

Project Number: 215219
Project Acronym: SOAAll

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.1.1 Service Provisioning Platform
Design

Activity N: Activity 1 – Fundamental and Integration Activities

Work Package: WP2 – SOAAll Studio

Due Date: M6

Submission Date: 29/08/2008
Resubmission: 12/03/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: The Open University

Revision: 2.0

Author(s): Carlos Pedrinaci OU
Maria Maleshkova OU
Guillermo Álvaro Rey ISOCO
Carlos Ruiz Moreno ISOCO
Stefan Dietze OU
Alessio Gugliotta OU

Reviewers: Juergen Vogel SAP
Jacek Kopecky UIBK

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public X

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 2 of 64

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 Document structure, table of contents Stefan Dietze, Carlos
Pedrinaci, Alessio Gugliotta

0.2 Restructured. Vision described. Stefan Dietze

0.3 Glossary, Introduction, Motivation,
Architecture sections updated.

Sections 5.2.5 and 6.5 added.

Philippe Merle (INRIA)

0.4 Architecture refined. Document further
consolidated. Related work on
emergent semantics added. Sections
5.2.3.2 and 5.2.4 added.

Stefan Dietze, Carlos
Pedrinaci, Alessio Gugliotta.

0.5 Various typos. Figure renumbering.
Various comments, Figure 5 page 25
updated. References updated (not all
see comments). Check and complete
glossary.

Philippe Merle (INRIA)

0.6 Executive summary, conclusions and
subsection on annotation
recommendation added. Final
consolidation. Typos removed.

Stefan Dietze

0.7 Sections 2.1 - 2.6 added. Further
consolidation. References improved
and consolidated.

Matteo Villa, Philippe Merle,
Stefan Dietze

1.0 Further consolidation, minor
improvements (typos, grammar).

Stefan Dietze, Philippe Merle.

1.1 Revision regarding reviewer comments. All authors.

1.2 Improvement suggestions base don
reviewer comments and new structure.
Add overall architectural view, lifecycle
of services

