SON

Semantics
029oM

5
o
(2]
@

X8juo) 2

ices
— =
SEVENTH FRAMEWORK
PROGRAMME

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All
Instrument: Integrated Project

Thematic Information and Communication
Priority: Technologies

D1.4.1B SOA4AIll Runtime

Activity N: Activity 1 — Fundamental and Integration Activities
Work Package: WP1 — SOA4AIl Runtime
Due Date: M18
Submission Date: 14/09/2009
Start Date of Project: 01/03/2008
Duration of Project: 36 Months
Organisation Responsible of Deliverable: EBM WebSourcing
Revision: 1.0
Author(s): Christophe Hamerling EBM
Virginie Legrand INRIA
Francoise Baude INRIA
Elton Mathias INRIA
Cristian Ruz INRIA
Michael Fried UIBK
Reto Krummenacher UIBK
Philippe Merle INRIA
Nicolas Dolet INRIA
Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public

TAW sopgan—FP7215219

D1.4.1B SOA4AIl Runtime

y 4

EVENTH FRAMEWORK

si 0
PROGRAMME

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers
0.1 2009-07-15 | Initial TOC Christophe Hamerling (EBM)
0.2 2009-08-01 | Add PEtALS ESB section Christophe Hamerling (EBM)
0.3 2009-08-11 | Add section on message routing Virginie Legrand (INRIA)
0.4 2009-08-24 | Add monitoring platform section Dong Liu (OU)
0.5 2009-08-24 | Merge contributions. Update DSB | Christophe Hamerling (EBM)
section.
0.6 2009-08-25 | Update DSB installation and | Christophe Hamerling (EBM)
configuration sections
0.7 2009-08-25 | Introduction Reto Krummenacher (UIBK)
0.8 2009-08-26 | SCA Integration section Christophe Hamerling (EBM),
Philippe Merle (INRIA),
Nicolas Dolet (INRIA)
0.9 2009-08-28 | JBI Integration section Christophe Hamerling (EBM)
1 2009-09-14 | Final Editing Malena Donato (ATOS)

© SOA4AIl consortium

Page 2 of 80

TAW sopgan—FP7215219

D1.4.1B SOA4AIl Runtime

y 4

EVENTH FRAMEWORK

si
PROGRAMME

Table of Contents

EXECUTIVE SUMMARY 8
1. INTRODUCTION 9
1.1 PURPOSE AND SCOPE 9
1.2 STRUCTURE OF THE DOCUMENT 9
2. INSTALLATION AND CONFIGURATION 10
2.1 RESOURCES REQUIREMENTS 10
2.2 INFRASTRUCTURE 10
FIGURE 1 SOA4ALL DSB INFRASTRUCTURE 11
2.2.1 Installating a DSB node 11
2.2.2 Configuring a DSB node 12
2.2.3 Starting and stopping a DSB node 14
2.2.4 Modules installation 14

3. SOA4ALL DISTRIBUTED SERVICE BUS APIS 16
3.1 PLATFORM SERVICES INTEGRATION API 16
3.2 MONITORING AND MANAGEMENT API 16
3.2.1 Infrastructure Monitoring Data 16
3.2.2 Monitoring Bus 16
3.2.3 Monitoring Service Integration 17

4. SOA4ALL DISTRIBUTED SERVICE BUS COMPONENTS 18
4.1 DISTRIBUTED TECHNICAL REGISTRY 18
4.1.1 Requirements 18
4.1.2 Architecture 18

4.2 MESSAGE TRANSPORT 19
4.2.1 Overview and architecture requierements 19
4.2.2 Message transport in PEtALS 20
4.2.3 The distributed message transporter 20

4.3 MONITORING PLATFORM 23
4.3.1 Underlying infrastructure 23
4.3.2 Persistence of monitoring data 24
4.3.3 Event processing 25

5. DSB INTEGRATION 26
5.1 SOA4ALL ARCHITECTURE AND INTEGRATION GUIDELINES 26
5.1.1 SOAA4AIl Overall Architecture 26
5.1.2 Overview of SOA4AIll DSB Integration Guidelines 27
5.1.3 SOAA4AIl Distributed Service Bus Runtime Access 31

5.2 STANDALONE PLATFORM SERVICES 32
5.2.1 Standalone Management API 32

5.3 SCA-BASED PLATFORM SERVICES 33
5.3.1 Overview of SCA 33
5.3.2 Building SCA-based Platform Services 37
5.3.3 Summary 53

5.4 JBI-BASED PLATFORM SERVICES 54
5.4.1 Concrete development steps 54
5.4.2 Introducing and classifying Petals components 60

© SOA4AIl consortium Page 3 of 80

SOA; ; _7;,

TTAW sopsal —FP7215219 D1.4.1B SOA4AIl Runtime ™
5.4.3 Between theory and practice: handling messages 61
5.4.4 Between theory and practice: managing life cycles 68
5.4.5 Summary 77
55 LIST OF PLATFORM SERVICES 77
5.5.1 Space Service 77
6. CONCLUSIONS 78
7. REFERENCES 79

© SOA4AIl consortium Page 4 of 80

SOA; ; #7;

EVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime e

List of Figures

Figure 1 SOA4AII DSB INfraStrUCLUIE...........eeiiieieiiiiieiieeeieeeeeeeeee ettt e e eeeeeeeeeees 11
Figure 2 Connection between the Monitoring Bus and PETALS ESBcccccceeeiiiiiiiieeiinn, 17
Figure 3 Technical Registry ArChItECIUIEii i i 19
Figure 4 The Transporter COMPONENTouuuuiii et e et e e e e e e e e e e e e e eeeeennnnns 20
Figure 5: Example of DSB routing platform composition................eiiiiieiiieiiiiieieeeeeeeeen 21
Figure 6: The transporter component based 0N GCM...........ccoovviiiiiiiiiee e, 21
Figure 7 : Routing optimization through direct bindingscooviiiiiiiii e, 22
Figure 8 Architecture Monitoring PIatformeeeeiieiiiiiieieeeee e 23
Figure 9 Topic-based Monitoring Data Filteringcccoiiiieiiiiiiiii e, 24
Figure 10: The SOA4AII Overall ArChite@CIUIE.........coiieiiiiei e 26
Figure 11: Internal and External Communication FIOWcoouiiiiiiiiiiiiiiiiiiieeeeeeeeeen 27
Figure 12: The SOA4AIl DSB Implementation ArchiteCtureeeevveeeeieeeemeeieeeiiieeennnnns 28
Figure 13: Binding an External Standalone Web Service tothe DSB..........ccccccceeiiiiiiiiieninnn, 32
Figure 14: Proxifying an External Standalone Web Service with the DSBovvvveeeeee. 33
Figure 15: The Service Component Architecture (SCA) Modeloovvvviiiiiiiiiiiiiiiiiiiiinns 34
Figure 17: The Eclipse STP/SCA XML EditOr........cooevuiiiiiiie e 36
Figure 18: The Eclipse STP/SCA COMPOSEcccciiieeiiiieieeeeee et e e e e e eaaannaans 36
Figure 19: The SOA4AIl Service Discovery Functional ProCessuuvvveveveeeveeveenvnnnnnnns 37
Figure 20: The SOAZ4AIl SCA COMPOSILEuuuuiiie e e e e e eaaaaaae 38
Figure 21: The SOA4All-service-discovery SCA COMPOSIEcccvvvuiiiieeeiieeiiiiiii e, 39
Figure 22: The semantic-space SCA COMPOSILEcoevruuuiiiieeeeiiieiiiie e e e 39
Figure 23: The service-registry SCA COMPOSITEuuuruuirririiiiiriiiieieieieeeeseeeeeeeeeeeeeeeennenennnnes 40
Figure 24: The reasoner SCA COMPOSIEEuuuiiieieiiieeiiie st e e e e e e eaanaaae 40
Figure 25: The discovery SCA COMPOSITEuuuuiiieeiieieiiiiiiiiieiieieeeeseeeeeeeesesseeeeeneseeenennnnnnnnnes 40
Figure 26: The ranking-and-selection SCA COMPOSILEuuurrirrririririiiiiiiieeeeeereieeeeeeeeiinnes 40
Figure 27: The crawler SCA COMPOSILE ...oovuuuiiiiie e e e e e e e eeearana 41
Figure 28: The SemanticSpacel Java Interface...........cccceeviieiiiiiiiiiiic e, 41
Figure 29: The Discoveryl Java INterfaceooooiiiiiiiiiiii e 42
Figure 30: The ServiceRegistryl Java Interface............ccceeiiiiiiiiiiiiiiii e 42
Figure 31: The Java Implementation of the Semantic Space Component...................ccceuvue. 44
Figure 32: The Java Implementation of the Service Registry Component..................ceevveeee. 44
Figure 33: The Java Implementation of the Discovery Component............cooevvuiiiiieeereeeennnns 44
Figure 34: The XML-based semantic-space SCA COMPOSILEuvveeieeeiiiieiiiiiiiiiieeeeeeeeiiinns 45
Figure 35: The XML-based service-registry SCA COMPOSItE..........uurrrvrmmereeeiiiiieirieiiierieinnnens 46
Figure 36: The XML-based discovery SCA COMPOSITEcoveeiiiieiiiiiiieeeeee e e e 47

© SOA4AIl consortium Page 5 of 80

SOA; ; _7;

VAW sopga FP7215219 D1.4.1B SOA4AIl Runtime S
Figure 37: The XML-based SOA4All-service-discovery SCA COMPOSIteveevveeeeieeennnnnn. 48
Figure 38: An SCA-based Client of the DBS Service Binder Service...........ccccuvvvvvvvvevveenennne. 49
Figure 39: The XML-based service-binder-client SCA COMPOSIteevvvvvvvereriiiiiiiiiiieieeene. 49
Figure 40: The Java Implementation of the Service Binder Client.............cccccceeeeiiieeiiieeninnnnn, 50
Figure 41: A Java-based Test Case EXxample........oooiiiiiiii e 51
Figure 42: Testing SCA-based Platform Services with SOapUIoevvveiiiiiiiiiiiiiiiiiiieinns 52
Figure 43: Introspecting SCA-based Platform ServiCescccccvveiiiii i, 53
Figure 44: Reconfiguring SCA Properti€S......ccciceiiiiiieiiiie it 53
Figure 45 Launching Petals in debug mode from EclipSecoouviiiiiiiiiiiiiiiiieeeeeeeee, 58
Figure 46 The PELALS sample CHIENt..........ouiiii i 59
Figure 47 In-Only message exchange pattern.............uceoiiie e 63
Figure 48 Robust In-Only message exchange pattern............oooouiiiiiieeiiieeiiiieie e 63
Figure 49 In-Out message exchange pattern........ ..o 64
Figure 50 Life cycle of a Petals COMPONENTccoiiiiiiiiii i 69
Figure 51 Adding a component parameter in the jbi.xml...........ccoooooii . 70
Figure 52 Life cycle Of @ SErVICE-UNITcoouuieii e e e eeeeeaees 73

