deploying an executable piece of software. On the other hand, SC also
addresses the semantic annotation process. This means that the delivery of MicroWSMO,
WSMO-Lite and SAWSDL annotations is part of SC.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 52 of 69

SOA4All then allows the generation of RESTful services annotations based on MicroWSMO.
The SOA4All Studio offers the necessary user interface to allow the annotation process and
usage of this type of services.

Regarding WSDL-based services, the crawler component is used in the first place in order to
gather service descriptions. The SOA4All Studio offers a GUI to define the WSMO-Lite
annotations using the semantic annotations standard SAWSDL to point to service semantics.
The execution of WSDL-based services is done using the DSB features.

The execution of third-party services is done in the service provider side, while the
description of the execution of SOA4All composite services can be found in Section 7.4.4.

7.4.2 Service Invocation

The NEXOF-RA requirement SI addresses the question of “how can a service be invoked?”,
and hence concerns those mechanisms offered by the system to enable service invocation.

SOA4All addresses two types of services: WSDL-based and RESTful services as explained
in Section 6.1. In the case of WSDL-based services, in SOA4All we distinguish between
simple and composite services. Simple services are business services described in WSMO-
Lite, which offer any number of ‘operations’. Within SOA4All these third-party services are
exposed by the DSB and their semantic description stored in the Service Registry. The
invocation of a service unit can be triggered directly from the user using the service
consumption part of the SOA4All Studio.

7.4.3 Service Discovery

Service Discovery addresses the mechanisms of the system that allow a service provider to
deliver service descriptions to clients and in particular the process of searching for and
selecting the appropriate services. In NEXOF-RA this requirement category is named SD,
and represents the question of “how can a service by discovered?”.

In SOA4All the discovery process is mainly driven by the service discovery component. This
component enables users to find a service appropriate for their needs. The discovery
process offers two different mechanisms.

First, there is the possibility of doing full text based discovery, which uses the web service
descriptions (WSDLs) and related documents crawled by the crawler component and stored
in the SOA4All repositories. This full text search allows users to search for services by
entering keywords in a search engine fashion.

Second, the semantic discovery allows users to perform goal-based discovery. In this case a
more structured goal (service classification, pre-conditions and effects) is entered by the user
and the component finds the service that match the goal by using the reasoning facilities
provided by WP3.

7.4.4 Service Composition (Processes)

Services are clearly related to business functionality, and hence it is a requirement that they
can interact and cooperate to realize complex processes. The NEXOF-RA requirement PRO
addresses the issue of service composition via the question of “how can a process be
realized by composing services?”.

 The SOA4All service composition has a clear division between the design time and runtime
phases (cf. Figure 18): during design time, the service composition process allows users to
specify their required composite services and processes (part of the SOA4All Studio) based
on a graph-oriented lightweight process modelling language defined within WP6. To improve
usability pre-designed and user-designed process templates are stored in the semantic
service and template repository. Once created and stored, in order to be used this lightweight
processes have to be translated in to more complex processes that can be interpreted by an
execution engine in an effective fashion. In order to do that, the design-time composer

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 53 of 69

component allows a flexible and ad-hoc creation and adaptation of complex services at
design time. The aforementioned lightweight processes are then transparently transformed in
to optimized complex services orchestrations by using the optimiser component; or already
existing complex services processes could be adapted to a specific use. These activities are
heavily influenced by the context in which they will be carried out. The final outcome of the
design time phase would be a set of complex processes descriptions described in terms of
the lightweight language. Finally, regarding the runtime phase of service construction, WP6
offers an execution engine. It will execute complex processes that represent orchestration of
services. This execution will be adaptive to environmental changes; and flexible enough to
allow its context-dependent self-reconfiguration. This engine will consider also context during
execution as well. The execution engine receives the processes described during design
time. These process descriptions have to be translated to executable BPEL processes in
which the different services will be described in WSMO-Lite. For every execution, the engine
will interact during runtime with the discovery component and ranking and selection
components in order to find the most appropriate service to execute. The invocation of the
service would be triggered by the execution engine making use of the service invocation
service explained before.