Carlos Pedrinaci

1.3 Merge inputs on Annotations
recommender and 4.2.4, 4.2.5 and
4.2.6

Maria Maleshkova, Guillermo
Alvaro, Carlos Pedrinaci

1.4 Include content on Service Browser and
Service Editing Frameworks

Carlos Pedrinaci

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 3 of 64

1.5 Updates to the annotation
recommender

Maria Maleshkova

1.6 Final edits Carlos Pedrinaci

1.7 Add newer version of 4.3.5-4.3.7 Guillermo Alvaro

1.8 Integrate last changes Carlos Pedrinaci

1.9 Address reviewers comments Carlos Pedrinaci, Maria
Maleshkova, Guillermo
Alvaro

2.0 Last editorial fixes Carlos Pedrinaci

Final Overall format and quality revisión Malena Donato

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 4 of 64

Table of Contents

EXECUTIVE SUMMARY ___ 10

1. INTRODUCTION ___ 11

1.1 INTRODUCTORY EXPLANATION OF THE DELIVERABLE ________________ 11

1.2 ALIGNMENT WITH THE ARCHITECTURE _____________________________ 12

1.3 ALIGNMENT WITH THE USE CASES _________________________________ 13

1.3.1 End-user Integrated Enterprise Service Delivery Platform ________________ 13

1.3.2 W21C BT Infrastructure __ 15

1.3.3 C2C Service eCommerce ___ 17

2. SIMPLIFYING THE CREATION OF SEMANTIC WEB SERVICES: REQUIREMENTS
AND VISION __ 20

2.1 REQUIREMENTS ___ 20

2.2 VISION: COLLABORATIVE PROVISIONING OF SERVICES _______________ 22

3. SERVICE PROVISIONING PLATFORM DESIGN ____________________________ 23

3.1 ARCHITECTURE OVERVIEW _______________________________________ 23

3.2 ON THE LIFECYCLE OF SEMANTIC WEB SERVICES ___________________ 25

3.3 DETAILED ARCHITECTURE __ 28

3.3.1 Simple SWS Editing Framework ____________________________________ 28

3.3.2 Process Editor ___ 31

3.3.3 Annotations Recommender _______________________________________ 32

3.3.4 Templates and Service Creation Wizards Management Framework ________ 39

3.3.5 Feedback Management Framework _________________________________ 40

3.3.6 Import Facilities ___ 46

4. RELATED WORK AND ENVISAGED PROGRESS _______________ ___________ 47

4.1 SERVICE MODELLING AND TAGGING _______________________________ 47

4.2 NATURAL LANGUAGE PROCESSING SYSTEMS _______________________ 48

4.2.1 Information Extraction Approaches __________________________________ 48

4.2.2 Ontology-Based Information Extraction Approaches ____________________ 49

4.3 USER PROFILING AND RECOMMENDER SYSTEMS ____________________ 50

5. CONCLUSIONS __ 52

6. REFERENCES ___ 53

ANNEX A. ANNOTATIONS RECOMMENDER _______________________________ 58

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 5 of 64

 List of Figures
Figure 1. SOAAll Architecture. ..12

Figure 2. Technologies usage for Published Web APIs. ...21

Figure 3. Service Provisioning Platform Architecture. ...23

Figure 4. WSMO-Lite Annotations (see [26]). ...26

Figure 5. Mockup of the Service Browser User Interface. ...29

Figure 6. Service Browser Use Case Diagram. ..30

Figure 7. Find Service By Query Sequence Diagram. ..31

Figure 8. Retrieve Service Information Sequence Diagram. ...31

Figure 9. Annotations Recommender Components. ...33

Figure 10. Use Case diagram "Recommend Service Annotations".34

Figure 11. Activity Diagram: "Recommend Service Annotations”. ...38

Figure 12. Service Provisioning Wizard interacting with the Platform39

Figure 13. Wizard definition and translation to GUI example ..40

Figure 14. Feedback Management Framework sequence diagram41

Figure 15. Annotations Recommender Components. ...58

Figure 16. Use Case diagram "Recommend Service Annotations".59

Figure 17. Activity Diagram: "Recommend Service Annotations”. ...59

Figure 18. Activity Diagram: "Service Preprocessing". ..60

Figure 19. Activity Diagram: "Service Preprocessing for RESTful Services".61

Figure 20. Activity Diagram: "Suggest Service Domain". ..62

Figure 21. Activity Diagram: "Suggest Service Classification". ..63

Figure 22. Activity Diagram: "Suggest Domain Ontology". ..64

Figure 23. Activity Diagram: "Suggest annotations for Services". ...64

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 6 of 64

List of Tables

Table 1. Alignment of the Provisioning Platform with WP7. ..15

Table 2. Alignment of the Provisioning Platform with WP8. ..17

Table 3. Alignment of the Provisioning Platform with WP9. ..19

Table 4. Artefacts in the "Recommend Service Annotations" Use case.34

Table 5. Tagging component summary ..42

Table 6. Evaluations component summary. ..44

Table 7. Goal Ratings component summary. ..45

Table 8. Service Preprocessing Artefacts. ..60

Table 9. Suggest Service Domain Artefacts. ..61

Table 10. Suggest Service Classification Artefacts. ..62

Table 11. Suggest Domain Ontology Artefacts. ..63

Table 12. Suggest Annotations for Service Properties Artefacts. ..64

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 7 of 64

Glossary of Acronyms
Acronym Full Name
AI Artificial Intelligence
AJAX Asynchronous JavaScript And XML
API Application Programming Interface
BIC Bayesian Information Criterion
BPEL Business Process Execution Language
BPM Business Process Modeling; Business Process Management
BT British Telecom
BT 21CN BT 21st Century Network
C2C Consumer toŹ Consumer
CMS Content Management System
DSB Distributed Service Bus
EC European Commission
eCommerce Electronic Commerce
ESB Enterprise Service Bus
eShop Electronic Shop
EU European Union
EXT GWT Extended GWT
FOAF Friend Of A Friend
FP Framework Program
FP7 The 7th Framework Program
GUI Graphical User Interface
GWT Google Web Toolkit
hRESTS HTML format for describing RESTful Services
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IE Information Extraction
IP Integrated Project
ISP Internet Service Provider
IST Information Society Technology
IT Information Technology
KIM Knowledge and Information Management
ML Machine Learning
NLP Natural Language Processing
OASIS Organization for the Advancement of Structured Information Standards
OBIE Ontology-Based IE
OWL Web Ontology Language
OWL-S Web Ontology Language for Services
PANKOW Pattern-based Annotation through Knowledge on the Web
RDF Resource Description Framework
RDFa RDF in Attributes
REST Representational State Transfer
SAP Systeme Anwendungen und Produkte
SA-REST Semantic Annotations for RESTful Services
SAWSDL Semantic Annotations for WSDL
SOA Service-Oriented Architecture
SOA4All Service-Oriented Architectures for All
SOAP Simple Object Access Protocol
SWS Semantic Web Service
T Task

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 8 of 64

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 9 of 64

Acronym Full Name
UDDI Universal Description Discovery and Integration
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WP Work Package
WS Web Service
WSDL Web Service Description Language
WSML Web Service Modeling Language
WSMO Web Service Modeling Ontology
WSMX Web Service Execution Environment
WWW World Wide Web
XHTML Extensible HyperText Markup Language
XML eXtended Markup Language

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 10 of 64

Executive summary
Traditional web services technologies suffer from a lack of automation for key activities within
the lifecycle of web service-based applications such as the discovery or composition of
services. To cater for this semantic web services technologies enhance services with
semantic descriptions that are amenable to automated reasoning, thus paving the way for
the application for knowledge-based algorithms to better support the automation of these
tasks. Still, obtaining rich enough semantic descriptions that can enable this requires an
important knowledge-acquisition effort which represents the main bottleneck for a wider and
systematic application of semantic web services technologies.

The SOAAll Studio is a fully-fledged web-based user interface that acts as a gateway
between users and the technologies developed within SOAAll. It is composed of three
platforms which are in charge of supporting the three main phases within the lifecycle of
services, namely their provisioning, consumption and analysis. The main goal of the Studio is
therefore to assist users in the creation of semantic annotations over web services, as well
as in their discovery, invocation and analysis.

In order to simplify the creation of semantic web services the Provisioning Platform described
in this deliverable will provide a set of tools allowing users to i) find relevant services taking
into account user profiles and previous history of service usage, ii) annotate them helped by
a recommender system and iii) persist the resulting semantic web services so that they can
be used by anyone. Therefore in this respect, the Provisioning Platform aims to leverage
users as the main source of information using interchangeably direct user input and
automated processing informed by prior user-provided information to simplify the annotation
of services.

Based on the semantic web services modelled by users, the Provisioning Platform will
support defining composite semantic web services. To this end, it includes a Process Editor
with which users can put together existing semantic web services in novel forms giving rise
to new and more complex services. The Process Editor will allow people to create mash-ups,
that is composite services that have the control flow implicit in the data-flow. This kind of
composite service will therefore allow any kind of user to create relatively complex services
in an easy way in a similar vein to that of Yahoo! Pipes [1] for example. Additionally, the
Process editor will also address the requirements of more advanced users that may need to
create complex workflows, i.e., using explicit control-flow constructs.

Essential to the overall vision of the Provisioning Platform is the central role played by users
during the overall life-cycle of services. Users are at the same time service providers, when
they define or compose new services, service consumers, when they utilize services or
compose new services out of existing ones, and knowledge providers and/or consumers
when they annotate or simply use services. An important aspect of this vision is that it blurs
the distinction between providers and consumers which rather coexist in a transparent way
allowing, for instance during the composition of services, the same individual to play both
roles so that the newly created service can automatically become available for others. As a
result, the overall platform benefits from an ever-growing repository of services with
increasingly richer annotations provided by users making the provisioning platform an
extremely rich and dynamic semantic web services provisioning platform.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 11 of 64

1. Introduction
In this section we describe the overall content, purpose and scope and structure of this
deliverable and describe the alignment of the Provisioning Platform with the project
architecture and the use-cases contemplated in the project.

1.1 Introductory Explanation of the Deliverable
Service-orientation is increasingly being adopted to allow applications to be created flexibly
by linking loosely-coupled web services. Standards for describing web services currently use
syntactic (XML-based) notations such as Web Services Description Language (WSDL) [2].
These descriptions are not amenable to applying automated reasoning, so specialist workers
must be involved throughout the web service lifecycle. This causes numerous problems, the
most significant of which is the lack of scalability. It simply isn’t possible to maintain millions,
let alone billions, of services to cope with environmental and context changes, discover new
services, compose them or support their adaptation at runtime through human effort alone.

These limitations inherent to traditional web services technologies such as WSDL and UDDI
[3] have limited a wider spread of service-orientation as initially predicted. Large
organisations such as Verizon already have systems based on approximately 1,500 web
services [4]. However, the web contains only around 27,000 web services based on WSDL
[5]. In consequence, service-oriented architecture (SOA) is largely still an enterprise-specific
solution exploited by, and located within, large corporations.

Researchers studying the semantic web, semantic web services and more traditional artificial
intelligence have shown it is possible to automate some of these tasks to a significant extent
(see, for instance, work in OWL-S [6], WSMO [7], WSDL-S [8], semantic execution
environments [9, 10] or planning [11]). However, the complexity of the descriptions required
represents a significant bottleneck and in fact the application of semantic web services is still
largely limited to research environments where a set of experts provide the necessary
descriptions. Therefore, in order to achieve a wider application of semantic web services
technologies and in consequence of web services in general, we need to provide the
adequate mechanisms able to reduce the overhead for providing expressive semantic
descriptions for web services.

SOAAll proposes the use of lightweight semantic descriptions as a means to simplify the
modelling of semantic web services at the same time that it reduces the computational
complexity for performing certain activities automatically in a scalable manner. In this
deliverable we provide the design and specification of the Provisioning Platform, a
component of the so-called SOAAll Studio which aims to support users in the provisioning of
semantic web services descriptions1. The Provisioning Platform is based upon Web 2.0
principles aimed at better supporting users in the collaborative yet seamless provisioning of
semantic descriptions, assisted by a non intrusive set of technologies such as an annotations
recommender or wizards.

