

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D1.5.1 SOA4All Testbeds Specification

And Methodology

Activity N: Activity 1 – Fundamental and Integration Activities

Work Package: WP1 – SOA4All Runtime

Due Date: M12

Submission Date: 10/03/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: Hanival

Revision: 1.0

Author(s): Bernhard Schreder HANIVAL
Simeona H. Cruz HANIVAL
Sven Abels TIE
Tomás Pariente ATOS
Marc Richardson BT

Reviewer(s): Michal Zaremba SEEKDA
Clemens Blamauer HANIVAL

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public x

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 2 of 43

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 01/2009 Draft version Simeona H. Cruz (Hanival)

0.2 01/2009 Updates to all sections Bernhard Schreder (Hanival)

0.3 02/2009 Contributions by TIE to sections 1,2,5 Sven Abels (TIE)

0.4 02/2009 Contributions by ATOS to section 2 Tomás Pariente (ATOS)

0.5 02/2009 Updates to all sections Bernhard Schreder (Hanival)

0.6 02/2009 Contributions by BT to section 2 Marc Richardson (BT)

0.7 02/2009 Contributions to section 2 Simeona H. Cruz (Hanival)

0.8 02/2009 Updates to section 5 and 6 Bernhard Schreder (Hanival)

0.9.1 02/2009 Review Michal Zaremba (seekda)

0.9.2 02/2009 Review Clemens Blamauer (Hanival)

1.0 03/2009 Integration of review comments, Final
version for submission

Bernhard Schreder (Hanival)

Final 10/2009 Overall format and quality revision Malena Donato (ATOS)

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 3 of 43

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 CHALLENGES __ 7

1.2 PURPOSE AND SCOPE __ 8

1.3 ALIGNMENT TO SOA4ALL EVALUATION ______________________________ 9

2. REQUIREMENTS ANALYSIS _____________________________ ______________ 10

2.1 FUNCTIONAL REQUIREMENTS _____________________________________ 10

2.2 NON FUNCTIONAL REQUIREMENTS ________________________________ 12

2.3 ALIGNMENT WITH THE SOA4ALL USE CASES ________________________ 12

2.3.1 End-user Integrated Enterprise Service Delivery Platform ________________ 12

2.3.2 W21C BT Infrastructure __ 14

2.3.3 C2C Service eCommerce ___ 16

2.4 ALIGNMENT WITH OTHER PROJECTS AND INITIATIVES ________________ 18

2.4.1 SWS Challenge __ 18

2.4.2 FIRE ___ 18

3. STATE OF THE ART TOOLS AND METHODOLOGIES __________ ____________ 20

3.1 GROUP TESTING OF WEB SERVICES _______________________________ 20

3.2 FAULT INJECTION FOR A SERVICE ORIENTED ARCHITECTURES TESTBED
 23

3.2.1 GENESIS ___ 24

3.2.2 PUPPET (Pick UP Performance Evaluation Testbed) ___________________ 27

3.2.3 WS-FIT (Web Services Fault-Injection Tool) & GRID-FIT ________________ 29

4. EVALUATION __ _______________ 32

5. TESTBED INFRASTRUCTURE SPECIFICATION ______________ _____________ 35

5.1 METHODOLOGY DESCRIPTION AND INFRASTRUCTURE DESIGN _______ 35

5.2 PLUG-INS SPECIFICATION __ 36

5.2.1 REST plug-in __ 36

5.2.2 Orchestration plug-in __ 37

5.2.3 Group-based testing plug-in _______________________________________ 37

5.3 TESTBED INFRASTRUCTURE USAGE SCENARIO _____________________ 38

6. CONCLUSIONS __ 39

7. REFERENCES ___ 40

ANNEX A. __ 42

List of Figures
Figure 1: Internal Evaluation Model in SOA4All ... 9

Figure 2: Group testing for atomic services ..21

Figure 3: Applying group testing to composite services ..22

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 4 of 43

Figure 4: Testing and service selection using S-CRM ..23

Figure 5: GENESIS Architecture ..25

Figure 6: Web service generation in GENESIS ..26

Figure 7: The Puppet testbed generator ...28

Figure 8: WS-FIT fault injection hook code placement. ...30

Figure 9: WS-FIT message modification ...31

Figure 10: SOA4All Testbed Use Case diagram ...36

List of Listings
Listing 1: Service Level Objective Mapping for Latency ..29

Listing 2: Genesis Testbed Configuration ...43

List of Tables
Table 1: Functional Requirements ..11

Table 2: Non Functional Requirements ..12

Table 3: Test Web Services from the WP7 storyboard ...13

Table 4: Test Web Services from the WP8 storyboard ...15

Table 5: Test Web Services from the WP9 storyboard ...17

Table 6: Summary of fault injection tools ..34

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 5 of 43

Glossary of Acronyms

Acr onym Definition

D Deliverable

EC European Commission

ES Enterprise Search

FIRE Future Internet Research and Experimentation

PUPPET Pick UP Performance Evaluation Testbed

S-CRM Simplified Coverage Relationship Model

SWS-Challenge Semantic Web Service Challenge

WADL Web Application Description Language

WP Work Package

WS-FIT Web Services-Fault Injection Tool

WSDL Web Service Description Language

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 6 of 43

Executive summary

In this deliverable, we discuss the different components of a testbed environment for
SOA4All, as well as suitable testing methodologies. The testbed infrastructure, which is
being developed in the scope of Task 1.5, will enable testers and component owners to
define configurable testbeds and services according to a collection of service templates,
which will be made available to users of the testbed. The testbed infrastructure is delivered
as part of the overall evaluation plan for SOA4All, which consists of three different types of
evaluation – usability, fit-fo-purpose and technical evaluation. Task 1.5 is concerned with the
technical evaluation, and the results can be used to validate the major technical objectives of
SOA4All, including scalability and performance of the developed solutions. This document
presents a survey and evaluation of different tools suitable for SOA testing and thus for the
SOA4All testbed. From this finding, we develop a testbed infrastructure, which shall support
the development of the technical work packages in SOA4All, as well as an environment to
test the use case prototypes.

Different types of tools that are going to be used as the basis for the testbed infrastructure
are surveyed and evaluated in this document. The selected tool(s) should meet the
requirements that will be addressed in the requirement section. Besides a collection of
functional and non-functional requirements, which were proposed according to discussions
with the technical work packages in the project, the deliverable also addresses the alignment
with the Use Cases in SOA4All, as the testbeds to be generated with the infrastructure
should simulate realistic environments suitable for experiments of the Use Case prototypes.
In addition, the testbeds should also be made available to other projects and initiatives
outside of SOA4All, such as the SWS Challenge or the FIRE facilities.

Finally, a first design for the overall testbed infrastructure is detailed, and the next steps for
setting up a testbed for both short-term experiments in SOA4All, as well as for general
experiments with large-scale service oriented architectures are explained at the end of this
document.

To summarize, in order to realize the proposed functionalities for a testbed infrastructure, this
document will specify the following:

• A set of requirements for a testbed framework. Those requirements will be based on
input from different work packages and from the Use Case work packages.

• A report on State of the Art in service testing.
• A survey and selection of tools and methodologies that will be reused.
• Based on the requirements and the feature list of existing tools: A precise description

of the functionality that will be implemented and a specification of the development for
the testbed infrastructure.

• A usage scenario for the testbed infrastructure, explaining the necessary steps for
testers, component owners and other testbed users.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 7 of 43

1. Introduction

The SOA concept provides a number of significant advantages compared to monolithic
architectures. For example, the SOA approach allows a very flexible way of combining
functionalities and overall a perfect example of what it means to separate different concerns
by dividing a complex system into many different – yet simple – parts that can be combined
into complex and powerful applications. The SOA4All project will use those advantages of
SOA and combine them with the powerful Web 2.0 approach and with semantics and context
awareness. It also provides an easy way of using services or combining services and it
provides a comfortable user interface in the SOA4All Studio (WP2).

However, the high flexibility obviously also lead to a downside of the SOA approach: As
systems get more and more composed by different parts, the maintenance and the testing of
systems gets very complex. If one subsystem of an SOA based application has been
changed, a lot of side effects might occur and each single service might influence the
stability, correctness and performance of the whole application. For example, a currency-rate
info service that has a delay of 30 seconds for each request and that answers with incorrect
results might slow down an eCommerce application and might lead to wrong money
transactions in the order process.

As such, a comprehensive testing process becomes crucial for turning the SOA4All vision
into reality. However, testing in a distributed environment including many different services
that interact with each other in a complex way is not a trivial task. In this deliverable, we
discuss the different components of a testbed environment for SOA4All, as well as testing
methodologies. Different types of tools that are going to be used as the basis for the testbed
are surveyed and evaluated. The selected tool(s) should meet the requirements that will be
addressed in the requirement section. Finally, a first design for the overall testbed
infrastructure is detailed, and the next steps for setting up a testbed for both short-term
experiments in SOA4All, as well as for general experiments with large-scale service oriented
architectures will be explained at the end of this document.

