

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.4.1B SOA4All Runtime

Activity N: Activity 1 – Fundamental and Integration Activities

Work Package: WP1 – SOA4All Runtime

Due Date: M18

Submission Date: 14/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: EBM WebSourcing

Revision: 1.0

Author(s): Christophe Hamerling EBM
Virginie Legrand INRIA
Francoise Baude INRIA
Elton Mathias INRIA
Cristian Ruz INRIA
Michael Fried UIBK
Reto Krummenacher UIBK
Philippe Merle INRIA
Nicolas Dolet INRIA

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public X

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 2 of 80

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2009-07-15 Initial TOC Christophe Hamerling (EBM)

0.2 2009-08-01 Add PEtALS ESB section Christophe Hamerling (EBM)

0.3 2009-08-11 Add section on message routing Virginie Legrand (INRIA)

0.4 2009-08-24 Add monitoring platform section Dong Liu (OU)

0.5 2009-08-24 Merge contributions. Update DSB
section.

Christophe Hamerling (EBM)

0.6 2009-08-25 Update DSB installation and
configuration sections

Christophe Hamerling (EBM)

0.7 2009-08-25 Introduction Reto Krummenacher (UIBK)

0.8 2009-08-26 SCA Integration section Christophe Hamerling (EBM),
Philippe Merle (INRIA),
Nicolas Dolet (INRIA)

0.9 2009-08-28 JBI Integration section Christophe Hamerling (EBM)

1 2009-09-14 Final Editing Malena Donato (ATOS)

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 3 of 80

Table of Contents

EXECUTIVE SUMMARY __ 8

1. INTRODUCTION __ 9

1.1 PURPOSE AND SCOPE __ 9

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 9

2. INSTALLATION AND CONFIGURATION ____________________ ______________ 10

2.1 RESOURCES REQUIREMENTS _____________________________________ 10

2.2 INFRASTRUCTURE ___ 10

FIGURE 1 SOA4ALL DSB INFRASTRUCTURE _______________ _________________ 11

2.2.1 Installating a DSB node __ 11

2.2.2 Configuring a DSB node __ 12

2.2.3 Starting and stopping a DSB node __________________________________ 14

2.2.4 Modules installation ___ 14

3. SOA4ALL DISTRIBUTED SERVICE BUS APIS ______________ _______________ 16

3.1 PLATFORM SERVICES INTEGRATION API____________________________ 16

3.2 MONITORING AND MANAGEMENT API ______________________________ 16

3.2.1 Infrastructure Monitoring Data _____________________________________ 16

3.2.2 Monitoring Bus ___ 16

3.2.3 Monitoring Service Integration _____________________________________ 17

4. SOA4ALL DISTRIBUTED SERVICE BUS COMPONENTS ________ ____________ 18

4.1 DISTRIBUTED TECHNICAL REGISTRY _______________________________ 18

4.1.1 Requirements __ 18

4.1.2 Architecture __ 18

4.2 MESSAGE TRANSPORT ___ 19

4.2.1 Overview and architecture requierements ____________________________ 19

4.2.2 Message transport in PEtALS ______________________________________ 20

4.2.3 The distributed message transporter ________________________________ 20

4.3 MONITORING PLATFORM ___ 23

4.3.1 Underlying infrastructure __ 23

4.3.2 Persistence of monitoring data _____________________________________ 24

4.3.3 Event processing ___ 25

5. DSB INTEGRATION __ 26

5.1 SOA4ALL ARCHITECTURE AND INTEGRATION GUIDELINES ____________ 26

5.1.1 SOA4All Overall Architecture ______________________________________ 26

5.1.2 Overview of SOA4All DSB Integration Guidelines ______________________ 27

5.1.3 SOA4All Distributed Service Bus Runtime Access ______________________ 31

5.2 STANDALONE PLATFORM SERVICES _______________________________ 32

5.2.1 Standalone Management API ______________________________________ 32

5.3 SCA-BASED PLATFORM SERVICES _________________________________ 33

5.3.1 Overview of SCA ___ 33

5.3.2 Building SCA-based Platform Services ______________________________ 37

5.3.3 Summary ___ 53

5.4 JBI-BASED PLATFORM SERVICES __________________________________ 54

5.4.1 Concrete development steps ______________________________________ 54

5.4.2 Introducing and classifying Petals components ________________________ 60

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 4 of 80

5.4.3 Between theory and practice: handling messages ______________________ 61

5.4.4 Between theory and practice: managing life cycles _____________________ 68

5.4.5 Summary ___ 77

5.5 LIST OF PLATFORM SERVICES ____________________________________ 77

5.5.1 Space Service __ 77

6. CONCLUSIONS __ 78

7. REFERENCES ___ 79

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 5 of 80

List of Figures
Figure 1 SOA4All DSB Infrastructure ..11

Figure 2 Connection between the Monitoring Bus and PEtALS ESB17

Figure 3 Technical Registry Architecture ..19

Figure 4 The Transporter Component ..20

Figure 5: Example of DSB routing platform composition ...21

Figure 6: The transporter component based on GCM ...21

Figure 7 : Routing optimization through direct bindings ..22

Figure 8 Architecture Monitoring platform ...23

Figure 9 Topic-based Monitoring Data Filtering ..24

Figure 10: The SOA4All Overall Architecture ..26

Figure 11: Internal and External Communication Flow ...27

Figure 12: The SOA4All DSB Implementation Architecture ..28

Figure 13: Binding an External Standalone Web Service to the DSB32

Figure 14: Proxifying an External Standalone Web Service with the DSB33

Figure 15: The Service Component Architecture (SCA) Model ...34

Figure 17: The Eclipse STP/SCA XML Editor ...36

Figure 18: The Eclipse STP/SCA Composer ..36

Figure 19: The SOA4All Service Discovery Functional Process ...37

Figure 20: The SOA4All SCA composite ..38

Figure 21: The SOA4All-service-discovery SCA Composite ...39

Figure 22: The semantic-space SCA Composite ..39

Figure 23: The service-registry SCA Composite ...40

Figure 24: The reasoner SCA Composite ...40

Figure 25: The discovery SCA Composite ..40

Figure 26: The ranking-and-selection SCA Composite ...40

Figure 27: The crawler SCA Composite ...41

Figure 28: The SemanticSpaceI Java Interface ..41

Figure 29: The DiscoveryI Java Interface ...42

Figure 30: The ServiceRegistryI Java Interface ..42

Figure 31: The Java Implementation of the Semantic Space Component44

Figure 32: The Java Implementation of the Service Registry Component44

Figure 33: The Java Implementation of the Discovery Component44

Figure 34: The XML-based semantic-space SCA Composite ...45

Figure 35: The XML-based service-registry SCA Composite ..46

Figure 36: The XML-based discovery SCA Composite ...47

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 6 of 80

Figure 37: The XML-based SOA4All-service-discovery SCA Composite48

Figure 38: An SCA-based Client of the DBS Service Binder Service49

Figure 39: The XML-based service-binder-client SCA Composite ..49

Figure 40: The Java Implementation of the Service Binder Client ...50

Figure 41: A Java-based Test Case Example ...51

Figure 42: Testing SCA-based Platform Services with soapUI ...52

Figure 43: Introspecting SCA-based Platform Services ..53

Figure 44: Reconfiguring SCA Properties ...53

Figure 45 Launching Petals in debug mode from Eclipse ...58

Figure 46 The PEtALS sample client ..59

Figure 47 In-Only message exchange pattern ..63

Figure 48 Robust In-Only message exchange pattern ..63

Figure 49 In-Out message exchange pattern ..64

Figure 50 Life cycle of a Petals component ..69

Figure 51 Adding a component parameter in the jbi.xml ...70

Figure 52 Life cycle of a service-unit ..73

List of Tables
Table 1: Summary of the three integration approaches ..31

Table 2. List of SOA4All DSB Nodes ..31

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 7 of 80

Glossary of Acronyms

Acronym Definition

API Application Programming Interface

CBSE Component-Based Software Engineering

CDK Component Development Kit

D Deliverable

D Deliverable

DSB Distributed Service Bus

EC European Commission

ESB Enterprise Service Bus

JAX-WS Java API for XML Web Services

JBI Java Business Integration

SCA Service Component Architecture

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

WP Work Package

WP Work Package

WS Web Service

WSDL Web Service Definition Language

XML eXtended Markup Language

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 8 of 80

Executive summary
This report complements D1.4.1B, the first implementation of the SOA4All Distributed
Service Bus, as core infrastructural service of the SOA4All Runtime. As such, this document
is included in the zip file that contains the SOA4All Distributed Service Bus software, source
code, and installation and configuration files.

The implementation presented in this deliverable yields the realization of the concepts and
specifications that were published in deliverable D1.4.1A SOA4All Reference Architecture
Specification [11] – mainly in Section 4.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 9 of 80

1. Introduction
This report about the realization of the SOA4All Distributed Service Bus complements the
first implementation of the SOA4All Runtime prototype. The prototype delivers the service
bus logic implemented and deployable on top of the distributed ProActive Grid infrastructure.
This work thus includes the implementation of the distributed technical registry of the bus, the
messaging infrastructure for the coordination of distributed bus nodes, and the monitoring
platform. A forth part that is deployed as part of the Distributed Service Bus is the semantic
spaces infrastructure. The semantic spaces are not subject to this deliverable, but their
implementation is documented under task T1.3 in deliverable D1.3.2B [12].

Further aspects that are subject to this deliverable are the various integration interfaces that
are provided by the service bus infrastructure. In particular, we present details of how to
publish services, in particular – for the time being – SOA4All Platform Services, to the
runtime implementation. In continuation of this work, as part of the effort in the upcoming
period of the project, the integration interfaces and guidelines that are published in this
document, will be exploited for the realization of functional processes, as they were initially
presented in deliverable D1.4.1A.

Services in SOA4All can in consequence be realized either as stand-along Web services
based on traditional WS*-stack technologies or as RESTful service APIs, or however, with
little more programmatic effort, they can be hosted by bus nodes in form of SCA or JBI
components. The implementation guidelines and technical details about these approaches
are subject to this deliverable too.

1.1 Purpose and Scope
The goal of this deliverable is to provide a written complement to the SOA4All Runtime
prototype (D1.4.1B SOA4All Runtime). We refer the reader to D1.4.1A for details about
technical background and the baseline, as well as the architecture and design of the
prototype implementation. This deliverable is included as part of the zip file, D141B.zip,
which contains the software, source code, installation and configuration facilities.

The main objective is thus to provide the reader with more detailed insights about the runtime
implementation. Secondly, this deliverable offers more detailed insights into the technical
integration of SOA4All Platform Services, or further third-party Web services. In that sense,
this deliverable contains technical pointers towards the extended integration work of task
T1.4 that will have to be done in the period up to month M24 of the project. By then, full-
fledge functional processes and their implementation plans have to be specified. The
purpose of these processes is to execute complex task in the SOA4All Runtime, such as the
automated localization or composition tasks that require the coordinated execution of several
platform services.

1.2 Structure of the document
In order to best respond to the purpose of the deliverable, we structure the document into the
following sections. After this short introduction, Section 2 is dedicated to the publication of
installation and configuration guidelines that allow the reader to run SOA4All Distributed
Service Bus nodes. Section 3 presents the various bus APIs that are offered for easier
integration of platform services (Section 3.1), or for accessing monitoring data (3.2). In
Section 4 the various software components that constitute the bus are presented in more
detail; namely, the distributed technical registry, the message transport infrastructure, and
the monitoring platform. Before concluding with Section 6, we provide in Section 5 the
guidelines and implementation details of how to register and expose services in the bus. This
information is mainly dedicated to service developers, and as such, in particular to the
implementers of SOA4All Platform Services.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 10 of 80

2. Installation and Configuration
This section introduces how to install and configure pieces of software which are required to
build the SOA4All Distributed Service Bus. The SOA4All DSB is mainly build by combining
the OW2 PEtALS Enterprise Service Bus, the OW2 ProActive framework and the Space
implementation described in D1.3.1.

The following section will describe all the different steps to follow to build what will be called
the “SOA4All DSB node network”. The SOA4All DSB node network is the virtual network
which is composed of SOA4All Service Bus nodes. These nodes are composed of the
PEtALS, ProActive and Space runtimes and have to be configured to provide a static node
network. By static, it means that nodes can not discover other nodes over the Internet
automatically. This implies to define a network topology, to ensure that all the required
services will be publically exposed and then install and configure the nodes according to this
topology.

2.1 Resources Requirements
In order to provide the SOA4All Distributed Service Bus platform, the following resources are
required to install a node:

- Host with:

o 10 Gb free disk space (recommended)

o 1 Gb RAM (recommended since PEtALS ESB needs 512 Mb to work properly)

o Java Runtime Environment (SUN MicroSystems JRE 5 at least)

o Full Internet access: This point is the most important since the DSB will be
used to consume and provide billions of services over the Internet.

A DSB node needs to expose services (Web services over HTTP) to other DSB nodes. The
list of ports which must be open is:

- 8084: Port used by the PEtALS SOAP Binding Component to expose services

- 7100: Port used by the PEtALS monitoring and management Web services

- 7800: Port used by the node communication layer

- 7900: Port used by the distributed technical registry

2.2 Infrastructure
The SOA4All DSB is composed of software modules which have been extended and
integrated to provide a solid, scalable and extensible infrastructure.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 11 of 80

Figure 1 SOA4All DSB Infrastructure

The previous figure describes the SOA4All DSB infrastructure and shows how modules are
integrated together.

- The PEtALS ESB has been extended to provide:

o Additional services such as platform services for service binding, monitoring
and management services

o New scalable and firewall-friendly technical registry

o New message transport layer based on ProActive

A complete description of the standard OW2 PEtALS ESB architecture is available at
(http://petals.ow2.org/docs/PEtALS-Architecture-3-07-09.pdf).

- The ProActive framework is used to build the message routing and transport layer.
This layer provides the communication feature needed by the PEtALS ESB.

- The platform services are potentially hosted on external nodes as Web services.
These services are binded to the DSB using the PEtALS SOAP Binding Component.
Such bound platform service is accessible from each DSB node in a transparent way.

- The platform services can be composed using the SCA capabilities with the help of
the PEtALS SCA Service Engine. This is only possible if the platform services are
bound to the DSB using the service binding feature.

- The Space is hosted on a separate runtime providing a Web service API. The Space
Web service is bind to the DSB using the PEtALS SOAP Binding Component.

2.2.1 Installating a DSB node

The DSB binary is available as a ZIP archive. To install the DSB node, just extract the
archive. The DSB runtime is then available under SOA4All-dsb folder and will be ready to be
launched after the following configuration phase.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 12 of 80

2.2.2 Configuring a DSB node

The SOA4All DSB distribution needs to be configured to fit the targeted system. Configuring
the node means defining the network ports to be used and defining the SOA4All network
topology.

The DSB configuration files are available under the SOA4All-dsb/conf folder :

- server.properties : Defines the local server properties such as name in the network,
services to be exposed … These informations are locally and not shared with others
nodes.

- topology.xml : Defines the local network topology. The local network is the set of DSB
nodes which are visible from the local one. The topology information is shared
between nodes of the same local network so that all gets the same vision of the
network.

2.2.2.1 Local node configuration

The local configuration is defined under the conf folder in the server.properties file. This file is
a standard properties file with ‘key=value’ data. The values to be updated according to the
DSB configuration are:

- The node name ‘petals.container.name=X’ where X is the name of the node in the
SOA4All DSB node network. This name MUST be unique and must match a node
entry in the topology definition.