The remainder of the document is organised as follows. In Section 2 we present the main
requirements for the Provisioning Platform and, based on these, we describe the overall
approach we have adopted. In Section 3 we present a detailed design of the Provisioning
Platform, placing it in the context of the SOAAll Studio and in the project architecture in
general. Finally we cover related work in the area and conclude the deliverable.

1 In this document we shall refer to semantic web service as a particular self-contained
semantic annotation over an existing web service.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 12 of 64

1.2 Alignment with the Architecture
In this section we describe the alignment of the Service Provisioning Platform with the
SOAAll architecture currently being devised in WP1. Given that the Service Provisioning
Platform is a component of the SOAAll Studio, most of the details regarding its integration
and alignment with the project vision are common to that of the SOAAll Studio. Still, where
necessary we shall mention the specific details affecting the Service Provisioning Platform.

Figure 1. SOAAll Architecture.

Figure 1 provides a high-level view on the overall SOAAll architecture centered on the
infrastructural components, the main artifacts manipulated and how the SOAAll Studio is
integrated. Integration in SOAAll takes place through the so-called Distributed Service Bus
(DSB) which integrates notions from Enterprise Service Buses and Semantic Spaces into a
unified distributed infrastructure providing message-based and event-based communication,
as well as a distributed RDF repository. From a client perspective, the DSB provides access
to the platform services as well as the myriad of services provide by third parties. The
services offered through the bus include, traditional third-party WSDL and RESTful services,
light-weight semantic Web services based on annotations over traditional services, and
infrastructural services supporting actions such that the discovery, ranking & selection and
execution of services.

In a nutshell, the SOAAll Studio is the gateway for the user. It therefore provides a Web-
based interface for creating or enhancing annotations, browsing them, discovering suitable
services, invoking services, and finally analyzing their execution. These different
functionalities are provided by three different platforms composing the Studio. In particular,
the Service Provisioning Platform supports the user in providing annotations may them be,
WSMO-Lite, MicroWSMO, tags or ratings. The Service Consumption Platform allows the

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 13 of 64

user to browse, discover and invoke existing services. Finally the Service Analysis Platform
provides the means for users to analyze the execution of services either at runtime or post-
execution.

The SOAAll Studio, like every other component is integrated into the overall architecture
through the Distributed Service Bus. It is worth noting however that as opposed to platform
services that provide infrastructural services, the Studio is mainly a client for these different
components, allowing the user to interact with them in a seamless and transparent way. To
support this, there is an internal component within the Studio in charge of supporting the
interaction with the bus by making use of the appropriate messages and protocols [12]. The
concrete formats and protocols are currently being established within WP1 but they will be
based on Web and WS-* standards.

The DSB also provides a scalable RDF storage & querying system. In particular, every
annotation provided by the user through the Service Provisioning Platform will ultimately be
stored for future use in the DSB. Similarly, raw monitoring data concerning the execution of
services, like the message exchanges, will be stored in the DSB for further reference.
Additionally, in order to support monitoring the execution of services—simple and
composite—the DSB provides a notification mechanisms such that applications can register
themselves as observers [13] for certain events of interest. Whenever any of these events
occur, the DSB—thanks to the templates binding mechanism provided by Semantic
Spaces—notifies any application interested.

The Service Provisioning Platform aims to better support and simplify the definition of
semantic web services by creating annotations over existing services or supporting the
composition of existing semantic web services. To this end the Provisioning Platform
includes a set of intuitive Web-based modeling tools and supporting components such as an
Annotations Recommender. In order to achieve this goal the Provisioning Platform builds
upon a number of technologies devised in other work packages. In particular, it uses the
languages defined in WP3 for annotating existing services, it utilizes the language devised in
WP6 for supporting the creation of composite services, it interacts with the semantic web
services registry and the crawler registry for retrieving existing services, and it uses the
runtime infrastructure for supporting the communication with platform services as for the
scalable storage of RDF information. More details on how these interactions take place shall
be given in Section 3.

1.3 Alignment with the use cases
In this section, we cover the different use cases contemplated within SOAAll and identify the
main aspects where the Service Provisioning Platform will play an important role.

1.3.1 End-user Integrated Enterprise Service Delive ry Platform

Public administrations nowadays have to deal with hundreds of different procedures (e.g., for
handling a parking permit request) that are typically implemented in one or more legacy
systems or even executed manually. WP7 envisions an open and flexible service delivery
platform where administrative procedures are handled over a central Internet portal as single
point of contact. Administrative procedures are composed of semantic web services,
including so-called enterprise services that are provided by SAP and that offer business
functionality such as the management of resources and customer orders. These services can
be combined in different ways so that new procedures can be created or existing ones can
be adapted easily. A key element for making this service delivery platform efficient and
scalable is enabling end (or business) users, i.e., the vaste majority of employees in public
administrations (and other organizations), to carry out these tasks. Such business users
have a detailed understanding of the procedures in their field of expertise but lack the
specific programming skills required nowadays to actively consume and compose web
services. The SOAAll approach therefore is to provide the end users with simple web-based

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 14 of 64

tools on top of semantic web services so that they can search, model, annotate, modify,
share, analyze, and execute administrative procedures on the basis of web services.

The main requirements of this use case are listed in detail in [14]. These requirements are
divided into business-oriented and technology related. The Provisioning Platform shall play a
crucial role in fulfilling many of these requirements. From a business perspective the role of
the Provisioning Platform will be as follows:

• “Providing single points of contact for the constit uents with information
transparency”

- The Provisioning Platform as a component of the SOAAll Studio is part of the
global user interface used for SOAAll technologies. As such it contributes from
the modeling perspective towards having a unique entry point.

• “Establishing electronic procedures and electronic document exchange with a
high degree of automation”

- The Provisioning Platform will support users in defining processes thus
contributing to the further automation of the administrative procedures.

• “Faster and cheaper administrative procedures”

- Given that the Provisioning Platform is envisioned such that any user can
utilize it, the number consultants to be contracted for modeling processes will
be reduced which will in turn have an important impact in costs and agility.

• “Better reuse of services and processes”

- The Provisioning Platform allows users to create composite services out of
existing ones in a simple way, thus promoting reuse.

• “Usability of the electronic tools with a focus on end users with limited
technical experience”

- One of the main goals of the SOAAll Studio is to support all kinds of users.

From a technical perspective, the role of the Provisioning Platform will be as follows:

• “Directory that lists existing processes and servic es and allows adding new
ones. The directory should cope with semantic annot ations and context
information”

- The Provisioning Platform provides an interface for retrieving existing services
based on their annotations, tags, etc. Information about users will support
listing information based on the potential relevance.

• “Search interface allowing for the use of rich sear ch parameters according to
semantic annotations and context information”

- The Provisioning Platform will provide a search interface by means of which
users will retrieve services based on annotations, tags, ratings, etc.

• “Graphical modeling tool for creating and adapting services and processes”

- The Provisioning Platform provides graphical user interfaces for modeling both
simple (WSMO Lite, MicroWSMO) and composite (processes and mash-ups)
services.