1.1 Challenges

In SOA testing, there are certain issues and challenges in the testing and deployment of Web
Services that should be taken into account. These characteristics of Web Services are [6]:

• Web Services are intrinsically distributed and are platform and language agnostic
• Web Services can expose dependencies to third party service providers, which can

change without notice
• Web Services ownership is shared across various stakeholders
• Web Services client developers typically only have access to interfaces (WSDLs) and

lack access to actual code

Thus, it is important to choose the right strategy to face those challenges and to provide a
testbed framework enabling users to create proper testing in an SOA4All based application.
This includes defining a concrete and precise methodology for testing, to analyse and
consider the reuse of existing tools and to provide a solid implementation that is
accomplished with an example on how to use the testbed for SOA4All users and/or
developers.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 8 of 43

1.2 Purpose and Scope

In this deliverable, we will address the challenges mentioned above. We will do this by
defining a testbed framework for SOA4All. This testbed framework mainly targets
developers, more precisely SOA4All project team members as well as developers using the
SOA4All framework as a base. The functionalities that will be provided are:

• Testbed Setup

Setting up a suitable testbed – specifically for the purposes of testing performance
and scalability – needs automated tool support. Services, which express a specific
behaviour, according to a given set of parameters, need to be generated and
deployed automatically.

• Test Case Definition

Test cases may be defined allowing developers to define different criteria that a
service needs to fulfil in order to pass a test (e.g. a specific return value or a
maximum response time).

• Test Case Combination & Ranking

Test cases may be combined into sets, and may be executed together, with the
results being used to reduce testing effort for future runs.

• Test Case Scheduling

The Test bed may be executed on one or more services automatically (scheduling).

• Test Case Event Handling

Developers may define automatic tests and may specify certain events that will be
launched when a test is finished successfully or unsuccessfully. This way, developers
might specify to receive an email if a certain service fails.

This document presents a survey and evaluation of different tools suitable for SOA testing
and thus for the SOA4All testbed. From this finding, we develop a testbed infrastructure,
which shall support the development of the technical work packages in SOA4All, as well as
an environment to test the use case prototypes.

In order to realize this functionality, this document will specify the following:

• A set of requirements for a testbed framework. Those requirements will be based on
input from different work packages and from the use case work packages.

• A report on State of the Art in service testing
• Based on the requirements and the feature list of existing tools: A precise description

of the functionality that will be implemented and a specification of the architecture.
• A selection of tools that will be reused
• A specification of plug-ins to be developed
• A step-by-step description on how to use the testbed framework

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 9 of 43

Its scope is for the consortium to use as a reference for further development of the testbed
infrastructure in the upcoming activities for Task 1.5.

1.3 Alignment to SOA4All Evaluation

Figure 1 (taken from the draft version of deliverable D2.5.1, the Formative Evaluation and
user-centred Design) depicts the Evaluation Model, which has been developed to define
three main types of evaluation to be performed in the scope of the project and describes the
flow of results between work packages according to this evaluation plan. The different types
of evaluation include a usability evaluation, which will be conducted to determine the usability
of the interfaces produced by the project. A Fit-for-purpose evaluation will test the
requirements of the three SOA4All Use Cases against the results produced by each work
package. Finally, a technical evaluation will test the performance, scalability and other
technical characteristics of the tools and techniques developed in the project.

Figure 1: Internal Evaluation Model in SOA4All

Regarding the flow of project and evaluation results, the Use Case WPs provide
requirements and evaluation metrics to the core technical work packages (arrow ‘A’ in the
figure). Results from the technical work packages (arrow ‘B’) will be integrated through the
SOA4All Runtime (WP1) and SOA4All Studio (WP2), respectively, who will provide Technical
Evaluation (arrow ‘C’). The Use Cases then conduct an evaluation of the integrated results
concerning the suitability against their requirements and metrics. The results of this ‘Fit for
Purpose’ evaluation (arrow ‘D’) will again provide feedback to the technical work packages.

The testbed infrastructure specified in this deliverable will be used to evaluate the main
objectives of the project from a technical perspective. The main roadmap for evaluation will
be summarised as part of deliverable D2.5.1, and includes a set of metrics and performance
indicators for the technical evaluation. Results from the evaluation process concerning these
indicators will be reported in deliverable D1.5.3, which collects evaluation results from the
experiments conducted with the testbeds generated by the testbed infrastructure.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 10 of 43

2. Requirements Analysis

To define requirements for a testbed infrastructure in the SOA4All project, we should first
examine what we would like to achieve by providing such an infrastructure and a matching
testing methodology. The major benefit for the partners in the project would be to provide
methods to automate parts of the testing process, which can include test case generation,
the set-up of a test bed (by generating suitable test services according to a provided
specification), or the actual execution of the test cases and subsequent analysis of results. In
addition, the scalability of the testing process is of great importance, as SOA4All proposes to
provide an architecture and tools, that are performing on a web of billions of services.

Current State-of-the-Art in the testing of SOA applications includes different methods to
develop test beds for SOA environments (semi-)automatically. One possibility to do that is to
use tools in the area of fault-injection testing, which is especially useful for Quality of Service
based testing. A fault-injection testbed for SOAs must reflect a typical service-oriented
architecture. Parameterization data for fault-injection testing is based on models, not raw
data, due to the general unavailability of a sufficiently large set of statistical data for service
behaviour.

In addition, research has been ongoing to develop methods to reduce the effort of testing,
while maintaining test efficiency, which is of special concern for the testing of composite
services. One such method is called Group Testing of Services. Group Testing of Services
proposes a framework that can apply selection and ranking of test cases. By applying
selection and ranking methods to the test cases for specific services (both atomic and
composite), we can enhance the test efficiency while reducing the efforts of testing for future
test iterations.

Based on these basic assumptions, we can define a set of requirements for the SOA4All
testbed, which should be fulfilled by the selected tools and the overall testbed framework.
Tools should be selected or developed that can provide support for automated testing for
Web Services, in order to make the testing process more efficient. When evaluating
composite Web Services, we should plan our testbed architecture carefully to enable the test
case evaluation procedure performed in the right manner. We should also consider different
phases of tests for SOA and the automated testbed environment should cover functional and
integration tests. Finally, active (end) user contributions could also be utilised, by using Web
2.0 techniques to apply service ratings and rankings to enhance the test framework.
Enumerated requirements are detailed next. These functional and non-functional
requirements have been collected from discussions with the technical work packages in
SOA4All, in order to enable us to provide a suitable testbed infrastructure.

2.1 Functional Requirements
The following table collects a set of functional requirements to be considered for the design
of the testbed infrastructure. Section 4 in this document will specify an evaluation of existing
technology concerning these requirements. The evaluation will thus guide the selection of
tools and methodologies, which will be reused for the testbed infrastructure.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 11 of 43

Table 1: Functional Requirements

ID Description Classification

R2.1.1 The testbed infrastructure should include tools to
automatically generate and populate a testbed,
given a set of configurations and parameters
(please refer R2.1.9).

MUST

R2.1.2 The testbed should handle large-scale volumes
of services that consist of different composite
services.

SHOULD

R2.1.3 The testbed should deal with the complexity of
Web Services that are comprised of
heterogeneous technology and architectures
(see also R2.1.2).

SHOULD

R2.1.4 The testbed infrastructure must be used to
generate services according to the description of
the specified behaviour or a template
mechansims.

MUST

R2.1.5 The testbed should automatically identify and
eliminate the test cases that do not meet certain
selection criteria, in order to have a more
efficient testing process.

SHOULD

R2.1.6 The testbed should cope with the third party
Web Services that can change without notice.

SHOULD

R2.1.7 The testbed should be integrated with existing
SOA infrastructures generally, specifically by
supporting service compositions and other
service enterprise features.

SHOULD

R2.1.8 The testbed infrastructure must employ a
methodology that can be used to quickly and
easily deploy testbeds.

MUST

R2.1.9 The testbed behaviour should be based on a
parameterized model, which simulates the
occurrence of failures and performance issues.

SHOULD

R2.1.10 The testbed should be independent within the
scope of SOA4All architecture, in order to be
usable in different contexts.

SHOULD

R2.1.11 The testbed infrastructure must provide support
for RESTful Web Services.

MUST

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 12 of 43

2.2 Non Functional Requirements
The following table collects a set of non-functional requirements that should be considered
when defining the testbed infrastructure.

Table 2: Non Functional Requirements

ID Description Classification

R2.2.1 The testbed infrastructure MUST be extendable
and flexible to integrate it with other testbeds or
to add more functionality.