- The registry definition:

o ‘registry.incoming.manager=org.ow2.petals.registry.core.strategy.flooding.Seq
uentialFloodingIncomingManager’ defines the class name to use for the
incoming message propagation from other registry instances. The class must
be available in the classloader and must implements
org.ow2.petals.registry.api.manager.IncomingManager.

o ‘registry.outgoing.manager=org.ow2.petals.registry.core.strategy.flooding.Seq
uentialFloodingOutgoingManager’ defines the class name to use for outgoing
message propagation. The class must be available in the classloader and
implements org.ow2.petals.registry.api.manager.OutgoingManager.

o ‘registry.message.receiver=org.ow2.petals.registry.core.transport.cxf.CXFMes
sageReceiver’ defines the class name to use for message reception from
other registries instances. The class must be available in the class loader and
must implements org.ow2.petals.registry.api.transport.MessageReceiver.

o ‘registry.message.sender=org.ow2.petals.registry.core.transport.cxf.CXFMess
ageSender’ defines the class name to use for message emission to other
registries instances. The class must be available in the class loader and must
implements org.ow2.petals.registry.api.transport.MessageSender.

2.2.2.2 Topology definition

The topology configuration is defined under the conf folder in the topology.xml file. This file
contains all the nodes configuration data such as host names and port numbers. The
following configuration snippet shows a topology definition for three DSB nodes:

<?xml version="1.0" encoding="UTF-8"?>

<tns:topology xmlns:tns="http://petals.ow2.org/topo logy"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instan ce"

 xsi:schemaLocation="http://petals.ow2.org/topology petalsTopology.xsd">

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 13 of 80

 <tns:domain mode="static" name="SOA4AllDSB">

 <tns:description>The SOA4All DSB domain
configuration</tns:description>

 <tns:sub-domain name="subdomain1">

 <tns:description>description of the subdomain</t ns:description>

 <tns:container name="ebmws">

 <tns:description>description of the container h osted at
eBM WebSourcing</tns:description>

 <tns:host>SOA4All.ebmwebsourcing.com</tns:host>

 <tns:user>petals</tns:user>

 <tns:password>petals</tns:password>

 <tns:network-service>

 <tns:port>7720</tns:port>

 </tns:network-service>

 <tns:jmx-service>

 <tns:rmi-port>7700</tns:rmi-port>

 </tns:jmx-service>

 <tns:transport-service>

 <tns:tcp-port>7800</tns:tcp-port>

 </tns:transport-service>

 <tns:registry-service>

 <tns:port>7900</tns:port>

 </tns:registry-service>

 </tns:container>

 <tns:container name="inria">

 <tns:description>description of the container h osted at
INRIA</tns:description>

 <tns:host>SOA4All.inria.fr</tns:host>

 <tns:user>petals</tns:user>

 <tns:password>petals</tns:password>

 <tns:network-service>

 <tns:port>7720</tns:port>

 </tns:network-service>

 <tns:jmx-service>

 <tns:rmi-port>7700</tns:rmi-port>

 </tns:jmx-service>

 <tns:transport-service>

 <tns:tcp-port>7800</tns:tcp-port>

 </tns:transport-service>

 <tns:registry-service>

 <tns:port>7900</tns:port>

 </tns:registry-service>

 </tns:container>

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 14 of 80

 <tns:container name="sti2">

 <tns:description>description of the container h osted at
STI2</tns:description>

 <tns:host>SOA4All.sti2.at</tns:host>

 <tns:user>petals</tns:user>

 <tns:password>petals</tns:password>

 <tns:network-service>

 <tns:port>7720</tns:port>

 </tns:network-service>

 <tns:jmx-service>

 <tns:rmi-port>7700</tns:rmi-port>

 </tns:jmx-service>

 <tns:transport-service>

 <tns:tcp-port>7800</tns:tcp-port>

 </tns:transport-service>

 <tns:registry-service>

 <tns:port>7900</tns:port>

 </tns:registry-service>

 </tns:container>

 </tns:sub-domain>

 </tns:domain>

</tns:topology>

In the previous configuration snippet, three nodes (ebmws, sti2 and inria) have been defined.
It is very important that:

- The local configuration match with the container name. For example, the DSB node
instance running at eBM WebSourcing is named ebmws in the topology and must
define petals.container.name to ebmws in the server.properties file.

- The topology file is the same on all nodes since this is the only way to share this
information.

2.2.3 Starting and stopping a DSB node

Once configured, the DSB node can be managed with the help of scripts available under the
SOA4All-dsb/bin folder:

- startup.sh: Starts the local DSB node. This will launch the local runtime and connects
it to the SOA4All DSB network.

- stop.sh: Stops the local DSB node. This will stop the local runtime and remove it from
the SOA4All DSB network.

2.2.4 Modules installation

The DSB needs to:

- Bind platform services using the PEtALS SOAP Binding Component

- Compose platform services using the PEtALS SCA Service Engine

To install these components, copy the petals-bc-soap.zip and petals-se-sca.zip files located
in the SOA4All-dsb/components folder into the SOA4All-dsb/install folder.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 15 of 80

The procedure to bind and compose services is explained in the section 5 DSB Integration.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 16 of 80

3. SOA4All Distributed Service Bus APIs
This chapter describes the actual SOA4All Distributed Service Bus APIs. These APIs will be
used by:

- Platform services consumers: The platform services will be exposed and potentially
consumed or composed with other services. The SOA4All studio is the main platform
service consumer. All the requests to platform services from the Studio to platform
services will be performed through the SOA4All DSB API.

- Monitoring agents: The monitoring data will be used by monitoring agents to provide
a higher level of monitoring. The SOA4All Studio is the main monitoring service
consumer and will provide an advanced GUI representation of this monitoring data.

- Service managers: The service manager role is to bind existing services, which can
be hosted on several places, to the bus. Once bound, these services are
transparently accessible to all the platform service consumers.

3.1 Platform services integration API
The platform services integration API is described in DSB Integration.

3.2 Monitoring and Management API
3.2.1 Infrastructure Monitoring Data

The infrastructure layer (PEtALS ESB) provides a basic monitoring Web service API which
allows clients to get standard information on hosted services such as:

- Messages exchanged between consumers and providers: with message payload,
timestamps, states, …)

- List of available endpoints: with location, service description (WSDL, WADL, WSMO,
…), number of requests,…

- List of PEtALS components: with location, state.

3.2.2 Monitoring Bus

The Monitoring Bus (MB) is an upper level bus which is placed on top of monitoring aware
pieces of software. This MB acts as an intermediate layer between the infrastructure which
produces monitoring data and clients which will consume or be notified of WSDM data
availability.

Using the MB is possible with the following steps:

- The MB provides an API to create Monitoring Endpoints (ME). These endpoints are
generally created by functional endpoints hosted on the monitored infrastructure.

- Data is sent from the monitored infrastructure to one or more ME.

- Clients use the MB with the subscribe/notify paradigm. A client subscribes to one or
more ME and is notified when new monitoring data is available.

The generic WSDM monitoring interface is composed of the following operations:

- GetResourceProperty: Get all supported topics by the producer service.

- Subscribe: Allows a client to subscribe to one topic of provider.

- Unsubscribe: Allows a client to unsubscribe to one topic of provider.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 17 of 80

- GetCurrentMessage: Allows a client to get the current message of a topic given in
parameters.

3.2.3 Monitoring Service Integration

The next figure introduces the interaction between the WSDM based Monitoring Service
(MS) and the infrastructure (PEALS ESB). The MS is deployed on the Monitoring Bus. This
specific bus contains a Monitoring Admin Service which provides the capability to create or
destroy a monitoring service endpoint on the MB.

Figure 2 Connection between the Monitoring Bus and PEtALS ESB

When a functional endpoint is deployed on the PEtALS ESB, the requests the Monitoring
Admin Service to create its associated monitoring endpoint in the Monitoring Bus. The
monitoring endpoint address is returned as response of the create operation.

As a result, when the functional endpoint receives a client request, it processes the request
and sends a snapshot of the exchange to the associated monitoring endpoint using the
‘addNewExchange’ operation.

All information concerning the exchange between the functional consumer and provider are
sent to the monitoring endpoint. This operation is contained in a private interface accessible
only by the functional endpoint.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 18 of 80

4. SOA4All Distributed Service Bus Components
The SOA4All Distributed Service Bus is composed of various pieces of software. The main
ones are:

- The OW2 PEtALS Entreprise Service Bus

- The OW2 ProActive middleware framework

As described in the D1.4.1A deliverable, these pieces of software must be adapted to
provide features such as better scalability, proxy compatibility, efficient message transport
and message routing. The role of the current chapter is to introduce the specific modules
which have been developed to match the previous requirements.

4.1 Distributed Technical Registry
4.1.1 Requirements

The technical registry is the software module where Service Bus service endpoints are
managed. The registry API follows the CRUD paradigm to create, retrieve, update and delete
endpoints.

In order to access services, the Service Bus resolves endpoint location by doing a lookup to
the technical registry. The technical registry must provide the following core features:

- Store and retrieve entries into/from the registry. An entry is composed by the endpoint
name, the endpoint location (DSB node level), the service description (WSDL, WADL,
WSMO i.e. XML description).

- Store and retrieve entries from any node of the SOA4All Network. This means that a
DSB node must be able to get a reference to an endpoint which is hosted by another
DSB node. This will enable the endpoint retrieval when a DSB node hosting the
endpoint is down for some reason. The DSB based on PEtALS ESB will be able to
send the message to the right service when the node will come back.

- The registry entries propagation must be configurable. The DSB network will be
potentially composed of hundreds of nodes of different natures over different physical
networks through proxies and/or firewalls. Propagating and getting entries through all
these nodes in order to have the current vision of the available services will be
configurable to get the most effective result.

- Entries must be persisted. Entries will be persisted to be able to restart the technical
registry without restarting the complete DSB node.

- The transport layer will be configurable. The messages between registries will be
exchanged by using a transport layer. Since DSB nodes may be accessible through
firewall and/or proxies, the transport layer may be configurable to use the right
protocol to access foreign nodes.

4.1.2 Architecture

The technical registry architecture resulting of the previously features and requirements
described above is represented in the following figure.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 19 of 80

Figure 3 Technical Registry Architecture

The registry architecture is composed of the following modules:

- Registry: The registry module is providing the registry API to clients. It is used to store
and retrieve entries.

- Repository: The repository module is used to store entries.

- Transport: The transport layer is used to send and receive messages between
registries. The messages can content entries or management data.

- Remote Manager: The remote manager defines how the entries must be propagated
to known peers.

- Local Manager: The local manager defines how the entries must be handled when
they are received from remote peers i.e. the entry must be propagated to other peers,
how, when?

As the registry interface is generic and modularized, the transport layer can be customized. It
can be for example, based on the message transport described in section 4.2. We believe
that such a way to propagate requests is relevant w.r.t. the DSB topology. The requests are
propagated through the distributed message transporter (which boundaries are well-defined).

4.2 Message transport
4.2.1 Overview and architecture requierements

According to the SOA4All vision, the DSB infrastructure, which can be seen as a federation
of ESB, should cope with billions of external services, orchestration enactment of thousands
of compound services involving subsets of those billions above;millions of users concurrently
accessing and deploying services, relying on the bus in the background, through the web-
enabled so-called SOA4All studio, a few thousands of them acting as compound service
designers.The primary goal of the SOA4All DSB is to ensure that the SOA4All framework
scales to the dimensions of the Web, by enabling appropriate distribution techniques that
evolve the traditional ESB towards a fully Distributed Service Bus, without altering the
communication and interaction patterns of the ESB core.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 20 of 80

As a consequence, an ESB by itself, even if distributed, is not a suitable solution for a service
cloud resulting of the federation of the involved partners service infrastructures, e.g., their
service buses. It mainly lacks inter-connection mechanisms and a global and shared store of
meta-data about federated services. Additionally, each infrastructure should be able to
dynamically add or remove additional nodes to face changing loads. Such a demand may
also translate at the federation level where, e.g. some agreements may have been set up to
govern the load-balancing of underlying hardware or software resources among the
federated buses.
The most crucial element to build the PEtALS-based DSBs is to provide a solution for
message routing through a potentially huge set of PEtALS nodes, without posing a constraint
of having point-to-point connections among all the containers, and without using the original
JMS broker (based on Joram, see Error! Reference source not found.) which would be
difficult to deploy at Web scale. Naturally, we came out with a multi-level, hierarchical
organisation, presented in section 4.2.3.

4.2.2 Message transport in PEtALS

In a non-distributed version, the PEtALS message transport relies on a so-called Message
Transporter Fractal component (which is a Julia component).

Figure 4 The Transporter Component

The transporter component, shown in Error! Reference source not found. , handles the
transport of messages to other buses. It's accessed through the Dispatcher that transmits
messages to the right transporter. When a message arrives, it's sent to the appropriate
TransportProtocol, which may be:

• MemoryTransporter, in case of a local container.
• JoramTransporter, for "reliable transporting"
• Another kind and customizable transporter,

4.2.3 The distributed message transporter

Our proposition relies in a new transport component of a PEtALS DSB including a new
transport layer based on GCM components. Each DSB includes a GCMTransporter
component which is responsible for the transparent support to point-to-point and collective
communications over the Grid/Cloud infrastructure. PEtALS containers message transporters
subcontract the transport to a GCM/ProActive-based hierarchical grid-aware routing platform
[1]. This platform leverages the hierarchical Fractal composition model: activities deployed on
a same cluster of machines can use standard communication protocols (RMI over TCP) to
exchange messages; on the contrary, the messages can be tunneled across SSH or any
other technology supported by the ProActive middleware.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 21 of 80

To this effect, the GCMTransporters are organized hierarchically at deployment-time
according to the multi-cluster/grid/cloud physical infrastructure, which compose the
federation of DSBs. Error! Reference source not found. . shows an example of the routing
platform composition on an infrastructure composed by two distinct resource providers,
containing respectively 4 and ‘n’ ESBs.

Figure 5: Example of DSB routing platform composition

This Platform is composed by two main kinds of components:

• GCMTransporters (GCMT): these are primitive GCM components (inner-
components in Error! Reference source not found.), which are
responsible, locally, for message handling, that basically consist on adding
meta-information, which will guide the routing strategy. These components
have a hierarchical identifier (ID) composed by the ID of the enclosing
GCMClustering plus an unique ID. In one hand, communications that place
in the context of a cluster (or local network) will be handled by the
GCMTransports themselves and such communications are usually
performed through the standard RMI protocol. On the other hand, messages
exchanged among GCMTransporters located on different administrative
domains are delegated to GCMClustering components. Error! Reference
source not found. shows internally, how the GCMTrasporters are
organized.

Figure 6: The transporter component based on GCM

• GCMClusterings (GCMC): These are composite GCM components
(enclosing components of Error! Reference source not found.), which are
capable of grouping a set of GCMTransporters or a set of lower-level
GCMClusterings. These components also have a hierarchical ID, which is
composed by the ID of the enclosing GCMClustering, if they have any, and a

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 22 of 80

single ID. The GCMClusterings are responsible for message routing, which
is achieved through the configuration of their collective MxN interfaces.

 The GCMCs are deployed on resource provider frontends or proxies to make possible the
communication among physically isolated nodes. This can be achieved through the usage of
specific communication protocols, such as RMISSH (RMI over SSH tunnels).