Figure 18: Service Construction Framework at a Glimpse

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 54 of 69

8. Implementation
The implementation of the SOA4All platform is subject to the second year of the project. The
various components (SOA4All Platform Services) including their implementation will be
further described in their respective deliverables. Table XXX provides a summary of all
components and the expected data of individual implementation releases. Integration-related
aspects of the implementation will be in deliverable D1.4.1B with expected release in month
M18 (September 2009). Issues considered in this respect are aspects that are relevant to the
project as a whole, rather than to individual components; e.g., scalability-driven discussions,
error handling. Furthermore, deliverable D1.5.1 specifies testing infrastructures to evaluate
the scalability of the SOA4All infrastructure. A mechanism is determined to (semi-)
automatically generate suitable amounts of services with given default behaviour and critical
QoS parameters. Further details can be found in D1.5.1 and the subsequent deliverable
D1.5.2 that is planned for September 2009.

Table 3: Component Implementation Release Dates

We add a listing of existing core technologies and standards that will provide the building
blocks for the SOA4All platform implementation:

PEtALS (petals.ow2.org) Open-source, JBI compliant ESB
ProActive (proactive.ow2.org) A parallel, distributed, multi-core computing platform
FraSCAti (frascati.ow2.org) SCA engine integrated into PEtALS ESB
FDF (fdf.forge.inria.fr) Framework for deploying distributed software

systems

WSML For describing Semantic Web services, goals
and ontologies at the level of the reasoning
framework (according to the object specification in
Section 6).

MicroWSMO, WSMO-Lite, hREST For annotating WSDL, resp. REST services
WS-Notification For event-driven interfaces at the level of the DSB
AJAX For programming Web applications

8.1 The SOA4All DSB Implementation Architecture
The SOA4All DSB integrates various underlying key technologies described into Section 4.1:
OW2 PEtALS, OW2 ProActive, OW2 FraSCAti, and SOA4All Semantic Spaces. Figure 19

Component WP

SOA4All Distributed Service Bus WP1 M18 / M30 (early prototype M12)
 Semantic Spaces WP1 M18 / M30 (early prototype M12)
 Monitoring (DSB) WP1 M18 / M30
 Deployment Facility WP1 M18 / M30 (early prototype M12)
SOA4All Studio - Consumption Platform WP2 M18 / M30 (early prototype M12)
SOA4All Studio - Provisioning Platform WP2 M18 / M30 (early prototype M12)
SOA4All Studio - Analysis Platform WP2 M18 / M30 (early prototype M12)
WSML Reasoning Framework WP3 M18 / M24 / M30 (early prototype M12)
WSMO Data Grounding WP3 M18
Crawler WP5 M12 / M18
Service Registry WP5 M18 / M30 (early prototype M12)
Discovery WP5 M12 / M30
Ranking and Selection WP5 M18 / M30
Design Time Composer WP6 M18 (basic), M24 / M30 (early prototype M12)
Template Generator WP6 M18 (basic), M24 / M30
Composition Optimizer WP6 M18 (basic), M24 / M30
Execution Engine WP6 M18 / M30 (early prototype M12)

Date of Implemenation Release

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 55 of 69

shows the overall implementation architecture of the SOA4All DSB and outlines the
relationships between these technologies to integrate.