MUST

R2.2.2 The testbed infrastructure tools SHOULD have
an open source license1 with the provided source
code in order to achieve the intention of the
consortium to reuse, extend and integrate it with
other components within SOA4All.

SHOULD

R2.2.3 The testbeds SHOULD be deployable to
different machine architectures and platforms.

SHOULD

2.3 Alignment with the SOA4All Use Cases

The testbed framework should serve as an environment in which to deploy the use case
prototypes developed in the scope of the project. A suitable set of testing services should be
available, in order to provide a realistic environment in which to conduct those tests.
Therefore, the first services, which will be deployed on the testbed, will be services created
from the Use Case requirements, detailed in the following sections. The testbed
infrastructure will be used to create testbeds based on the services, which should be used as
part of the Use Case prototypes, thus allowing Use Case partners to conduct suitable
experiments on the SOA4All testbed environment.

This can include both services with an implementation, i.e. which can be deployed to the
testbeds directly, but also services from third parties, where only the WSDLs are accessible.
Service descriptions can then be used for automated service generation using service
templates (see requirement R2.1.4 in Section 2.1).

2.3.1 End-user Integrated Enterprise Service Delive ry Platform

By example of a public administration scenario, the Use Case “End-user Integrated
Enterprise Service Delivery Platform” [14], developed in WP7, investigates how existing,
heavyweight SOA platforms can interoperate with the open, dynamic, lightweight, and end

1 For an overview of applicable licences see http://www.opensource.org/licenses/alphabetical

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 13 of 43

user driven service platform that is envisioned by SOA4All. WP7 is working around concrete
scenarios implementing the “EC Services Directive” in an informal, narrative way. In order to
analyze and clarify the desired functionality from the perspective of the different actors
involved. In these scenarios, several administrative processes need to be completed
triggered by citizens. Following the Services Directive, one public administration takes the
responsibility to handle and guide through these processes based on the lightweight process
modelling and execution environment developed by SOA4All.

Regarding specific requirements for the Testbed, WP7 has the peculiarity that uses some
SAP Enterprise services. These SAP services are not easy to use. The WSDL files are quite
complex and some of the data needed is not easy to get, because it is based on SAP codes.
Therefore, the current version of services would probably evolve within this case study to
simplified WSDL, which is not available now.

On the other hand, these services are not services deployed on the web, but in SAP
machines. These SAP services are theoretically implemented and deployed on test servers
by SAP in SOA4All. So the availability of these services for the testbed is limited.

It is expected to use third-party services, mainly coming from stub services (simulated
services) available from public administration, but these services have not been identified
yet.

The following list specifies the SAP services identified until now:

• ES Workplace

• Create login: https://www.sdn.sap.com/irj/sdn/soareg
• Overview ES Bundles: https://wiki.sdn.sap.com/wiki/display/ESpackages/Home/
• ES Workplace how-to: https://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/6240/
• ES Community: https://www.sdn.sap.com/irj/sdn/define-es

• Service Registry: http://sr.esworkplace.sap.com

• Manual: https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/501668ab-
976e-2a10-91b6-c1020e8c54f2/

The following table shows the services involved in the current version of the WP7 storyboard
scenario:

Table 3: Test Web Services from the WP7 storyboard

Provider Service Name URL Description

SAP
BusinessPartnerBasic
DataByNameAndAddress
QueryResponse_In

Find Business Partner Basic Data
by Name and Address

SAP
CitizenServiceProduct
ERPByIDQuery
Response_In

PS Permit Application
and Approval

Read Citizen Service Product

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 14 of 43

SAP
CitizenServiceArrangeme
ntERPCreateRequestConf
irmation_In

PS Permit Application
and Approval

Create Citizen Service
Arrangement

SAP
CitizenServiceProductMai
ntenanceCitizenServiceAr
rangementActionIn

PS Permit Application
and Approval

Calculate Citizen Service
Arrangement

SAP
ContractAccountsInvoiceP
rocessingManageContract
AccountInvoicingTaskIn

PS Permit Application
and Approval

Create Public Sector Contract
Account Invoicing Task

3rd Party (not available) ValidateCreditCard

3rd Party (not available) ValidateAddress

2.3.2 W21C BT Infrastructure

The aim of the Web21c case study [15] is to investigate creating the future Web21c/Ribbit
infrastructure based on SOA4All technology. As the Ribbit platform is important part in BT’s
transformation from a traditional telecommunications company to a converged software and
services firm, this case study is focused around it.

Currently, use of Ribbit services requires detailed technical knowledge of programming
languages (e.g. Flash and Flex) and understanding of voice protocols (e.g. SIP, Skype and
Google Talk’s XMPP) to call other Web-based phones, VoIP phones, or regular landline and
mobile phones. Ribbit handles the calls and other voice-related services (call logs, voice
messages, speech-to-text transcription, contact imports, directories, provisioning, billing,
security and authentication) and provides the APIs to developers, who build their apps with
Adobe’s Flex and Flash development tools. It is a way to create voice apps in a Web
application development environment that can easily be linked to other Web apps.

The aim of the case study is to provide semantically enhanced and expanded version of
Ribbit, where the process of discovering, integrating, using and sharing Ribbits’ services can
be done much more effectively.

As BT only recently acquired Ribbit (October 2008) it is in the process of integrating it with
BTs systems and creating a new enhanced set of RESTful Services. These RESTful
services will form the basis of the Ribbit services that are used in the case study. Currently
they are scheduled for release in late March 2009, so at present there are no concrete Ribbit
services to offer to the testbed platform. As they are made available, they will be added to
the Testbed. The aim of the case study is to enable users to combine Ribbit services with
other 3rd party services available on the web, so we can provide an example set of services
that a user might consume, based on the scenario described in Deliverable 8.3 of creating a
mashup to organise a group of friends meeting up.

For the deployment of the BT use case services on the testbed, it is of special importance to
enable the creation of RESTful Services, as much of the Use Case is based on such
services. This is reflected by the inclusion of requirement R2.1.11 in Section 2.1.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 15 of 43

Table 4: Test Web Services from the WP8 storyboard

Provider Service Name URL Description

3scale

ListEvents

http://www.3scale.net/hap
penr/happenr

Event search service - finds events
(concert, comedy gig, etc.) in a
given location by searching through
a number of databases

Last.fm
http://www.last.fm/api/intr
o

Lists (predominately) Music Events

Plazes
http://plazes.com/api/docs
#GET__plazes_xml

Nokia Plazes provides a list of
Plazes to meet

Facebook
API

ProvideContacts

http://developers.faceboo
k.com/

Operation name: friends.get. This
service returns the identifiers for
the current user's Facebook friends

Operation name: friends.getLists.
This service returns the identifiers
for the current user's Facebook
friend lists

Operation name: users.getInfo.
This service returns a wide array of
user-specific information for each
user identifier passed, limited by
the view of the current user

LinkedIn API
http://www.linkedin.com/st
atic?key=developers_apis

not available as a public program,
but possible to get access by
request

Orange

LocationOfContact

http://www.orangepartner.
com/site/enuk/access_ora
nge_apis/advanced_apis/l
ocalisation_api/p_localisat
ion_api.jsp

available to locate only Orange
France users

O2 Litmus
http://www.o2litmus.co.uk/
tools/apis#tabs-apis-3

restricted to O2 litmus users

open
movilforum

http://open.movilforum.co
m/?q=node/308

available for Movistar users

GoogleMaps
ListLocal

http://code.google.com/ap
is/maps/ service provided by a map or

routing provider
ViaMichelin http://dev.viamichelin.com

Textmefree SendMessage
http://www.textmefree.co
m/

provides a list of free SMS options
on the web

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 16 of 43

TFL

TravelRoute

http://www.journeyplanner
.org/

service that provides travel
option(s) to the meeting point
based on the location of the
contact

GoogleMaps
http://code.google.com/ap
is/maps/

ViaMichelin http://dev.viamichelin.com

Met Office Weather
http://www.metoffice.gov.
uk/weather/uk/uk_forecast
_weather.html

2.3.3 C2C Service eCommerce

The C2C eCommerce use case [13] will provide a flexible eCommerce framework that will
reuse most SOA4All functionalities in order to enable users to create a wide variety of C2C
eCommerce applications. In this scenario, users may combine various services coming from
three different domains:

1. Core Services from SOA4All work packages
2. Services provided by the WP9 eCommerce framework (e.g. Webshop services such

as payment facilities)
3. Third party services provided by external parties in order to complete the C2C

application.

Details on available and planned services are described in deliverable D9.1.1. According to
the requirements for and planned work on the eCommerce Framework, the following
additional requirements need to be fulfilled by the testbed framework in order to be of help for
the WP9 use case:

• The testbed infrastructure should provide a way of setting up scheduled tests
programmatically.