The binding scheme of the infrastructure depicted on Error! Reference source not found.
consists on single bindings between GCMTs and the respective enclosing GCMCs, all-to-all
bindings among GCMCs of the same level (even if in our example e only have 2 GCMCs)
and single bindings between GCMCs to upper-level GCMCs. This is a very general scheme
that allows point-to-point and collective communication from any GCMT or group of GCMTs
to any other group of GCMTs, even vith limited network connectivity, provided a physical link
between the most external GCMCs. Externally, the whole infrastructure is wrapped bya
GCMC that represents the whole infrastructure and can potentially be bound to another
routing infrastructure.

In practice, messages sent from GCMTs are tagged with:

• Message type: point-to-point or collective (1xN, Mx1 or MxN).
• Destination (s): a given hierarchical ID, in the case of point-to-point or Mx1 or

a set of hierarchical IDs, in the case of 1xN (which can potentially be a
broadcast if N is composed by every other destination) and MxN.

• And distribution policy which are functions that will be used to split or gather
the messages.

As already explained, if messages take place on the local network, they are sent directly to
the destination. Otherwise, these messages are intercepted at the gather-multicast and a
routing algorithm allows the messages to be delivered to the right destination(s), applying the
distribution policy, if needed.

The routing infrastructure provides a very general mechanism capable of performing any kind
of communication, supposing one open channel between clustering components of the same
level (even if it must be tunnelled through SSH or use HTTP). However, in terms of
performance, this cannot be considered an optimal solution by any means: one or two
synchronization barriers for each level involved on the call are required while efficient point-
to-point operations require some form of direct communication between source and
destination. Besides, the memory needed to aggregate messages at interfaces might be
considerable. Nonetheless, collective can take profit of the gather-multicast interface to
stage and parallelize their execution.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 23 of 80

Figure 7 : Routing optimization through direct bindings

Thanks to the component encapsulation, we are able to transparently configure direct
bindings (Error! Reference source not found.) among GCMTransporters to avoid
unnecessary indirections, provided an existing physical link between each pair of nodes. The
general direct binding mechanism is detailed in [2].

4.3 Monitoring platform
Error! Reference source not found. shows the overall architecture of the monitoring
platform. The monitored components running on the DSB, e.g. the discovery engine,
execution engine and reasoning engine, etc. continually place monitoring data onto the
message queues on the DSB, which is in the form of OWL encoded monitoring events. Each
event indicates a transition of state of execution, for example, the event ActivityCompleted
means that an activity has been finished successfully. On the other hand, the monitoring
platform sets up several listeners to the message queues in order to continuously wait for
monitoring events to occur. The listeners can see the events happening, and pass them to
the monitoring platform for processing. When events arrive, the monitoring platform firstly
stores them as RDF statements in the Event Repository, and secondly puts the high-level
information derived through rule based reasoning on the raw monitoring events, into the
Execution History.

Figure 8 Architecture Monitoring platform

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 24 of 80

4.3.1 Underlying infrastructure

The monitoring platform is situated in the context of the SOA4All Distributed Service Bus,
and hence the monitoring data is collected through the monitoring service provided by the
PEtALS ESB. As stated in the previous section, information provided by monitoring services
on ESB not only can capture the messages exchanged during services invocation and
execution of business processes, but also can reflect the runtime states of message queue
and JBI artefacts lifecycles.

Message queues on the DSB provide an asynchronous communication mechanism to
transport monitoring data to the monitoring platform. Furthermore, with the supports of WS-
Topics [11], administrators or analysts can apply specific filters to the events that are
generated by the components on DSB, and thereby screen out information that is relevant to
the monitored artefacts they concern. By this means, the communication loads of the
message queues are reduced, and the general performance of the monitoring platform is
improved. In addition, users of the monitoring platform can store the gathered data into
separate repositories, namely publish them to different sub-spaces of the Semantic Spaces
[9]. For instance, as shown in Error! Reference source not found. , the system
administrators need to see the whole picture of the running state of the DSB, and receive all
the monitoring data by using the root topic. In contrast, the business analysts are only
interested in the special activities, so the corresponding topics, such as ‘super.events.ode’,
are adopted, as well as the semantic repositories with relative limited size. In brief, the
underlying infrastructure makes it possible to observer the SOA4All DSB from multiple
perspectives, and to obtain the required data through the monitoring platform.

Figure 9 Topic-based Monitoring Data Filtering

4.3.2 Persistence of monitoring data

The persistence of monitoring data refers to writing runtime information to RDF triple storage
systems, which includes both the gathered raw events generated by components of SOA4All
DSB and the high-level information derived through event processing. In this way, the system
administrators and business analysts can keep track of the runtime states and execution

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 25 of 80

histories with much longer time-span.

From an architectural viewpoint, as shown in Error! Reference source not found. , the
storage system of monitoring data is composed of two separate semantic repositories: Event
Repository and Execution History Repository. The former one is assigned for the raw events
that depict the source, the occurrence time, the related input and output data, etc. The
Execution History Repository is used to store the high-level information, i.e. instances of the
concepts in the COBRA ontology [6]. Once raw events arrive the monitoring platform, they
are resolved as instances of the concepts in the EVO ontology [6], and after being processed
by the rule-based reasoning, the derived high-level information is published to the Execution
History.

The reasons for creating two repositories for respectively storing the raw events and high-
level information are:

1. A great number of events may happen in a short time, so a dedicated storage can
reduce the impact on the overall performance of the monitoring platform;

2. business analysis is mainly based on the high-level information, e.g. the lifecycles of
business activities, rather than the raw events, thus it does not need the access to all
of the repositories. Moreover, the design of two separate semantic repositories is also
for the purpose of decoupling the event processing of monitoring and other
functionalities of business analysis.

The persistence of monitoring data is implemented under the framework of Elmo, which
facilitates Java applications accessing RDF triple stores by establishing the mappings
between Java objects and RDF resources [7].

4.3.3 Event processing

The event-processing module of the monitoring platform is charge of deriving the high-level
information from the raw events and publishing to the Execution History Repository. Drools
[8], a general-purpose rule engine, is exploited to carry out event processing. Since we have
introduced a hierarchy of monitoring events in the EVO ontology (refer to [12] for more
details about EVO ontology). When an event arrives the monitoring platform, SPARQL [9]
queries are executed to retrieve the super-concepts of the received event. Then, the event
itself and its super-concepts are translated into Drools facts and fed to the rule engine. To
achieve the automation of data updating in Execution History Repository, reasoning rules are
defined for each kind of event. A new feature of Drools 5.0 that is useful for event processing
is the support to ‘fireUntilHalt()’, which means the engine can run in a reactive mode and fire
the rules until the function ‘halt()’ is called.

The monitoring data is kept in the working memory of the rule engine for only a certain period
of time. In other words, only the events that happened during a specific period of time are
treated as the facts on which rule engine reasons. By this means, a sliding window of
observation on events comes into being, and the number of monitoring events being
processed by the rule engine is controllable. Therefore, the processing time is cut down and
the system performance is also improved.

To integrate Drools with Elmo, two approaches are adopted. For one thing, the Java class
loader used by Elmo is passed on to Drools, so that the rule engine can deal with Java
objects that are instantiated by Elmo. For another, while constructing the specification of the
reasoning rules, the Java interfaces generated by Elmo is imported. Furthermore, the
concepts defined in the EVO ontology are declared as events that can be detected by
Drools. Finally, the results of rule-based reasoning are persisted through the interface to the
RDF triple store, which is provided by Elmo.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 26 of 80

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 27 of 80

5. DSB Integration
5.1 SOA4All Architecture and Integration Guidelines
This chapter reminds the SOA4All overall architecture described into D1.4.1A [11], provides
an overview of SOA4All DSB integration guidelines, and discusses the pros and cons of the
three complementary approaches to plug SOA4All Platform Services to the SOA4All DSB.

5.1.1 SOA4All Overall Architecture

The SOA4All overall platform is composed of the SOA4All Distributed Service Bus (DSB),
the SOA4All Studio, and several SOA4All Platform Services as depicted by Error!
Reference source not found. and Error! Reference source not found. extracted from

D1.4.1A [11]1.

Figure 10: The SOA4All Overall Architecture

The SOA4All DSB will be hosted on a set of distributed machines, which are publically
accessible through Internet and at first provided by EBM WebSourcing, INRIA and STI.
These machines are also called SOA4All DSB nodes.

As shown by Error! Reference source not found. , the SOA4All DSB is the backbone
transporting all the communications/interactions from the SOA4All Studio to Platform
Services or external business services, from SOA4All Platform Services to external business

1 For more details, read Chapter 2 of D1.4.1A [11].

SOA4All DSB Integration Guidelines

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 28 of 80

services, and between SOA4All Platform Services.

Figure 11: Internal and External Communication Flow

In Error! Reference source not found. and Error! Reference source not found. , the red
circle points out that SOA4All DSB Integration Guidelines apply at the interface between the
SOA4All DSB and Platform Services. These guidelines define how SOA4All Platform
Services can be plugged to the SOA4All DSB.

5.1.2 Overview of SOA4All DSB Integration Guideline s

The SOA4All DSB Integration Guidelines define three approaches to plug SOA4All Platform
Services to the SOA4All DSB, called standalone, SCA-based, and JBI-based respectively,
and depicted into 2.

2 For more details about this figure, read Chapter 8 of D1.4.1A [11].

SOA4All DSB Integration Guidelines

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 29 of 80

Figure 12: The SOA4All DSB Implementation Architecture

These three integration approaches are not exclusive but complementary. Developers of
each SOA4All Platform Service can choice one of these approaches according to pros and
cons discussed into next sections.

5.1.2.1 The Standalone Approach

A platform service can be a public external Web Service. It runs as a standalone program but
is not hosted by one of the SOA4All DSB nodes. The platform service must be exposed to
the SOA4All DSB in order to be accessible by other SOA4All components and accesses
other platform services via the Web Service Binding Component (WS BC) provided by the
SOA4All DSB. This is the responsibility of its developers to host this platform service on their
own public machines.

5.1.2.1.1 Pros

• Traditional Web Service development process . The main advantage of the
standalone approach is that SOA4All developers can use any traditional Web Service
development process and their favorite tools to implement their platform services,
e.g., defining the platform service interface by a WSDL document, using a wsdl2java
tool to generate Java interfaces and classes conform to the Java API for XML Web
Services (JAX-WS) [13], implementing their business code by inheriting from and
calling JAX-WS-based generated interfaces and classes. Developers could also start
from Java business interfaces annotated with JAX-WS and use a java2wsdl tool to
generate the corresponding WSDL document.

5.1.2.1.2 Cons

• No hosting facility provided . The main disadvantage of the standalone approach is

(1) (2) (3)

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 30 of 80

that SOA4All does not provide public machines to host these standalone platform
services. This is the responsibility of its developers to host their platform services on
their own public machines. They must provide and administrate their own public
machines, they must deploy and manage their SOA4All Platform Services, they must
manage themselves hardware/software faults and availability, and they must do their
best efforts to make their platform services always accessible, even after the end of
the SOA4All project.

• No DSB extra features . As standalone platform services are not hosted by the
SOA4All DSB then they can not benefit from its advanced extra features like
distribution, automated deployment, lifecycle management, monitoring, etc.

• No optimal communication performance . As standalone platform services are
hosted outside the SOA4All DSB and are only accessible as Web Services (e.g.,
SOAP over HTTP), the SOA4All DSB has no opportunity to optimize communications
between platform services, i.e., it will always use WS bindings. Then the performance
of communications (i.e., latency, throughput) would certainly be not optimal.

• No assistance for better reusable software componen ts . Traditional Web
Services development process (e.g., with WSDL and JAX-WS) helps a lot to make a
piece of software accessible as a Web Service but does not assist developers to
develop highly reusable software components. Component-Based Software
Engineering (CBSE) provides guidelines and technologies (e.g., EJB, Spring, OSGi,
JBI, and SCA) to produce better reusable software components by promoting a clear
separation between the code dealing with business, configuration, and non-functional
concerns of applications. Business code is implemented with a programming
language, configuration is described with a dedicated language (e.g., XML-based
descriptors), and non-functional concerns are managed by component containers
transparently.

5.1.2.2 The SCA-based Approach

A platform service can be implemented as an SCA-based composite application3. Then this
platform service can be fully hosted, deployed, and monitored, at first, on the SOA4All DSB
node provided by EBM WebSourcing.

5.1.2.2.1 Pros

• Hosting facility provided . At first, EBM WebSourcing will provide a SOA4All DSB
node to host SCA-based platform services. Then SOA4All developers need not to
provide and administrate their own public machines. The SOA4All DSB provides tools
to facilitate the deployment, management, and monitoring of SCA-based platform
services.

• DSB extra features . As SCA-based platform services are hosted by the SOA4All
DSB then they can benefit from its advanced extra features like distribution,
automated deployment, lifecycle management, monitoring, etc.

• Optimal communication performance . As SCA-based platform services are hosted
by the SOA4All DSB, the latter has opportunity to optimize communications between
platform services, e.g., for instance when two platform services are hosted on the
same SOA4All DSB node then their interactions are done locally without requiring to
use WS bindings systematically. Then the performance of communications (i.e.,

3 For a quick overview of SCA, read Section 5.3.1 of this deliverable and Section 4.1.1 of
D1.4.1A [11].

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 31 of 80

latency, throughput) would certainly be more optimal.

• Assistance for better reusable software components . SCA is a component model
for building SOA applications. SCA provides means to assist developers to develop
highly reusable software components. With SCA, business code is encapsulated into
SCA components. Several programming languages can be used to implement SCA
components (e.g., Java, BPEL, Spring, etc). Configuration of SCA composite
applications is described with a dedicated but simple XML-based language. SCA
intents and policies allow developers to express their non-functional concerns, like
transactions, security, logging, etc.

5.1.2.2.2 Cons

• SCA-specific development process . SCA extends the traditional Web Services
process development (e.g., with WSDL and JAX-WS) by introducing some SCA-
specific rules to develop composite applications. These few new rules are discussed
into Chapter 5.3. Then SOA4All developers will need to learn these new rules.
However, the Eclipse IDE already includes a set of SCA-specific plug-ins and wizards
to greatly simplify and accelerate the development of SCA composite applications4.
These SCA-specific tools are included into the official Eclipse Galileo release.

5.1.2.3 The JBI-based Approach

A platform service can be implemented as a JBI-based component. Then this platform
service will be hosted on one of the SOA4All DSB nodes provided by EBM WebSourcing,
INRIA, or STI.

5.1.2.3.1 Pros

• Hosting facility provided . At first, EBM WebSourcing, INRIA and STI will provide
SOA4All DSB nodes to host JBI-based platform services. Then SOA4All developers
need not to provide and administrate their own public machines. The SOA4All DSB
provides tools to facilitate the deployment, management, and monitoring of JBI-based
platform services.

• DSB extra features . As JBI-based platform services are hosted by the SOA4All DSB
then they can benefit from its advanced extra features like distribution, automated
deployment, lifecycle management, monitoring, etc. Moreover JBI-based platform
services can have a full fine-grain access to and control on JBI features, especially
the various communication patterns provided by JBI.

• Optimal communication performance . As JBI-based platform services are hosted
by the SOA4All DSB, the latter has opportunity to optimize communications between
platform services, e.g., for instance when two platform services are hosted on the
same SOA4All DSB node then their interactions are done locally without requiring to
use WS bindings systematically. Then the performance of communications (i.e.,
latency, throughput) would certainly be more optimal.