List of Tables

Table 1: Summary of the three integration approachescccccooi 31
Table 2. List of SOAZAII DSB NOUEScuiiiiiiiiiiiiiiiiiiie et 31

© SOA4AIl consortium Page 6 of 80

TAW sopgan—FP7215219

D1.4.1B SOA4AIl Runtime

4

EVENTH FRAMEWORK

s 0
PROGRAMME

Glossary of Acronyms

Acronym Definition

API Application Programming Interface
CBSE Component-Based Software Engineering
CDK Component Development Kit

D Deliverable

D Deliverable

DSB Distributed Service Bus

EC European Commission

ESB Enterprise Service Bus

JAX-WS Java API for XML Web Services
JBI Java Business Integration

SCA Service Component Architecture
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
URL Uniform Resource Locator

WP Work Package

WP Work Package

WS Web Service

WSDL Web Service Definition Language
XML eXtended Markup Language

© SOA4AIl consortium

Page 7 of 80

SOA; ; #7;

EVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime e

Executive summary

This report complements D1.4.1B, the first implementation of the SOA4All Distributed
Service Bus, as core infrastructural service of the SOA4AIl Runtime. As such, this document
is included in the zip file that contains the SOA4AIl Distributed Service Bus software, source
code, and installation and configuration files.

The implementation presented in this deliverable yields the realization of the concepts and
specifications that were published in deliverable D1.4.1A SOA4AIl Reference Architecture
Specification [11] — mainly in Section 4.

© SOA4AIl consortium Page 8 of 80

SOA; ; _?;

SEVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime e

1. Introduction

This report about the realization of the SOA4AIl Distributed Service Bus complements the
first implementation of the SOA4All Runtime prototype. The prototype delivers the service
bus logic implemented and deployable on top of the distributed ProActive Grid infrastructure.
This work thus includes the implementation of the distributed technical registry of the bus, the
messaging infrastructure for the coordination of distributed bus nodes, and the monitoring
platform. A forth part that is deployed as part of the Distributed Service Bus is the semantic
spaces infrastructure. The semantic spaces are not subject to this deliverable, but their
implementation is documented under task T1.3 in deliverable D1.3.2B [12].

Further aspects that are subject to this deliverable are the various integration interfaces that
are provided by the service bus infrastructure. In particular, we present details of how to
publish services, in particular — for the time being — SOA4AIll Platform Services, to the
runtime implementation. In continuation of this work, as part of the effort in the upcoming
period of the project, the integration interfaces and guidelines that are published in this
document, will be exploited for the realization of functional processes, as they were initially
presented in deliverable D1.4.1A.

Services in SOA4AIl can in consequence be realized either as stand-along Web services
based on traditional WS*-stack technologies or as RESTful service APIs, or however, with
little more programmatic effort, they can be hosted by bus nodes in form of SCA or JBI
components. The implementation guidelines and technical details about these approaches
are subject to this deliverable too.

1.1 Purpose and Scope

The goal of this deliverable is to provide a written complement to the SOA4AIl Runtime
prototype (D1.4.1B SOA4AIl Runtime). We refer the reader to D1.4.1A for details about
technical background and the baseline, as well as the architecture and design of the
prototype implementation. This deliverable is included as part of the zip file, D141B.zip,
which contains the software, source code, installation and configuration facilities.

The main objective is thus to provide the reader with more detailed insights about the runtime
implementation. Secondly, this deliverable offers more detailed insights into the technical
integration of SOA4AIl Platform Services, or further third-party Web services. In that sense,
this deliverable contains technical pointers towards the extended integration work of task
T1.4 that will have to be done in the period up to month M24 of the project. By then, full-
fledge functional processes and their implementation plans have to be specified. The
purpose of these processes is to execute complex task in the SOA4AIll Runtime, such as the
automated localization or composition tasks that require the coordinated execution of several
platform services.

1.2 Structure of the document

In order to best respond to the purpose of the deliverable, we structure the document into the
following sections. After this short introduction, Section 2 is dedicated to the publication of
installation and configuration guidelines that allow the reader to run SOA4AIl Distributed
Service Bus nodes. Section 3 presents the various bus APIs that are offered for easier
integration of platform services (Section 3.1), or for accessing monitoring data (3.2). In
Section 4 the various software components that constitute the bus are presented in more
detail; namely, the distributed technical registry, the message transport infrastructure, and
the monitoring platform. Before concluding with Section 6, we provide in Section 5 the
guidelines and implementation details of how to register and expose services in the bus. This
information is mainly dedicated to service developers, and as such, in particular to the
implementers of SOA4All Platform Services.

© SOA4AIl consortium Page 9 of 80

SOA; ; #7;

EVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime e

2. Installation and Configuration

This section introduces how to install and configure pieces of software which are required to
build the SOA4AII Distributed Service Bus. The SOA4AIl DSB is mainly build by combining
the OW2 PEtALS Enterprise Service Bus, the OW2 ProActive framework and the Space
implementation described in D1.3.1.

The following section will describe all the different steps to follow to build what will be called
the “SOA4AIl DSB node network”. The SOA4AIl DSB node network is the virtual network
which is composed of SOA4AIll Service Bus nodes. These nodes are composed of the
PEtALS, ProActive and Space runtimes and have to be configured to provide a static node
network. By static, it means that nodes can not discover other nodes over the Internet
automatically. This implies to define a network topology, to ensure that all the required
services will be publically exposed and then install and configure the nodes according to this

topology.
2.1 Resources Requirements

In order to provide the SOA4AIll Distributed Service Bus platform, the following resources are
required to install a node:

- Host with:

0 10 Gb free disk space (recommended)

0 1 Gb RAM (recommended since PEtALS ESB needs 512 Mb to work properly)
o Java Runtime Environment (SUN MicroSystems JRE 5 at least)
o

Full Internet access: This point is the most important since the DSB will be
used to consume and provide billions of services over the Internet.

A DSB node needs to expose services (Web services over HTTP) to other DSB nodes. The
list of ports which must be open is:

- 8084: Port used by the PEtALS SOAP Binding Component to expose services
- 7100: Port used by the PEtALS monitoring and management Web services
- 7800: Port used by the node communication layer

- 7900: Port used by the distributed technical registry

2.2 Infrastructure

The SOA4AIl DSB is composed of software modules which have been extended and
integrated to provide a solid, scalable and extensible infrastructure.

© SOA4AIl consortium Page 10 of 80

SEVENTH

FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime ™

ProActive Transport Layer

Figure 1 SOA4AIl DSB Infrastructure

The previous figure describes the SOA4AIl DSB infrastructure and shows how modules are
integrated together.

221

The PEtALS ESB has been extended to provide:

o Additional services such as platform services for service binding, monitoring
and management services

0 New scalable and firewall-friendly technical registry
o New message transport layer based on ProActive

A complete description of the standard OW2 PEtALS ESB architecture is available at
(http://petals.ow2.org/docs/PEtAL S-Architecture-3-07-09.pdf).

The ProActive framework is used to build the message routing and transport layer.
This layer provides the communication feature needed by the PEtALS ESB.

The platform services are potentially hosted on external nodes as Web services.
These services are binded to the DSB using the PEtALS SOAP Binding Component.
Such bound platform service is accessible from each DSB node in a transparent way.

The platform services can be composed using the SCA capabilities with the help of
the PEtALS SCA Service Engine. This is only possible if the platform services are
bound to the DSB using the service binding feature.

The Space is hosted on a separate runtime providing a Web service API. The Space
Web service is bind to the DSB using the PEtALS SOAP Binding Component.

Installating a DSB node

The DSB binary is available as a ZIP archive. To install the DSB node, just extract the
archive. The DSB runtime is then available under SOA4All-dsb folder and will be ready to be
launched after the following configuration phase.

© SOA4AIl consortium Page 11 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

2.2.2 Configuring a DSB node

The SOA4AIl DSB distribution needs to be configured to fit the targeted system. Configuring
the node means defining the network ports to be used and defining the SOA4AIl network

topology.
The DSB configuration files are available under the SOA4All-dsb/conf folder :

- server.properties : Defines the local server properties such as name in the network,
services to be exposed ... These informations are locally and not shared with others
nodes.

- topology.xml : Defines the local network topology. The local network is the set of DSB
nodes which are visible from the local one. The topology information is shared
between nodes of the same local network so that all gets the same vision of the
network.

2.2.2.1 Local node configuration

The local configuration is defined under the conf folder in the server.properties file. This file is
a standard properties file with ‘key=value’ data. The values to be updated according to the
DSB configuration are:

- The node name ‘petals.container.name=X" where X is the name of the node in the
SOA4AIl DSB node network. This name MUST be unique and must match a node
entry in the topology definition.

- The registry definition:

0 ‘registry.incoming.manager=org.ow2.petals.registry.core.strategy.flooding.Seq
uentialFloodingincomingManager’ defines the class name to use for the
incoming message propagation from other registry instances. The class must
be available in the classloader and must implements
org.ow?2.petals.registry.api.manager.IncomingManager.

0 ‘registry.outgoing.manager=org.ow?2.petals.registry.core.strategy.flooding.Seq
uentialFloodingOutgoingManager’ defines the class name to use for outgoing
message propagation. The class must be available in the classloader and
implements org.ow2.petals.registry.api.manager.OutgoingManager.

0 ‘registry.message.receiver=org.ow2.petals.registry.core.transport.cxf. CXFMes
sageReceiver defines the class name to use for message reception from
other registries instances. The class must be available in the class loader and
must implements org.ow?2.petals.registry.api.transport.MessageReceiver.

0 ‘registry.message.sender=org.ow2.petals.registry.core.transport.cxf. CXFMess
ageSender’ defines the class name to use for message emission to other
registries instances. The class must be available in the class loader and must
implements org.ow?2.petals.registry.api.transport.MessageSender.