• It should also provide a UI allowing people that want to create a C2C application to
define test cases and to schedule them

• The testbed framework should allow C2C application builders to define constraints
that are used when testing. For example, it should be possible to define a range for
return values or a maximum answering time.

• The testbed framework should allow the specification of notifications in order to notify
a C2C application owner in case that a test was not passed successfully

• The test results should be passed to the SOA4All monitoring/analysis component and
its results should be accessible/visible from the graphical UI of the
monitoring/analysis component.

The following table shows the services involved in the current version of the WP9 storyboard
scenario. As such, these services will be realised first and should be made available in the
testbed environment.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 17 of 43

Table 5: Test Web Services from the WP9 storyboard

Provider Service Name URL Description

Deltavista

hanival_creditCheck:

checkIndividual

https://www.deltavis
ta-
online.at/service/cr
editCheck

Credit check for individuals. Its function is
to identify a person Deltavista needs
either the set firstname, lastname and
address or the set firstname, lastname,
birthdate of customer. Webshop collects
all of this data, so we could be sure that
we get an accurate result of customer's
credit status. It is a service from

hanival_creditCheck:

checkCompany

Credit check for companies, in case a
company cannot be found in deltavista's
database as a company, we should call
the service for individual check. The
reason for that is deltavista may store
small companies as individuals in their
database. It is a service from deltavista
side.

Swsoft SiteWebService Internal service

This Web Service provides site
management functions. Methods are
invoked by the user whose credentials
are specified in SOAP-header.

Example some of the operations:

- CreateSite

- PublishSite

- UpdateSite

- ActivateSite

 Hanival OrderManager Internal service

Operation name: executePayment. This
service settles the payment at saferpay

Operation name: startProvisioning. This
service starts the provisioning of the
customer products placed on an paid
order

Operation name: submitOrder. This
service is started once a valid payment is
registered for an order and the product
provisioning process start when the order
that paid the product is provisioned.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 18 of 43

2.4 Alignment with other Projects and Initiatives

The SOA4All testbed should support both short-term experiments and continuously running
applications, which demonstrate the uses of a service world in business scenarios. Thus, we
will closely collaborate with existing initiatives in this area, including the Semantic Web
Service Challenge (SWSC), and will propose the deployment of the SOA4All testbed on the
Future Internet Research and Experimentation (FIRE) facilities.

2.4.1 SWS Challenge

Over the last three years and several workshops of the Semantic Web Services Challenge2
(SWSC), various researchers working on SWS technologies, as a community, have
discussed and experimented with the best way to evaluate technologies for the mediation,
discovery, and composition of Web Services, and to understand the trade-offs among the
various technical approaches.

The initiative and especially the development of its infrastructure have been actively
supported until now by researchers from STI Innsbruck. The main effort in terms of work
force, infrastructure and budget has been delivered by contributors from the University of
Innsbruck. This is also causing the fact that the infrastructure cannot be properly maintained
and developed since this has been mostly an effort that researchers have been doing in their
spare time. To scale this initiative, one institution cannot be the only promoter and contributor
of the initiative. To achieve and persistently provide a fully-fledged infrastructure for the
testbeds, a more formal process is required to develop and maintain existing and further
scenarios.

The other existing problem to be addressed is the scientific quality and relevance of the
initiative. So far, it failed to produce any formal or evident way to evaluate SWS technologies,
since the process for the evaluation is not at all well-defined, mostly ad hoc and not objective
(e.g. the evaluation tables are changing every time together with meaning of evaluation
symbols). The current evaluation methodology for the SWSC is described in more detail in
[12].

In order to further develop and maintain this testbed infrastructure for the SWSC, it will be
required to rethink the initiative and change its format, especially the evaluation part. Thus, it
is planned to directly contribute to the SWSC within the scope of Task 1.5, and provide the
testbed infrastructure to be developed within SOA4All also for the creation and maintenance
of testbeds for the Challenge. In return, the services and scenarios, which have or will be
published by the challenge, will also, provide useful feedback and test cases for the
evaluation of SOA4All project results.

2.4.2 FIRE

Future Internet Research and Experimentation3 (FIRE) is an initiative under the ICT theme of
EU Framework Programme 7. The initiative has two related dimensions: Building a European
Experimental Facility for Future Internet research, and supporting experimentally-driven

2 http://sws-challenge.org/wiki/index.php/Main_Page
3 http://www.ict-fireworks.eu/

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 19 of 43

advanced research, which defines the challenges for and takes advantage of the dynamically
evolving facility.

The SOA4All consortium has already submitted a proposal to deploy its testbeds, generated
by the testbed infrastructure described in this deliverable, to the FIRE facilities, in order to
conduct experiments on a suitably large scale. This will provide an important benefit to
SOA4All, and will enable the consortium to validate one of the main objectives of the project
– enabling the Service Oriented Architecture (SOA) revolution on a worldwide scale. Results
from this endeavour will be reported in the next deliverable of Task 1.5, D1.5.2.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 20 of 43

3. State of the Art Tools and Methodologies

The creation of a testbed infrastructure in task T1.5 of SOA4All has three major goals. The
first one is the deployment of a sufficiently large set of services to serve as a realistic
environment in which to evaluate the objectives of SOA4All, such as the scalability of the
developed solutions. Furthermore, an environment, which supports test automation, will be
developed. Providing suitable tools for the testbed generation (creating parameterized
services based on a statistical model), the generation of suitable test cases, as the execution
of test case batches, will achieve this. Finally, a testing methodology will be developed,
which aims to provide means for the ranking and selection of test cases, based on their
potency and coverage of other test cases, in order to reduce test effort. The testbed
infrastructure will enable the validation of SOA4All developments, demonstrating the
achievement of project objectives and the advancement beyond current State of the Art.

In order to achieve these goals, we are going to develop a testbed infrastructure, based on
and extending the current State-of-the-Art in SOA testing. Currently a number of open source
testbed tools and methodologies are available, which can be reused and extended. This
section details a number of existing tools in the mentioned areas, which will serve as a basis
for further development. Section 4 contains an evaluation regarding the requirements for a
SOA4All testbed. These tools mainly focus on the creation of suitable testbeds and for the
configuration of the deployed service, in order to conduct a Quality of Service based analysis
of Service-Oriented applications. These tools not only provide valuable insights into the
typical challenges encountered when testing large-scale applications based on distributed
services, but also serve as the basis for the creation of tools and components needed for the
SOA4All testbed infrastructure, which will be detailed in Section 5.

3.1 Group Testing of Web Services

The Group Testing methodology for Web Services proposes a framework, which applies
selection and ranking mechanisms to the test evaluation. By using this framework, the
potentially overlapping coverage of the test cases is identified during an evaluation phase
and used for the elimination of inefficient test cases. It also ranks newly added test cases
and re-ranks existing test cases using updated coverage relationships and the recent test
results. By applying the selection and ranking to the services, we can enhance the testing
efficiency while at the same time reducing the efforts of testing of large scale and complex
composite services.

The group testing service framework can be applied for both atomic and composite services.
Regarding atomic services, the framework works by collecting those atomic services that are
implementing the same specification. As an example, the “store handle” atomic service in the
WP9 Use Case, several domain registration services are implementing the same
specification. Given m test cases Tm (T1…Tm) and n number of services Sn (S1…Sn), the total
number of tests that need to be executed is simply m*n (see Figure 2). The group testing
mechanism broadcasts all test cases to all the atomic services under test. Following the
execution of the tests, a voting service, which automatically generates an oracle for each test
case, collects all outputs from the tests. Each service’s output is compared to the related
oracle, and the results are collected in the form of a service profile, which includes the
information on the service’s reliability, as well as on the test cases’ effectiveness. Based on
this data, a ranking is applied to the services and test cases.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 21 of 43

In the next test phase, the information is reused, by applying the highest ranking test cases
first, thus eliminating services that fail as soon as possible. Testing time is thus reduced, and
the results are again used to update the service and test case rankings.

Figure 2: Group testing for atomic services

For composite services, the framework groups together the component services that have
several equivalent services to determine the number of tests run. In a composite service,
there is a set of n component services with each of these n component services having
several equivalent services. A specific Seti has mi equivalent component service. Then the
possible composite services that exist will be m1 * m2 * ... * mn if in each set of a composite
service consists of one component service. Again, as an example from the eCommerce Use
Case, the domain registration process for the webhosting platform (a composite service)
consists of five component services where each of the services has three equivalent
candidate services. Thus, the total number of number of tests run is 35. Figure 3 shows this
example. Group testing collects the output from all equivalent component services, and
establishes the oracles using the voting mechanism, which is subsequently used to identify
and eliminate incorrect services.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 22 of 43

Figure 3: Applying group testing to composite services

Group testing services can also be used for integration testing by conducting the same
approach. Only the best candidates from each atomic service are used for the integration
testing using this mechanism.