The SOA4All DSB is implemented with the Java programming language and runs on a set of
distributed Java Runtime Environments (JRE). The ProActive library provides the distributed
middleware runtime to deploy and execute the SOA4All DSB on large-scale distributed
infrastructures like Internet and grids. ProActive is the reference implementation of the Grid
Component Model (CGM) ETSI standard [3]. PEtALS and SOA4All Semantic Spaces are
implemented with and run on ProActive to benefit from its features described in Section
4.1.2. PEtALS will use SOA4All Semantic Spaces as a large scale distributed infrastructure
to transport interactions between PEtALS nodes as described in Section 4.1.3. The PEtALS
CDK introduced in Section 4.1.1 provides common foundations to implement JBI
components (both BC and SE). At least, the SOA4All DSB includes the following JBI
components: the REST BC, the WS BC, the FraSCAti SE, and the Semantic Spaces BC.
The REST and WS BC allow the SOA4All DSB to communicate with billions of external third-
party services deployed over the world. The FraSCAti SE discussed in Section 4.1.1
provides the runtime support for executing SCA applications on top of the SOA4All DSB. The
Semantic Spaces BC allows us to integrate Semantic Spaces in the JBI world. If required,
other BC and SE can be included into the SOA4All DSB to respectively communicate with
non REST or WS external third-party services or to execute some SOA infrastructure
services like a BPEL engine and a message transformation engine.

Figure 19: The SOA4All DSB Implementation Architecture

The SOA4All DSB provides three complementary approaches to integrate the SOA4All
Studio and platform services, i.e., allowing them to communicate via the SOA4All DSB.
Firstly, if a SOA4All platform service (or the studio) runs as a standalone program (i.e., not
be hosted by the SOA4All DSB), then this program exposes its services to the SOA4All DSB
and accesses other platform services via the WS BC. Secondly, if a SOA4All platform
service would like to be fully deployed, hosted, and monitored by the SOA4All DSB, then this

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 56 of 69

service must be encapsulated into an SCA composite and can have access to the SOA4All
Semantic Spaces as specified in Section 4.1.3 and Annex B. This approach is especially
used in D6.4.1 where lightweight adaptable processes are transformed into SCA composites
which are running on the FraSCAti SE. Finally, if a SOA4All platform service requires having
a full fine-grain access to and control on JBI features (e.g., deployment, lifecycle
management, monitoring, and communication patterns), then this service must be
implemented as a JBI SE on top of the PEtALS CDK. This is typically the case for the WP6
Execution Engine.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 57 of 69

9. Conclusion
In this document we have defined the first version of the SOA4All architecture. We have
provided a high level description of the SOA4All platform by showing the relationship
between the SOA4All core infrastructure services (the Distributed Service Bus and Semantic
Spaces that are subject to WP1), the so-called SOA4All Platform Services (aka components)
and the SOA4All Studio of WP2 respectively business services. A special attention was
given to the core infrastructural services of SOA4All platform. The four artefacts that form the
pillars of core infrastructural services, namely the SOA4All Distributed Service Bus, the
deployment facility, the monitoring platform and the Semantic Spaces were presented in
details. They provide the means for integration, communication and coordination of the other
SOA4All components. Each component of the architecture is presented in details, including
the interface of the component, the relationships and dependences with the other
components as well as the control flow the component is involved. The dependencies
between components have been represented by means of an interaction matrix. Data being
exchanged and shared between various components of SOA4All architecture is described as
communication objects. The communication objects have their definition aligned with the
conceptual model of the OASIS Semantic Execution Environment TC (SEE), and in a more
terminological sense with the SOA4All Glossary, which is a specialization of the larger
NEXOF-RA Glossary. The common terminology and conceptual model defined as part of this
deliverable are meant to foster understanding across all actors involved in the SOA4All
development. We have specified as well a methodology that will ease the creation and
implementation of SOA4All functional processes. This should be used as input for the next
version of the architecture specification.

Architectural specifications are “living” documents. Further analysis and evolution of
individual components on one hand and more precise architectural requirements on the other
hand should and are usually reflected in updated versions of architecture specification. The
architecture defined in this document is not final yet as we have to envision possible changes
and adjustments that will surface during the further stages of the project. These changes will
be applied to the architecture and will be worked into the second version (D1.4.2) of the
SOA4All architecture.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 58 of 69

References
[1] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici. Programming,

Composing, Deploying for the Grid. Book chapter in Grid Computing: Software Environments
and Tools, Jose C. Cunha and Omer F. Rana (Eds), Springer 2006.