2.2.2.2 Topology definition

The topology configuration is defined under the conf folder in the topology.xml file. This file
contains all the nodes configuration data such as host names and port numbers. The
following configuration snippet shows a topology definition for three DSB nodes:

<?xml version="1.0" encoding="UTF-8"?>

<tns:topology xmins:tns="http://petals.ow2.org/topo logy"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instan ce"
xsi:schemalocation="http://petals.ow2.org/topology petalsTopology.xsd">

© SOA4AIl consortium Page 12 of 80

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime i

<tns:domain mode="static" name="SOA4AIIDSB">

<tns:description>The SOA4AIl DSB domain
configuration</tns:description>

<tns:sub-domain name="subdomain1">
<tns:description>description of the subdomain</t ns:description>
<tns:container name="ebmws">

<tns:description>description of the container h osted at
eBM WebSourcing</tns:description>

<tns:host>SOA4All.ebmwebsourcing.com</tns:host>
<tns:user>petals</tns:user>
<tns:password>petals</tns:password>
<tns:network-service>
<tns:port>7720</tns:port>
</tns:network-service>
<tns:jmx-service>
<tns:rmi-port>7700</tns:rmi-port>
</tns:jmx-service>
<tns:transport-service>
<tns:tcp-port>7800</tns:tcp-port>
</tns:transport-service>
<tns:registry-service>
<tns:port>7900</tns:port>
</tns:registry-service>
</tns:container>
<tns:container name="inria">

<tns:description>description of the container h osted at
INRIA</tns:description>

<tns:host>SOA4All.inria.fr</tns:host>
<tns:user>petals</tns:user>
<tns:password>petals</tns:password>
<tns:network-service>
<tns:port>7720</tns:port>
</tns:network-service>
<tns:jmx-service>
<tns:rmi-port>7700</tns:rmi-port>
</tns:jmx-service>
<tns:transport-service>
<tns:tcp-port>7800</tns:tcp-port>
</tns:transport-service>
<tns:registry-service>
<tns:port>7900</tns:port>
</tns:registry-service>

</tns:container>

© SOA4AIl consortium Page 13 of 80

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime et

<tns:container name="sti2">

<tns:description>description of the container h osted at

STI2</tns:description>

<tns:host>SOA4All.sti2.at</tns:host>
<tns:user>petals</tns:user>
<tns:password>petals</tns:password>
<tns:network-service>
<tns:port>7720</tns:port>
</tns:network-service>
<tns:jmx-service>
<tns:rmi-port>7700</tns:rmi-port>
</tns:jmx-service>
<tns:transport-service>
<tns:tcp-port>7800</tns:tcp-port>
</tns:transport-service>
<tns:registry-service>
<tns:port>7900</tns:port>
</tns:registry-service>
</tns:container>

</tns:sub-domain>

</tns:domain>

</tns:topology>

In the previous configuration snippet, three nodes (ebmws, sti2 and inria) have been defined.
It is very important that:

2.2.3

The local configuration match with the container name. For example, the DSB node
instance running at eBM WebSourcing is named ebmws in the topology and must
define petals.container.name to ebmws in the server.properties file.

The topology file is the same on all nodes since this is the only way to share this
information.

Starting and stopping a DSB node

Once configured, the DSB node can be managed with the help of scripts available under the
SOA4All-dsb/bin folder:

2.2.4

startup.sh: Starts the local DSB node. This will launch the local runtime and connects
it to the SOA4AIl DSB network.

stop.sh: Stops the local DSB node. This will stop the local runtime and remove it from
the SOA4AIll DSB network.

Modules installation

The DSB needs to:

Bind platform services using the PEtALS SOAP Binding Component

Compose platform services using the PEtALS SCA Service Engine

To install these components, copy the petals-bc-soap.zip and petals-se-sca.zip files located
in the SOA4All-dsb/components folder into the SOA4All-dsb/install folder.

© SOA4AIl consortium Page 14 of 80

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime ™

The procedure to bind and compose services is explained in the section 5 DSB Integration.

© SOA4AIl consortium Page 15 of 80

SOA; ; #7;

EVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime e

3. SOA4AIl Distributed Service Bus APIs

This chapter describes the actual SOA4AIl Distributed Service Bus APIs. These APIs will be
used by:

- Platform services consumers: The platform services will be exposed and potentially
consumed or composed with other services. The SOA4AIl studio is the main platform
service consumer. All the requests to platform services from the Studio to platform
services will be performed through the SOA4AIl DSB API.

- Monitoring agents: The monitoring data will be used by monitoring agents to provide
a higher level of monitoring. The SOA4AIl Studio is the main monitoring service
consumer and will provide an advanced GUI representation of this monitoring data.

- Service managers: The service manager role is to bind existing services, which can
be hosted on several places, to the bus. Once bound, these services are
transparently accessible to all the platform service consumers.

3.1 Platform services integration API

The platform services integration APl is described in DSB Integration.

3.2 Monitoring and Management API
3.2.1 Infrastructure Monitoring Data

The infrastructure layer (PEtALS ESB) provides a basic monitoring Web service API which
allows clients to get standard information on hosted services such as:

- Messages exchanged between consumers and providers: with message payload,
timestamps, states, ...)

- List of available endpoints: with location, service description (WSDL, WADL, WSMO,
...), humber of requests,...

- List of PEtALS components: with location, state.
3.2.2 Monitoring Bus

The Monitoring Bus (MB) is an upper level bus which is placed on top of monitoring aware
pieces of software. This MB acts as an intermediate layer between the infrastructure which
produces monitoring data and clients which will consume or be notified of WSDM data
availability.

Using the MB is possible with the following steps:

- The MB provides an API to create Monitoring Endpoints (ME). These endpoints are
generally created by functional endpoints hosted on the monitored infrastructure.

- Data is sent from the monitored infrastructure to one or more ME.

- Clients use the MB with the subscribe/notify paradigm. A client subscribes to one or
more ME and is notified when new monitoring data is available.

The generic WSDM monitoring interface is composed of the following operations:
- GetResourceProperty: Get all supported topics by the producer service.
- Subscribe: Allows a client to subscribe to one topic of provider.

- Unsubscribe: Allows a client to unsubscribe to one topic of provider.

© SOA4AIl consortium Page 16 of 80

SOA; ;
FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime ™

- GetCurrentMessage: Allows a client to get the current message of a topic given in
parameters.

3.2.3 Monitoring Service Integration

The next figure introduces the interaction between the WSDM based Monitoring Service
(MS) and the infrastructure (PEALS ESB). The MS is deployed on the Monitoring Bus. This
specific bus contains a Monitoring Admin Service which provides the capability to create or
destroy a monitoring service endpoint on the MB.

| MEp1 annh'uring Endpoint

~ FEpl Functional Endpoint

Figure 2 Connection between the Monitoring Bus and PEtALS ESB

When a functional endpoint is deployed on the PEtALS ESB, the requests the Monitoring
Admin Service to create its associated monitoring endpoint in the Monitoring Bus. The
monitoring endpoint address is returned as response of the create operation.

As a result, when the functional endpoint receives a client request, it processes the request
and sends a snapshot of the exchange to the associated monitoring endpoint using the
‘addNewExchange’ operation.

All information concerning the exchange between the functional consumer and provider are
sent to the monitoring endpoint. This operation is contained in a private interface accessible
only by the functional endpoint.

© SOA4AIl consortium Page 17 of 80

SOA; ; _?;

SEVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime e

4. SOA4AIl Distributed Service Bus Components

The SOA4AIl Distributed Service Bus is composed of various pieces of software. The main
ones are:

- The OW2 PEtALS Entreprise Service Bus
- The OW2 ProActive middleware framework

As described in the D1.4.1A deliverable, these pieces of software must be adapted to
provide features such as better scalability, proxy compatibility, efficient message transport
and message routing. The role of the current chapter is to introduce the specific modules
which have been developed to match the previous requirements.

4.1 Distributed Technical Registry
4.1.1 Requirements

The technical registry is the software module where Service Bus service endpoints are
managed. The registry API follows the CRUD paradigm to create, retrieve, update and delete
endpoints.

In order to access services, the Service Bus resolves endpoint location by doing a lookup to
the technical registry. The technical registry must provide the following core features:

- Store and retrieve entries into/from the registry. An entry is composed by the endpoint
name, the endpoint location (DSB node level), the service description (WSDL, WADL,
WSMO i.e. XML description).

- Store and retrieve entries from any node of the SOA4AIll Network. This means that a
DSB node must be able to get a reference to an endpoint which is hosted by another
DSB node. This will enable the endpoint retrieval when a DSB node hosting the
endpoint is down for some reason. The DSB based on PEtALS ESB will be able to
send the message to the right service when the node will come back.

- The registry entries propagation must be configurable. The DSB network will be
potentially composed of hundreds of nodes of different natures over different physical
networks through proxies and/or firewalls. Propagating and getting entries through all
these nodes in order to have the current vision of the available services will be
configurable to get the most effective result.

- Entries must be persisted. Entries will be persisted to be able to restart the technical
registry without restarting the complete DSB node.

- The transport layer will be configurable. The messages between registries will be
exchanged by using a transport layer. Since DSB nodes may be accessible through
firewall and/or proxies, the transport layer may be configurable to use the right
protocol to access foreign nodes.

4.1.2 Architecture

The technical registry architecture resulting of the previously features and requirements
described above is represented in the following figure.

© SOA4AIl consortium Page 18 of 80

FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime ™

[Registry CRUD API]

Transport Layer

Figure 3 Technical Registry Architecture
The registry architecture is composed of the following modules:

- Registry: The registry module is providing the registry API to clients. It is used to store
and retrieve entries.

- Repository: The repository module is used to store entries.

- Transport: The transport layer is used to send and receive messages between
registries. The messages can content entries or management data.

- Remote Manager: The remote manager defines how the entries must be propagated
to known peers.

- Local Manager: The local manager defines how the entries must be handled when
they are received from remote peers i.e. the entry must be propagated to other peers,
how, when?

As the registry interface is generic and modularized, the transport layer can be customized. It
can be for example, based on the message transport described in section 4.2. We believe
that such a way to propagate requests is relevant w.r.t. the DSB topology. The requests are
propagated through the distributed message transporter (which boundaries are well-defined).

4.2 Message transport
4.2.1 Overview and architecture requierements

According to the SOA4AIl vision, the DSB infrastructure, which can be seen as a federation
of ESB, should cope with billions of external services, orchestration enactment of thousands
of compound services involving subsets of those billions above;millions of users concurrently
accessing and deploying services, relying on the bus in the background, through the web-
enabled so-called SOA4AIl studio, a few thousands of them acting as compound service
designers.The primary goal of the SOA4AIll DSB is to ensure that the SOA4AIl framework
scales to the dimensions of the Web, by enabling appropriate distribution techniques that
evolve the traditional ESB towards a fully Distributed Service Bus, without altering the
communication and interaction patterns of the ESB core.