5.1.2.3.2 Cons

• JBI-specific development process . JBI extends the traditional Web Services
process development (e.g., WSDL, JAX-WS) by introducing some JBI-specific rules
to develop JBI components. Then SOA4All developers will need to learn these new
rules. However, OW2 PEtALS, the open source distributed Enterprise Service Bus

4 Have a look to the Eclipse STP/SCA Tools Project at http://www.eclipse.org/stp/sca and
http://wiki.eclipse.org/STP/SCA_Component.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 32 of 80

(ESB) integrated into the SOA4All DSB, provides the PEtALS Component
Development Kit (CDK)5 to simplify the implementation of JBI components, and a set
of Eclipse plug-ins6 to create and package JBI artefacts for the main PEtALS
components.

5.1.2.4 Summary

Table 1 summarizes the pros and cons of the three SOA4All DSB integration approaches.

Table 1: Summary of the three integration approaches

Criteria / Approach Standalone SCA-based JBI-based

Hosting facility ���� ☺☺☺☺ ☺☺☺☺

DSB extra features ���� ☺☺☺☺ ☺☺☺☺

Communication performance ���� ☺☺☺☺ ☺☺☺☺

Assistance for better reusable software
components

���� ☺☺☺☺ ☺☺☺☺/����

Development process ☺☺☺☺ ����/☺☺☺☺ ����/☺☺☺☺

☺☺☺☺ = pros; ���� = cons; ☺☺☺☺/���� = pros but cons; ����/☺☺☺☺ = cons but pros

5.1.3 SOA4All Distributed Service Bus Runtime Acces s

As introduced before, the SOA4All DSB nodes are provided and hosted by eBM
WebSourcing, INRIA, and STI.

In order to be aligned with the general SOA guidelines and with the SOA4All architecture
delivrables, the DSB nodes need to expose their services (monitoring, management, …) as
Web services.

In the current document, the services URL will adopt the following syntax:

http://<HOST>[:<PORT>]/<PATH>/<SERVICE >

Table 2. List of SOA4All DSB Nodes

Provider Host Port

eBM WebSourcing SOA4All.ebmwebsourcing.com -

INRIA - -

STI - -

Note: The service consumers’ developers need to ext ernalize all the URLs used in

5 Available at http://petals.ow2.org/download-petals-esb.html
6 Available at http://petals.ow2.org/download-tools.html

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 33 of 80

their modules in order to avoid compilation when DS B node API URL will be updated.

5.2 Standalone Platform Services
This chapter provides detailed guidelines on the standalone approach to plug SOA4All
Platform Services to the SOA4All DSB.

As a reminder, standalone services means that these Web services will be hosted and
managed on SOA4All partner’s nodes. The current chapter introduces how these services
can be plugged into the SOA4All DSB using the SOA4All management API and is not a
guideline on how to design and implement Web services.

5.2.1 Standalone Management API

OW2-PEtALS ESB provides connectors to bind external services to the bus and to expose
bus services as external services. This is highly JBI dependent and does not fill the SOA4All
management API guidelines.

The OW2-PEtALS ESB is extended to provide a SOAP-based management API, which will
be used to build the SOA4All management API. The current operations are defined in the
next sections.

5.2.1.1 Service Binder Service

This Web service is used to bind standalone services to the bus and is defined at
http://<HOST>[:<PORT>]/dsb/management/ServiceBinder?wsdl.

5.2.1.1.1 bindWebService

Binds the Web service defined in the WSDL description to the local PEtALS ESB node. As a
result, each message sent to the internal PEtALS endpoint will be forwarded to the real
standalone Web service.

Figure 13: Binding an External Standalone Web Service to the DSB

5.2.1.1.2 unbindWebService

Unbinds a previously bound Web service. The PEtALS endpoint is undeployed from the bus.

5.2.1.1.3 getBoundWebServices

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 34 of 80

Returns the list of all Web services bound to the service bus.

5.2.1.1.4 proxifyWebService

Same than the bindWebService operation and additionally exposes the PEtALS endpoint
as a PEtALS Web service. Each SOAP message sent to the PEtALS Web service will be
routed to the PEtALS provider endpoint and finally sent to the standalone Web service.

Figure 14: Proxifying an External Standalone Web Service with the DSB

A standalone Web service hosted at

• http://SOA4All.partner.org/service/PartnerService

will be proxified by the Service Bus and exposed at

• http://<HOST>[:<PORT>]/petals/services/PartnerServiceProxy

finally, its WSDL description will also be available at

• http://<HOST>[:<PORT>]/petals/services/PartnerServiceProxy ?wsdl

Note: Due to a limitation in the PEtALS SOAP Bindin g Component, the proxified WSDL
port address may not be the good one. Generated cli ents must be updated to fix this
bug.

5.2.1.1.5 unproxifyWebService

Unproxify a previously proxified Web service.

5.2.1.1.6 getProxifiedWebServices

Returns the list of all Web services proxified by the DSB.

5.3 SCA-based Platform Services
This chapter provides detailed guidelines on the SCA-based approach to plug SOA4All
Platform Services to the SOA4All DSB.

5.3.1 Overview of SCA

5.3.1.1 What SCA is

Service Component Architecture (SCA) is a set of specifications initially defined by the Open

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 35 of 80

Service Oriented Architecture (OSOA) collaboration7, a set of major companies of the
software industry including IBM, IONA, Oracle, SAP, Sun and TIBCO, and now under
standardization by the OASIS consortium8. SCA defines a component-based model for
building service-oriented applications and systems (SOA). As shown in Error! Reference
source not found. , the SCA model is agnostic against (i.e., independent of) technologies
used for defining interfaces (WSDL, Java interfaces, etc.), to implement components (C/C++,
BPEL, Java, Spring, EJB, OSGi, COBOL, etc.), to make them to communicate across the
network (Web Service, JMS, Java RMI, etc.), and to apply non-functional properties
(transactional, security, etc.). Then SCA facilitates the integration of SOA-based applications
and systems.

Figure 15: The Service Component Architecture (SCA) Model

The main SCA specification defines the SCA Assembly Model [14], an XML-based language
used to describe SCA-based applications or composites. Its key concepts are:

• Binding – An SCA binding identifies the protocol used to export an SCA service or
import an SCA reference to/from the rest of the world. SCA is extensible to support
various forms of bindings. By default, SCA supports Web Services as bindings.

• Component – An SCA component encapsulates a running piece of software. Each
component has a name, exposes a set of SCA services, has a set of SCA properties,
is implemented by one SCA implementation, and requires a set of SCA references.

• Composite – An SCA composite makes a set of strongly coupled components to
work together. Each composite has a name, exposes a set of SCA services, has a
set of SCA properties, is composed of a set of SCA components and wires, and
requires a set of SCA references.

• Implementation – An SCA implementation defines the implementation of an SCA

7 See at http://www.osoa.org
8 See at http://www.oasis-opencsa.org

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 36 of 80

component. SCA is extensible to support various forms of component
implementations. An SCA component can be implemented by an SCA composite, a
Java class, a BPEL process, a set of C functions, etc.

• Interface – An SCA interface defines the signature of operations/methods provided
by an SCA service or reference. SCA is extensible to support various languages to
express signatures. By default, SCA supports WSDL and Java as interface definition
languages.

• Property – An SCA property identifies a configurable business property of a
component or composite. Each property has a name, a type, and a value.

• Reference – An SCA reference identifies a dependency of a component/composite to
a service. Each reference has a name, is defined by an SCA interface, and can be
bound via SCA bindings.

• Service – An SCA service is an access point to invoke an SCA component or
composite. Each service has a name, is defined by an SCA interface, and can be
exported through SCA bindings.

• Wire – An SCA wire identifies a communication path from an SCA reference source
to an SCA service target.

As depicted in , the SOA4All DSB supports SCA thanks to an SCA Service Engine running
on top of the OW2 PEtALS ESB. This service engine supports the SCA Assembly Model and
is built on top of the OW2 FraSCAti SCA runtime9.

5.3.1.2 What Eclipse STP/SCA is

The Eclipse STP/SCA Tools project10 provides a set of tools for simplifying the design and
speeding up the development of SCA-based applications. This includes a graphical
composer, various editors (XML-based, tree-based, form-based) and several plug-ins for
specifying, developing, assembling, and deploying SCA composites. Eclipse STP/SCA Tools
are included into the official Eclipse Galileo release.

9 See at http://frascati.ow2.org
10 See at http://www.eclipse.org/stp/sca and http://wiki.eclipse.org/STP/SCA_Component.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 37 of 80

Figure 16: The Eclipse STP/SCA XML Editor

Error! Reference source not found. illustrates the Eclipse STP/SCA XML-based editor (the
middle panel) and the Eclipse STP/SCA tree-based editor (the right panel), both are driven
by the XML Schemas defined by the SCA Assembly Model. Error! Reference source not
found. illustrates the Eclipse STP/SCA graphical composer allowing one to graphically
“draw” SCA composites. The example used in both figures is an SCA composite
representing the SOA4All Service Discovery Functional Process detailed into next sections.

Figure 17: The Eclipse STP/SCA Composer

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 38 of 80

5.3.2 Building SCA-based Platform Services

In order to illustrate how to develop SOA4All Platform Services as SCA-based composites,
this section is based on the SOA4All Service Discovery Functional Process. This process is
described into Section 7.4.3 of D1.4.1A [11] and depicted into Error! Reference source not
found. taken from the SOA4All Architecture presented during the 2nd project review [2].

Figure 18: The SOA4All Service Discovery Functional Process

The SOA4All Service Discovery Functional Process involves five SOA4All Platform Services
(Ranking&Selection, Discovery, Crawler, Reasoner, Service Registry) and the SOA4All
Semantic Space. Each rectangle represents a SOA4All component (semantic space,
platform services, or studio). The arrows represent communications between SOA4All
components and transported by the SOA4All DSB transparently. The circles represent the
communication objects as defined into Section 6 of D1.4.1A [11].

A prototype of the SCA-based implementation of the SOA4All Service Discovery Functional
Process is available into the SOA4All SVN at the following URL:

https://svn.sti2.at/SOA4All/trunk/SOA4All-integrati on/SOA4All-integration-sca

This implementation contains all the SCA composites shown into Section 5.3.2.1, Java
interfaces and implementation classes of each involved SOA4All components. Of course,
these interfaces and classes are just skeletons for illustration purposes, and must be
completed by SOA4All components’ developers.

5.3.2.1 Designing SCA-based Platform Services

At a high level of abstraction, we can consider that the whole SOA4All platform is an SCA
composite. For instance, Error! Reference source not found. shows an SCA composite
composed of two components: one component encapsulates the SOA4All Studio
Consumption Platform and has two SCA references wired to two SCA services provided by
another component encapsulating the SOA4All Service Discovery Functional Process.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 39 of 80

Figure 19: The SOA4All SCA composite

The SOA4All Service Discovery component can be itself implemented by an SCA composite.
This composite shown in Error! Reference source not found. is composed of six
components representing the Ranking&Selection, Crawler, Discovery, Reasoner,
ServiceRegistry SOA4All platform services, and the semantic space. Each arrow of Error!
Reference source not found. is represented by an SCA wire, i.e., a communication path
from an SCA reference to an SCA service. Each SCA reference represents a dependency
from its associated SOA4All component to an SCA service provided by another SOA4All
component. A SOA4All component can have several SCA references. For instance, the
SOA4All reasoner component requires both service-registry and semantic-space
components in order to realize its functionalities. Each SCA service represents a set of
functionalities offered by a SOA4All component. A SOA4All component can provide several
SCA services. For instance, the discovery component provides a service used by the
ranking-and-selection component and another service used by the crawler
component. Defining several services for a component is a design choice allowing us to
better identify the various roles that can play a component in the whole architecture, and
avoiding to define for each component one big interface containing all its operations. Here
we apply the principle of separation of concerns at the application design level.

Each of the six components of the SOA4All-service-discovery SCA composite can
itself implemented as an SCA composite. This hierarchical approach allows us to go from a
high-level global view of the whole architecture (see Error! Reference source not found.)
to a fine-grain view of its implementation (see Error! Reference source not found. to Error!
Reference source not found.). Here we decide to stop the recursivity: Each of next six
SOA4All composites just contains one SCA component implemented by a Java class. Of
course, each provider can decide to recursively decompose its SOA4All platform service as a
set of more than one SCA components.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 40 of 80

Figure 20: The SOA4All-service-discovery SCA Composite

Error! Reference source not found. represents the semantic-space SCA composite
containing one SCA component, which provides an SCA service defined by a Java interface,
provides a configurable SCA property, and is implemented by a Java class. The XML-based
document describing this SCA composite is provided later in Section 5.3.2.4 Error!
Reference source not found. . The motivations to apply SCA on the SOA4All Semantic
Space component are given in Section 4.1.4 of D1.4.1A [11]. The Java interface of this
component is the one defined into D1.3.2A [12].

Figure 21: The semantic-space SCA Composite

Error! Reference source not found. to Error! Reference source not found. represent
service-registry , reasoner , discovery , ranking-and-selection , and crawler
SCA composites. These composites must be enhanced by their respective provider, i.e.,
decomposing the platform service into several SCA components, adding new SCA services,
and adding new configurable references and properties.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 41 of 80

Figure 22: The service-registry SCA Composite

Figure 23: The reasoner SCA Composite

Figure 24: The discovery SCA Composite

Figure 25: The ranking-and-selection SCA Composite

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 42 of 80

Figure 26: The crawler SCA Composite

5.3.2.2 Defining SCA-based Platform Service Interfaces

By nature, SCA can support various languages to define service interfaces. By default, SCA
supports WSDL port types and Java interfaces. We recommend using Java instead of WSDL
port types to SOA4All developers, as defining Java interfaces is more concise and avoiding
errors. Moreover, the JAX-WS specification [13] provides a set of Java annotations allowing
us to annotate Java interfaces in order to produce their equivalent WSDL port types
automatically.

Figure 27: The SemanticSpaceI Java Interface

Error! Reference source not found. , Error! Reference source not found. , and Error!
Reference source not found. illustrate how to use JAX-WS to annotate SOA4All Java
interfaces. @WebService is used to annotate Java interfaces in order to expose them as
WSDL port types and @WebMethod is used to annotate Java methods in order to expose
them as WSDL operations. These two Java annotations have a set of associated attributes
allowing us to configure the mapping to WSDL in a fine-grain way (read [13] for more
details).

1 package eu.SOA4All.integration.space.api;

2 import java.util.Set;

3 import javax.jws.WebMethod;

4 import javax.jws.WebService;

5 import org.openrdf.model.Statement;

6 import eu.SOA4All.dsb.space.query.Query;

7 @WebService

8 public interface SemanticSpaceI {

9 @WebMethod public Set<Statement> query(Query q);

10 ...

1 package eu.SOA4All.integration.space.api;

2 import java.util.Set;

3 import javax.jws.WebMethod;

4 import javax.jws.WebService;

5 import org.openrdf.model.Statement;

6 import eu.SOA4All.dsb.space.query.Query;

7 @WebService

8 public interface SemanticSpaceI {

9 @WebMethod public Set<Statement> query(Query q);

10 ...

11 }

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 43 of 80

Figure 28: The DiscoveryI Java Interface

Figure 29: The ServiceRegistryI Java Interface

Let us note that these three previous interfaces are not normative11, and must be fully defined
by their associated providers (WP1 for SemanticSpaceI , WP5 for DiscoveryI and
ServiceRegistryI). SOA4All developers should just define Java interfac es
annotated with JAX-WS .

5.3.2.3 Implementing SCA-based Platform Services

An SCA component can be implemented as an SCA composite (see Error! Reference
source not found.) or via a Java class (see Error! Reference source not found. to Error!
Reference source not found.). This section describes the few rules that developers must
follow in order to develop Java classes implementing SCA components.

To illustrate these rules, this section provides a skeleton of the Java implementation of three

11 The goal of this deliverable is not to specify the name of each Java interface and the
signature of their Java methods. This is the purpose of WP3 to WP6 deliverables.