[2] L. Baduel, F. Baude, D. Caromel. Asynchronous Typed Object Groups for Grid Programming.
International Journal of Parallel Programming, Springer. 35(6), 573–614, Dec. 2007,
http://www.springerlink.com/content/hj66703036502292/

[3] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, C. Pérez. GCM:A Grid
Extension to Fractal for Autonomous Distributed Components. Annals of Telecommunication –
Annales des telecommunications 64(1), pages 5-24, Springer 2009.

[4] F. Baude, V. Legrand, V. Lestideau. Large Scale Service Deployment - Application to OSGi.
3rd Int. conf. on Autonomic and Autonomous Systems (ICAS 2007), June 2007, Athens.

[5] E. Bruneton, T. Coupaye, J.-B. Stefani. The Fractal Component Model. February 2004,
http://fractal.objectweb.org/specification.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, J.-B. Stefani. The Fractal Component Model
and its Support in Java. Software -- Practice and Experience, special issue on ``Experiences
with Auto-adaptive and Reconfigurable Systems'', 1257-1284, 2006.

[7] D. Chappell. Introducing SCA. White paper, July 2007. Available at http://www.davidchappell.
com/articles/Introducing_SCA.pdf.

[8] P. Corte, D. Desideri, V. Stricker, N. Tsouroulas, K. Mehner, M. Fisher, P. Bisson, R. Jimenez-
Peris. Conceptual Architectural View. NEXOF-RA Deliverable D7.3, October 2008.

[9] A. Flissi, P. Merle. A Generic Deployment Framework for Grid Computing and Distributed
Applications. In Proceedings of the 2nd International OTM Symposium on Grid computing, high-
performAnce and Distributed Applications (GADA'06), Lecture Notes in Computer Science
(LNCS), volume 4279, pages 1402 - 1411, Montpellier, France, November 2006. Springer-
Verlag.

[10] A. Flissi, J. Dubus, N. Dolet, P. Merle. Deploying on the Grid with DeployWare. In Proceedings
of the 8th International Symposium on Cluster Computing and the Grid (CCGRID'08), pages
177 - 184, Lyon, France, May 18-22 2008. IEEE.

[11] Java Community Process. Java(tm) Business Integration (JBI) 1.0 - Final Release. JSR 208,
Sun Microsystems, Inc., August 2005.

[12] E. Mathias, F. Baude, and V. Cavé. A GCM-Based Runtime Support for Parallel Grid
Applications. In Proceedings of the Workshop on Component-Based High Performance
Computing (CBHPC’08) in conjunction with ACM SIGPLAN CompArch 2008.

[13] N. Medvidovic, R. Taylor. A Classification and Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on Software Engineering, 26, issue 1:70–93,
January 2000.

[14] P. Merle and all. SCA Platform Specifications - Version 1.0. ANR SCOrWare Project WP1
Deliverable. September 2007.

[15] Object Management Group. Unified Modeling Language: Superstructure. Available
Specification, Version 2.1.2, OMG TC Document formal/2007-11-02, November 2007.

[16] Open SOA. SCA Service Component Architecture - Assembly Model Specification. SCA
Version 1.0, Open SOA, March 2007.

[17] OSGi Alliance. Open Services Gateway Initiative Service Platform Specification. Version 4.1,
May 2007.

[18] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, J.-B. Stefani. Extensibility and
Reconfigurability in the FraSCAti SCA Platform. Submitted to the 12th International Symposium
on Component Based Software Engineering (CBSE-2009), East Stroudsburg University,
Pennsylvania, USA, 22-25 June 2009.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 59 of 69

[19] Sun Microsystems Inc., Java Enterprise Edition 5 Specification. JSR-000244 2.6, November
2003.

[20] World Wide Web Consortium, W3C: Simple Object Access Protocol, SOAP, Version 1.2 Part 0:
Primer, (2003). Web site: http://www.w3.org/TR/soap12-part0/).

[21] World Wide Web Consortium, W3C: WSDL: Web Services Description Language (WSDL) 1.1,
(2001). Web site: http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[22] V. Zurczak, M. El Jai. SCA Support in PEtALS with Tinfi/FraSCAti. Presentation at the OW2
Quarterly Meeting, Grenoble, France, May 15th 2008.