© SOA4AIl consortium Page 19 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

As a consequence, an ESB by itself, even if distributed, is not a suitable solution for a service
cloud resulting of the federation of the involved partners service infrastructures, e.g., their
service buses. It mainly lacks inter-connection mechanisms and a global and shared store of
meta-data about federated services. Additionally, each infrastructure should be able to
dynamically add or remove additional nodes to face changing loads. Such a demand may
also translate at the federation level where, e.g. some agreements may have been set up to
govern the load-balancing of underlying hardware or software resources among the
federated buses.

The most crucial element to build the PEtALS-based DSBs is to provide a solution for
message routing through a potentially huge set of PEtALS nodes, without posing a constraint
of having point-to-point connections among all the containers, and without using the original
JMS broker (based on Joram, see Error! Reference source not found.) which would be
difficult to deploy at Web scale. Naturally, we came out with a multi-level, hierarchical
organisation, presented in section 4.2.3.

4.2.2 Message transport in PEtALS

In a non-distributed version, the PEtALS message transport relies on a so-called Message
Transporter Fractal component (which is a Julia component).

Sejuice Memory dispatcher wonice delegated- _clonfiguration j COnfiguration
Transporter -Iservice-joram . 4. {opology
- - Dispatcher = senvice | Joram
service . configuration Transporter 4. jndi =1 fopology
- Transport dispatcher - delegated- i
service - Monitoring | transporter service-memory dlspatcher -1 jndi

Figure 4 The Transporter Component

The transporter component, shown in Error! Reference source not found. , handles the
transport of messages to other buses. It's accessed through the Dispatcher that transmits
messages to the right transporter. When a message arrives, it's sent to the appropriate
TransportProtocol, which may be:

* MemoryTransporter, in case of a local container.

e JoramTransporter, for "reliable transporting”

¢ Another kind and customizable transporter,

4.2.3 The distributed message transporter

Our proposition relies in a new transport component of a PEtALS DSB including a new
transport layer based on GCM components. Each DSB includes a GCMTransporter
component which is responsible for the transparent support to point-to-point and collective
communications over the Grid/Cloud infrastructure. PEtALS containers message transporters
subcontract the transport to a GCM/ProActive-based hierarchical grid-aware routing platform
[1]. This platform leverages the hierarchical Fractal composition model: activities deployed on
a same cluster of machines can use standard communication protocols (RMI over TCP) to
exchange messages; on the contrary, the messages can be tunneled across SSH or any
other technology supported by the ProActive middleware.

© SOA4AIl consortium Page 20 of 80

‘Ollg i
TAW sopgal —FP7215219 D1.4.1B SOA4AIl Runtime

SEVENTH FRAMEWORK
PROGRAMME

To this effect, the GCMTransporters are organized hierarchically at deployment-time
according to the multi-cluster/grid/cloud physical infrastructure, which compose the
federation of DSBs. Error! Reference source not found. . shows an example of the routing
platform composition on an infrastructure composed by two distinct resource providers,
containing respectively 4 and ‘n’ ESBs.

I
I I : _
i - |— Single Server Interface
i 'I- BRI m-+ i e S:’nzze Client Interface
I .|- il + .+ | Gather-Mulicast (MxN)
b e R gy Moot gy L

EEL _| : . GCMTrasporter-GCMClustering
E 5 GCMTo,2| ' . 3 % Binding

GCMClustering-GCMClustering
Binding (same level)

GCMT1.n -1

l
m
Ly
|a:|
)
=L
-l
o
|
|
)

GCMCo GCMC1 . GCMClustering-GCMClustering

GCMC Binding (different level)

Figure 5: Example of DSB routing platform composition

This Platform is composed by two main kinds of components:

. GCMTransporters (GCMT): these are primitive GCM components (inner-
components in Error! Reference source not found.), which are
responsible, locally, for message handling, that basically consist on adding
meta-information, which will guide the routing strategy. These components
have a hierarchical identifier (ID) composed by the ID of the enclosing
GCMClustering plus an unique ID. In one hand, communications that place
in the context of a cluster (or local network) will be handled by the
GCMTransports themselves and such communications are usually
performed through the standard RMI protocol. On the other hand, messages
exchanged among GCMTransporters located on different administrative
domains are delegated to GCMClustering components. Error! Reference
source not found. shows internally, how the GCMTrasporters are

organized.
service Memory dispatcher wonice delegated- _clonﬁguration - configuration
Transporter ervice-joram) 4 {opology
. i service
service -1 Dispatcher -Iconﬁguration '(I';rgllr\:lsporter 4 ={ topology
| Transport dispatcher A delegated- .
service - Monitoring - 4ransporter service-memory dispatcher = Jjndi

Figure 6: The transporter component based on GCM

. GCMClusterings (GCMC): These are composite GCM components
(enclosing components of Error! Reference source not found.), which are
capable of grouping a set of GCMTransporters or a set of lower-level
GCMClusterings. These components also have a hierarchical ID, which is
composed by the ID of the enclosing GCMClustering, if they have any, and a

© SOA4AIl consortium Page 21 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

single ID. The GCMClusterings are responsible for message routing, which
is achieved through the configuration of their collective MxN interfaces.

The GCMCs are deployed on resource provider frontends or proxies to make possible the
communication among physically isolated nodes. This can be achieved through the usage of
specific communication protocols, such as RMISSH (RMI over SSH tunnels).

The binding scheme of the infrastructure depicted on Error! Reference source not found.
consists on single bindings between GCMTs and the respective enclosing GCMCs, all-to-all
bindings among GCMCs of the same level (even if in our example e only have 2 GCMCs)
and single bindings between GCMCs to upper-level GCMCs. This is a very general scheme
that allows point-to-point and collective communication from any GCMT or group of GCMTs
to any other group of GCMTSs, even vith limited network connectivity, provided a physical link
between the most external GCMCs. Externally, the whole infrastructure is wrapped bya
GCMC that represents the whole infrastructure and can potentially be bound to another
routing infrastructure.

In practice, messages sent from GCMTSs are tagged with:
* Message type: point-to-point or collective (1xN, Mx1 or MxN).
« Destination (s): a given hierarchical ID, in the case of point-to-point or Mx1 or
a set of hierarchical IDs, in the case of 1xN (which can potentially be a
broadcast if N is composed by every other destination) and MxN.
< And distribution policy which are functions that will be used to split or gather
the messages.

As already explained, if messages take place on the local network, they are sent directly to
the destination. Otherwise, these messages are intercepted at the gather-multicast and a
routing algorithm allows the messages to be delivered to the right destination(s), applying the
distribution policy, if needed.

The routing infrastructure provides a very general mechanism capable of performing any kind
of communication, supposing one open channel between clustering components of the same
level (even if it must be tunnelled through SSH or use HTTP). However, in terms of
performance, this cannot be considered an optimal solution by any means: one or two
synchronization barriers for each level involved on the call are required while efficient point-
to-point operations require some form of direct communication between source and
destination. Besides, the memory needed to aggregate messages at interfaces might be
considerable. Nonetheless, collective can take profit of the gather-multicast interface to
stage and parallelize their execution.

© SOA4AIl consortium Page 22 of 80

FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime ™

47| GCMT1,2| T,

GCMTo,2 [,

= = == Standard Bindings
F - standard Interfaces

GCMT1,4

Direct MxN Bindings
J 4 cCollective MxN Interfaces

Figure 7 : Routing optimization through direct bindings

Thanks to the component encapsulation, we are able to transparently configure direct
bindings (Error! Reference source not found.) among GCMTransporters to avoid
unnecessary indirections, provided an existing physical link between each pair of nodes. The
general direct binding mechanism is detailed in [2].

4.3 Monitoring platform

Error! Reference source not found. shows the overall architecture of the monitoring
platform. The monitored components running on the DSB, e.g. the discovery engine,
execution engine and reasoning engine, etc. continually place monitoring data onto the
message queues on the DSB, which is in the form of OWL encoded monitoring events. Each
event indicates a transition of state of execution, for example, the event ActivityCompleted
means that an activity has been finished successfully. On the other hand, the monitoring
platform sets up several listeners to the message queues in order to continuously wait for
monitoring events to occur. The listeners can see the events happening, and pass them to
the monitoring platform for processing. When events arrive, the monitoring platform firstly
stores them as RDF statements in the Event Repository, and secondly puts the high-level
information derived through rule based reasoning on the raw monitoring events, into the

Execution History.
Fractal

Component B

"=Monitoring Platform

Fractal

Component A Listener =® Event Processor

Al

Repository

Figure 8 Architecture Monitoring platform

© SOA4AIl consortium Page 23 of 80

FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime ™

4.3.1 Underlying infrastructure

The monitoring platform is situated in the context of the SOA4AIl Distributed Service Bus,
and hence the monitoring data is collected through the monitoring service provided by the
PEtALS ESB. As stated in the previous section, information provided by monitoring services
on ESB not only can capture the messages exchanged during services invocation and
execution of business processes, but also can reflect the runtime states of message queue
and JBI artefacts lifecycles.

Message queues on the DSB provide an asynchronous communication mechanism to
transport monitoring data to the monitoring platform. Furthermore, with the supports of WS-
Topics [11], administrators or analysts can apply specific filters to the events that are
generated by the components on DSB, and thereby screen out information that is relevant to
the monitored artefacts they concern. By this means, the communication loads of the
message queues are reduced, and the general performance of the monitoring platform is
improved. In addition, users of the monitoring platform can store the gathered data into
separate repositories, namely publish them to different sub-spaces of the Semantic Spaces
[9]. For instance, as shown in Error! Reference source not found. , the system
administrators need to see the whole picture of the running state of the DSB, and receive all
the monitoring data by using the root topic. In contrast, the business analysts are only
interested in the special activities, so the corresponding topics, such as ‘super.events.ode’,
are adopted, as well as the semantic repositories with relative limited size. In brief, the
underlying infrastructure makes it possible to observer the SOA4AIll DSB from multiple
perspectives, and to obtain the required data through the monitoring platform.

History (User 1)

\
X
‘\
X
)

Monitoring Platform

Fractal
Component A

Listener i
(User 1)

Message Queue

Processor

Event
Message Queue p—_
(superevents.ode)

Listener
(Admin)

)

Fractal
Component B

Figure 9 Topic-based Monitoring Data Filtering
4.3.2 Persistence of monitoring data

The persistence of monitoring data refers to writing runtime information to RDF triple storage
systems, which includes both the gathered raw events generated by components of SOA4All
DSB and the high-level information derived through event processing. In this way, the system
administrators and business analysts can keep track of the runtime states and execution

© SOA4AIl consortium Page 24 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

histories with much longer time-span.