1 package eu.SOA4All.integration.registry.api;

2 import java.util.Set;

3 import javax.jws.WebMethod;

4 import javax.jws.WebService;

5 import eu.SOA4All.dsb.space.query.Query;

6 import eu.SOA4All.integration.fake.ServiceDescrip tion;

7 @WebService

8 public interface ServiceRegistryI {

9 @WebMethod

10 public Set<ServiceDescription> getServiceDescription(Query query);

11 }

1 package eu.SOA4All.integration.discovery.api;

2 import java.util.Set;

3 import javax.jws.WebMethod;

4 import javax.jws.WebService;

5 import eu.SOA4All.integration.fake.Goal;

6 import eu.SOA4All.integration.fake.ServiceDescrip tion;

7 @WebService

8 public interface DiscoveryI {

9 @WebMethod

10 public Set<ServiceDescription> discover(Goal g oal);

11 }

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 44 of 80

SOA4All components: semantic-space (see Error! Reference source not found.),
service-registry (see Error! Reference source not found.) and discovery (see
Error! Reference source not found.).

A Java class implementing an SCA component must imp lement:

1. a public default constructor . This public constructor without parameters is called by
the SCA framework to instantiate the Java class. Let us note that a Java class without
any declared constructor has an implicit public default constructor, which is the case
for Java classes SemanticSpaceImpl (see Error! Reference source not found.),
ServiceRegistryImpl (see Error! Reference source not found.), and
DiscoveryImpl (see Error! Reference source not found.).

2. all the interfaces of all the SCA services of its e nclosing SCA component . For
instance, the SemanticSpaceImpl class implements the SemanticSpaceI
interface (lines 3 and 6-8) as its enclosing SCA component provides one SCA service
(see Error! Reference source not found.). But each class ServiceRegistryImpl
and DiscoveryImpl implements two Java interfaces (lines 3 and 6-9 in Error!
Reference source not found. , lines 3 and 7-11 in Error! Reference source not
found.), as their respective SCA component provides two SCA services (see Error!
Reference source not found. and Error! Reference source not found.).

3. a public setter method for each SCA reference and p roperty of its enclosing
SCA component . For instance, the SemanticSpaceImpl class contains the
setStorage method (line 5 in Error! Reference source not found.) to be notified
by the SCA framework of the value of the SCA property named storage and of type
string . The concrete value of this property will be set in an SCA composite
descriptor (see Section 5.3.2.4). In the ServiceRegistryImpl class, the method
setSemanticSpace is used by the SCA framework to set the value of the SCA
reference named semanticSpace and of interface SemanticSpaceI . The
DiscoveryImpl class has two public setter methods for setting the SCA references
named reasoner and serviceRegistry . This SCA programming pattern is in fact
the same as used by JavaBeans and Spring component models.

These three simple rules are enough to implement most of components. Their main
advantage is then that SCA is not intrusive into Java classes, i.e., a SOA4All developer can
implement a Java class without requiring to know SCA in depth but just the three simple
previous rules.

However, advanced component implementations can require to be SCA-aware (e.g., for
being notified of the life cycle of components). For this purpose, some SCA-specific Java
annotations and API are specified in [15] and [14]12.

12 These SCA-specific Java annotations and API would be discussed in a next version of this
deliverable according to SOA4All development requirements.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 45 of 80

Figure 30: The Java Implementation of the Semantic Space Component

Figure 31: The Java Implementation of the Service Registry Component

Figure 32: The Java Implementation of the Discovery Component

1 package eu.SOA4All.integration.space.lib;

2 import . . .

3 public class SemanticSpaceImpl implements SemanticSpaceI {

4 // Setter methods for configuration

5 public void setStorage(String s) { . . . }

6 // Implementation of the SemanticSpaceI interfa ce

7 public Set<Statement> query(Query q) { . . . }

8 . . .

9 }

1 package eu.SOA4All.integration.discovery.lib;

2 import . . .

3 public class DiscoveryImpl implements DiscoveryI,
DiscoveryUpdateI {

4 // Setter methods for configuration

5 public void setReasoner(ReasonerI r) { . . . }

6 public void setServiceRegistry(ServiceRegistryI sr) {...}

7 // Implementation of the DiscoveryI interface

8 public Set<ServiceDescription> discover(Goal go al) { ... }

9 // Implementation of the DiscoveryUpdateI inter face

10 . . .

11 }

1 package eu.SOA4All.integration.registry.lib;

2 import . . .

3 public class ServiceRegistryImpl implements ServiceRegistryI,
ServiceRegistryUpdateI {

4 // Setter methods for configuration

5 public void setSemanticSpace(SemanticSpaceI s) { . . . }

6 // Implementation of the ServiceRegistryI inter face

7 public Set<ServiceDescription>
 getServiceDescription(Query query) { . . . }

8 // Implementation of the ServiceRegistryUpdateI interface

9 . . .

10 }

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 46 of 80

5.3.2.4 Configuring SCA-based Platform Services

This section presents concrete examples of the SCA XML-based language allowing us to
define SCA composites, configure SCA properties, wire SCA references to services, and
export SCA services as Web Service endpoints. SOA4All architects can write these XML
documents with a simple text editor directly, or use advanced graphical editors provided by
Eclipse STP/SCA Tools (see Section 5.3.1.2).

Figure 33: The XML-based semantic-space SCA Composite

Error! Reference source not found. defines the SCA composite for the SOA4All Semantic
Space component as shown in Error! Reference source not found. . The XML Schema of
SCA is available at http://www.osoa.org/xmlns/sca/1.0 (line 1). The name and target
namespace of this composite are semantic-space and http://www.SOA4All.eu
respectively (line 1). This composite exports an SCA service named semantic-space and
promoting the SCA service named semanticSpace of the SCA component named
semantic-space (line 2). This composite contains an SCA component named semantic-
space (line 3). This component is implemented by a Java class (line 4). It has the SCA
property named storage , which is configured with the string value “/semantic-space-
repository ” (line 5). It provides an SCA service named semanticSpace (line 6) and
defined by a Java interface (line 7). Let us note that the Java interface and class were
defined previously in Error! Reference source not found. and Error! Reference source
not found. respectively.

1 < composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="semantic-space"
 targetNamespace="http://www.SOA4All.eu">
2 < service name="semantic-space"
 promote="semantic-space/semanticSpace"/>
3 < component name="semantic-space">
4 < implementation.java
 class=" eu.SOA4All.integration.space.lib. SemanticSpaceImpl"/>
5 < property name="storage">/semantic-space-repository</property>
6 < service name="semanticSpace">
7 < interface.java
 interface=" eu.SOA4All.integration.space.api. SemanticSpaceI"/>
8 </service>
9 </component>
10 </composite>

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 47 of 80

Figure 34: The XML-based service-registry SCA Composite

Error! Reference source not found. defines the SCA composite for the SOA4All Service
Registry Platform Service as shown in Error! Reference source not found. (line 1). This
composite contains one SCA component (line 5). This component is implemented by one
Java class (line 6), which was defined in Error! Reference source not found. . It provides
two SCA services each defined by a Java interface (lines 7-12). It requires an SCA reference
to the semantic space (lines 13-15). Both services and the reference of this component are
promoted at the level of its enclosing composite (lines 2-4).

1 < composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="service-registry"
 targetNamespace="http://www.SOA4All.eu">

2 < service name="registry" promote="service-registry/registry"/>
3 < service name="update" promote="service-registry/update"/>
4 < reference name="semantic-space"

 promote="service-registry/semantic-space"/>
5 < component name="service-registry">
6 < implementation.java

 class=" eu.SOA4All.integration.registry.lib. ServiceRegistryImpl"/>
7 < service name="registry">
8 < interface.java interface=
 " eu.SOA4All.integration.registry.api. ServiceRegistryI"/>
9 </service>
10 < service name="update">
11 < interface.java interface=
 " eu.SOA4All.integration.registry.api. ServiceRegistryUpdateI"/>
12 </service>
13 < reference name="semanticSpace">
14 < interface.java interface=
 " eu.SOA4All.integration.space.api. SemanticSpaceI"/>
15 </reference>
16 </component>
17 </composite>

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 48 of 80

Figure 35: The XML-based discovery SCA Composite

Error! Reference source not found. defines the SCA composite for the SOA4All Discovery
Platform Service as shown in Error! Reference source not found. (line 1). This composite
contains one SCA component (line 6). This component is implemented by one Java class
(line 7), which was defined in Error! Reference source not found. . It provides two SCA
services and requires two SCA references, each defined by a Java interface (lines 8-21). All
the services and references of this component are promoted at the level of its enclosing
composite (lines 2-5).

Error! Reference source not found. defines the SCA composite for the SOA4All Service
Discovery Functional Process as shown in Error! Reference source not found. (line 1).
This composite contains six SCA components implemented themselves as SCA composites
(lines 8-25). Let us note that three of these composites (semantic-space , service-
registry , and discovery) were presented in previous Error! Reference source not
found. , Error! Reference source not found. , and Error! Reference source not found.
respectively. All the references of the enclosed components are wired to appropriate services
(lines 26-34). This composite exports two SCA services promoted from the ranking-and-
selection and discovery SCA components (lines 2-7). Finally, these two composite
services are exposed as Web Services and will be accessible by clients at the following Web
addresses http://localhost:8080/Selection and http://localhost:8080/Discovery
(lines 3 and 6).

1 < composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="discovery"
 targetNamespace="http://www.SOA4All.eu">

2 < service name="discovery" promote="discovery/discovery"/>
3 < service name="update" promote="discovery/update"/>
4 < reference name="reasoner" promote="discovery/reasoner"/>
5 < reference name="service-registry"
 promote="discovery/serviceRegistry"/>
6 < component name="discovery">
7 < implementation.java
 class=" eu.SOA4All.integration.discovery.lib. DiscoveryImpl"/>
8 < service name="discovery">
9 < interface.java interface=
10 " eu.SOA4All.integration.discovery.api. DiscoveryI"/>
11 </service>
12 < service name="update">
13 < interface.java interface=

 " eu.SOA4All.integration.discovery.api. DiscoveryUpdateI"/>
14 </service>
15 < reference name="reasoner">
16 < interface.java interface=
 " eu.SOA4All.integration.reasoner.api. ReasonerI"/>
17 </reference>
18 < reference name="serviceRegistry">
19 < interface.java interface=
20 " eu.SOA4All.integration.registry.api. ServiceRegistryI"/>
21 </reference>
22 </component>
23 </composite>

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 49 of 80

Figure 36: The XML-based SOA4All-service-discovery SCA Composite

5.3.2.5 Binding SCA-based Platform Services to External Web Services

The previous section presented how SCA-based platform services can be exposed as Web
Services by configuring XML-based SCA composites only. This section illustrates how an
SCA-based platform service can be bound to and can invoke an external (certainly non-SCA-
based) Web Service.

1 < composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="SOA4All-service-discovery"
 targetNamespace="http://www.SOA4All.eu">

2 < service name="selection"
 promote="ranking-and-selection/selection">
3 < binding.ws uri="http://localhost:8080/Selection"/>
4 </service>
5 < service name="discovery" promote="discovery/discovery">
6 < binding.ws uri="http://localhost:8080/Discovery"/>
7 <service>
8 < component name="ranking-and-selection">
9 < implementation.composite name="ranking-and-selection"/>
10 </component>
11 < component name="discovery">
12 < implementation.composite name="discovery"/>
13 </component>
14 < component name="reasoner">
15 < implementation.composite name="reasoner"/>
16 </component>
17 < component name="service-registry">
18 < implementation.composite name="service-registry"/>
19 </component>
20 < component name="crawler">
21 < implementation.composite name="crawler"/>
22 </component>
23 < component name="semantic-space">
24 < implementation.composite name="semantic-space"/>
25 </component>
26 < wire source="service-registry/semantic-space"

 target="semantic-space/semantic-space"/>
27 < wire source="discovery/service-registry"
 target="service-registry/registry"/>
28 < wire source="reasoner/semantic-space"
 target="semantic-space/semantic-space"/>
29 < wire source="reasoner/service-registry"
 target="service-registry/registry"/>
30 < wire source="discovery/reasoner"
 target="reasoner/reasoner"/>
31 < wire source="ranking-and-selection/reasoner"
 target="reasoner/reasoner"/>
32 < wire source="ranking-and-selection/discovery"
 target="discovery/discovery"/>
33 < wire source="crawler/discovery"
 target="discovery/update"/>
34 < wire source="crawler/service-registry"
 target="service-registry/update"/>
35 </composite>

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 50 of 80

Figure 37: An SCA-based Client of the DBS Service Binder Service

Error! Reference source not found. illustrates an SCA-based application (at the left part)
bound to the Service Binder Web Service deployed on the DSB node at EBM WebSourcing
(at the right part). This SCA composite is composed of an SCA component named client ,
implemented in Java and having an SCA reference bound to the Web Service (the black
arrow in Error! Reference source not found.). This Web Service is available at the
following URL13:

http://SOA4All.ebmwebsourcing.com/dsb/management/Se rviceBinder?wsdl

Figure 38: The XML-based service-binder-client SCA Composite

Error! Reference source not found. provides the detailed XML-based description of the
service-binder-client SCA composite. This composite (defined in line 1) provides the
run SCA service promoted from its enclosed component (line 2), and contains the client
SCA component (line 3). This component is implemented by a Java class (line 4) defined in
Error! Reference source not found. . It provides the run SCA service (line 5) defined by the
java.lang.Runnable Java interface (line 6). This component has an SCA reference

13 The operations of this Web Service were discussed in Section 5.2.1.1.

1 < composite xmlns="http://www.osoa.org/xmlns/sca/1.0 "
 name="service-binder-client"

 xmlns:wsdli="http://www.w3.org/2004/08/wsdl-instance"
 targetNamespace="http://www.SOA4All.eu">
2 < service name="run" promote="client/run"/>
3 < component name="client">
4 < implementation.java

 class="eu.SOA4All.integration.servicebinder.ServiceBinde rClient" />
5 < service name="run">
6 < interface.java interface="java.lang.Runnable"/>
7 </service>
8 < reference name="serviceBinder">
9 < interface.java
 interface="org.ow2.petals.core.kernel.ext.servicebinder.Serv iceBinder" />
10 < binding.ws
wsdli:wsdlLocation="http://SOA4All.ebmwebsourcing.com/dsb/management/ ServiceBinder?wsdl"
wsdlElement="http://SOA4All.ebmwebsourcing.com/dsb/management# wsdl.port(ServiceBinderServi

ceService/ServiceBinderServicePort) "/>
11 </reference>
12 </component>
13 </composite>

at EBM WS

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 51 of 80

named serviceBinder (line 8), defined by a Java interface specific to the PEtALS ESB
(line 9), and bound to the Service Binder Web Service (line 10). The two attributes of
<binding.ws> identify the location where the WSDL of the Web Service to use is
accessible (wsdlLocation), and which its WS port to use (wsdlElement).

Figure 39: The Java Implementation of the Service Binder Client

Error! Reference source not found. provides the Java implementation of the client SCA
component of the service-binder-client SCA composite. This
ServiceBinderClient Java class must implement the Runnable Java interface (line 3)
as the SCA enclosing component provides one SCA service of this Java interface type. This
class must implement a setter method for the SCA reference named serviceBinder of its
SCA enclosing component (lines 6-8). Here, the reference is stored into the binder Java
field (declared at line 4 and set at line 7). Finally, this class must implement the run method
of the Runnable interface (lines 10-17). Here, the Service Binder Service is invoked to
obtain the list of all bound and proxified Web Services (line 12 and 15 respectively).