[23] World Wide Web Consortium, W3C: Web Services Message Exchange Patterns, (2002). Web
site: http://www.w3.org/2002/ws/cg/2/07/meps.html.

[24] World Wide Web Consortium, W3C: Web Services Description Language (WSDL) Version 2.0
Part 2: Adjuncts, (2007). Web site: http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-
20070626/.

[25] World Wide Web Consortium, W3C: Web Services Description Language (WSDL) Version 2.0:
Additional MEPs, (2007). Web site: http://www.w3.org/TR/wsdl20-additional-meps/.

[26] OASIS Open. Web Services Base Notification (WS-BaseNotification). OASIS Open, Version
1.3. October, 2006.

[27] B. Schroeder. On-Line Monitoring: A Tutorial. IEEE Computer, 28, issue 6:72-78, June 1999.

[28] OASIS Open. Web Services Topics (WS-Topics). OASIS Open, Version 1.3. October, 2006.

[29] OASIS Open. Web Services Brokered Notification (WS-BrokeredNotification). OASIS Open,
Version 1.3. July, 2006.

[30] B. van Dongen, W. van der Aalst. A Meta Model for Process Mining Data. In: Missikoff, M.,
Nicola, A.D. (eds.): EMOI-INTEROP, Vol. 160. CEUR-WS.org, 2005.

[31] M. Muhlen. Workflow-based Process Controlling. Foundation, Design, and Implementation of
Workflow-driven Process Information Systems., Vol. 6. Logos, Berlin, 2004.

[32] C. Pedrinaci, J. Domingue, A. Alves de Medeiros. A Core Ontology for Business Process
Analysis. In Proceeding of 5th European Semantic Web Conference, 2008.

[33] C. Pedrinaci, D. Lambert, B. Wetzstein, T. van Lessen, L. Cekov, M. Dimitrov. SENTINEL: A
Semantic Business Process Monitoring Tool. In Proceeding of Ontology-supported Business
Intelligence (OBI2008) at 7th International Semantic Web Conference (ISWC2008), Karlsruhe,
Germany, 2008.

[34] A. Alves de Medeiros, W. Van der Aalst, C. Pedrinaci. Semantic Process Mining Tools: Core
Building Blocks. In Proceeding of 16th European Conference on Information Systems, Galway,
Ireland, 2008.

[35] A. Alves de Medeiros, C. Pedrinaci, W. van der Aalst, J. Domingue, M. Song, A. Rozinat, B.
Norton, L. Cabral. An Outlook on Semantic Business Process Mining and Monitoring. In
Proceedings of International IFIP Workshop On Semantic Web \& Web Semantics (SWWS
2007), 2007.

[36] T.van Lessen, J. Nitzsche, M. Dimitrov, D.Karastoyanova, M. Konstantinov, L. Cekov: An
Execution engine for BPEL4SWS. In Proceeding of 2nd Workshop on Business Oriented
Aspects concerning Semantics and Methodologies in Service-oriented Computing (SeMSoc) in
conjunction with ICSOC, 2007.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 60 of 69

Annex A. An Integration Use Case with PEtALS

This annex illustrates a simple integration use case which shows the agility of a system built
on top of the PEtALS ESB: the travel agency scenario. Figure 20 shows how this scenario
can be designed as an SCA composite which exposes the Travel service to other
applications, make references to three third-party services (Hotel, Weather, Email) and is
composed of two components (TravelService implementing the orchestration of the three
services and BookHotelWrapper an adapter between Book and Hotel interfaces). This
example is typical of what sort of composite service may be designed and deployed through
the SOA4All Studio.

Figure 20: The Travel Agency Scenario as an SCA Composite.

Then as shown in Figure 21, the SCA support in PEtALS transforms this SCA composite into
a set of service units running on top of JBI components. SCA components and bindings are
mapped to JBI service units deployed on corresponding JBI service engines and binding
components respectively.