From an architectural viewpoint, as shown in Error! Reference source not found. , the
storage system of monitoring data is composed of two separate semantic repositories: Event
Repository and Execution History Repository. The former one is assigned for the raw events
that depict the source, the occurrence time, the related input and output data, etc. The
Execution History Repository is used to store the high-level information, i.e. instances of the
concepts in the COBRA ontology [6]. Once raw events arrive the monitoring platform, they
are resolved as instances of the concepts in the EVO ontology [6], and after being processed
by the rule-based reasoning, the derived high-level information is published to the Execution
History.

The reasons for creating two repositories for respectively storing the raw events and high-
level information are:

1. A great number of events may happen in a short time, so a dedicated storage can
reduce the impact on the overall performance of the monitoring platform;

2. business analysis is mainly based on the high-level information, e.g. the lifecycles of
business activities, rather than the raw events, thus it does not need the access to all
of the repositories. Moreover, the design of two separate semantic repositories is also
for the purpose of decoupling the event processing of monitoring and other
functionalities of business analysis.

The persistence of monitoring data is implemented under the framework of EImo, which
facilitates Java applications accessing RDF triple stores by establishing the mappings
between Java objects and RDF resources [7].

4.3.3 Event processing

The event-processing module of the monitoring platform is charge of deriving the high-level
information from the raw events and publishing to the Execution History Repository. Drools
[8], a general-purpose rule engine, is exploited to carry out event processing. Since we have
introduced a hierarchy of monitoring events in the EVO ontology (refer to [12] for more
details about EVO ontology). When an event arrives the monitoring platform, SPARQL [9]
queries are executed to retrieve the super-concepts of the received event. Then, the event
itself and its super-concepts are translated into Drools facts and fed to the rule engine. To
achieve the automation of data updating in Execution History Repository, reasoning rules are
defined for each kind of event. A new feature of Drools 5.0 that is useful for event processing
is the support to ‘fireUntilHalt()’, which means the engine can run in a reactive mode and fire
the rules until the function ‘halt()’ is called.

The monitoring data is kept in the working memory of the rule engine for only a certain period
of time. In other words, only the events that happened during a specific period of time are
treated as the facts on which rule engine reasons. By this means, a sliding window of
observation on events comes into being, and the number of monitoring events being
processed by the rule engine is controllable. Therefore, the processing time is cut down and
the system performance is also improved.

To integrate Drools with EImo, two approaches are adopted. For one thing, the Java class
loader used by Elmo is passed on to Drools, so that the rule engine can deal with Java
objects that are instantiated by Elmo. For another, while constructing the specification of the
reasoning rules, the Java interfaces generated by EImo is imported. Furthermore, the
concepts defined in the EVO ontology are declared as events that can be detected by
Drools. Finally, the results of rule-based reasoning are persisted through the interface to the
RDF triple store, which is provided by Elmo.

© SOA4AIl consortium Page 25 of 80

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime i

© SOA4AIl consortium Page 26 of 80

SOIII; i
TAW sopgal —FP7215219 D1.4.1B SOA4AIl Runtime

5. DSB Integration

5.1 SOAA4AIl Architecture and Integration Guidelines

This chapter reminds the SOA4AIll overall architecture described into D1.4.1A [11], provides
an overview of SOA4AIl DSB integration guidelines, and discusses the pros and cons of the
three complementary approaches to plug SOA4AIl Platform Services to the SOA4AIl DSB.

5.1.1 SOAA4All Overall Architecture

The SOA4AIl overall platform is composed of the SOA4AIl Distributed Service Bus (DSB),
the SOA4AIll Studio, and several SOA4AIll Platform Services as depicted by Error!
Reference source not found. and Error! Reference source not found. extracted from

Q

SCA4AIAPI

’ (semanteall AmBBNAAI DSB Integration Guidelines :> _

! E SOA4All Studio ! E
! 1 ! 1
i : : @ i
i ! - i !
E # 1 o E Provisioning Platform Consumption Platform Analysis Platform &; E Q 1
| ! &= z Y
! i =5 g ! i
H 1 2 " B 1
i % : w3 k. ! |
! | 8t Graphiczl User In‘erface Liorary ’ ‘ SOA4AIl API E ! |
D Lightweight | = ! Lightweight |
! Semantic | | Processes ard i
' Web Services | U' ' Mashups i
_ - o . .

o - — g e

e [Depogrent Distributed Service Bus [Monitoring] =

— it] !

. h_ (Semantic Spaces + ESB) _’U// |

o e — !

1

1

1

Cxecution Crgine Reasoning Cngine Service Ranking & Selection Disccvery Engine
Engine

Trirc-party
Traditional

“hird-party
Traditional
WESDL Servicas

D1.4.1A [11]

SOA4AIl Slatform Services

Figure 10: The SOA4AIl Overall Architecture

The SOA4AIl DSB will be hosted on a set of distributed machines, which are publically
accessible through Internet and at first provided by EBM WebSourcing, INRIA and STI.
These machines are also called SOA4AIl DSB nodes.

As shown by Error! Reference source not found. , the SOA4AIl DSB is the backbone
transporting all the communications/interactions from the SOA4AIll Studio to Platform
Services or external business services, from SOA4AIl Platform Services to external business

! For more details, read Chapter 2 of D1.4.1A [11].

© SOA4AIl consortium Page 27 of 80

‘Ollg i
TAW sopgal —FP7215219 D1.4.1B SOA4AIl Runtime

services, and between SOA4AIl Platform Services.

Millions of Thousands

users 8 6 of users

User-to-Studio:

Web browser User-to-Studio:

/Neb browser / AJAX
Runtime Design Time
SOA4AIlI
SOA4AIl Studio SOA4AIl Platform Services
Service
Ul Widgets + .
. Consumption
Interface Services P
— Process Editor
\
< SOM4AIl DSB Integration-Gujdelines
SOAM4All Distributed Service Bus
Application-to-SOA4AIl: % Busi Servi SOMAII/’
WSDL/SOAP+ REST usiness Service-to- : -

. WSDL/SOAP + REST (+ other (g:rlgonas rtOf) Z’;ﬂg:'s
SOA4AII Platform Services: types supported by PEtALS) 5 party el
DSB Normalized Messages (Business Services)

Figure 11: Internal and External Communication Flow

In Error! Reference source not found. and Error! Reference source not found. , the red
circle points out that SOA4AIl DSB Integration Guidelines apply at the interface between the
SOA4All DSB and Platform Services. These guidelines define how SOA4AIll Platform
Services can be plugged to the SOA4AIl DSB.

5.1.2 Overview of SOA4AIll DSB Integration Guideline s

The SOA4AIl DSB Integration Guidelines define three approaches to plug SOA4AIl Platform
Services to the SOA4AIll DSB, called standalone, SCA-based, and JBI-based respectively,
and depicted into .

> For more details about this figure, read Chapter 8 of D1.4.1A [11].

© SOA4AIl consortium Page 28 of 80

FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime i ™

SOA4All Studio and Platform
Billions of Third-party Components
REST and Web services '

SE
PETALS CDK

5 tic Sp
PEtALSESB Technical il
Registry Implementation

ProActive

Java Runtime Environment

Figure 12: The SOA4AIl DSB Implementation Architecture

These three integration approaches are not exclusive but complementary. Developers of
each SOA4AIl Platform Service can choice one of these approaches according to pros and
cons discussed into next sections.

5.1.2.1 The Standalone Approach

A platform service can be a public external Web Service. It runs as a standalone program but
is not hosted by one of the SOA4AIl DSB nodes. The platform service must be exposed to
the SOAJ4AIl DSB in order to be accessible by other SOA4AIl components and accesses
other platform services via the Web Service Binding Component (WS BC) provided by the
SOA4AIl DSB. This is the responsibility of its developers to host this platform service on their
own public machines.

51.21.1 Pros

e Traditional Web Service development process . The main advantage of the
standalone approach is that SOA4AIl developers can use any traditional Web Service
development process and their favorite tools to implement their platform services,
e.g., defining the platform service interface by a WSDL document, using a wsdl2java
tool to generate Java interfaces and classes conform to the Java API for XML Web
Services (JAX-WS) [13], implementing their business code by inheriting from and
calling JAX-WS-based generated interfaces and classes. Developers could also start
from Java business interfaces annotated with JAX-WS and use a java2wsdl tool to
generate the corresponding WSDL document.

51.2.1.2 Cons

* No hosting facility provided . The main disadvantage of the standalone approach is

© SOA4AIl consortium Page 29 of 80

Al SOA4AIl -FP7215219 D1.4.1B SOA4AIl Runtime ~ *"fetilie

4

SEVENTH FRAMEWORK

that SOA4AIl does not provide public machines to host these standalone platform
services. This is the responsibility of its developers to host their platform services on
their own public machines. They must provide and administrate their own public
machines, they must deploy and manage their SOA4All Platform Services, they must
manage themselves hardware/software faults and availability, and they must do their
best efforts to make their platform services always accessible, even after the end of
the SOA4AII project.

No DSB extra features . As standalone platform services are not hosted by the
SOA4AIl DSB then they can not benefit from its advanced extra features like
distribution, automated deployment, lifecycle management, monitoring, etc.

No optimal communication performance . As standalone platform services are
hosted outside the SOA4AIl DSB and are only accessible as Web Services (e.qg.,
SOAP over HTTP), the SOA4AIl DSB has no opportunity to optimize communications
between platform services, i.e., it will always use WS bindings. Then the performance
of communications (i.e., latency, throughput) would certainly be not optimal.

No assistance for better reusable software componen ts. Traditional Web
Services development process (e.g., with WSDL and JAX-WS) helps a lot to make a
piece of software accessible as a Web Service but does not assist developers to
develop highly reusable software components. Component-Based Software
Engineering (CBSE) provides guidelines and technologies (e.g., EJB, Spring, OSGi,
JBI, and SCA) to produce better reusable software components by promoting a clear
separation between the code dealing with business, configuration, and non-functional
concerns of applications. Business code is implemented with a programming
language, configuration is described with a dedicated language (e.g., XML-based
descriptors), and non-functional concerns are managed by component containers
transparently.

5.1.2.2 The SCA-based Approach

A platform service can be implemented as an SCA-based composite application®. Then this
platform service can be fully hosted, deployed, and monitored, at first, on the SOA4AIl DSB
node provided by EBM WebSourcing.