Mentioned above, ranking and selecting the test cases make the execution of the test set
more efficient for group testing services. Several criteria can be used for this selection and
ranking mechanism. One of these criteria of ranking the test case is to calculate its potency.
For this criterion, we could use the statistical data of its probability to detect faults in order to
eliminate the incorrect services earlier and to reduce the overall test efforts. As an example,
we could assume the potency by detecting the fault of 30 services out of the total 100 that
are available. Thus, the probability of a detected fault is 30%.

The second ranking criterion, we can establish the coverage relationship among test cases,
that is to identify the amount of additional coverage one test case provides, given that we
have applied other test cases first. One way to identify the test case coverage relationships is
to analyze how the test cases are developed. They are considered to have similar coverage
when the test cases aim to evaluate the same software aspect (e.g., control flow), on the
same software segment. A simplified coverage relationship model (S-CRM) has been
proposed in [3], in order to reduce some of the computational complexity of constructing a full
coverage model. This coverage relationship model is created by first collecting the value of
the correct output & incorrect output that are generated by each of the services. From the

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 23 of 43

correct and incorrect output sets, we can determine the coverage between one test to the
other test.

Figure 4: Testing and service selection using S-CRM

According to [3], when only ranking by potency, the SUTs are simply penalized for the same
faults multiple times. Therefore ranking test cases by both potency and test case coverage
relationships is recommended.

3.2 Fault Injection for a Service Oriented Architec tures Testbed

A fault is a defect or an abnormal condition, which may lead to a failure. In fault injection
testing, an error or fault is deliberately inserted into a software or hardware system in order to
trigger and determine its response. Its target is not to recreate the conditions that produce
the fault. By injecting faults into the Web Services, we can enhance the test coverage and
simplify the testing. Moreover, fault injection techniques are also useful for the inspection of
Web Service compositions.

Fault-injection testing is usually done for Quality of Service based testing. According to [5]
fault injection is a well-proven method of assessing the dependability of a system. A fault-
injection testbed for SOAs must reflect a typical service-oriented architecture.
Parameterization data for fault-injection testing is usually based on models, not raw data.
Raw data is usually sensitive, for both privacy reasons and from a business point of view.
Raw data also requires a large place for storage. Furthermore, addressing a specific
question in raw data is difficult, due to the scarcity of the raw data itself. As an example, in
fault injection specifically, rate and the type of the fault occurrence are important for the
testing. Therefore, parameterisation for the fault injection should be done based on suitable
statistical models and not directly on the raw data [1].

According to [5] there are two types of methodologies for fault injections. Compile-time
injection modifies the actual source code of the System Under Test – for example by using
mutation code - to inject simulated faults into a system. The second type is Runtime injection
where the faults are injected into a running system by using some kind of software trigger
(such as time or interrupt based triggers). Between these two methodologies, the main
drawback of Compile-time injection is that it requires the modification of the actual code, thus

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 24 of 43

this technique cannot be used when the actual service implementation is not available for
modification, such as for commercial systems or third-party services.

In the next part, we will discuss a selection of current fault injection tools for SOA based
systems. The following fault injection tools have been surveyed in the scope of this
deliverable:

− GENESIS
− PUPPET (Pick UP Performance Evaluation Testbed)
− WS-FIT (Web Services Fault-Injection Tool)

3.2.1 GENESIS

Creator: Vitalab – Vienna Internet Technologies Advanced Res earch Lab
(http://berlin.vitalab.tuwien.ac.at/prototypes/genesis-generating-service-based-testbeds/)

GENESIS is an open source tool. The tool is available for download on request to the owner.
It injects the faults during the actual service invocation, which allows delays and reliability
problems to be simulated. It can also be used to generate test Web Services. Furthermore,
the tool can be configured and extended by adding plug-ins for different purposes. This
different plug-ins can be configured and added to the overall tool as needed. Some examples
of plug-ins with its own purpose listed below are provided with the current version of the tool.

− QoSPlug-in: simulates performance- and dependability specific QoS metrics, such as
processing time, scalability, throughput, availability, and accuracy.

− BPELPlug-in: integrates the bexee4 BPEL engine into GENESIS and executes
composed processes inside the Web service operations.

− LogPlug-in: logs the invocations of Web services and the interactions within the Web
Service itself.

− RegistryPlug-in: registers and deregisters the Web service at a registry.

The GENESIS architecture consists of two major parts. The first part is a single front end
where the components and charactheristics of the testbed are being defined and which
allows for a centralized control of the test bed.

The second part is the distributed back-end, which generates the testbed infrastructure on a
Web Service hosting environment. In this part, the incoming requests are encoded as Web
Service descriptions. These descriptions are received by the Controller Web Service and
forwarded to the Web Service generator. Then, the Web Service generator transforms them
into real service instances. Plug-ins that are used as an extension for the functionalities of
the created Web Services are collected at the Plug-in Container and are being controlled by
changing their parameters in the local Plug-in Configuration Database. The Front-end and
the back-end communicate using the SOAP and TCP based protocol. Figure 5 [2] shows the
main components of the GENESIS architecture.

4 bexee - BPEL Execution Engine, http://bexee.sourceforge.net/

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 25 of 43

Figure 5: GENESIS Architecture

Both parts of GENESIS architecture share a common description model for Web Services,
based on which they exchange data. The major elements of this Web Service model are
hosts, services, operations, plug-ins and parameters. Host is defined by an URL which points
to a running GENESIS instance. This host contains a set of Web Services. As usual, a
service has a unique URL and a set of operations. These operations have a set of input
types with a single output type, and the possibility to be extended by referencing a set of
plug-ins. The service itself can also reference a plug-in, which is invoked during deployment
or undeployment. The services can communicate via Remote Procedure Calls or in
message-oriented manner. A parameter must be declared by a plug-in in order to be
accessible. The behaviour of the Web Service can be controlled through setting up and
declaration of suitable parameters, or by a plug-in.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 26 of 43

Figure 6: Web service generation in GENESIS

In Figure 6 [2], the sequence of activities for the generation of a Web Service in GENESIS is
shown. At the remote back-end host the plug-ins declared in the Web Service description are
being checked, to see whether the referenced plug-ins can be found. When these plug-in are
not found in the plug-ins container, then they should be transferred and registered. The
references are being checked inside the request and responses of the Web Service
description. It checks whether the data types used are primitive or complex types. The
complex data types are passed on to the XSD processor of JAX-WS, for generating
corresponding Java classes. The JAX-WS-compliant source code of the Web Service is
generated using Apache Velocity-based templates. The source code is then passed to the
Java compiler. The compiled Web Service is passed to wsgen, which is again a part of JAX-
WS, to generate the necessary stubs for deployment. The class loader reads in the compiled
Web Service, instantiates it and initializes all plug-ins. Finally, the Web Service is deployed at
the specified HTTP/SOAP endpoint.

In testing the services using GENESIS testbed tool, there are three parts where the
parameters could be defined to suit our needs. First, we could define the parameters for the
whole service generation as default parameters, second, in each of the operations for
individual service template and third we could set the parameters for environment. During the
deployment and undeployment of services, plug-ins that should be invoked at this stage, can
be defined. The developer can configure these properties using the configuration facility of
the API provided. In GENESIS, Web Services can be specified in two different ways. First,
the Web Services could be declared as an abstract template, which can be, reused the
instantiation of a set of services with common properties. Second, the Web Services are
deployable as instances inside host declaration. For an example testbed configuration used
by the GENESIS tool, please refer to Annex A Listing 2.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 27 of 43

3.2.2 PUPPET (Pick UP Performance Evaluation Testbe d)

Creator: PLASTIC Consortium (http://www.ist-plastic.org/)

Similar to GENESIS, Puppet validates the quality of service in the process of development of
the service. It is an open source tool under GPLv3. The tool is available for download from
http://plastic.isti.cnr.it/wiki/tools#puppet. Puppet generates a suitable testbed automatically,
and can validate the implementation of a service before its deployment in the target
environment. Puppet tests the specified quality of service after its deployment in the final
environment using the specified quality of service parameters.