Figure 21: Mapping the Travel Agency Scenario to JBI Components.

1. The agency provides a single consumer service to book a travel from a start date to
an end date and from a source city to a destination one. On the other side, the
agency will consume one (or more) hotel booking service, one (or more) airline

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 61 of 69

booking service. Additionally, it will give some forecast details coming from another
service.

2. All the business services will be orchestrated by a BPEL engine (or better by an
engine of the lightweight orchestration language defined in WP6) and data adaptation
between services will be handled by a transformation service.

One of the advantages is that on the orchestration point of view, all is seen as JBI services.
Whereas standard service orchestration generally deal with web services bindings, the
orchestration language engine JBI Service Engine can instead orchestrate JBI services and
there is no restriction on the final service protocol since it is up to the binding component to
handle the communication adaptation. One other advantage is that there is no problem if, for
example, the external weather service no longer exists. The travel agency just needs to find
a new weather service and to potentially add a data adaptation layer to provide the same
interface and so JBI endpoint. Note that this is the same if the Airline service is no more a
web service but an EJB one.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 62 of 69

Annex B. SCA Semantic Space Binding XML Schema and
Examples

Following is the specification of the XML Schema for the SCA Semantic Space Binding. This
XML Schema extends the XML-based SCA ADL.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.SOA4All.eu/xmlns/sca/1.0"
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"
 elementFormDefault="qualified">
 <include schemaLocation="sca-core.xsd"/>
 <element name="binding.space" type="sca:SpaceBinding"
 substitutionGroup="sca:binding"/>
 <complexType name="SpaceBinding">
 <complexContent>
 <extension base="sca:Binding">
 <anyAttribute namespace="##any" processContents="lax"/>
 </extension>
 </complexContent>
 </complexType>
</schema>

This XML Schema defines a new XML namespace specific to SOA4All (http://www.
SOA4All.eu/xmlns/sca/1.0), includes the SCA core XML Schema (sca-core.xsd), and
defines a new element called binding.space of type sca:SpaceBinding and part of the
substitution group sca:binding defined in the SCA core. The new complex type
SpaceBinding is an extension of the sca:Binding complex type defined in the SCA core,
then it inherits from all the attributes of sca:Binding and especially the attribute uri used in
the two following SCA composite examples. Then a SOA4All SCA Semantic Space Binding
can be used to bind any SCA service and reference to a Semantic Space identified by an
URI.

The following illustrates how the SCA Provider Composite from Figure 8 can be defined to
use the SCA Semantic Space Binding:

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns="http://www.SOA4All.eu/xmlns/sca/1.0"
 name="ProviderComposite">
 <service name="service" promote="ProviderComponent/service">
 <interface.java interface="Service"/>
 <binding.space uri="http://www.SOA4All.eu/Sample-SCA-Semantic-Space"/>
 </service>
 <component name="ProviderComponent">
 <service name="service">
 <interface.java interface="Service"/>
 </service>
 <implementation.java class="ProviderComponentImpl" />
 </component>
</composite>

This SCA provider composite declares one service and an enclosed component
implemented by a Java class. The service promotes the service of the enclosed component,
is defined by the Service Java interface, and is bound to a Semantic Space identified by a
Uniform Resource Identifier (URI).

The following illustrates how the SCA Consumer Composite from Figure 8 can be defined to
use the SCA Semantic Space Binding:

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 63 of 69

<?xml version="1.0" encoding="UTF-8"?>
<composite xmlns=http://www.SOA4All.eu/xmlns/sca/1.0
 name="ConsumerComposite">
 <component name="ConsumerComponent">
 <reference name="service">
 <interface.java interface="Service"/>
 </reference>
 <implementation.java class="ConsumerComponentImpl" />
 </component>
 <reference name="service" promote="ConsumerComponent/service">
 <interface.java interface="Service"/>
 <binding.space uri="http://www.SOA4All.eu/Sample-SCA-Semantic-Space"/>
 </reference>
</composite>