5.1.2.2.1 Pros

Hosting facility provided . At first, EBM WebSourcing will provide a SOA4AIl DSB
node to host SCA-based platform services. Then SOA4All developers need not to
provide and administrate their own public machines. The SOA4AIl DSB provides tools
to facilitate the deployment, management, and monitoring of SCA-based platform
services.

DSB extra features . As SCA-based platform services are hosted by the SOA4AIl
DSB then they can benefit from its advanced extra features like distribution,
automated deployment, lifecycle management, monitoring, etc.

Optimal communication performance . As SCA-based platform services are hosted
by the SOA4AIl DSB, the latter has opportunity to optimize communications between
platform services, e.g., for instance when two platform services are hosted on the
same SOAJ4AIl DSB node then their interactions are done locally without requiring to
use WS bindings systematically. Then the performance of communications (i.e.,

® For a quick overview of SCA, read Section 5.3.1 of this deliverable and Section 4.1.1 of
D1.4.1A[11].

© SOA4AIl consortium Page 30 of 80

SOA; ; #7;

EVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime e

latency, throughput) would certainly be more optimal.

e Assistance for better reusable software components . SCA is a component model
for building SOA applications. SCA provides means to assist developers to develop
highly reusable software components. With SCA, business code is encapsulated into
SCA components. Several programming languages can be used to implement SCA
components (e.g., Java, BPEL, Spring, etc). Configuration of SCA composite
applications is described with a dedicated but simple XML-based language. SCA
intents and policies allow developers to express their non-functional concerns, like
transactions, security, logging, etc.

51.2.2.2 Cons

e SCA-specific development process . SCA extends the traditional Web Services
process development (e.g., with WSDL and JAX-WS) by introducing some SCA-
specific rules to develop composite applications. These few new rules are discussed
into Chapter 5.3. Then SOAJ4AIl developers will need to learn these new rules.
However, the Eclipse IDE already includes a set of SCA-specific plug-ins and wizards
to greatly simplify and accelerate the development of SCA composite applications®.
These SCA-specific tools are included into the official Eclipse Galileo release.

5.1.2.3 The JBI-based Approach

A platform service can be implemented as a JBIl-based component. Then this platform
service will be hosted on one of the SOA4AIl DSB nodes provided by EBM WebSourcing,
INRIA, or STI.

5.1.2.3.1 Pros

* Hosting facility provided . At first, EBM WebSourcing, INRIA and STI will provide
SOA4AIll DSB nodes to host JBI-based platform services. Then SOA4All developers
need not to provide and administrate their own public machines. The SOA4AIl DSB
provides tools to facilitate the deployment, management, and monitoring of JBI-based
platform services.

» DSB extra features . As JBI-based platform services are hosted by the SOA4AIl DSB
then they can benefit from its advanced extra features like distribution, automated
deployment, lifecycle management, monitoring, etc. Moreover JBI-based platform
services can have a full fine-grain access to and control on JBI features, especially
the various communication patterns provided by JBI.

e Optimal communication performance . As JBI-based platform services are hosted
by the SOA4AIl DSB, the latter has opportunity to optimize communications between
platform services, e.g., for instance when two platform services are hosted on the
same SOAJ4AIl DSB node then their interactions are done locally without requiring to
use WS bindings systematically. Then the performance of communications (i.e.,
latency, throughput) would certainly be more optimal.

5.1.2.3.2 Cons

« JBI-specific development process . JBI extends the traditional Web Services
process development (e.g., WSDL, JAX-WS) by introducing some JBI-specific rules
to develop JBI components. Then SOA4AIll developers will need to learn these new
rules. However, OW2 PEtALS, the open source distributed Enterprise Service Bus

* Have a look to the Eclipse STP/SCA Tools Project at http://www.eclipse.org/stp/sca and
http://wiki.eclipse.org/STP/SCA Component.

© SOA4AIl consortium Page 31 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

(ESB) integrated into the SOA4AIl DSB, provides the PEtALS Component
Development Kit (CDK)® to simplify the implementation of JBI components, and a set
of Eclipse plug-ins® to create and package JBI artefacts for the main PEtALS
components.

5.1.2.4 Summary
Table 1 summarizes the pros and cons of the three SOA4AIll DSB integration approaches.

Table 1: Summary of the three integration approaches

Criteria / Approach Standalone SCA-based JBI-based
Hosting facility ® © ©
DSB extra features ® © ©
Communication performance ® © ©
Assistance for better reusable software ® © ©/e
components
Development process © ®I© ®I©

© = pros; ® = cons; ©/® = pros but cons; ®/© = cons but pros

5.1.3 SOAA4All Distributed Service Bus Runtime Acces S

As introduced before, the SOA4All DSB nodes are provided and hosted by eBM
WebSourcing, INRIA, and STI.

In order to be aligned with the general SOA guidelines and with the SOA4AIl architecture
delivrables, the DSB nodes need to expose their services (monitoring, management, ...) as
Web services.

In the current document, the services URL will adopt the following syntax:
http://<HOST>[:<PORT>]/<PATH>/<SERVICE >

Table 2. List of SOA4All DSB Nodes

Provider Host Port
eBM WebSourcing SOA4AIll.ebmwebsourcing.com -
INRIA - -
STI - -

Note: The service consumers’ developers need to ext ernalize all the URLs used in

® Available at http://petals.ow?2.org/download-petals-esb.html

® Available at http://petals.ow?2.org/download-tools.html

© SOA4AIl consortium Page 32 of 80

SOA; ;
FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime ™

their modules in order to avoid compilation when DS B node API URL will be updated.

5.2 Standalone Platform Services

This chapter provides detailed guidelines on the standalone approach to plug SOA4All
Platform Services to the SOA4AIll DSB.

As a reminder, standalone services means that these Web services will be hosted and
managed on SOA4AIl partner’'s nodes. The current chapter introduces how these services
can be plugged into the SOA4AIl DSB using the SOA4AIll management API and is not a
guideline on how to design and implement Web services.

5.2.1 Standalone Management API

OW?2-PEtALS ESB provides connectors to bind external services to the bus and to expose
bus services as external services. This is highly JBI dependent and does not fill the SOA4AIl
management API guidelines.

The OW2-PEtALS ESB is extended to provide a SOAP-based management API, which will
be used to build the SOA4AIl management API. The current operations are defined in the
next sections.

5.2.1.1 Service Binder Service

This Web service is used to bind standalone services to the bus and is defined at
http://<HOST>[:<PORT>]/dsb/management/ServiceBinder?wsdl.

52.1.1.1 bindWebService

Binds the Web service defined in the WSDL description to the local PEtALS ESB node. As a
result, each message sent to the internal PEtALS endpoint will be forwarded to the real
standalone Web service.

iy
L]

3 | LT
] 2

Weh Se rvl.cE

| Management AP|]

Figure 13: Binding an External Standalone Web Service to the DSB

5.2.1.1.2 unbindWebService
Unbinds a previously bound Web service. The PEtALS endpoint is undeployed from the bus.
5.2.1.1.3 getBoundWebServices

© SOA4AIl consortium Page 33 of 80

SOA; ;
FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime ™

Returns the list of all Web services bound to the service bus.
5.2.1.1.4 proxifyWebService

Same than the bi ndWebSer vi ce operation and additionally exposes the PEtALS endpoint
as a PEtALS Web service. Each SOAP message sent to the PEtALS Web service will be
routed to the PEtALS provider endpoint and finally sent to the standalone Web service.

Management AP|

Figure 14: Proxifying an External Standalone Web Service with the DSB
A standalone Web service hosted at
* http://SOA4AIl.partner.org/service/PartnerService
will be proxified by the Service Bus and exposed at
e http://[<HOST>[:<PORT>]/petals/services/PartnerServiceProxy
finally, its WSDL description will also be available at
* http://HOST>[:<PORT>]/petals/services/PartnerServiceProxy ?wsdl

Note: Due to a limitation in the PEtALS SOAP Bindin g Component, the proxified WSDL
port address may not be the good one. Generated cli ents must be updated to fix this
bug.

5.2.1.1.5 unproxifyWebService

Unproxify a previously proxified Web service.

5.2.1.1.6 getProxifiedWebServices

Returns the list of all Web services proxified by the DSB.

5.3 SCA-based Platform Services

This chapter provides detailed guidelines on the SCA-based approach to plug SOA4AIl
Platform Services to the SOA4AIl DSB.

5.3.1 Overview of SCA
5.3.1.1 What SCA is
Service Component Architecture (SCA) is a set of specifications initially defined by the Open

© SOA4AIl consortium Page 34 of 80

SOA; ; __7;,

EVENTH FRAMEWORK

AW sopsal-FP7215219 D1.4.1B SOA4AIl Runtime e’

Service Oriented Architecture (OSOA) collaboration’, a set of major companies of the
software industry including IBM, IONA, Oracle, SAP, Sun and TIBCO, and now under
standardization by the OASIS consortium®. SCA defines a component-based model for
building service-oriented applications and systems (SOA). As shown in Error! Reference
source not found. , the SCA model is agnostic against (i.e., independent of) technologies
used for defining interfaces (WSDL, Java interfaces, etc.), to implement components (C/C++,
BPEL, Java, Spring, EJB, OSGi, COBOL, etc.), to make them to communicate across the
network (Web Service, JMS, Java RMI, etc.), and to apply non-functional properties
(transactional, security, etc.). Then SCA facilitates the integration of SOA-based applications
and systems.

sooie Intorface = Proportins Intarface -
: - Java Interface - Jawva Interface
- WSDL PortType: H = WSO PortType

e Binding s = Implementation Binding -

- Web Service - Java - Web Service
- SICA - BPEL - SChA
= JCA - Javascript = CA
ByTETS - Camposcits - IS

5L58 Spring SL5B

Figure 15: The Service Component Architecture (SCA) Model

The main SCA specification defines the SCA Assembly Model [14], an XML-based language
used to describe SCA-based applications or composites. Its key concepts are:

* Binding — An SCA binding identifies the protocol used to export an SCA service or
import an SCA reference to/from the rest of the world. SCA is extensible to support
various forms of bindings. By default, SCA supports Web Services as bindings.

¢ Component — An SCA component encapsulates a running piece of software. Each
component has a hame, exposes a set of SCA services, has a set of SCA properties,
is implemented by one SCA implementation, and requires a set of SCA references.

* Composite — An SCA composite makes a set of strongly coupled components to
work together. Each composite has a name, exposes a set of SCA services, has a
set of SCA properties, is composed of a set of SCA components and wires, and
requires a set of SCA references.