• “Textual editor for rating, commenting (free text), and semantically annotating
(free text or following an existing taxonomy/ontolo gy) processes and services”

- The platform includes means for users to provide annotations, tags,

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 15 of 64

comments and ratings in such a way that the information can be used by the
platform itself to improve its behaviour.

From a more technical perspective, Table 1 presents the relevance each of the functionalities
described in this deliverable will have in the use case as reported by the use-case partners.
In particular the table shows how likely it will be within WP7 to reuse the different use-cases
devised in the Provisioning Platform.

Table 1. Alignment of the Provisioning Platform with WP7.

Use Case Name Brief Description Detailed Content

Likelihood

of Being

Used

Find Service By Query

Use simple textual search for retrieving

relevant crawled services in order to annotate

them eventually

See Section 3.3.1 Sure

Retrieve Services By Tag
Obtain a list of crawled web services that are

related to a tag
See Section 3.3.1 Sure

Retrieve Services By Category
Obtain a list of crawled web services that are

classified as relevant to a concrete category
See Section 3.3.1 Sure

Retrieve Service Information

Retrieve detailed information about a given

service. The information retrieved is based on

the next 5 use cases

See Section 3.3.1 Sure

Retrieve Service Definition
Retrieve the service definition (WSDL or REST)

file
See Section 3.3.1 Mid

Retrieve Service Documentation
Retrieve the relevant documents crawled about

the given service
See Section 3.3.1 High

Retrieve Service Statistics
Retrieve the statistics (performance, usage,

etc) about a service
See Section 3.3.1 High

Retrieve Service Ratings Retrieve ratings given by users to the service See Section 3.3.1 Sure

Retrieve Service Reviews Retrieve reviews by users on the given service See Section 3.3.1 Sure

Recommend Service Annotations

Assist the user in annotating a service by

recommending suitable annotations on

different granularity levels (domain,

classification and individual properties

annotations)

See Section 3.3.3 Sure

Retrieve Service Tags
Retrieve tags associated to the service by

users
See Section 3.3.5 Sure

Rate item (Service/Goal)
Assign a rating produced by a user to a Service

or Goal
See Section 3.3.5 Sure

Review item (Service/Goal)
Assign a review produced by a user to a

Service or Goal
See Section 3.3.5

Sure

Tag item (Service/Goal)
Assign a tag produced by a user to a Service

or Goal
See Section 3.3.5

Sure

Use wizard to annotate Service
Use a wizard in order to create a Semantic

Web Service
See Section 3.3.4

Sure

1.3.2 W21C BT Infrastructure

This use case will create a semantically enhanced and expanded version of BT’s Web21c
platform, which will result in a framework for the delivery of services, both by BT itself and
third parties. This platform aims to provide user-friendly facilities for advanced service
discovery, composition, consumption and monitoring using the existing Web21c
infrastructure exposing core BT communication capabilities. The first scenario is about
designing a simple application by composing existing services, and the second scenario is
about enabling Bulk Resellers to implement innovative business ideas using unbranded
services provided by BT, or to integrate said services into their business processes.

The main requirements of this use case are listed in detail in [15]. These requirements are
divided into business-oriented and technology related. The Provisioning Platform shall play a
crucial role in fulfilling many of these requirements. From a business perspective the role of
the Provisioning Platform will be as follows:

• “Encourage greater uptake of Web21c SDK by providin g tools to enable easier
use of the services”

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 16 of 64

- The SOAAll Studio aims to support any kind of user in modeling, consuming
and analyzing services, independently form their background and expertise.
The Provisioning Platform itself is in charge of supporting and simplifying the
modeling of semantic web services.

• “Provide tools with a focus on end users with limit ed technical experience”

- As previously explained this is one of the main goals of the platform.

• “Create a community of SDK users, to encourage coll aboration and innovation
in creating new Telco applications”

- The SOAAll Studio will support the creation of communities around services,
allowing users to collaboratively and opportunistically model, consume,
enhance, and reuse services for novel purposes.

• “Create an infrastructure to allow a third party bu siness to resell BTs SDK
services, providing support in design and managemen t of the thirds party
services”

- Given the community-oriented aspect of the SOAAll, any individual (end-users
or companies) can seamlessly create new added-value services our of
existing ones.

• “Increase overall use of the Web21c SDK, and hence increase revenue”

- The previous aspects will contribute to fulfilling this requirement.

From a technical perspective, the role of the Provisioning Platform will be as follows:

• “Usable without detailed knowledge of Ontologies, W SDL or programming
languages”

- As mentioned earlier the SOAAll Studio aims to support any kind of user in
modeling, consuming and analyzing services, independently form their
background and expertise.

• “Web Browser Based, Drag and drop, easy to use inte rface”

- The Provisioning Platform will make use of state-of-the-art technologies for
creating highly dynamic Web-based user interfaces, see [12]

• “Search on functional and non-functional aspects of service, and keywords”

- The Provisioning Platform provides an interface for retrieving existing services
based on their annotations, tags, etc.

• “Semi automated assistance with creating service co mpositions, with facilities
to link a GUIs”

- The Provisioning Platform includes a Process Editor, see [16], and assistants
for guiding users in the creation of composite services.

• “Service ranking and help with design time selectio ns based on user context”

- The Provisioning Platform will support users in rating, commenting and
tagging services. This information as well as user profiles will support listing
information based on the potential relevance.

• “Import and link to Industry standard ontologies”

- The Provisioning Platform includes support for finding existing ontologies on
the Web and using them for tagging. User-provided ontologies will also be
usable.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 17 of 64

• “Import and mark-up third party Web Services”

- The Provisioning Platform will provide access to the services found by the
service crawler and will support users in annotating them.

From a more technical perspective, Table 2 presents the relevance each of the functionalities
described in this deliverable will have in the use case as reported by the use-case partners.
In particular the table shows how likely it will be within WP8 to reuse the different use-cases
devised in the Provisioning Platform.

Table 2. Alignment of the Provisioning Platform with WP8.

Use Case Name Brief Description Detailed Content

Likelihood

of Being

Used

Find Service By Query

Use simple textual search for retrieving

relevant crawled services in order to annotate

them eventually

See Section 3.3.1 Sure

Retrieve Services By Tag
Obtain a list of crawled web services that are

related to a tag
See Section 3.3.1 High

Retrieve Services By Category
Obtain a list of crawled web services that are

classified as relevant to a concrete category
See Section 3.3.1 Sure

Retrieve Service Information

Retrieve detailed information about a given

service. The information retrieved is based on

the next 5 use cases

See Section 3.3.1 Sure

Retrieve Service Definition
Retrieve the service definition (WSDL or REST)

file
See Section 3.3.1 Mid

Retrieve Service Documentation
Retrieve the relevant documents crawled about

the given service
See Section 3.3.1 Mid

Retrieve Service Statistics
Retrieve the statistics (performance, usage,

etc) about a service
See Section 3.3.1 Sure

Retrieve Service Ratings Retrieve ratings given by users to the service See Section 3.3.1 Sure

Retrieve Service Reviews Retrieve reviews by users on the given service See Section 3.3.1 Sure

Recommend Service Annotations

Assist the user in annotating a service by

recommending suitable annotations on

different granularity levels (domain,

classification and individual properties

annotations)