During the testbed creation process, Puppet conducts two different stages (as shown in
Figure 7). In the first stage, Puppet generates a skeleton of the stubs. These skeletons are
created according to the WSDL description without adding any logic to the service
operations, which consist only of empty methods. These stub skeletons simulate the non-
functional behaviour of the service in the composition based on the given Service Level
Agreement (SLA) in Web Service Agreement format. After the skeleton is created then it is
implemented by filling it with the behaviour according to the Web Service Agreement
description and applying automatic code transformation. The second stage is to complete the
implementation of testing the service. The provided quality of service is being tested by a
service in a pre-specified service composition in WS-CDL (Web Services Coordination
Language) or WS-BPEL (Web Services Business Process Execution Language). In this
stage, the service composition requires the interaction of a human agent according to the
specified composition in the orchestration or in the choreography and required services.
Puppet fills the stubs with code to emulate the non-functional behaviour described in Service
Level Agreement. Puppet generates an environment, in which to test whether the system
under test provides the quality of service as described.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 28 of 43

Figure 7: The Puppet testbed generator

Puppet provides the testbed for a reliable estimation of the exposed Quality of Service (QoS)
properties of the Service Under Test (SUT). Some Quality of Service attributes supported by
Puppet, are delay, reliability and workload. These three attributes can be parameterized.
Delay could be emulated by inserting an appropriate sleep() instruction in the stub code.
Workload is generated as calls to the remote service that are modelled on the client side,
with the amount or frequencies of the calls defined in the Web Service agreement. Reliability
refers to the rate with which calls to the Web Service fail. Failed calls are implemented by
throwing remote exceptions within the stub.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 29 of 43

As mentioned before, Puppet could be parameterized by introducing suitable parameters into
the Web Service agreement definition. As an example, please refer to the code fragment
shown in Listing 1 [8]:

...
<wsag:ServiceLevelObjective>

<puppetSLO:PuppetSLO>
<puppetSLO:Latency>

<value>10000</value>

<puppetSLO:Distribution>
<Gaussian>10</Gaussian>
</puppetSLO:Distribution>

</puppetSLO:Latency>
</puppetSLO:PuppetSLO>

</wsag:ServiceLevelObjective>
...

...
try{

Thread.sleep(1000);
}
catch

(InteruptedExcepiton e)
{}

...

Listing 1: Service Level Objective Mapping for Latency

3.2.3 WS-FIT (Web Services Fault-Injection Tool) & GRID-FIT

Faults sometimes take a very long time to occur during testing, especially in an SOA system,
where some services and their fault behaviour may not be directly observable. Therefore,
WS-FIT aims in producing the fault itself and in injecting those faults on services deployed in
on a wide variety of different platforms and machine architectures. This fault injection method
is a modified version of general network-level fault injection. The tool injects faults to assess
SOAP based Web Services by using network-level fault injection at runtime. It performs this
operation on the middleware message layer (please refer to Figure 8). WS-FIT consists of
two parts:

1. An instrumented version of the SOAP stack is used, by adding pieces of fault injector
hook code to the SOAP API. This hook code can be installed in more than one
SOAP stack, for example the SOAP stack of a client machine and the corresponding
SOAP stack of the server machine whose services the client is consuming (as an
illustration, please refer to Figure 8). The hook code consists of segments for both
incoming and outgoing messages. The incoming message is intercepted by one
hook. This hook then transmits the message to the fault injection engine via a
specific socket and receives the modified message back from the fault injector
engine. This modified message is then transmitted normally to the original
destination. Another hook for outgoing messages processes SOAP messages in the
same way.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 30 of 43

Figure 8: WS-FIT fault injection hook code placement.

2. The actual fault injector engine, which conducts the following sequence of activities
(please refer to Figure 9).

a. It receives the SOAP message encapsulated in an XML document from the
hook code.

b. It extracts the SOAP message, processes and logs the information from the
encapsulating XML document.

c. Two triggers now determine how the message should be further processed.
i. In a first step, the so-called quick trigger determines if faults are

required to be injected into the message supplied, in order to
determine whether detailed processing is necessary at all.

ii. In the second step, a message trigger determines where the faults
should be injected. Two kinds of triggers are used, which react to the
whole message, and forward the whole message body, or parameter
triggers, which process the bodies of specific parameters.

d. Conduct the actual fault injection on the message, based on a user script
linked to the corresponding trigger.

e. Transmit the message back to the hook code.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 31 of 43

Figure 9: WS-FIT message modification

WS-FIT supports two fault classes. It supports communication faults such as delay and
message loss, which are injected by delaying or discarding messages. Furthermore, a
variety of faults can be injected by message modification, based on provided user scripts.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 32 of 43

4. Evaluation

This section serves as an evaluation of the examined tools and methodologies with regard to
the overall requirements for a SOA4All testbed, as previously specified in Section 2. The
evaluation will be used to select an existing tool (or combination of tools and approaches) in
order to provide a starting point for the development of the SOA4All testbed. The concrete
decisions for the design of the testbed infrastructure are explained in more detail in Section
5.

Group Testing Service

There is currently no prototypical implementation of a group-testing tool available, however
the framework and underlying methodology is described in detail. In the group testing
service, the test could be done efficiently by eliminating unnecessary test cases by applying
selection and ranking of test cases according to their coverage and potency. Thus, we will
pick up the methodology described and implement it as a part of the overall tool chain in the
SOA4All testbed infrastructure, which will fulfil the R2.1.5 requirement from Section 2. This
methodology also covers the requirement R2.1.2, as the methodology is specifically suitable
to handle a large-scale volume of services. We will use this method by applying it to one of
the available tools. A description of how the method and tool are integrated will be explained
further in the testbed infrastructure specification section.

GENESIS

This testbed generation tool fulfils some of the requirements specified in section 2 of this
deliverable. GENESIS is a testbed generation tool (requirement R2.1.1), which can be
integrated into existing SOA environments thus fulfilling requirement R2.1.7. With GENESIS,
realistic Web Services with appropriate behaviour abstraction can be simulated, which
fulfilled the R2.1.4 requirement. GENESIS also generates Java code automatically and can
be controlled through the provided Java API conveniently. This testbed generates the
services automatically on remote hosts and allows tool users to set global parameters for the
testbed, fulfilling requirement R2.1.9. Regarding to the R2.2.1 requirement this testbed is
also flexible and extendable by adding appropriate plug-ins. Furthermore, the tool is Open
Source software, fulfilling requirement R2.2.2.

The flexible extension mechanism, based on additional plug-ins, also enables developers to
provide support for functionalities that none of the examined tools currently provide. For
example, a plug-in for the creation of simulated RESTful services can be included, which
realises the described behaviour through the reactions to the usual HTTP commands.

Puppet

The puppet tool has been developed for specific application scenarios, specifically for service
oriented mobile applications [9]. However, the tool and methodology can still be used as part
of the envisioned testbed concepts.

Puppet has some features, which fulfil some of the requirements for a SOA4All testbed
infrastructure:

− Automatic generation of a testbed, according to a set of configuration parameters
(R2.1.1)

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 33 of 43

− Stubs are generated automatically based on WSDL & WS – Agreement (R2.1.2 &
R2.1.7)

− Transform XML definitions into Java code (R2.1.9)

In addition, the tool is Open Source software, and the resulting testbeds deployable to
different platforms, fulfilling the R2.2.2 and R2.2.3 requirements.

WS-FIT

The WS-FIT tool has seen another phase of development and is currently available as GRID-
FIT, for the use in GRID computing [10]. WS-FIT has different features, which are:

− Simulates API level faults without the need for modifying code or running a test
harness. This feature covers the R2.1.6 SOA4All requirement, as no access to
sources of Web Services is necessary.

− It is performed in the middleware message level.
− The hook code can be installed in many different platforms, which are good for the

Web Services, since their implementation is deployed from different platforms and
machine architectures. This feature will cover the R2.2.3 SOA4All requirement.

WS-FIT is using Runtime fault injection techniques, where it does not need any code
modification compared to the other techniques. However, according to [11] the WS-FIT
design has a distinct disadvantage, since the trigger stage only returns simple truth values
which determine for the process to continue to the second stage or not. This could
complicate the inclusion of user script triggers.

As WS-FIT is based on a modification of the Web Service stack, it abstracts from the actual
technology used to implement the services, fulfilling requirement R2.1.3. Requirement R2.1.9
is fulfilled, as different parameters and behaviour can be specified to simulate the occurrence
of failures. The tool is available as Open Source (R2.2.2).

Table 6 below summarises all tools, the requirements fulfilled by each tool and the type of
fault injection used by the tools.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 34 of 43

Table 6: Summary of fault injection tools

Tool/Methodology Fulfilled
Requirements Fault Injection Type

GENESIS

R2.1.1

Compile time fault injection

R2.1.4
R2.1.7
R2.1.9
R2.2.1
R2.2.2
R2.2.3

PUPPET (Pick UP Performance
Evaluation Testbed)

R2.1.1

Compile time fault injection

R2.1.2
R2.1.7
R2.1.9
R2.2.2
R2.2.3

WS-FIT (Web Services Fault-
Injection Tool)

R2.1.3

Runtime fault injection
R2.1.6
R2.1.9
R2.2.2
R2.2.3

The Fault Injection tools GENESIS, Puppet and WS-FIT have some similarities in the way
they realise the injection of faults in Service based applications. Each tool is mostly
concentrating on the Quality of Service, particularly in injecting delay. Aside injecting the
delay, GENESIS also has some other QoS elements that are injected as a fault for QoS
checking. GENESIS and Puppet use Compile-time fault Injection techniques, where the Web
Services themselves are modified to simulate a particular behaviour. Still, as the tools enable
the mocking of Web Services based on real WSDL definitions, they are still suitable to create
realistic testbeds for SOA4All. Due to the extendibility of the GENESIS solution and the
fulfilment of a large set of our requirements for the testbed infrastructure, we will base the
SOA4All testbed infrastructure on this open source tool.