* Implementation — An SCA implementation defines the implementation of an SCA

"See athttp://www.osoa.org

® See at http://www.oasis-opencsa.org

© SOA4AIl consortium Page 35 of 80

SOA; ; #7;

EVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime e

component. SCA is extensible to support various forms of component
implementations. An SCA component can be implemented by an SCA composite, a
Java class, a BPEL process, a set of C functions, etc.

* Interface — An SCA interface defines the signature of operations/methods provided
by an SCA service or reference. SCA is extensible to support various languages to
express signatures. By default, SCA supports WSDL and Java as interface definition
languages.

* Property — An SCA property identifies a configurable business property of a
component or composite. Each property has a name, a type, and a value.

« Reference — An SCA reference identifies a dependency of a component/composite to
a service. Each reference has a name, is defined by an SCA interface, and can be
bound via SCA bindings.

e Service — An SCA service is an access point to invoke an SCA component or
composite. Each service has a name, is defined by an SCA interface, and can be
exported through SCA bindings.

* Wire — An SCA wire identifies a communication path from an SCA reference source
to an SCA service target.

As depicted in , the SOA4AIl DSB supports SCA thanks to an SCA Service Engine running
on top of the OW2 PEtALS ESB. This service engine supports the SCA Assembly Model and
is built on top of the OW2 FraSCAti SCA runtime®.

5.3.1.2 What Eclipse STP/SCA is

The Eclipse STP/SCA Tools project™ provides a set of tools for simplifying the design and
speeding up the development of SCA-based applications. This includes a graphical
composer, various editors (XML-based, tree-based, form-based) and several plug-ins for
specifying, developing, assembling, and deploying SCA composites. Eclipse STP/SCA Tools
are included into the official Eclipse Galileo release.

° See at http://frascati.ow2.org
10 See at http://www.eclipse.org/stp/sca and http://wiki.eclipse.org/STP/SCA Component.

© SOA4AIl consortium Page 36 of 80

SOA; ;

7

AW soagal—FP7215219

D1.4.1B SOA4AIl Runtime

SEVENTH FRAMEWORK
PROGRAMME

File

[t5 Project | [Package 2

i @ B 0

Java- gl

scafsr

- Eclipse Platform

esour

Edit Source Navigate Search Preject Run Window Help

=l e

v (& src/mainfresources

v v

@) crawler.composite 105;
[} crawler.composite_diac
[discovery.compaosite 10
[} discovery.composite_di
) ranking-and-selection.c
[F4 ranking-and-selection.c
) reasoner.composite 10!
[f} reasoner.composite_die
[semantic-space.compc
[} semantic-space.compc
) service-registry.compo:
[} service-registry.compo:
[soadall-service-discove
[} soadall-service-discove
[soadall.composite 1047
[} soa4all.composite_diag
(% src/test/fjava

=i, JRE System Library [jdk1.(

& & G-

i e=0 A D=0 o

= B [F soadall-service-discovery.composite 2

onent nam ranking-and-selection">
implementat omposite name="ranking-and-selection"/=>
refterence nal reasoner ">

.java interface="eu.soadall.integration.reasoner.api.ReasonerI"/>

name="discovery ">

.Java interface="eu,soadall, integration,
e

name="selection">

ce,java interface="eu,soadall. integration.

nent name="discovery"=

implementation nposite name="discovery"/>
reference nal
interf:
refere
service
inter
ervice>
Feren:
inter
reference>

service name="update"=

interface,java interface="eu,soadall.integration.
ervice>

anent >

onent name="reasener"=

omposite name="reasoner"/>

.reasoner.api,ReasonerI"/=

name="discovery">
ce,java interface="eu.soadall.integration.

name="serviceRegistry">
ava interface="eu.soadall integration,

discovery,api,Discoveryl"/>

discovery.api.Discoveryl"/>

.space,api,SemanticSpacel"/>

ite xmlns:sca="Rttp;//www,.0s50a,0rg/xmlns/scas/1, 8" name="soadall-service-discove =

selection.api,SelectionAndRank

registry.api,ServiceRegistryI'

discovery,api,Discoverylpdatel

=

i | &'Java

B Task Lis | 5= Outline 52

= | soadall-service-discovery |

= (@ crawler
- > discovery
@) interface. java
v D serviceRegistry
€ interface java
= implementation.comy
= ([discovery
~ I» discovery
@) interface.java
- I update
) interface java
~ I reasoner
@) interface.java
~ I serviceRegistry
@ interface.java
=5 implementation.comy
< (3 ranking-and-selection
~ Ir selection
@ interface.java

b B4 Maven Dependencies
b (& src ="serviceRegistry"> ~ I discovery
.Java interface="eu,soadall.integration,registry.api,ServiceRegistryI"
b (= target @ interface.java
I Ry service name="reasoner"> s o W EAERHAE -
» »
m¢ g [composite s B el@BEDB

Figure 16: The Eclipse STP/SCA XML Editor

Error! Reference source not found. illustrates the Eclipse STP/SCA XML-based editor (the
middle panel) and the Eclipse STP/SCA tree-based editor (the right panel), both are driven
by the XML Schemas defined by the SCA Assembly Model. Error! Reference source not
found. illustrates the Eclipse STP/SCA graphical composer allowing one to graphically
“draw” SCA composites. The example used in both figures is an SCA composite
representing the SOA4AIl Service Discovery Functional Process detailed into next sections.

Java - soadall-integration-scajsr infres: I i _diagram - Eclipse Platform
File Edit Diagram Navigate Search Project Run Window Help
F#-0-Q | EHEE &S 4o T &' Java L2
5ans F19 ¥ B I A~ & g —- BirooB fev £ H- - 100% -
[eypr [Pa © = O ||[@ soadall-service-discovery.composite | i soadall-service-discovery.composite_diagram &3 =0]=
als = - < | i Palette b

soadall-service-discovery

B

¥ [src/main/resoul =

& crawler.com

- @com...
[crawler.com =
i com...
) discovery.co e
i EHACE I» Service
[discovery.co
< D Refe...
) ranking-and- —_—
2 : O Prop...
[5 ranking-and- Wi
. &
(¥ reasoner.cor -
[ii reasoner.cor % prg
S Pro...
& semantic-sp deEy
[i) semantic-sp " (050A)
) service-regis @ Java
,
[service-regis (0S0A)
v =
-servi yJava
7 soadall-servi ‘ 5 {0504) [
A, soadall-servi — = =
b | = Properties 32 = 3 v =8
) soadall.comy =
@ i i ice-di
) soadall.comy) Composite soadall-service-discovery
b (4 srejtest/ava Core Property Value -
b @i JRE System Lit Appearance Name I= soadall-service-discovery
b Ej Maven Depenc Policy Sets
b Requires
= = & Target Namespace I= http://www.soadall.eufintegrationfsoadall-service-discovery
o & s e BB

Figure 17: The Eclipse STP/SCA Composer

© SOA4AIl consortium Page 37 of 80

SOII} i
FAW sopgal—FP7215219 D1.4.1B SOA4AIl Runtime ™

5.3.2 Building SCA-based Platform Services

In order to illustrate how to develop SOA4AIl Platform Services as SCA-based composites,
this section is based on the SOA4All Service Discovery Functional Process. This process is
described into Section 7.4.3 of D1.4.1A [11] and depicted into Error! Reference source not
found. taken from the SOA4AIl Architecture presented during the 2™ project review [2].

O}
O
>
L
@ Ranking & Selectio
>
=)
o Discovery
O
]
o
o
—
D Service Reg |stry O
— emantic ace
6 p

ﬁ Communication via DSB

Figure 18: The SOA4AIl Service Discovery Functional Process

The SOA4AIl Service Discovery Functional Process involves five SOA4AIll Platform Services
(Ranking&Selection, Discovery, Crawler, Reasoner, Service Registry) and the SOA4All
Semantic Space. Each rectangle represents a SOA4AIl component (semantic space,
platform services, or studio). The arrows represent communications between SOA4All
components and transported by the SOA4AIl DSB transparently. The circles represent the
communication objects as defined into Section 6 of D1.4.1A [11].

A prototype of the SCA-based implementation of the SOA4AIl Service Discovery Functional
Process is available into the SOA4AIl SVN at the following URL:

https://svn.sti2.at/SOA4All/trunk/SOA4All-integrati on/SOA4AIll-integration-sca

This implementation contains all the SCA composites shown into Section 5.3.2.1, Java
interfaces and implementation classes of each involved SOA4AIl components. Of course,
these interfaces and classes are just skeletons for illustration purposes, and must be
completed by SOA4AIl components’ developers.

5.3.2.1 Designing SCA-based Platform Services

At a high level of abstraction, we can consider that the whole SOA4All platform is an SCA
composite. For instance, Error! Reference source not found. shows an SCA composite
composed of two components: one component encapsulates the SOA4AIll Studio
Consumption Platform and has two SCA references wired to two SCA services provided by
another component encapsulating the SOA4AIl Service Discovery Functional Process.

© SOA4AIl consortium Page 38 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

soadall

e

L

"

s

soadall-studio-consumption-platform soadall-service-discovery

=,
:, >
, ;
A5
; ",
-
P
£

Figure 19: The SOA4AIll SCA composite

The SOA4AIl Service Discovery component can be itself implemented by an SCA composite.
This composite shown in Error! Reference source not found. is composed of six
components representing the Ranking&Selection, Crawler, Discovery, Reasoner,
ServiceRegistry SOA4AIl platform services, and the semantic space. Each arrow of Error!
Reference source not found. is represented by an SCA wire, i.e., a communication path
from an SCA reference to an SCA service. Each SCA reference represents a dependency
from its associated SOA4AIl component to an SCA service provided by another SOA4All
component. A SOA4AIl component can have several SCA references. For instance, the
SOAA4AIl reasoner component requires both service-registry and semantic-space
components in order to realize its functionalities. Each SCA service represents a set of
functionalities offered by a SOA4AIl component. A SOA4AIl component can provide several
SCA services. For instance, the discovery component provides a service used by the
ranking-and-selection component and another service used by the crawler
component. Defining several services for a component is a design choice allowing us to
better identify the various roles that can play a component in the whole architecture, and
avoiding to define for each component one big interface containing all its operations. Here
we apply the principle of separation of concerns at the application design level.

Each of the six components of the SOA4All-service-discovery SCA composite can
itself implemented as an SCA composite. This hierarchical approach allows us to go from a
high-level global view of the whole architecture (see Error! Reference source not found.)
to a fine-grain view of its implementation (see Error! Reference source not found. to Error!
Reference source not found.). Here we decide to stop the recursivity: Each of next six
SOA4AIl composites just contains one SCA component implemented by a Java class. Of
course, each provider can decide to recursively decompose its SOA4All platform service as a
set of more than one SCA components.