This SCA consumer composite declares a reference and an enclosed component
implemented by a Java class. The reference is wired to the enclosed component (promote),
is defined by the Service Java interface, and is bound to the same Semantic Space than the
one of the SCA provider composite. However the consumer does not know the exact service
provider endpoint that it will invoke, it just knows the existence of the Semantic Space where
some providers are connected. Then two successive consumer requests can be delivered to
two different providers, i.e., dealing with request load balancing and provider fault tolerance
in a transparent way from the consumer’s point of view.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 64 of 69

Annex C. SOA4All Software and Services to Deploy

This annex lists all the software and services involved in the SOA4All distributed service
computing environment which will be deployed automatically thank to the SOA4All
Deployment Facility described in Section 4.2:

• SOA4All Runtimes composed of:

- Java Runtime Environments (JRE) to run PEtALS, ProActive, Web servers,
etc.

- DSB nodes composed of PEtALS, Semantic Spaces and ProActive software

- All required JBI components deployed on top of PEtALS nodes:

� FraSCAti SCA Service Engines

� Web service and REST service Binding Components

� Semantic Space Binding Components

� Other required Service Engines or Binding Components; e.g., a BPEL
engine, a transformation engine, or an EJB binding.

• SOA4All Studio instances composed of:

- Web servers as Apache Tomcat

- WARs packaging Studio components

• All SOA4All platform components coming from WP3 to WP6

- Packaged as JBI components and/or SCA composites

• Use case services coming from WP7 to WP9

- Packaged as JBI components and/or SCA composites

• Bindings to existing external third-party services

- JBI service units to configure JBI Web Service and REST binding components

• Any software required to execute previous software and services

The SOA4All Deployment Facility will not be used to deploy external third-party services as
they are deployed by their suppliers and not by SOA4All administrators.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 65 of 69

Annex D. A SOA4All Deployment Description

This annex illustrates a simple SOA4All deployment description (see Figure 22), which
defines that one JBI component (myJbiService) must run on a PEtALS server (petals-
SOA4All) deployed on an Internet node (SOA4All) where a JRE must be (java). Each
service/software/host contains its own set of associated properties like the location of the
service/software archive to upload and install, the petals server where the JBI service
must be deployed, the home directory and host where service/software must be installed,
the hostname, the user account, the file transfer and remote access protocols, the
shell of a remote node, and some of its shared software.

Figure 22: An Example of SOA4All Deployment Description

sample {
 myJbiService = PEtALS.JBI {
 archive = PEtALS.ARCHIVE(myService.zip);
 petals = /petals-SOA4All;
 }
 petals-SOA4All = PEtALS.SERVER {
 archive = PEtALS.ARCHIVE(http://petals.ow2.org/petals.zip);
 home = PEtALS.HOME(/software/petals);
 host = /SOA4All;
 }
 SOA4All = INTERNET.HOST {
 hostname = INTERNET.HOSTNAME(www.SOA4All.eu);
 user = INTERNET.USER(root,…password…,…key…);
 transfer = TRANSFER.SCP;
 protocol = PROTOCOL.OpenSSH;
 shell = SHELL.SH;
 software {
 java = JAVA.JRE {
 archive = JAVA.ARCHIVE(http://www.java.sun.com/jdk.exe);
 home = JAVA.HOME(/software/java);
 }
 }
 }
}

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 66 of 69

Annex E. Event Ontology (EVO)

Research in Workflow Management Systems and Business Process Management has
focussed on capturing information about the execution of processes in ways that can enable
the application of diverse analysis techniques, such as Business Activity Monitoring, Process
Mining, Reverse Business Engineering, etc. These techniques use as starting points logs
generated by the underlying systems which typically come in a plethora of diverse formats
coming from heterogeneous systems which need to be aligned and merged before they can
be analysed. In the light of this situation, common formats have been proposed as a solution
to overcome this problem, e.g., MXML [30] or the Audit Trail Format by the Workflow
Management Coalition (WFMC, [31]). Although these formats have proven their benefits,
they are supported by technologies that are not suitable for reasoning and therefore limit
unnecessarily the level of automation that can be supported. In order to overcome this, we
previously defined in the context of the project SUPER (IST-026850), the Core Ontology for
Business pRocess Analysis (COBRA), and a reference Events Ontology (EVO) that provides
a set of definitions suitable for capturing monitoring information from a large variety of
systems [32].