Let us note that this Java class is not strongly coupled to the Service Binder deployed at
EBM WebSourcing. This code can be reused as it to invoke the Service Binder deployed on
any DSB node. The configuration must just be done in the XML-based enclosing SCA
composite, by setting the attributes of <binding.ws> .

5.3.2.6 Testing SCA-based Platform Services

We propose to SOA4All developers to use the JUnit framework and the OW2 FraSCAti
runtime for testing their SCA-based platform services on their local machine.

1 package eu.SOA4All.integration.servicebinder;

2 import org.ow2.petals.core.kernel.ext.servicebind er.ServiceBinder;

3 public class ServiceBinderClient implements Runnable {

4 private ServiceBinder binder;

5 // Setter for the SCA 'binder' reference.

6 public void setServiceBinder(ServiceBinder b) {

7 this.binder = b;

8 }

9 // Implementation of the Runnable interface.

10 public void run() {

11 System.out.println("List of services bound t o the DSB:");

12 for(String s: binder.getBoundWebServices())

13 System.out.println(" - " + s);

14 System.out.println("List of services proxifi ed via the DSB:");

15 for(String s: binder.getProxifiedWebServices())

16 System.out.println(" - " + s);

17 }

18 }

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 52 of 80

Each Java test case class must:

1. Extend the eu.SOA4All.integration.test.SCATestCase class , which hides
the management of the underlying OW2 FraSCAti runtime.

2. Implement the public String getComposite() method , which must return the
name of the SCA composite to test.

3. Implement methods annotated with @org.junit.Test, which must do test cases
on the SCA composite.

4. Call the <T>T getService(Class<T> cl, String serviceName) method
inherited from the SCATestCase class, which returns the SCA service named
serviceName of interface cl of the SCA composite under test.

Their four programming conventions are enough for testing SCA composites as illustrated in
Error! Reference source not found. . The ServiceDiscoveryTestCase class extends
the SCATestCase class (line 8), returns SOA4All-service-discovery as the SCA
composite name to test (lines 9-11), and implements a test case method annotated with
@Test (lines 13-16). Then, this test case gets the discovery service of the SCA composite
(line 14) and invokes it (line 15).

Figure 40: A Java-based Test Case Example

SOA4All developers can also use other testing frameworks like the Web Services Testing
tool soapUI14. This tool supports functional and load testing of any REST and Web Service.
Error! Reference source not found. illustrates the usage of soapUI to invoke the SOA4All
Semantic Space component.

14 Available at http://www.soapui.org.

1 package eu.SOA4All.integration.test;
2 import java.util.Set;
3 import eu.SOA4All.integration.fake.Goal;
4 import eu.SOA4All.integration.fake.ServiceDescrip tion;
5 import eu.SOA4All.integration.discovery.api.Disco veryI;
6 import org.junit.Test;
7
8 public class ServiceDiscoveryTestCase extends SCATestCase {
9 public String getComposite() {
10 return "SOA4All-service-discovery";
11 }
12 @Test
13 public void test() {
14 DiscoveryI discovery =
 getService(DiscoveryI.class, "discovery");
15 Set<ServiceDescription> result =
 discovery.discover(new Goal());
16 }
17 }

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 53 of 80

Figure 41: Testing SCA-based Platform Services with soapUI

5.3.2.7 Managing SCA-based Platform Services

As shown in previous sections, SCA is an appropriate technology agnostic standard for
designing, developing, implementing, configuring, and deploying SOA4All Platform Services,
and more generally any service-oriented application. However, SCA does not define
standard means for runtime manageability (including introspection and reconfiguration) of
running SOA applications and of their supporting environment. Hopefully the FraSCAti
runtime, part of the SOA4All DSB implementation architecture (see), brings runtime
management features to SCA [4] via an API for developers and a GUI for end-users (called
FraSCAti Explorer).

Error! Reference source not found. illustrates the introspection of a running instance of the
SOA4All-service-discovery SCA composite. With the left panel, users could discover
running SCA composites and their SCA components/services/references/properties. Right
panels provide more detailed introspection information. Error! Reference source not found.
shows the list of SCA references, their interface types, and the SCA service to which they
are wired to. Error! Reference source not found. illustrates panels to introspect and
reconfigure SCA properties and SCA binding.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 54 of 80

Figure 42: Introspecting SCA-based Platform Services

Figure 43: Reconfiguring SCA Properties

5.3.3 Summary

This chapter provided detailed guidelines on how SOA4All Platform Services can be
designed, implemented, configured, assembled, tested, managed, and deployed with the
SCA standard. We shown that the graphical SCA notation and associated Eclipse STP/SCA
Tools can greatly help SOA4All architects to think about the design and integration of
SOA4All components (platform services and semantic space). Moreover, SOA4All
developers would learn few new rules to implement Java-based SCA components. Yet with
SCA, SOA4All architects and developers do not see technical details on the SOA4All DSB
implementation, i.e., the DSB transparently transports interactions between SOA4All SCA-
based Platform Services. Finally, SCA can bring to SOA4All a continuum from the design to
the implementation and execution of the whole SOA4All service-oriented delivery platform.

All the SCA and Java code related to the SOA4All Service Discovery Functional Process is
available into the SOA4All SVN at the following URL:

https://svn.sti2.at/SOA4All/trunk/SOA4All-integrati on/SOA4All-integration-sca

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 55 of 80

5.4 JBI-Based Platform Services
This chapter provides detailed guidelines on the JBI-based approach to plug SOA4All
Platform Services to the SOA4All DSB. It is based on the PEtALS ESB Component
Development Kit Framework which allows developers to create compliant JBI components
without any JBI specification knowledge.

This chapter is a tutorial for new developers who want to create JBI components. It does not
contain any research related work. It just gives concrete details and steps to follow at a quite
basic level.

5.4.1 Concrete development steps

The development of Petals components is based on three bricks / tools:

• Apache Maven, and the associated plug-in for Petals.
• An Integrated Development Environment (IDE), for Java development.
• The Component Development Kit (CDK), a Petals library which simplifies the work.

5.4.1.1 Setting up your environment

The first thing to do is to download Apache Maven and an IDE (e.g. Eclipse, NetBeans or
IntelliJ).

In the rest of this section, it is assumed you use Eclipse as your IDE. When this document
references Eclipse actions, you should be able to find equivalents with other IDEs.

1. Install Maven and make sure that it is in your system path.

2. You should have a variable environment called M2_HOME and pointing to the root
location of Maven. M2_HOME/bin should be present in your system path.

• A mandatory configuration to perform is also related to Maven. It consists in adding
the OW2 Maven repositories to your local Maven settings under
$HOME/.m2/seetings.xml. The settings file is looks like :

<settings >

 <profiles >

 <profile >

 <id >default-profile </ id >

 <activation >

 <activeByDefault >TRUE</ activeByDefault >

 </ activation >

 <repositories >

 <repository >

 <id >ow2-release </ id >

 <name>OW2 Repo</ name>

 <url >http://maven.objectweb.org/maven2

 </ url >

 <snapshots >

 <enabled >false </ enabled >

 </ snapshots >

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 56 of 80

 <releases >

 <enabled >true </ enabled >

 </ releases >

 </ repository >

 <repository >

 <id >ow2-snapshot </ id >

 <name>OW2 SNAPSHOT Repo</ name>

 <url >http://maven.objectweb.org/maven2-snapshot

 </ url >

 <snapshots >

 <enabled >true </ enabled >

 </ snapshots >

 <releases >

 <enabled >false </ enabled >

 </ releases >

 </ repository >

 </ repositories >

 <pluginRepositories >

 <pluginRepository >

 <id >ow2-plugin </ id >

 <name>OW2 plugin Repo </ name>

 <url >http://maven.objectweb.org/maven2

 </ url >

 <snapshots >

 <enabled >false </ enabled >

 </ snapshots >

 <releases >

 <enabled >true </ enabled >

 </ releases >

 </ pluginRepository >

 </ pluginRepositories >

 </ profile >

 </ profiles >

</ settings >

5.4.1.2 Creating your component

As mentioned several times, JBI components can be Binding Components (BC) or Service
Engines (SE). Petals components follow a naming convention:

• petals-se-componentName for service engines.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 57 of 80

• petals-bc-componentName for binding components.

In the scope of this chapter, it is assumed your component is a service engine, ant is called
petals-se-sample.

To create a new component using the Petals Maven plugin, open a terminal, go into a
directory where you can store your project and type the following Maven command line:

Maven command to create a Petals service engine
mvn archetype:create

-DarchetypeGroupId =org.ow2.petals
-DarchetypeArtifactId =maven-archetype-petals-jbi-service-engine
-DarchetypeVersion =1.3.0-SNAPSHOT
-DgroupId =org.ow2.petals.se.sample
-DartifactId =petals-se-sample
-Dversion =1.0-SNAPSHOT

The meaning of these options are listed below.

• archetypeArtifactId is the type of artifact to create.
▪ maven-archetype-petals-jbi-service-engine for a service engine.
▪ maven-archetype-petals-jbi-binding -component for a binding component.

• archetypeVersion is the archetype version.
▪ 1.3.0-SNAPSHOT is the most recent one at the moment this document is

being written.
• groupId is the group ID, which is also the name of the root package in the created

project.
• artifactId is the artifact ID, usually the full component name.
• version is the component version, followed by the -SNAPSHOT suffix.

The executed command results in the creation of a Java Maven project.

To transform it into a project we can use in our IDE, we use the following commands:

Go into the created project

cd petals-se-sample

Convert it into an Eclipse project

mvn eclipse:eclipse

You should now wait for Maven to download all the required dependencies and create the
Eclipse files. Once this is done, launch your Eclipse IDE and import the project in your
workspace: select File > Import... and then General > Existing projects into Workspace .
In the open dialog, click Browse... , select your workspace as the root folder and click OK.
Now, in the listed projects, check your component project and click OK.

Your component project is now created and ready to be completed. The main files to notice
are:

• The pom.xml, which holds the Maven dependencies.
• The src/main/jbi/jbi.xml, which is the component JBI descriptor.
• The src/main/jbi/*.xsd files, which define the structure of component configurations.
• The JBIListener.java, which handles JBI messages in your component.
• The ServiceEngine / BindingComponent class, which defines the component class.

5.4.1.3 Compiling and deploying your component

Once you have developed your component, the normal next step is to compile it and try to

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 58 of 80

deploy it on Petals.

To compile your component, open a terminal inside the project directory, and execute one of
the following commands:

Just compile

mvn compile

Compile and build it for deployment

mvn install

With the second command, on a successful build, the result component archive is available
in the target folder of your component project. This archive (*.zip) can be deployed in Petals
in two ways:

• The first one is to use the Petals administration console.
• The second and most simple one is to copy this archive in the install directory of

your Petals installation. This solution perfectly fits development mode.

In any case, you must start Petals before deploying your component.

A successful deployment in Petals is a first validation of your component (but clearly not
enough).

5.4.1.4 Testing and debugging your component

5.4.1.4.1 Debugging your component

Although debugging needs you to have some tests to run, it seems a better option to
introduce how to debug a component, prior to explain how to test it.

Debugging a component needs three simple steps:

• Add breakpoints in your component.
• Run the Petals debug script (debug.bat / debug.sh).
• In your IDE, use the remote debug feature to launch Petals.

In Eclipse, this is done by selecting Run > Debug Configurations...
On the left, right-click on Remote Java Application and click New.

• In the Name field, type in Petals Remote.
• In the Connect tab, type in the Petals host and port (usually, localhost and 8000).
• In the Source tab, make sure your component project is in the displayed sources. If

not, click Add... In the open dialog, double click Java Project , select your project and
click OK.

• Click Apply to save the debug configuration.
• Click Debug to launch Petals in debug mode. The terminal in which you launched the

debug script should now display that Petals is starting.

You can now build and deploy your component in Petals.
Do not forget to add breakpoints inside your component code. Defining them before or after
the build / deployment has no incidence on the debugging.

To make debugging effective, you must manage to make your code to be called.
This is achieved by creating some configurations / tests for your component.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 59 of 80

5.4.1.4.2 Testing your component

Testing a component can be seen from two points of view.
The first one is the industrial test campaign, which relies on continuous integration (e.g.
Hudson), and which is based on Maven and JUnit. Clearly, it is not in the scope of this
document to discuss this kind of tests.

The second way to consider testing is related to debugging, and consists in making small
unit tests to check the behavior of your component. They can be seen as check tests that
complete code verification. This kind of test requires you to create service assemblies for
your component, and play with the different parameters a service-unit can held. Defining
such service assemblies is a primary step toward continuous integration, though it is not
enough (you will probably not cover all the possible cases).

The methodology for running these tests is the following:

1. Start Petals in debug mode (and add breakpoints if necessary in your component
code).

2. Build and deploy your component in Petals.
3. Deploy the service assembly to test with your component (and check that it goes

fine).
4. Deploy the sample client component (available on the Petals website and in the

Petals Quick Start versions).
5. Once deployed, the sample client launches a Swing dialog which allows you to call

any service inside Petals.

Figure 44 Launching Petals in debug mode from Eclipse

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 60 of 80

In the sample client dialog, go into the Query tab and click Find all the endpoints .

A list of Petals services appears in the lower part of the dialog. If the deployment of your
service assembly went fine, you should find it in the displayed list. Double click it and go back
in the Send tab. Play with the Message Exchange patterns (MEP) and the In request
(which must be an XML document). Eventually, use the SendSync or Send–Accept buttons
to send your message to your service.

The sent message should be received and processed by your component.
If you added breakpoints, the execution should be suspended when a breakpoint is reached
at runtime.

Figure 45 The PEtALS sample client

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 61 of 80

5.4.2 Introducing and classifying Petals components

The previous part introduced how you could concretely make a Petals component. It did not
explain what is a Petals component or what it does. This part introduces these elements and
explains the different properties of a Petals component.

5.4.2.1 BC vs. SE

As explained in the introduction, there are two kinds of Petals components.
A Petals component can only be of one kind, not of both.

• Binding components (BC) are links between the services in the bus and
external applications. The natural way to provide these bounds is the
usage of communications protocols. This is why binding components are
generally associated with communication protocols, like SOAP, RMI,
JMS...

• Service engines (SE) are pieces of application logics fully integrated in the bus.
They are exposed directly as services into the bus. It can be executing code
(POJO), performing transformations (XSLT), scheduling (Quartz) and so on...

However, a component by itself does nothing if it is alone. Components are intended to be
configured.

5.4.2.2 Component configurations

A configuration for a component is called a service-unit, and is deployed through a service-
assembly. These two elements are archive files (*.zip). The service-unit content is used by
the component to expose the configuration as a service inside Petals.

A service-unit embeds :

• A JBI descriptor (META-INF/jbi.xml file), which defines the provided and consumed
services, plus additional parameters.

• A WSDL file.
• Depending on the component task, some other files (e.g. Java code).

The provided WSDL is the interface of the service that will be created by the component from
the configuration. Every service in Petals should have a WSDL interface, so that it can be
called (e.g. in an orchestration). In the case where a service-unit does not provide a WSDL,
and if it makes sense for your component, your component should provide a default WSDL
that can be used for the service-unit.

As an example, this what the Mail and the FTP components offer. The components have
generic operations like send(), put(), get() and so on. Therefore, they can provide a WSDL by
default.

If a service-unit does not embed a WSDL file, and if your component does have a default
one, the Petals kernel generates one by default (setting information from the service-unit
jbi.xml file). But this is definitely a situation to avoid, because the generated WSDL has no
operation and consequently, cannot be used in WSDL-driven calls.