See Section 3.3.3 Sure

Retrieve Service Tags
Retrieve tags associated to the service by

users
See Section 3.3.5 High

Rate item (Service/Goal)
Assign a rating produced by a user to a Service

or Goal
See Section 3.3.5 High

Review item (Service/Goal)
Assign a review produced by a user to a

Service or Goal
See Section 3.3.5

Mid

Tag item (Service/Goal)
Assign a tag produced by a user to a Service

or Goal
See Section 3.3.5

High

Use wizard to annotate Service
Use a wizard in order to create a Semantic

Web Service
See Section 3.3.4

Sure

1.3.3 C2C Service eCommerce

The WP9 use case focuses on one holistic and real-world oriented C2C eCommerce
scenario, the development of an eCommerce framework for ISPs. It is entirely focused on
providing an easy way for end users to use third party services offered through the
framework, enabling them to build eCommerce applications. Potential users of such a C2C
eCommerce framework, such as the customers of an ISP, will normally not search for
individual services (e.g. a specific credit card approval service), but for complete solutions to
address their business needs (e.g. services to provide a certain kind of payment functionality
for the Web shop). That is why the platform must be capable to support very different
application scenarios, while at the same time it should remain generic enough so that the
same set of common components can be (re-)used to run each of such scenarios.

The main requirements of this use case are listed in detail in [17]. These requirements are
divided into business-oriented and technology related. The Provisioning Platform shall play a
crucial role in fulfilling many of these requirements. From a business perspective the role of

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 18 of 64

the Provisioning Platform will be as follows:

• “Scalability”

- The Provisioning Platform aims to support the SOAAll vision were billions of
users create, invoke and analyse billions of services. Scalability is therefore
one aspect that is considered of main relevance in the SOAAll Studio, see
[12].

• “Intuitive Composition of Services”

- One of the main goals of the Provisioning Platform is to support users in
creating composite services by means of the lightweight process modelling
language. The Process Editor part of the platform will be in charge of this [16].

• “Security”

- The SOAAll Studio will integrate authentication mechanisms.

• “Privacy and trust model”

- Users profiles and history will remain private and shall only be used for
suggesting annotations or services. Concerning trust, although this is not a
central aspect of the platform, users will be able to rate and evaluate services
which will generate models about how trustworthy services are in a way
similar to that of eBay.

• “Reliability”

- The SOAAll Studio integrates support for analysing services. This information
will be accessible to the Provisioning Platform when presenting services to the
user, so that reliability, performance and other aspects can be taken into
account by the user.

• “Extendibility”

- The main idea behind the SOAAll Studio is to support users to seamless
collaborate in the gradual provisioning of new services, the enhancement of
the annotations over existing ones, or the composition of new solutions out of
existing services. The amount of services available and the quality of their
annotations shall therefore be continuously increasing.

From a technical perspective, the role of the Provisioning Platform will be as follows:

• “The end user frontend MUST feature similar functio nalities as the commercial
software Sitebuilder”

- The Provisioning Platform will provide all the functionalities required for
annotating services. The SOAAll Studio is however a modular tool-suite which
has a core set of libraries for integration and user-interface. Third parties can
extend the software as appropriate in order to deal with use case specific
requirements.

• “Templates for the core parts of eCommerce applicat ions (of different
complexity) MUST be available”

- The Provisioning Platform makes use of the notion of processes and abstract
processes within the Process Editor which cater for this.

• “Templates SHOULD describe the parts of an eCommerc e application in the
form of typical workflows”

- The graphical representation that will be used is strongly based in BPMN

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 19 of 64

which is a widely used workflow notation.

• “Templates for layouting the eCommerce application SHOULD also be
available”

- The SOAAll Studio makes use of widgets and CSS for layout which allow very
easily to customize the user interface. Third parties can therefore adapt it to
their own needs and preferences.

• “The frontend SHOULD allow for integration with the remainder of the web site
generation tools used”

- SOAAll Studio makes use of standard Web-based technologies and can
therefore be integrated within other Web sites.

From a more technical perspective, Table 2 presents the relevance each of the functionalities
described in this deliverable will have in the use case as reported by the use-case partners.
In particular the table shows how likely it will be within WP8 to reuse the different use-cases
devised in the Provisioning Platform.

Table 3. Alignment of the Provisioning Platform with WP9.

Use Case Name Brief Description Detailed Content
Likelihood of

Being Used

Find Service By Query

Use simple textual search for retrieving

relevant crawled services in order to annotate

them eventually

See Section 3.3.1 High

Retrieve Services By Tag
Obtain a list of crawled web services that are

related to a tag
See Section 3.3.1 High

Retrieve Services By Category
Obtain a list of crawled web services that are

classified as relevant to a concrete category
See Section 3.3.1 High

Retrieve Service Information

Retrieve detailed information about a given

service. The information retrieved is based on

the next 5 use cases

See Section 3.3.1 High

Retrieve Service Definition
Retrieve the service definition (WSDL or REST)

file
See Section 3.3.1 High

Retrieve Service Documentation
Retrieve the relevant documents crawled about

the given service
See Section 3.3.1 Low

Retrieve Service Statistics
Retrieve the statistics (performance, usage,

etc) about a service
See Section 3.3.1 High

Retrieve Service Ratings Retrieve ratings given by users to the service See Section 3.3.1 Medium

Retrieve Service Reviews Retrieve reviews by users on the given service See Section 3.3.1 Medium

Recommend Service Annotations

Assist the user in annotating a service by

recommending suitable annotations on

different granularity levels (domain,

classification and individual properties

annotations)

See Section 3.3.3

Low for Enduser /

High for Service

Provider or Service

Broker

Retrieve Service Tags
Retrieve tags associated to the service by

users
See Section 3.3.5 Medium

Rate item (Service/Goal)
Assign a rating produced by a user to a Service

or Goal
See Section 3.3.5 Medium

Review item (Service/Goal)
Assign a review produced by a user to a

Service or Goal
See Section 3.3.5

Medium

Tag item (Service/Goal)
Assign a tag produced by a user to a Service

or Goal
See Section 3.3.5

Medium

Use wizard to annotate Service
Use a wizard in order to create a Semantic

Web Service
See Section 3.3.4

Low for Enduser /

High for Service

Provider or Service

Broker

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 20 of 64

2. Simplifying the Creation of Semantic Web Service s:
Requirements and Vision
In this section we briefly revisit the vision of the project in order to illustrate the main
motivations behind the work described in this deliverable. Based on this motivation, we
introduce the main requirements the Provisioning Platform should address and we finally
present the overall vision on how the SOAAll Provisioning Platform will tackle them. Concrete
details on how this shall be achieved will be introduced in Section 4.

2.1 Requirements
Service-Oriented Architecture (SOA) is commonly lauded as a silver bullet for Enterprise
Application Integration, inter-organizational business processes implementation, and even as
a general solution for the development of all complex applications. Although technology
independent, SOA is typically implemented using Web services related technologies such as
WSDL, SOAP and WS-BPEL [18]. However, despite the well-known benefits of SOA and
web services technologies, currently, they are mostly applied within enterprises which limits
to an important extent the benefits that can be obtained by their systematic application as
well as it fails to achieve the economic and technological impact that was initially predicted.