The next section will specify the development of the testbed infrastructure and the planned
extensions for the chosen tool, GENESIS. A number of additional requirements will be
fulfilled by extending the set of available plug-ins for this tool. Furthermore, a usage scenario
for the testbed infrastructure based on this tool will be detailed.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 35 of 43

5. Testbed Infrastructure Specification
In the remainder of this deliverable, we have provided details on the basic requirements for a
SOA4All testbed. We have identified two methodologies for testing to support those
requirements; including fault-injection based testing of Web Services, and group testing of
services. We have also gathered some ideas or concepts that are used to test a SOA
application in available Open Source tools, and - after an evaluation of these tools - we
present a basic specification for the testbed infrastructure in this section.

As mentioned in Section 4, we will use the Open Source tool GENESIS as the basis for the
development of a testbed infrastructure, more specifically as a tool to create testbeds which
can then be used for experiments both within SOA4All, and in other contexts (such as the
SWS Challenge).

Regarding licensing of the testbed infrastructure tools: As the basis for development,
GENESIS, is using the GNU Lesser General Public License5, as published by the Free
Software Foundation, the same licence will be used for the SOA4All testbed tool.

5.1 Methodology Description and Infrastructure Desi gn

Figure 10 shows the main use cases and actors of the SOA4All testbed infrastructure, based
on the concepts and methodologies discussed in the previous sections. We will use the
GENESIS testbed generator as a basic tool with the combination of Puppet fault injection
functionalities and Group Testing Service concepts and methodologies. GENESIS offers a
great degree of flexibility due to its plug-in mechanism and supports a large part of the core
functionality for an automated testbed environment. We could use different plug-ins or create
similar plug-ins for an extension of the tool. Furthermore, the group testing service
methodology, including selection and ranking mechanisms, will be added as additional
components to make the test evaluation more efficient. This plug-ins will then be integrated
with the GENESIS tool.

The main actors of the testbed infrastructure include the technology providers, which include
both component owners (creators of components such as the ranking component from WP5
or the composition component from WP6) and use case owners (the providers of the use
case prototypes from WP7, WP8 and WP9). These actors will define service templates, i.e.
create templates describing requested service behaviour, and store these templates in a
repository. Test cases can be defined by each technology provider (including unit tests for
specific functionalities of components or integration tests), but are also defined by testers,
which conduct evaluation experiments (e.g. concerning scalability or performance of
integrated components) independently from the specific component owners. In addition,
testers would prepare testbed configurations, i.e. by defining suitable Quality of Service
parameters and global settings like the definition of available hosts for deployment of
services. Testers would also be in charge of deploying instances of the configure testbeds,
which include selected service templates. Services will then be instantiated and deployed on
the testbeds, according to the settings of the selected service templates. Finally, test cases
can be executed, for example by using the SOA4All Runtime Environment. The execution of
test cases produces not only evaluation data, but also useful ranking information useable for
the future selection of test cases. A concrete usage scenario of the infrastructure is explained
in Section 5.3.

5 Available at http://www.gnu.org/licenses/

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 36 of 43

Figure 10: SOA4All Testbed Use Case diagram

5.2 Plug-ins Specification
In order to provide additional support for the requirements collected in Section 2, several new
plug-ins for the testbed creation tool based on GENESIS are going to be developed and
provided to the tool users. The following preliminary specification for the testbed generation
tool is based on parts of the GENESIS tool API. The specification forms the basis for further
developments of the tool within the scope of the testbed Task 1.5. As such, this section
serves as a guide to the future design and development of the testbed infrastructure tool, and
will be considered as the basis for the extensions planned for deliverable D1.5.2.

The following plug-ins will be designed and implemented in D1.5.2:

• HTTP plug-in for the support of RESTful Web Services
• Orchestration plug-in for composite services
• Group-based testing plug-in for efficient testing

Further plug-ins could be defined based on the first experiments with the testbed generation
tool and the service templates. Deliverable D1.5.2 will contain an updated section on the
usage of the testbeds and the requirements for conducting evaluation experiments on the
testbeds (based on the findings in the overall evaluation roadmap to be defined in D2.5.1).

5.2.1 REST plug-in

This plug-in needs to create suitable web resources that react to HTTP commands as
required by the description of the RESTful Service. For example, a GET on a resource
should provide a (serialized) description of the resource, while POST will update the
resource accordingly.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 37 of 43

The well-known Web Services testing tool soapUI6 contains support for testing REST
services. The services themselves can be created as mock objects, based on either a
manual configuration of service name, endpoint and the definition of initial resources, or
based on a WADL definition. The Web Application Description Language (WADL), specified
in [16], has been designed to provide a machine process-able description of HTTP-based
Web applications. By supplying a WADL document, soapUI can import all defined resources
and methods (as requests). Associated XML Schemas are also imported and used for
validations and form-generation. Additionally, code and documentation generation based on
the WADL is possible as well.

In D1.5.2 we will propose a mechanism providing similar support in the form of plug-in.
WADL style information will be based on an extension of the grammar used currently within
GENESIS to define service templates.

5.2.2 Orchestration plug-in

A new version of an orchestration plug-in will be needed, supporting the lightweight process
orchestration language developed in WP6. The existing work on the BPEL plug-in will be
reused if possible, as it is expected that the SOA4All process definition language will use a
mapable subset of the available language constructs from BPEL.

The light-weight process language will be defined in [17], which is due Month 12 of the
project. The exact details of the process language are still open at the time of this writing,
further details for the proposed orchestration plug-in will therefore be provided in the next
deliverable for Task 1.5.

5.2.3 Group-based testing plug-in

In order to support the methodology for group based testing described previously, a plug-in
will take care of administering test cases to different – potentially equivalent – services, and
will realise the ranking and selection mechanism. Resulting data will be stored in a testing
repository, and will be reused for future iterations of the test cases, thereby allowing the
selection mechanisms to prioritize test cases based on their coverage probabilities and
potency.

We will design and implement the simplified coverage relationship model proposed by the
authors of [3]. The plug-in containing this methodology will collect test data generated over
the whole testbed for which group-based testing was activated. Test data will be stored in a
dedicated repository, and evaluated to create suitable oracles and provide data to the voting
process. Test Cases will thus be ranked and selected accordingly for future test runs.

In addition to the testbed plug-in which collects and evaluates the data for the group-based
testing, a suitable front-end for the selection of test cases will be needed. When users define
which test cases should be part of a test suite to be executed, this ranking should be visible.
Alternatively, the selection functionality could be automatically applied to suitable test suits,
which are executed programmatically, e.g. through a continuous build system.

6 Available at http://www.soapui.org/

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 38 of 43

5.3 Testbed Infrastructure Usage Scenario

The following systematic description exemplifies a typical usage scenario of the envisioned
testbed infrastructure:

1. A prospective user of a testbed, like a SOA4All component owner or tester, or a use
case partner, which wants to test the tools with services from their own use case
service landscape, starts the testbed generator tool by selecting a suitable testbed
configuration template.

2. The user further defines additional parameters of the testbed, such as Quality of
Service parameters, host details and other global characteristics of the testbed.

3. The user now can start to select services, which are to be deployed to the testbed, by
both selecting suitable prepared test service templates, writing their own service
templates, or by simply deploying existing test services to the testbed hosts on their
own.

4. The user can now start to execute test cases, or batches of test cases. These can be
provided by the component owners, dedicated unit and integration testing teams, or
by the use casework packages. A test case repository will enable users to gather
suitable test cases quickly and to reuse and adapt already existing test cases.

5. Test case suites will be executed by the testbed infrastructure, according to the group
testing methodology. This will enable the testbed user to collect useful test case
ranking and rating data, allowing a future reduction in testing efforts, by the means of
the group testing voting mechanism described previously.

6. Finally, the user persistently stores the collected test data in a testing repository, and
alerts the concerned parties, like service creators or component owners, to the results
from the test run.

The testing process (steps 4 to 6 in the description above) can of course also be included in
a suitable continuous integration environment used for the development of SOA4All tools and
components. The necessary alignment of the testbed infrastructure with continuous
integration tools, based on an environment such as Apache Continuum7, will be investigated
in D1.5.2, the next deliverable in Task 1.5, concerned with the set-up of the testbed
infrastructure for SOA4All. Apache Continuum is an enterprise-ready continuous integration
server featuring automated builds, release management, role-based security, and integration
with popular build tools and source control management systems, such as those already in
use for the SOA4All developers.