The service name, interface name and end-point name are provided in the configuration JBI
descriptor. They are used to identify the service in the bus. Every end-point matches a
physical service and must have a WSDL interface, as described above.

In the rest of the this document, “service WSDL” are also called “configuration WSDL”,
“service-unit WSDL” or “end-point WSDL”. These terms are strictly equivalent (even if the
WSDL was provided by default by the component, it then become the service's one).

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 62 of 80

5.4.2.3 The CDK

In Petals, components interact with the container according to the JBI standard (Java
Business Integration). This standard defines interfaces that a component must implement to
interact in the JBI environment. To simplify the development of these components, Petals
provides an API as a set of classes which implement the required interfaces and makes the
work lighter. This library, known as the Component Development Toolkit (CDK), also
provides utility methods and a common basis for all the Petals components.

When you go through the steps given in the first part of this document, the built code relies
on the CDK.

5.4.2.4 Providers vs. Consumers

In Petals, there are two roles a component can hold. A component may act as a provider,
which means it provides a service (receives calls). Or it may act as a consumer, which
means it consumes services (sends calls). A component may have both roles at the same
time (an orchestration is an example). Component configurations have a jbi.xml file in which
they define if the component will act as a provider or a consumer. But it is the component
implementation which determine whether the component can be (or not) a provider or a
consumer.

5.4.2.5 Component's job

A component, in Petals, is responsible for:

• The deployment of a configuration for this component.
• The handling of messages intended for the configurations held by this component.

Hopefully, the deployment part is performed by the CDK (though it can be overridden).

When you create your component, as explained in the first part of this document, the only
expected work is to define the behavior of the component when it receives a JBI message.
This is done in JBI listener classes.

5.4.2.6 Message dispatching in Petals

One important thing to know before going deeper about how to handle messages in your
component, is the way Petals dispatches messages.
For every component based on the CDK, the component JBI descriptor inherits some fields
from the CDK.

<petalsCDK:acceptor-pool-size >5</ petalsCDK:acceptor-pool-size >

<petalsCDK:processor-pool-size >10</ petalsCDK:processor-pool-size >

• The acceptor pool size defines the number of threads that can accept messages from

the bus in concurrency. Once a message is accepted by an acceptor, this message is
added to a queue, waiting to by processed by a thread from the processor pool. Since
acceptors have few work to do, their number does not have to be high.

• The processor pool is in charge of processing the messages added in the waiting
queue. Each thread from the processor pool owns a JBI listener instance. For every
message to process, the processor thread initializes the configuration in the JBI
listener instance and calls the proper processing method, e.g. onJBIMessage.
Messages are picked up by the processor pool in FIFO order.

5.4.3 Between theory and practice: handling message s

When you create a new Petals component with Maven, classes are created in a sub-

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 63 of 80

package (listener or listeners). The package and class names depend on whether you are
working on a binding component or a service-unit. In both cases, the first task to implement
your component is the processing of messages, also called exchanges in Petals.

5.4.3.1 Exchanges

An exchange is a JBI message received by the component and addressed to one of its
configuration. The component has to use the service configuration (the service-unit content)
to process this message.
An exchange holds information about the Message Exchange Pattern (MEP), the called
operation (as described in a WSDL file), the input message (an XML document defining the
parameters for the called operation), properties, attachments, notifications and the the called
service (service, interface, end-point names – these fields allow to determine which
configuration use for the processing).
The method body must filter these information to decide which treatment perform.
Typically, check the role or that the called operation supports the MEP, and then start the
processing.

The example below is taken for a service engine in the provider role.

 @Override

 public boolean onJBIMessage(final Exchange exchange) {

 try {

 // 'exec' should be called in ROBUST_IN_ONLY

 if(exchange.getOperationName().equals("exec")

 && MEPConstants. ROBUST_IN_ONLY_PATTERN.equals(
exchange.getExchangePattern())) {

 // TODO: execute some code

 }

 else if...

 } catch(MessagingException e1) {

 // TODO: create a fault or set an error depending on the M EP

 }

Checking MEP and operations is the kind of operation that can rely on a provided WSDL.
But even with a WSDL, dispatching the work according to the called operation cannot be
automatic. You have to explicitly check the called operation and decide of the next steps.

5.4.3.2 Message Exchange Patterns

Message exchange patterns, or MEP, are a concept inherited from web services.
They define the way a service is called and the way it should respond. In Petals, there are
three used patterns:

IN_ONLY is used for one-way exchanges.
When a component receives an IN_ONLY message, it should set the status of the exchange
to DONE and send the response while processing the message (e.g. in a thread). The result
of the message processing does not matter for the consumer. The consumer only wants to
know whether its message arrived or not. This why the response should be sent as soon as

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 64 of 80

possible. No fault and no error should be set on the returned exchange with this MEP.

ROBUST_IN_ONLY is used for reliable one-way exchanges.
When a component receives a ROBUST_IN_ONLY message, it can reply by setting the
status or by setting a fault on the returned exchange. The decision depends on the
processing of the message. If a fault is returned, it should have been declared in the end-
point WSDL interface.

If the provider responds with a status, the exchange is complete.
If it responds with a fault, the consumer responds with a status to complete the exchange.
In this last case, the CDK parameters ignore-status determines what is done of this
returned status. If it is set to DONE_AND_ERRORS_IGNORED, then your JBI listener does
not have to process the returned status. The CDK does it for you.

IN_OUT is used for two-way exchanges.
When a component receives an IN_OUT message, it can respond either with a message, or
with a fault. The decision depends on the processing of the message. If a fault is returned, it
should have been declared in the end-point WSDL interface.

Figure 46 In-Only message exchange pattern

Figure 47 Robust In-Only message exchange
pattern

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 65 of 80

No matter what the provider responds (message or fault), the consumer sends a status to
complete the exchange. As in the ROBUST_IN_ONLY pattern, the way this status is
processed depends on the CDK ignore-status parameter.

There is a last MEP, called IN_OPTIONAL_OUT , but it is rather complicated and not used in
Petals. People interested by this pattern can check the JBI specification, version 1.0.

5.4.3.3 Status, faults, errors and messages

The previous section explained message exchange patterns. But it did not explain concretely
how to set a fault or a status on an exchange.

Status are acknowledgments. They can be set by using one of the following Exchange
methods:

• Exchange#setActiveStatus(); // Case where you are a consumer
• Exchange#setDoneStatus(); // Case OK
• Exchange#setErrorStatus(); // Case not OK
• Exchange#setStatus(ExchangeStatus status);

Faults express a business fault (with respect to the service logic). They can be set by using
one of the following methods:

• Exchange#setFault(Throwable e);
• Exchange#setFault(Fault fault);

Errors express errors at the messaging level.They can be set by using:

• Exchange#setError(Exception exceptionError);

Messages express a normal result (with respect to the service logic). They can be set in the
returned exchange by using:

• Exchange#setOutMessage(NomalizedMessage msg);
• Exchange#setOutMessageContent(Document outContent);
• Exchange#setOutMessageContent(Source outContent);
• Exchange#setOutMessageContent(String outContent);

Building the out content has to be made in the component. The out content structure should
respect the WSDL out message schema of the called operation.

Figure 48 In-Out message exchange pattern

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 66 of 80

5.4.3.4 Processing exchanges in Petals components

Obviously, the code to execute in the component depends on its job. The dispatching has to
be done in the JBI listener. The rest of the processing can be written inside the method body,
or delegated to another class (which is a good solution if you have to manage resources or a
separate pool). The best thing to do to get examples of processing or patterns, is to check
the Petals forge, and take a look at existing components and how they are implemented.
One thing maybe to highlight, is that a JBI listener has access to the component instance.
The component instance can be used to get a logger. It can also be extended and used to
store objects (e.g. a class instance managing resources).

 getComponent().getLogger().severe(
 "Received a call for unknown operation '" +
exchange.getOperationName() + "'.");

5.4.3.5 Processing exchanges as a provider

Components acting as a provider expose services from configurations in provide mode. That
is to say the service-unit jbi.xml has a provides mark-up.

<?xml version ="1.0" encoding ="UTF-8"?>

<jbi:jbi version ="1.0"

 xmlns:jbi ="http://java.sun.com/xml/ns/jbi"

 xmlns:petalsCDK ="http://petals.ow2.org/components/extensions/version-5"

 xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance">

 <jbi:services binding-component ="false">

 <jbi:provides

 interface-name =...

As providers expose services, they should be implemented to respond to calls. It means they
receive messages for a determined operation, check the operation, the MEP, the role, and
then dispatches the work depending on the called operation.

In terms of message processing, a provider must:

• Process calling messages.
• Set a status, a fault or an out message on the returned exchange (depends on the

MEP).
• Optionally, take acknowledgments (status) into account (depends on the MEP). This

last part can be configured in the component jbi.xml, so that the CDK handles this
instead of your component. See section 5.1.a for more details about the CDK
parameters.

The provider role must respect the message exchange pattern of the calling message. This
is illustrated in the section 3.2 about MEP (the diagrams show the provider role).

5.4.3.6 Processing exchanges as a consumer

Components acting as a consumer calls services. The services to call are defined in
configurations being in consume mode. That is to say the service-unit jbi.xml has a
consumes mark-up.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 67 of 80

<?xml version ="1.0" encoding ="UTF-8"?>

<jbi:jbi version ="1.0"

 xmlns:jbi ="http://java.sun.com/xml/ns/jbi"

 xmlns:petalsCDK ="http://petals.ow2.org/components/extensions/version-5"

 xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance">

 <jbi:services binding-component ="false">

 <jbi:consumes

 interface-name =...

As consumers call services, they should be implemented to send calls and also to process
responses to these calls. It means they send messages for a determined operation, with a
given MEP and parameters for the operation. The caller also decides whether the call is
asynchronous or synchronous. In any case, the send messages should respect the WSDL
interface of the called service. The messages sent by a consumer component will be
received and processed by a provider component. In terms of message processing, a
consumer must:

• Build and send messages to services.
• Wait for responses and process them according to the MEP. If the response

exchange was set with a status, the exchange is terminated. Otherwise, the
consumer has to send back an acknowledgment (status) to the provider and thus
close the exchange. All of this is specified in the section 3.2 about MEP (the diagrams
show the consumer role).

Processing the responses can also permit to implement retry policies.
In any case, the consumer role must respect the WSDL interface of called services
(message exchange pattern, operation names, operation parameters, returned result).

5.4.3.7 JBI listeners in Service Engines

In service engines, the Petals Maven plug-in creates a listener package and two classes:
ServiceEngine.java (which should be renamed) and JBIListener.java.
The first class is mainly used to manage the component life cycle or to store data for JBI
listeners. It is discussed in the life cycles section.
The last class extends the abstract class
org.ow2.petals.component.framework.listener.AbstractJBIListener .
It requires one method to be completed:

public abstract boolean onJBIMessage(Exchange exchange);

It is in this method that the provider and/or the consumer role are implemented.
The result of the onJBIMessage method needs some clarifications with respect to its Java
doc. Indeed, if the processing when the message arrives is defined by the component, the
returned message can be completed and sent by the component or by the CDK. Let's take
our previous example (SE in provider role) and let's complete it in two different ways.

 @Override

 public boolean onJBIMessage(final Exchange exchange) {

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 68 of 80

 try {

 // 'exec ' should be called in ROBUST_IN_ONLY

 if(exchange.getOperationName().equals("exec")

 && MEPConstants. ROBUST_IN_ONLY_PATTERN.equals(
exchange.getExchangePattern())) {

 // TODO: execute some code

 }

 } catch(MessagingException e1) {

 // TODO: create a fault or set an error depending on the M EP

 }

 return true;

 }

By returning true, we let the CDK manage the call back message.

 @Override

 public boolean onJBIMessage(final Exchange exchange) {

 try {

 // 'exec' should be called in ROBUST_IN_ONLY

 if(exchange.getOperationName().equals("exec")

 && MEPConstants. ROBUST_IN_ONLY_PATTERN.equals(
exchange.getExchangePattern())) {

 Runnable runnable = new Runnable() {

 public void run() {

 // TODO: execute some code

 // bla-bla

 // Update the exchange, depending on the MEP, e.g.

 exchange.setDoneStatus();

 // Send the response

 send(exchange);

 }

 };

 Thread myThread = new Thread(runnable);

 myThread.start();

 }

 } catch(MessagingException e1) {

 // TODO: create a fault or set an error depending on the M EP

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 69 of 80

 }

 return false;

 }

By returning false, it explicitly indicates to the CDK that the component will send back the
exchange to the client (the one which called this service, also known as a consumer).
This second solution is best suited for asynchronism calls. As an example, you could imagine
putting the runnable into a blocking queue and process it later. In this case, we would use the
component (or any other unique instance) to hold this queue.
However, since JBI listeners are already into a pool of threads and associated with a waiting
queue, the use of another pool is not a best practice.

5.4.3.8 JBI listeners in Binding Components

In binding components, the Petals Maven plug-in creates a listeners package and three
classes: BindingComponent.java (which should be renamed), JBIListener.java and
ExternalJBIListener.java.
The first class is mainly used to manage the component life cycle or to store data for JBI
listeners. It is discussed in the life cycles section. The JBIListener class is the same than in
service engines. It is used to process messages received from Petals services, that is to say
from services inside the bus. The ExternalListener class is used to process messages from
service outside the bus. Since binding components are connectors between services inside
the bus and external applications / services, they must be able to listener calls from services
inside the bus (JBIListener) and from outside the bus (ExternalListener). It extends the
abstract class org.ow2.petals.component.framework.listener.AbstractExternalListener .
It requires two methods to be completed:

public abstract boolean start() throws PEtALSCDKException

public abstract boolean stop() throws PEtALSCDKException

These two methods are called when the binding component is started and stopped. They
should start and stop a listening service to implement in this class. As an example, the
FileTransfer binding component starts polling a directory when the start() method is called,
and stops polling when stop() is called. For network related binding components, it can be
creating a socket to listen calls.Examples of binding components are available in the Petals
source forge. They can be used as a complement of information.

5.4.4 Between theory and practice: managing life cy cles

5.4.4.1 Component life cycle

Every artifact in Petals has a life cycle. Components do not break the rule. The diagram
below illustrates the different states of a component.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 70 of 80

5.4.4.2 Component parameters

As explained previously in this document, a component has a JBI descriptor which specifies
parameters. Among these parameters, there are standard parameters (from in the JBI
specification), CDK parameters (explained farther) and component specific parameters.
Component specific parameters are parameters which configure your component behavior.
To define a new component parameter, simply add a new element in your jbi.xml file.
The example below defines an new element, called executor-size.

Figure 49 Life cycle of a Petals component

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 71 of 80

Notice that this element is associated to the component name space. All the component
parameters must be associated to the component name space. To see how to retrieve this
parameter in your component, see the sample given in the next section.

5.4.4.3 The component deployment

When you created your component with Maven, you must have got a class named
ServiceEngine or BindingComponent. This class is generated by the Maven plug-in for
commodity reasons. It allows you to find it easily.
The effective component class is the one specified in the component JBI descriptor
(src/main/jbi/jbi.xml), in the component-class-name element. If you have nothing to do in
this class, you can delete it and set a default component class in your jbi.xml:

• org.ow2.petals.component.framework.se.DefaultServiceEngine
• org.ow2.petals.component.framework.bc.DefaultBindingComponent

It will manage the component life cycle and configurations for you. Notice that unlike JBI
listeners, there is only one component class instance per component name. The pool of JBI
listeners is managed by the component instance. If you have specific actions to perform on
key events in the component life cycle, you need to have a custom component class. In this
case, the important component methods are:

protected void doInit() throws JBIException {}

Is called when the component is deployed (from the shutdown to the stopped state).

protected void doStart() throws JBIException {}

Is called when the component is started.

protected void doStop() throws JBIException {}

Figure 50 Adding a component parameter in the jbi.xml

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 72 of 80

Is called when the component is stopped.

protected void doShutdown() throws JBIException {}

Is called when the component is shutdown.