The main limitation exhibited by traditional web services technologies is the low level of
automation that can be achieved for key activities within the lifecycle of web service-based
applications such as the discovery or composition of services. To cater for this semantic web
services technologies enhance services with semantic descriptions that are amenable to
automated reasoning, thus paving the way for the application of knowledge-based algorithms
to better support the automation of service discovery, composition and execution. Still,
obtaining rich enough semantic descriptions that can enable this requires an important
knowledge-acquisition effort which represents the main bottleneck for a wider and systematic
application of semantic web services technologies.

SOAAll proposes to use lightweight semantic descriptions of services in an attempt to reduce
both the labour necessary for annotating services, as well as for reducing the computational
complexity for processing these descriptions. Additionally, given the widespread use of
RESTful services, SOAAll, as opposed to most research in the area of semantic web
services, also advocates the integration of RESTful services provided through Web APIs in
the services landscape. These two decisions underpinning SOAAll are crucial for a greater
uptake of service-oriented technologies. On the one hand, this can increase the level of
automation that can be achieved throughout the lifecycle of services and service-based
applications while minimising the knowledge-acquisition bottleneck. On the other hand, this
allows us to integrate new sources of services coming out of existing Web 2.0 solutions.
Figure 1 shows the usage of each as reported by ProgrammableWeb [19], a website that
maintains a comprehensive directory of web Application Programming Interfaces (APIs) [20]
and the technologies(s) they support.

Although these are highly valuable and probably even necessary steps, it is still necessary to
promote and better support the creation of new services in a sustainable way. This requires
among other things, techniques for:

• Simplifying the creation of semantic web services out of existing services;

• Simplifying the creation of composite semantic web services by composing existing
semantic web services; and

• Supporting the adaptation of services to unforeseen contexts

The first two will provide means for increasing the number of available semantic web
services descriptions that can directly be discovered, used and composed by users and

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 21 of 64

applications. The third will increase the applicability of existing services and it will presumably
improve the quality of service provided to end users which will in turn contribute to the wider
uptake of service technologies. The Provisioning Platform described herein aims to address
all three aspects taking into account use-case specific requirements as presented earlier.
The first two will be covered by applying Web 2.0 principles that have significantly
contributed to increasing the amount and quality of the information in the Web. The last one
shall be covered by allowing users to make use of the adaptation mechanisms defined in
WP6 as well as the context ontologies being devised in WP3 through an easy to use
graphical user interface.

Figure 2. Technologies usage for Published Web APIs.

In addition to the functional requirements listed above, the Provisioning Platform needs
address some technical ones derived from the functional ones as well as from global
technical and architectural decisions. In particular the Provisioning Platform needs:

R1. Compliance with WSMO dialects defined in the project;

R2. Reuse of existing knowledge models;

R3. Persistent and holistic knowledge storage;

R4. Adaptability to distinct contexts;

One major decision made in the project is the use of WSMO-Lite and MicroWSMO for
annotating services. In turn, both WMSO-Lite and MicroWSMO are part of the set of
formalisms set out by WSMO which therefore represent the main technologies the
Provisioning Platform needs to be compliant with. In particular, the platform shall be able to
generate WSMO-Lite and MicroWSMO definition which will point to existing semantic
models.

These semanic models will define classification hierarchies, functional and non-functional
aspects of services using some ontology definition language. Although both WSMO-Lite and
MicroWSMO annotations are language independent in this respect, WP3 will define a set of
languages and the corresponding machinery for reasoning with them. The Provisioning
Platform shall therefore be able to use these languages within the semantic web services
descriptions.

Defining semantic web services requires among other things linking the inputs and outputs of
the services to domain-specific ontologies. It will therefore be necessary to allow users to use
existing knowledge models when defining their annotations. This will allow users to focus on
the actual annotation of services, leaving the creation of domain models aside, and
supporting the reuse of models defined by others and available on the Web. Doing so will on
the one hand minimise the complexity and labour required for creating services and on the
other hand it will presumably maximise the potential for integrating services developed

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 22 of 64

independently by using the same common domain ontology.

The Provisioning Platform should support the persistence of semantic annotations for
services such that they can be retrieved and applied efficiently both by humans and
machines. To this end the Provisioning Platform should provide a transparent interface over
the storage infrastructure devised in SOAAll.

Given the broad vision of SOAAll, it is important that we support a wide variety of users.
Semantic Web services as well as the Provisioning Platform should be adaptable to specific
contexts so that the execution can take into account user preferences, location, etc, and the
information presented can be organised in terms of its relevance and suitability. To this end
the Provisioning Platform should leverage the technologies defined in other WPs (e.g., WP6).

2.2 Vision: Collaborative Provisioning of Services
In order to simplify the creation of semantic web services the Provisioning Platform will
provide a set of tools allowing users to i) find relevant services taking into account user
profiles and previous history of service usage, ii) annotate them helped by a recommender
system and iii) persist the resulting semantic web services so that they can be used by
anyone. Therefore in this respect, the Provisioning Platform aims to leverage users as the
main source of information using interchangeably direct user input and automated
processing informed by prior user-provided information to simplify the annotation of services.

In addition to the semantic annotations provided by users, the SOAAll Studio will gather
information about users behaviour in order to create profiles for providing information that is
presumably more relevant to the users. For instance, knowing that user has typically used
telecommunication services, the Provisioning Platform can order the services available so
that telecommunication services, or services that were used by other people with a similar
profile, appear first. Similarly, user ratings, comments or tags will be gathered by the
Provisioning Platform, thus enriching in a somewhat transparent way the information
available about services.

Based on the semantic web services modelled by users, the Provisioning Platform will
support users in defining composite semantic web services. A Web-based Process Editor will
provided so that users can put together existing semantic web services in novel forms giving
rise to new and more complex services. The Process Editor will allow users to create
composite services that have a simple data-driven workflow which we refer to as mash-ups
[21]. This kind of composite service will therefore allow any kind of user to create relatively
complex services in an easy way in a similar vein to that of Yahoo! Pipes [1] for example. On
the other hand the Process Editor will also address the requirements of more advanced
users that may need to create complex workflows including control-flow constructs [21]. In a
nutshell the editor will provide an intuitive user interface for generating process models
supported by the lightweight process definition language devised in WP6 [22].

Essential to the overall vision of the Provisioning Platform is the central role played by users
during the overall life-cycle of services. Users are at the same time service providers, when
they define or compose new services, service consumers, when they utilize services or
compose new services out of existing ones, and knowledge providers and/or consumers
when they annotate or simply use services. An important aspect of this vision is that it blurs
the distinction between service providers and service consumers which rather coexist in a
transparent way allowing, for instance during the composition of services, the same
individual to play both roles so that the newly created service can automatically become
available for others. As a result, the overall platform benefits from an ever-growing repository
of services with increasingly richer annotations provided by users making the provisioning
platform an extremely rich and dynamic semantic web services modelling platform.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 23 of 64

3. Service Provisioning Platform Design
In this section we shall present the design of the Service Provisioning Platform. We first
present the architecture overview, placing the platform in context both within the SOAAll
Studio and within the project. We then cover briefly the lifecycle of services in order to better
illustrate some of the decisions that have been adopted within the platform and finally we
describe each of the components in detail.