EVO is based on the previously mentioned formats since they provide general purpose
solutions that have shown to be suitable to capture logs generated by a plethora of systems.
EVO is centred on a state model that accounts for the status of processes and activities, as
shown in Figure 23. The figure shows the different states and possible transitions
contemplated for both Process Instances and Activity Instances which we believe are self-
explaining. The dark dot represents the initial state, arrows represent transitions, the smaller
boxes depict states, and bigger boxes encapsulate (conceptual) families of states. The state
model has been captured ontologically, an enhanced with additional relations. For instance it
is possible to determine whether an Activity Instance has been allocated--isAllocated--which
is true for those that are either in state Running, Suspended, or Assigned. EVO therefore
supports capturing the lifecycle of the execution of processes and their internal activities and
links it to higher-level conceptual models for supporting further analysis techniques using
COBRA as the core conceptualisation [32] - [35].

Figure 23: State Model Followed by EVO, see [32].

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 67 of 69

Annex F. Activity Description Form

Name: Activity name

Description: Activity description

Components involved: Components involved in this description

Sequence of tasks involved in this activity (UC): it implies a list of method invocations (it
should be very useful a sequence UML diagram) to the Web service or any valid interface for
the DSB provided by the component to accomplish this activity (UC) as a sequence of tasks.
The description of the interfaces will be provided also by the component owner. This point is
not planned for a functional analysis of requirements on the specification stage but it should
be completed afterwards, when the technical design of the component is performed.

UML Diagrams : the whole set of activities should be depicted into a set of UML UC
diagrams that shows the dependencies, generalizations, etc. between the different activities.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 68 of 69

Annex G. Component Description

Name: Name of the component

Description : A short functional description of the component.

Inputs : A summarized list of entries that this component accepts to performs the operations
it provides. This list can include: user interactions, incoming messages (commands),
incoming documents, etc.

Outputs : A summarized list of outcomes produced by the invocation of the operations that
the component provides. This list can include: outgoing documents, processed data, raw
data, etc.

Interfaces exposed : A summarized list of interfaces exposed by the component that acts as
an entry points. These interfaces include all the operations (messages) that the component
accepts to be processed.

Interaction with internal components : A summarized list of interactions with components
of the same activity. This point only includes those interactions initiated from this component.
Interactions from other components with this one are included on those component
description forms. This way aims to avoid describing the same interactions twice.

Interaction with external components: A summarized list of interactions with components
of a distinct activity. This point only includes those interactions initiated from this component.
Interactions from other components with this one are included on those component
description forms. As above point, this agreement aims to avoid describing the same
interactions twice.

 SOA4All –FP7 – 215219 – D1.4.1A SOA4All Reference Architecture Specification

© SOA4All consortium Page 69 of 69

Annex H. Interface Description

It consists on a full description of interfaces for those components that are going to be
integrated in the DSB and the interactions with other components. Concretely, it consists on:

• The description of all the interfaces that expose the business functionality for a
component, to be used by users through the DSB.

• The description of the interaction interfaces between different components.

For each method of the interface one record card should be filled as shown below.

Interface name Name of the interface to which the operation belongs to

Operation name

Component Component name this operation belongs to.

Operation Description Textual description in natural language of the operation, including
a functional depiction.

Operation signature UML description of the signature of the method, including return
type, operation name and a list of its formal arguments including
the name and type. See below on section “Operation signature
description” for more details.

Pre condition Description of the conditions to be satisfied before the execution
of this operation

Post condition Description of the effects of the execution of this operation on the
environment or upon the parameters of the operation after its
execution.

Complex
Types

Name Textual description of the complex type used in the operation
signature.

Additional Info Extra information describing some relevant aspects of the
operation not included into the above fields.