© SOA4AIl consortium Page 39 of 80

SOA; ; _7;,

EVENTH FRAMEWORK

TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime i’

soadall-service-discovery

i L a

v

ranking-an

crawler zl[IE— ‘ —[

Figure 20: The SOA4All-service-discovery SCA Composite

Error! Reference source not found. represents the semantic-space SCA composite
containing one SCA component, which provides an SCA service defined by a Java interface,
provides a configurable SCA property, and is implemented by a Java class. The XML-based
document describing this SCA composite is provided later in Section 5.3.2.4 Error!
Reference source not found. . The motivations to apply SCA on the SOA4AIll Semantic
Space component are given in Section 4.1.4 of D1.4.1A [11]. The Java interface of this
component is the one defined into D1.3.2A [12].

JE semantic-space =Y

bl

24 jji;?i

p

\ J

Figure 21: The semantic-space SCA Composite

Error! Reference source not found. to Error! Reference source not found. represent
service-registry , reasoner , discovery , ranking-and-selection , and crawler
SCA composites. These composites must be enhanced by their respective provider, i.e.,
decomposing the platform service into several SCA components, adding new SCA services,
and adding new configurable references and properties.

© SOA4AIl consortium Page 40 of 80

IOIIL"
AW 5ol —FP7215219 D1.4.1B SOAJAIl Runtime ™ b

Figure 25: The ranking-and-selection SCA Composite

© SOA4AIl consortium Page 41 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

£ crawler

-

Y
oL
F.

b

) >
crawler En.}

Y #

7

Figure 26: The crawler SCA Composite
5.3.2.2 Defining SCA-based Platform Service Interfaces

By nature, SCA can support various languages to define service interfaces. By default, SCA
supports WSDL port types and Java interfaces. We recommend using Java instead of WSDL
port types to SOA4AIll developers, as defining Java interfaces is more concise and avoiding
errors. Moreover, the JAX-WS specification [13] provides a set of Java annotations allowing
us to annotate Java interfaces in order to produce their equivalent WSDL port types
automatically.

package eu.SOA4All.integration.space.api;
import java.util.Set;
import j avax.j ws. WebMet hod;
import javax.jws. WebServi ce;
import org.openrdf.model.Statement;
import eu.SOA4All.dsb.space.query.Query;
@\ebSer vi ce
public interface SemanticSpacel {
@\ebMet hod public Set<Statement> query(Query q);

© 00 N O 0o~ WN PP

[E=Y
o

H
|_\
-

Figure 27: The SemanticSpacel Java Interface

Error! Reference source not found. , Error! Reference source not found. , and Error!
Reference source not found. illustrate how to use JAX-WS to annotate SOA4AIll Java
interfaces. @WebService is used to annotate Java interfaces in order to expose them as
WSDL port types and @WebMethodis used to annotate Java methods in order to expose
them as WSDL operations. These two Java annotations have a set of associated attributes
allowing us to configure the mapping to WSDL in a fine-grain way (read [13] for more
details).

© SOA4AIl consortium Page 42 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

package eu.SOA4All.integration.discovery.api;
import java.util.Set;
import j avax.jws. WebMet hod;
import javax.jws. WebServi ce;
import eu.SOA4All.integration.fake.Goal,
import eu.SOA4All.integration.fake.ServiceDescrip tion;
@\ebSer vi ce
public interface Discoveryl {
@\bMet hod

public Set<ServiceDescription> discover(Goal g oal);

}

© 00 N oo o b~ WwN P

=
kO

Figure 28: The Discoveryl Java Interface

package eu.SOA4All.integration.registry.api;
import java.util.Set;
import j avax.j ws. WebMet hod;
import javax.jws. WebServi ce;
import eu.SOA4All.dsb.space.query.Query;
import eu.SOA4All.integration.fake.ServiceDescrip tion;
@\ebSer vi ce
public interface ServiceRegistryl {
@\bMet hod
10 public Set<ServiceDescription> getServiceDescription(Query query);
11 }

© 00 N oo 0o~ W N B

Figure 29: The ServiceRegistryl Java Interface

Let us note that these three previous interfaces are not normative®, and must be fully defined
by their associated providers (WP1 for SemanticSpacel , WP5 for Discoveryl and
ServiceRegistryl). SOAA4AIl developers should just define Java interfac es
annotated with JAX-WS .

5.3.2.3 Implementing SCA-based Platform Services

An SCA component can be implemented as an SCA composite (see Error! Reference

source not found.) or via a Java class (see Error! Reference source not found. to Error!
Reference source not found.). This section describes the few rules that developers must
follow in order to develop Java classes implementing SCA components.

To illustrate these rules, this section provides a skeleton of the Java implementation of three

' The goal of this deliverable is not to specify the name of each Java interface and the
signature of their Java methods. This is the purpose of WP3 to WP6 deliverables.

© SOA4AIl consortium Page 43 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

SOA4AIl components: semantic-space (see Error! Reference source not found.),
service-registry (see Error! Reference source not found.) and discovery (see
Error! Reference source not found.).

A Java class implementing an SCA component must imp lement:

1. a public default constructor . This public constructor without parameters is called by
the SCA framework to instantiate the Java class. Let us note that a Java class without
any declared constructor has an implicit public default constructor, which is the case
for Java classes SemanticSpacelmpl (see Error! Reference source not found.),
ServiceRegistrylmpl (see Error! Reference source not found.), and
Discoverylmpl (see Error! Reference source not found.).

2. all the interfaces of all the SCA services of its e nclosing SCA component . For
instance, the SemanticSpacelmpl class implements the SemanticSpacel
interface (lines 3 and 6-8) as its enclosing SCA component provides one SCA service
(see Error! Reference source not found.). But each class ServiceRegistrylmpl
and Discoverylmpl implements two Java interfaces (lines 3 and 6-9 in Error!
Reference source not found. , lines 3 and 7-11 in Error! Reference source not
found.), as their respective SCA component provides two SCA services (see Error!
Reference source not found. and Error! Reference source not found.).

3. a public setter method for each SCA reference and p roperty of its enclosing
SCA component . For instance, the SemanticSpacelmpl class contains the
setStorage method (line 5 in Error! Reference source not found.) to be notified
by the SCA framework of the value of the SCA property named storage and of type
string . The concrete value of this property will be set in an SCA composite
descriptor (see Section 5.3.2.4). In the ServiceRegistrylmpl class, the method
setSemanticSpace is used by the SCA framework to set the value of the SCA
reference named semanticSpace and of interface SemanticSpacel . The
Discoverylmpl class has two public setter methods for setting the SCA references
named reasoner and serviceRegistry . This SCA programming pattern is in fact
the same as used by JavaBeans and Spring component models.

These three simple rules are enough to implement most of components. Their main
advantage is then that SCA is not intrusive into Java classes, i.e., a SOA4All developer can
implement a Java class without requiring to know SCA in depth but just the three simple
previous rules.

However, advanced component implementations can require to be SCA-aware (e.g., for
being notified of the life cycle of components). For this purpose, some SCA-specific Java
annotations and API are specified in [15] and [14]*.

> These SCA-specific Java annotations and APl would be discussed in a next version of this
deliverable according to SOA4AIl development requirements.

© SOA4AIl consortium Page 44 of 80

“TAW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime sl
1 package eu.SOA4All.integration.space.lib;
2 import . . .
3 public class SemanticSpacelmpl i mpl enent s SemanticSpacel {
4 /I Setter methods for configuration
5 public void setStorage(String s) {...}
6 /I Implementation of the SemanticSpacel interfa ce
7 public Set<Statement> query(Query q){ ...}
8
9 }
Figure 30: The Java Implementation of the Semantic Space Component
package eu.SOA4All.integration.registry.lib;
import . . .
public class ServiceRegistrylmpl i mpl enent s ServiceRegistryl,
ServiceRegistryUpdatel {
4 /I Setter methods for configuration
5 public void setSemanti cSpace(Semanti cSpacel s) {...}
6 /I Implementation of the ServiceRegistryl inter face
7 public Set<ServiceDescription>
getServiceDescription(Query query) { . . . }
/I Implementation of the ServiceRegistryUpdatel interface
9
10 }
Figure 31: The Java Implementation of the Service Registry Component
package eu.SOA4All.integration.discovery.lib;
import . . .
3 public class Discoverylmpl i mpl enent s Discoveryl,
DiscoveryUpdatel {
4 /I Setter methods for configuration
5 public void set Reasoner(Reasonerl r) {...}
6 public void setServiceRegi stry(ServiceRegistryl sr) {.}
7 /I Implementation of the Discoveryl interface
8 public Set<ServiceDescription> discover(Goal go al){...}
9 /I Implementation of the DiscoveryUpdatel inter face
10
11 }

Figure 32: The Java Implementation of the Discovery Component

© SOA4AIl consortium Page 45 of 80

AW sopsal—FP7215219 D1.4.1B SOA4AIl Runtime

5.3.2.4 Configuring SCA-based Platform Services

This section presents concrete examples of the SCA XML-based language allowing us to
define SCA composites, configure SCA properties, wire SCA references to services, and
export SCA services as Web Service endpoints. SOA4AIl architects can write these XML
documents with a simple text editor directly, or use advanced graphical editors provided by
Eclipse STP/SCA Tools (see Section 5.3.1.2).

1 < composi t e xm ns="http://www.osoa.org/xmlns/sca/1.0"

nanme="semantic-space"

t ar get Namespace="http://www.SOA4AIl.eu">
2 < service nanme="semantic-space"

pr onot e="semantic-space/semanticSpace"/>
3 < component nane="semantic-space">
4 < inplementation.java

cl ass=" eu.SOA4AIlLintegration.space.lib. SemanticSpacelmpl"/>
5 < property name="storage">/semantic-space-repository</property>
6 < service nanme="semanticSpace">
7 < i nterface.java
i nt er f ace=" eu.SOA4AIlintegration.space.api. SemanticSpacel"/>

8 </service>
9 </component>
10 </composite>

Figure 33: The XML-based semantic-space SCA Composite

Error! Reference source not found. defines the SCA composite for the SOA4AIl Semantic
Space component as shown in Error! Reference source not found. . The XML Schema of
SCA is available at http://www.osoa.org/xmIns/sca/1.0 (line 1). The name and target
namespace of this composite are semantic-space and http://www.SOA4AIll.eu
respectively (line 1). This composite exports an SCA service named semantic-space and
promoting the SCA service named semanticSpace of the SCA component named
semantic-space (line 2). This composite contains an SCA component nhamed semantic-
space (line 3). This component is implemented by a Java class (line 4). It has the