3.1 Architecture Overview

Figure 3. Service Provisioning Platform Architecture.

We previously introduced the overall vision of the project focussing particularly on those
aspects that are of most relevance to the SOAAll Studio. The Studio is a holistic Web-based
tool covering the whole life-cycle of services, i.e., from their definition to post-execution
analysis. The Service Provisioning Platform is the component of the SOAAll Studio that

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 24 of 64

supports the user in creating compositions of semantic web services, providing semantic
annotations for existing services using WSMO-Lite or MicroWSMO, and attaching lighter
annotations such as tags, ratings and comments. It is therefore a key component for allowing
the integration of users as the most valuable source of information, thus enabling the social
and collaborative aspects of Web 2.0 technologies.

The architecture of the Service Provisioning Platform is depicted in Figure 3 including the
platform itself (as a blue box), the underlying support provided by the SOAAll Studio
infrastructure (as grey boxes), and finally external services and repositories that will be used
by the platform (see components connected to the DSB). It is worth noting in this respect that
although the repositories are depicted as separate logical components, in practice storage
support will be provided globally by the Distributed Service Bus thanks to the use of
Semantic Spaces. They are here depicted in this way to distinguish the main kinds of
artefacts that will be manipulated and generated by the Service Provisioning Platform.

The core of the Service Provisioning Platform is concerned with supporting the creation of
semantic Web services (SWS). The platform distinguishes between two main classes of
semantic Web services: simple and composite. We refer as simple semantic Web services to
those that are directly created by attaching semantic annotations to existing traditional
services. We therefore contemplate in this group the annotation of WSDL-based services
[23] and RESTful services [24]. WSDL-based services, typically employed within enterprises,
are described in a WSDL file including information about their operations, inputs and outputs,
etc. Annotations to this kind of services will be supported through a form-based editor by
making use of SAWSDL [25] for extending WSDL files with annotations based on WSMO-
Lite [26]. On the contrary, RESTful services, more frequently used by Web-based systems,
are typically described in natural language in some Web page. The annotation of RESTful
services will therefore be supported by an editor able to attach annotations to the Web pages
themselves. To this end, the Service Provisioning Platform will extend PowerMagpie [27, 28]
in order to support the annotation of web pages describing RESTful services using
microformats, namely hRESTS [29] and MicroWSMO which will be defined in WP3.

The other kind of semantic Web services contemplated—composite semantic Web
services—are those composed of two or more services. In this kind of services we
contemplate lightweight processes or mash-ups defined using the lightweight process
modelling language devised in WP6 [22]. The main difference between both kinds of services
lies on the fact that mash-ups do not include any control flow other than the one implicit in
the data flow, i.e., when the input data is available the service can be executed. Mash-ups
are a concept introduced relatively recently in the context of Web 2.0 technologies by means
of which people can make use of data available on the Web (often through RESTful services)
and mash it up in order to produce new aggregated information and visualization services.

The Service Provisioning Platform will support the creation of semantic mash-ups and
processes making particular emphasis on simplifying their creation and maximizing the level
of automation and adaptability in their execution. Once these composite services are defined
they will be deployed in the SOAAll runtime infrastructure becoming themselves brand-new
services that can be discovered, invoked, analysed or even used within another composite
semantic web service. This recursive nature of processes and mash-ups will therefore
contribute to a big extent to supporting the proliferation of millions of services in a
collaborative way based on users interactions.

The support for creating both simple and composite semantic Web services will try and
maximise the uptake of our technologies by simplifying the creation of annotations and
services compositions. Additionally, the Service Provisioning Platform provides an
Annotation Recommender underlying the editing environment, and a component including
means for managing service templates and wizards for guiding and simplifying whenever
possible the creation of semantic Web services.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 25 of 64

The Annotations Recommender will support the semi-automated annotation of services by
accessing crawled data about services, related web pages, and documentation. The
information will be processed in order to identify relevant concepts concerning their services,
their inputs and outputs, etc. Using the information obtained, the Annotations Recommender
will finally try and identify relevant concepts and properties from existing ontologies on the
Web and suggest them as annotations to the user. In this process, the Annotations
Recommender will make use of services provided by WP5, like the Crawler Registry, as well
as external services such as Watson [28] for finding ontologies on the Web and possibly
Scarlet [30] for determining relations.

The Service Provisioning Platform will also enable ways for users to perform the same tasks
with additional help in the form of “Wizards”. We believe that introducing helpful guidance to
the new users, the use of the platform will be simplified. The Wizards framework will be
completely integrated within the Service Provisioning Platform, so that every step performed
within a wizard will directly trigger actions in the platform, allowing the user to perform
semantic annotations independently from his or her expertise.

In addition to the support for creating semantic Web services, the Service Provisioning
Platform will allow users to provide lighter annotations over services through tagging, rating,
etc. Tagging will allow users to quickly attach some words that are considered relevant for
describing the service, in a similar vein to that of Web 2.0 sites like Flickr [31] or Delicious
[32]. Additionally users will be provided the means for providing feedback about services. We
hereby consider therefore the possibility for users to comment on services and rate them
using the Review vocabulary [33]. This will pave the way for profiling users based on their
preferences and enhancing users’ experience with more adequate services while using a
vocabulary compatible with existing systems such as Revyu.com [34] and therefore ready to
be integrated with the Linked Data initiative [35].

Finally, given the amount of ontologies, services and, to a lesser extent, semantic Web
services descriptions available on the Web, the Provisioning Platform will also provide the
means for importing existing data and if necessary translating the data into formats that can
be processed by the SOAAll tools, e.g., RDF/RDFS, WSML, SAWSDL, WSMO-Lite, etc. To
this end we shall rely on existing software libraries for parsing and transforming the
documents, as well as on external services such as Watson [28] for locating and reusing
existing ontologies.

3.2 On the lifecycle of Semantic Web Services
The vision outlined in this deliverable and pursued within the project is one where billions of
users will be collaborating in providing and utilizing web services. Users, may they be
companies or individuals, collectively contribute to the creation of web services, their
annotation, their composition, their evaluation in a seamless and autonomous way.
Conversely, users will also engage in the consumption of existing services by invoking
existing semantic Web services. The execution of services will eventually provide further
valuable information about their services either automatically, thanks to the analysis of the
actual execution (e.g., execution time, reliability, etc), or indirectly, thanks to the feedback
provided by users.