Here is an example which creates an executor service when our component is deployed.
When the component stops, the executor stops accepting new threads. When the
component is shutdown, threads which were still processed are stopped.

public class ServiceEngine extends AbstractServiceEngine {

 private static int DEFAULT_POOL_SIZE = 5;

 private ExecutorService executor ;

 /**

 * Initializes the executor service from the co mponent configuration.

 * @see org.ow2.petals.component.framework.AbstractCompone nt#doInit()

 */

 @Override

 protected void doInit() throws JBIException {

 // Get the executor size from the component configu ration

 int poolSize = DEFAULT_POOL_SIZE;

 for(Element elt : getComponentConfiguration().getAny()) {

 if("executor-size" .equals(elt.getLocalName().toLowerCase())) {

 try {

 poolSize = Integer. valueOf(elt.getTextContent().trim());

 if(poolSize < 1)

 poolSize = DEFAULT_POOL_SIZE;

 } catch(Exception e) {

 getLogger().info(''Could not r etrieve the pool size from
the JBI descriptor.'');

 }

 break;

 }

 }

 // Create the executor

 executor = Executors. newFixedThreadPool(poolSize);

 }

 /**

 * Do not accept any other thread.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 73 of 80

 * @see org.ow2.petals.component.framework.AbstractCompone nt#doStop()

 */

 @Override

 protected void doStop() throws JBIException {

 executor .shutdown();

 }

 /**

 * Stop processing the threads.

 * @see org.ow2.petals.component.framework.AbstractCompone nt#doShutdown()

 */

 @Override

 protected void doShutdown() throws JBIException {

 executor .shutdownNow();

 }

 /**

 * Delegate method.

 * @param <T>

 * @param task

 * @return a future

 * @see
java.util.concurrent.ExecutorService#submit(java.ut il.concurrent.Callable)

 */

 public <T> Future<T> submit(Callable<T> task) {

 return executor .submit(task);

 }

}

5.4.4.4 Deployment of a configuration

Component configurations (service units) are used by the component to create services in
the bus. Remember that these services should have a WSDL interface, either provided by in
the service-unit or by the component. When a message is sent to one of these services, it is
received by the component which then uses the associated configuration to perform the
treatment. Configurations parameters and resources can be used at several moments:

• At deployment: the configuration influences the way resources are created.
• At runtime: the configuration is used to determine how to process a message.
• At any other life cycle moment, e.g. to determine what to do when the service

stops.
If configurations are used beyond the deployment phase, they should be cached at
deployment. One way to do that is to build a structure maintained by the component. Then,

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 74 of 80

JBI listeners will access the component data and determine how to process a message
depending on the end-point relative data. This is achieved with a SU manager. A SU
manager is responsible for the life cycle of a service-unit (component configuration)

The life-cycle of a service-unit is very similar to the life cycle of a component. Therefore, a
SU manager has similar methods to a component (init / start / stop / shutdown).
In the example below, the SU manager overrides the deployment of a configuration to store
parameters retrieved from the configuration jbi.xml file (the jbi.xml file in the service-unit). To
ease the comprehension, a sample service-unit jbi.xml file is also given.

<?xml version ="1.0" encoding ="UTF-8"?>

<jbi:jbi version ="1.0"

 xmlns:jbi ="http://java.sun.com/xml/ns/jbi"

 xmlns:petalsCDK ="http://petals.ow2.org/components/extensions/version-5"

 xmlns:myComponent ="http://petals.ow2.org/components/myComponent/version-
1.0"

 xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance">

 <jbi:services binding-component ="false">

 <jbi:provides

 interface-name ="genNs:myServiceItf"

 service-name ="genNs:myServiceName"

 endpoint-name ="myServiceEndpoint"

 xmlns:genNs ="http://ebmwebsourcing.com/myService">

 <!-- CDK parameters -->

 <petalsCDK:wsdl >myWsdl.wsdl </ petalsCDK:wsdl >

 <!-- Component specific parameters -->

 <myComponent:param1 >myParam1</ myComponent:param1 >

 <myComponent:param2 >myParam2</ myComponent:param2 >

 </ jbi:provides >

 </ jbi:services >

</ jbi:jbi >

In this example, the component specific parameters are two elements called param1 and
param2. This is how your component can get and store them for a later use.

Figure 51 Life cycle of a service-unit

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 75 of 80

public class SampleSeSUManager

extends ServiceEngineServiceUnitManager

implements ServiceUnitManager {

 /**

 * Constructor.

 * @param engine

 */

 public SampleSeSUManager(ServiceEngine engine) {

 super(engine);

 }

 /**

 * Handles the deployment of a service - unit.

 * @see org.ow2.petals.component.framework.su.AbstractServ iceUnitManager

 * #deploy(java.lang.String, java.lang.String)

 */

 @Override

 public String deploy(String serviceUnitName, String suRo otPath) throws
DeploymentException {

 String deploymentResult = super.deploy(serviceUnitName, suRootPath);

 // Cache data related to the job

 ServiceUnitDataHandler suDataHandler =
getServiceUnitDataHandlers().get(serviceUnitName) ;

 List<Provides> providesList =
suDataHandler.getDescriptor().getServices().getProv ides();

 if(providesList == null || providesList.size() != 1)

 throw new DeploymentException("One and only one provides has to be
declared");

 Provides provides = providesList.get(0);

 ConfigurationExtensions extensions =
suDataHandler.getConfigurationExtensions(provides);

 try {

 // Cache configuration elements

 Map<String,String> endpointNameToSuPara m = new
HashMap<String,String>();

 if(extensions != null) {

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 76 of 80

 // Getting simple elements, called "param1" and "pa ram2"

 String suParam1 = extensions.get("param1");

 // TODO: store the param1 in the component

 String suParam2 = extensions.get("param2");

 // TODO: store the param2 in the component

 }

 } catch (Exception e) {

 throw new DeploymentException("Caching SU data failed.");

 }

 return deploymentResult;

 }

}

Let's now suppose your service-unit jbi.xml has several elements with the same name, that is
to say a list of elements. The component specific part in the service-unit would look like:

 <!-- Component specific parameters -->

 <myComponent:paramName >myValue1 </ myComponent:paramName >

 <myComponent:paramName >myValue2 </ myComponent:paramName >

 <myComponent:paramName >myValue3 </ myComponent:paramName >

 <myComponent:param2 >myParam2</ myComponent:param2 >

Here, there are two kinds of elements: paramName and param2. To retrieve the list of
elements, Petals has an unsophisticated (or inconvenient, you decide) way to proceed.
Indeed, when they are parsed and stored in the configuration, the list elements are renamed.
Here, it would result in the following element list: [paramName1, paramName2,
paramName3, param2]. The code above would be a little bit modified:

public class SampleSeSUManager

extends ServiceEngineServiceUnitManager

implements ServiceUnitManager {

 /**

 * Constructor.

 * @param engine

 */

 public SampleSeSUManager(ServiceEngine engine) {

 super(engine);

 }

 /**

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 77 of 80

 * Handles the deployment of a service - unit.

 * @see org.ow2.petals.component.framework.su.AbstractServ iceUnitManager

 * #deploy(java.lang.String, java.lang.String)

 */

 @Override

 public String deploy(String serviceUnitName, String suRo otPath) throws
DeploymentException {

 String deploymentResult = super.deploy(serviceUnitName, suRootPath);

 // Cache data related to the job

 ServiceUnitDataHandler suDataHandler =
getServiceUnitDataHandlers().get(serviceUnitName) ;

 List<Provides> providesList =
suDataHandler.getDescriptor().getServices().getProv ides();

 if(providesList == null || providesList.size() != 1)

 throw new DeploymentException("One and only one provid es has to be
declared");

 Provides provides = providesList.get(0);

 ConfigurationExtensions extensions =
suDataHandler.getConfigurationExtensions(provides);

 try {

 // Cache configuration elements

 Map<String,String> endpointNameToSuPara m = new
HashMap<String,String>();

 if(extensions != null) {

 List<String> paramNames = new Array List<String>();

 for(Map.Entry<String,String> entry : extensions.entrySet()) {

 if(entry.getKey.startsWit h("paramName"))

 paramNames.add(en try.getValue());

 if(entry.getKey.equals("param2") {

 // TODO: store the param2 in the component

 }

 }

 // TODO: store the list of paramNames in the component

 }

 } catch (Exception e) {

 throw new DeploymentException("Caching SU data failed.");

 }

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 78 of 80

 return deploymentResult;

 }

}

Eventually, we would have to make sure this SU manager will be used instead of the
component default one. This is achieved by changing one method in the component class.

 /*

 * (non-Javadoc)

 * @see org.ow2.petals.component.framework.se.A bstractServiceEngine

 * #createServiceUnitManager()

 */

 @Override

 protected AbstractServiceUnitManager createServiceUnitManage r() {

 return new SampleSeSUManager(this);

 }

As a general principle, the component should store service-unit data in a Map, where the key
is the end-point name, and the value an object embedding the service-unit data. This map is
populated by the SU Manager instance. When a JBI listener receives an exchange, it gets
the target end-point, retrieves the associated data through the component, and then decides
of the processing.

5.4.5 Summary

This section explained all the steps to follow to create a JBI component from scratch using
the PEtALS ESB Tools such as the Component Development Kit, Maven plugin and Eclipse
IDE. It also introduced some JBI aspects which gives more understanding of the JBI concept
and philosophy.

5.5 List of Platform Services
This chapter provides the list of available SOA4All platform services.

5.5.1 Space Service

The Space Service is available as a:

- JBI Endpoint at {http://ws.space.dsb.SOA4All.eu/}SemanticSpaceWSImplService

- Web service at http://<HOST>/petals/services/SpaceService

Note: At the implementation level, the Web service and the JBI service are the same
runtimes, the JBI service is exposed as Web service with the help of the PEtALS ESB SOAP
Binding Component.

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 79 of 80

6. Conclusions
This deliverable provides a written report to the first SOA4All Distributed Service Bus
implementation. The implementation delivers the software that is necessary to enable large-
scale installations of service bus nodes. These nodes provide the backbone of the SOA4All
Runtime and host the core infrastructural services of SOA4All. As specified in in Deliverable
D1.4.1A, the Distributed Service Bus serves as integration platform for SOA4All Platform
Services, as well as 3rd party business services. While the semantic space implementation,
as core element of the bus, i presented in Deliverable D1.3.2B, the software descriptions in
this deliverable focus on the technical registry, the messaging infrastructure and the
monitoring platform. As a whole, this first bus prototype implementation is realized and
deployable on top of ProActive.

As stated above, the main objective of the deliverable was to present the prototype
implementation. As such, the document provides detailed descriptions of the different
components of the prototype in order to better present the work done and the functionality
provided. In addition, there are a section with installation and configuration guidelines and
one the present in more detail theintegration interfaces and the monitoring and management
APIs. Last but not least, a part of this deliverable is dedicated to integration guidelines for
developers of services about how to publish services to the bus, or how to host services on
the bus as SCA or JBI components.

The work on component (i.e., platform service) integration will be continued in the period
toward month M24, and the realization of functional processes, as compositions of platform
services, will be one of the main efforts of that period. The results of these investigations will
be one of the main subjects to deliverable D1.4.2A "Final SOA4All Reference Architecture
Specification".

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 80 of 80

7. References
1. E. Mathias, V. Cavé, F. Baude. A GCM-Based Runtime Support for Parallel Grid

Application. In: Proc. of the ACM SIGPLAN Component-Based High-Performance
Computing (CBHPC) 2008, Karlsruhe, Germany.

2. Reto Krummenacher, SOA4All Architecture, slides for the 2nd SOA4All Review
Meeting, Brussels, Belgium, April 2, 2009.
https://portal.atosorigin.es/pls/portal30/docs/FOLDER/SOA4ALL_PROJECT_AREA/ME
ETINGFOLDERS/9YEARLYPROJECTREVIEWBRUSSELS23APRIL2009/PRESENTA
TIONS/WP1-SOA4ALL-ARCHITECTURE-RKR.PDF

3. Reto Krummenacher (UIBK), Imen Filali (INRIA), Fabrice Huet (INRIA) Françoise
Baude (INRIA), Distributed Semantic Spaces: A Scalable Approach to Coordination,
Deliverable 1.3.2A, SOA4All Consortium, March 2009.
http://www.SOA4All.eu/docs/D1.3.2A%20Distributed%20Semantic%20Spaces%20A%
20Scalable%20Approach%20To%20Coordination.pdf

4. Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio Schiavoni,
and Jean-Bernard Stefani (INRIA), Reconfigurable SCA Applications with the FraSCAti
Platform, In Proceeding of the 6th International Conference on Services Computing
(IEEE SCC 2009), Bangalore, India, September 21-25, 2009. To appear.
http://hal.inria.fr/inria-00397856

5. OASIS Open. Web Services Topics (WS-Topics). OASIS Open, Version 1.3. October,
2006.

6. C. Pedrinaci, J. Domingue, A. Alves de Medeiros. A Core Ontology for Business
Process Analysis. In Proceeding of 5th European Semantic Web Conference (ESWC
2008), 2008, Tenerife, Spain

7. Elmo, Version 1.5. http://www.openrdf.org/doc/elmo/1.5/

8. Drools: Business Logic integration Platform. http://www.jboss.org/drools/

9. W3C, SPARQL Query Language for RDF, January 15 2008. http://www.w3.org/TR/rdf-
sparql-query/

10. E. Mathias, V. Cav´e, S. Lanteri, and F. Baude. Grid-enabling SPMD Applications
through Hierarchical Partitioning and a Component-Based Runtime. In 15th Int.
European Conf. on Parallel and Distributed Computing (Euro-Par 2009), August 2009.
To appear. Reviewers can access the camera-ready
www.inria.fr/oasis/Francoise.Baude/europar09.pdf

11. R. Krummenacher, I. Toma, Ch. Hamerling, J.-P. Lorre, F. Baude, V. Legrand, Ph.
Merle, C. Ruz, C. Pedrinaci, D. Liu, and T. Pariente Lobo: SOA4All Reference
Architecture Specification. SOA4All project deliverable D1.4.1A, March 2009.
http://www.SOA4All.eu/docs/D1.4.1A%20SOA4All%20Reference%20Architecture.pdf

12. R. Krummenacher, M. Fried, F. Huet, I. Filali, L. Pellegrino, and Ch. Hamerling:
Distributed Semantic Spaces: A First Implementation. SOA4All project deliverable
D1.3.2B, August 2009.

13. Sun Microsystems, Inc., The Java API for XML-Based Web Services (JAX-WS) 2.0,
Final Release, JSR-000224 Specification, April 19, 2006.
http://jcp.org/aboutJava/communityprocess/final/jsr224/index.html

 SOA4All –FP7215219 D1.4.1B SOA4All Runtime

© SOA4All consortium Page 81 of 81

14. Open SOA, SCA Service Component Architecture – Assembly Model Specification,
SCA Version 1.00, March 15, 2007.
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

15. Open SOA, SCA Service Component Architecture – Java Common Annotations and
APIs, SCA Version 1.00, March 21, 2007.
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