7 http://continuum.apache.org/

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 39 of 43

6. Conclusions

In this deliverable, we have described the major requirements of the testbed infrastructure
environment for SOA4All. This infrastructure will be used as part of the overall efforts to
evaluate SOA4All project results. The testbed infrastructure will provide a set of tools and
methodologies to enable prospective users, such as component owners, use case partners
and dedicated testers to generate testbeds, create test cases and execute those test cases
on the testbed. Results from testing are not only be used for project evaluation, but also
serve as the means to reduce testing efforts while maintaining efficiency.

We have surveyed a number of promising tools from two areas in SOA system testing,
including fault injection tools and the group testing methodologies, which are used to reduce
the testing effort for a large set of services. Based on this, we have described the setup of
the SOA4All testbed infrastructure, which will consists of one of those tools – GENESIS –
and a collection of plug-ins to support different functionalities in the testbed environment. The
flexible architecture of this tool will enable the design and development of dedicated plug-ins,
which provide support for specific areas of testing in SOA environments. Several plug-ins
which are going to be developed in the scope of the next deliverable for Task 1.5 have been
described, based on the set of collected requirements. These plug-ins include support for the
creation of composed services, for the application of the group testing methodology to the
testbeds and for the generation of RESTful services, respectively.

Finally, a usage scenario for the users of the testbed infrastructure has been described, and
an outlook on the development of the different extensions for the testbed generator
GENESIS has been given. Altogether this tool, along with the plug-ins and testing
methodologies, should provide a way to reduce the testing effort in a large SOA environment,
while maintaining test efficiency at the same time.

In the next deliverable of Task 1.5, we will describe the actual extensions of the GENESIS
tool, and the set-up of the testbed architecture. The final deliverable in this task, D1.5.3, will
then provide the results from experiments conducted on testbeds generated using the
described infrastructure.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 40 of 43

7. References

1. Philipp Reinecke, Katinka Wolter, Institut fuer Informatik Humboldt-Universitaet zu
Berlin, “Towards a Multi-Level Fault-Injection Testbed for Service-Oriented
Architectures: Requirements for Parameterisation”, Workshop on Sharing Field Data
and Experiment Measurements on Resilience of Distributed Computing Systems (at
the IEEE SRDS 2008), October 6 2008-October 8 2008, available at
http://www.amber-project.eu/srds-ws/.

2. L. Juszczyk, H.-L. Truong, and S. Dustdar, “Genesis - a framework for automatic
generation and steering of testbeds of complex web services,” in Proc. 13th IEEE
International Conference on Engineering of Complex Computer Systems ICECCS
2008, March 31 2008–April 3 2008, pp. 131–140.

3. W.T. Tsai, Xinyu Zhou, and Yinong Chen, Arizona State University, USA and
Xiaoying Bai, Tsinghua University, China. On Testing and Evaluating Service-
Oriented Software. 0018-9162/08 © 2008 IEEE, 40-46.

4. Eric Roch (Chief Technologist). The Service Oriented Architecture (SOA) Blog.
Posted 3/22/2006.

5. N. Looker, M. Munro, and J. Xu, “WS-FIT: A Tool for Dependability Analysis of Web
Services,” in COMPSAC ’04: Proceedings of the 28th Annual International Computer
Software and Applications Conference - Workshops and Fast Abstracts -
(COMPSAC’04). Washington, DC, USA: IEEE Computer Society, 2004, pp. 120–123.

6. Rizwan Mallal, Mamoon Yunus, Crosscheck Networks, SOA Testing using Black,
White and Gray Box Techniques access on: 3rd December, 2008 -
http://www.crosschecknet.com/soa_testing_black_white_gray_box.php

7. Yugan Sikri, End-to-End Testing for SOA-Based Systems, available at
http://msdn.microsoft.com/en-us/library/cc194885.aspx#anchor2

8. Antonia Bertolino, Guglielmo De Angelis, Andrea Polini, Consiglio Nazionale delle
Ricerche, Pisa, Italy, Automatic Generation of Testbeds for PreDeployment QoS
Evaluation of Web Services, Published as Technical Report at ISTI/CNR © 2006-07-
31.

9. Antonia Bertolino, Guglielmo De Angelis, Francesca Lonetti, Antonino Sabetta Istituto
di Scienza e Tecnologie dell’Informazione “A. Faedo” Consiglio Nazionale delle
Ricerche, Pisa, Italy, Let The Puppets Move! Automated Testbed Generation for
Service-oriented Mobile Applications, IEEE 3-5 Sept. 2008.

10. N. Looker, B. Gwynne, J.Xu, M. Munro "An Ontology-Based Approach for
Determining the Dependability of Service-Oriented Architectures", 10th IEEE
International Workshop on Object-oriented Real-time Dependable Systems, Sedona,
USA, 2005.

11. N. Looker "Dependability Assessment of Web Services," Durham University,
Department of Computer Science, PhD Thesis, 2006.

12. Charles Petrie, W3C SWS Challenge Testbed Incubator Methodology Report, W3C
Incubator Group Report 31 March 2008, available at
http://www.w3.org/2005/Incubator/swsc/XGR-SWSC/

13. Schreder, B., Villa, M., Abels, S., Zaremba, M.; Deliverable D9.1.1: Future C2C
eCommerce Requirements and Scenario Descriptions, SOA4All: Service Oriented
Architectures for All - 215219.

14. Vogel, J., Schnabel, F., Mehandjiev, N.; Deliverable D7.2 Scenario Definition,
SOA4All: Service Oriented Architectures for All - 215219.

15. Richardson, M., Martínez, I.; Deliverable D8.1. Web21c Requirements, SOA4All:
Service Oriented Architectures for All - 215219.

16. Hadley, M.J.; Web Application Description Language (WADL), Sun Microsystems
Inc., Specification available at https://wadl.dev.java.net/wadl20061109.pdf

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 41 of 43

17. Xu, L. (editor); Deliverable D6.3.1 Specification Of Lightweight, Context-aware
Process Modelling Language, SOA4All: Service Oriented Architectures for All -
215219.

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 42 of 43

Annex A.

The following Listing presents a sample configuration for the GENESIS Testbed generation,
explained in Section 3 of this document.

<configuration>

 <!-- necessary plugins to simulate QOS processing time and service
invocations -->
 <plugins>
 at.ac.tuwien.vitalab.genesis.server.plugin. QOSPlugin
 at.ac.tuwien.vitalab.genesis.server.plugin.Invocat ionPlugin
 </plugins>

 <!-- by default delay service operations by 2 sec onds-->
 <defaultparameters
 qos_processingtime="2000"
 />

 <!-- by default we just simulate the delay -->
 <behavior>
 <QOS default="true">
 QOSPlugin.simulateDelay
 </QOS>
 </behavior>

 <schema xmlns:xs="http://www.w3.org/2001/XMLSchem a"
elementFormDefault="qualified">
 <!-- types can be imported of defined inline -- >
 <!-- <import name="SomeData" file="path/data.xs d"/> -->
 <xs:complexType name="somestructure">
 ...
 </xs:complexType>
 </schema>

 <servicetemplates>
 <service name="getAndCheckServiceTemplate">
 <deploy>
 <behavior>
 <!-- empty -->
 </behavior>
 </deploy>
 <undeploy>
 <behavior>
 <!-- empty -->
 </behavior>
 </undeploy>
 <operation name="getAndCheck" >
 <!−− over ride default parameters −−>
 <parameters qos_processingtime="1000"/>
 <input>
 <name type="string"/>
 </input>
 <output type="somestructure"/>
 <behavior>
 (
 InvocationPlugin."return=dbService.getData(arg .name)"

SOA4All –FP7 – 215219 – SOA4All Testbeds Specification And Methodology Deliverable

© SOA4All consortium Page 43 of 43

 ->
 InvocationPlugin."checkService.checkData(retur n)"
)
 </behavior>
 </operation>
 </service>
 </servicetemplates>

 <environment>
 <host address="http://localhost:8080/WebService s/GeneratorService" >

 <service name="dbService">
 <operation name="getData" >
 <!-- data retrieval takes 5 seconds -->
 <parameter name="qos_processingtime">5000</param eter>
 <input>
 <name type="string"/>
 </input>
 <output type="somestructure"/>
 </operation>
 </service>

 <service name="checkService">
 <operation name="checkData" >
 <!-- checking takes 0.5 seconds -->
 <parameter name="qos_processingtime">500< /parameter>
 <input>
 <data type="somestructure"/>
 </input>
 <output type="void"/>
 </operation>
 </service>
 </host>
</environment>

</configuration>

Listing 2: Genesis Testbed Configuration