Crucial to this vision is the use of humans as the most valuable source of information. Users,
supported by computers, will contribute to an ever-growing body of services leading to what
we refer to as the Service Web [36]. In the short term this will lead a greater number of
services that can better support the automation of their discovery, execution, composition,
and analysis. In the mid and long term however this will naturally lead to a new set of
challenges we need to address. Among these challenges scalability and evolution are of
particular relevance for the Service Web. We shall herein present the overall approach we
will follow in this respect from the perspective of the Service Provisioning Platform.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 26 of 64

We previously introduced that for annotating services in a Web scale we will make use of
lightweight semantics, namely WSMO-Lite and MicroWSMO, able to support scalable
reasoning for computationally expensive tasks such as web service discovery. WSMO-Lite
uses SAWSDL annotations over WSDL files describing web services. MicroWSMO uses
microformats for including annotations on web pages describing RESTful services. Thus, in
both cases, the annotations are to be included within documents most typically owned by a
third party and stored in a server where we most often will not have write access.
Additionally, given the collaborative dimension of the Service Web it is likely that, over time,
different people will provide different annotations over the same underlying web services
(e.g., using different data models). Similarly, these annotations will possibly evolve leading to
different versions of a web service annotation being used within different processes, mash-
ups, and third-party applications. Finally, it is likely that changes over the web services will
occur causing certain disruptions on any other software relying on prior versions of these
services.

Figure 4. WSMO-Lite Annotations (see [26]).

In [26] the authors present a set of annotations and rules that can be supported by WSMO-
Lite using SAWSDL hooks. The types of annotations have been represented in Figure 4. In
addition, [26] defines a set of rules over these annotations in order to determine their
consistency and completeness. In a nutshell, completeness is achieved when all the parts of
a service are annotated. Consistency on the other hand is achieved when the annotations
are not contradictory, e.g., transformation and ontological annotations are consistent.
Similarly, MicroWSMO proposes the use of microformats for annotating RESTful services as
described in HTML web pages. Despite the fact that the kind of document to be handled is
different, the notions of consistency and completeness are still applicable.

As we previously highlighted, in the Service Web, a plethora of annotations could be defined

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 27 of 64

over the same web service. As a consequence, the notions of completeness and consistency
become harder to track if all the annotations are kept jointly in the same document. Imagine
for instance services with several annotations pointing to ontologies and their corresponding
transformations; determining the consistency in this case requires the application of certain
mechanisms, e.g., naming conventions, so that one can distinguish between pairs of
ontology-transformation annotations. Furthermore, keeping the annotations within a unique
service definition can grow the files to sizes where their manipulation will be extremely
inefficient. For instance, trying to apply the desired set of annotations, despite the use of
naming conventions, would require a time consuming process for retrieving the annotations
from the document in the first place.

The lifecycle of semantic Web services exposed above therefore presents important
technical issues that need to be addressed when supporting the provisioning of semantic
Web services:

• Each WSDL service annotation2 will have to be stored in the SWS Registry as a new
semantic Web service in such a way that all the annotations attached can be
retrieved. The details on how to store these annotations will be covered in WP5;

• Similarly, each MicroWSMO annotation will have to be stored in the SWS Registry as
a new semantic Web service;

• Each SWS will have to be uniquely identified in a way that users and software can
discover and utilise them; and

• The management of SWS should support the evolution of annotations based on
users interactions so that they can be improved and still the execution of previously
created semantic Web services can be ensured.

These requirements have mainly an impact on the backend used for storing and discovering
the semantic Web services being devised in WP5. However, the Service Provisioning
Platform needs to take these aspects into account when supporting users in the creation,
modification, and deletion of annotations. In particular we shall deal with the lifecycle of
services as follows:

• The creation of a new SWS (i.e., a complete annotation over some service) will
generate a new document—WSDL with annotations or HTML with annotations—that
will be sent for storage to the semantic Web services Registry;

• After storage the repository should return a unique identifier for the annotation
created;

• The modification of any existing SWS will provoke the creation of a brand new
annotation based on the duplication of the original one;

• The deletion of existing SWS will only be allowed for the creator; and

• To properly support the evolution of services and their annotations, there should be a
bidirectional link between each SWS and the underlying service it is enriching with
semantic annotations. In this way the impact of changes performed by third-parties
over services they offer on the Web can be effectively determined.

In the remainder of this section we shall describe in more detail the different components of
the Service Provisioning Platform, explaining how their concrete tasks are performed and

2 We here refer to “annotation” as the set of coherent annotations of different kinds (e.g.,
lifting, ontology mapping) part of the same annotation effort. We also use interchangeably the
term semantic web service to refer to a complete set of annotations over a service.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 28 of 64

giving details on the artefacts manipulated and the interactions with other components.

3.3 Detailed Architecture
The following sections present more details about the different components of the
architecture of the Service Provisioning Platform.

3.3.1 Simple SWS Editing Framework

One of the roles of the Service Provisioning Platform is to support providing annotations for
existing services so that we can better support tasks like discovering suitable services, or
composing new ones out of existing ones. To this end the Simple Semantic Web Services
Editing Framework (see Figure 3) has been devised. This framework provides the necessary
support for browsing existing services, annotating WSDL services via the so-called WSMO-
Lite Editor and RESTful services with the MicroWSMO editor. In this section we shall present
the Service Browser which allows users to browse the services that have been found by the
Crawler. The editors, however, given their relevance and in order to maintain this document
within a reasonable size, are covered in detail in [37].

3.3.1.1 Services Browser

Prior to annotating any service, users need to find them and realise that they are interested
in using them even though they have not been annotated yet. Similarly, service providers
may be interested in annotating their own services for increasing their uptake. In order to
cover for this very first step towards adding semantics to existing services, we need to
provide a user interface for users to search, browse and get information about existing
services in a convenient way. To this end, the Service Provisioning Platform includes what
we refer to as the Service Browser, see Figure 5 for a mock-up of the user interface.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 29 of 64

Figure 5. Mockup of the Service Browser User Interface.

The Service Browser provides a simple way for browsing existing services (WSDL-based or
RESTful) through two main means. Services can be browsed by category or based on tags
attributed by prior users. The former is supported thanks to a predefined taxonomy of
domains that identifies in a broad manner the main domain to which services can belong,
see area 1 in Figure 5. In particular, we shall reuse the Service Categories ontology [38]
defined within Service Finder (FP7 INFSO-ICT-215876) [39]. It is therefore different from the
taxonomies used by the Service Consumption Platform which are more specific, typically
based around a concrete domain (e.g., eTOM for telecommunications [40]). Instead this
global categorisation of services provides a high-level view over crawled services so that
users can restrict their search but it is not supposed to provide fully-fledged refined search
capabilities since this would require additional metadata about services. This taxonomy will
be populated based on an automated high-level domain analysis of services and their
documentation after they have been found by the service crawler [41]. The concrete
techniques for performing this analysis are covered in more detail in Section 3.3.3 since it is
performed by one of the main components of the Annotations Recommender. In order to
enhance the overall classification of services, the Service Browser allows users to add
additional classifications to services if they feel the automated results were not accurate
enough. Browsing through tags is based on the feedback previously provided by users about
services (see Section 3.3.5). The existing tags will be shown using the tag cloud widget
defined in [12], see area 2 in Figure 5. Obtaining the tags to use will be based on querying
the repository holding them, and similarly retrieving relevant services based on a tag
selected will involve querying the Crawler Registry.

The area 3 in the user interface of the Service Browser will be populated with the appropriate
list of services, based on the tag or category selected showing some brief information about

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 30 of 64

them. With this list users will be able to quickly browse through relevant services retrieved,
and the Area 4 will show additional detailed information about the service selected including
general data such as the server hosting the service, when it was crawled, or how many times
users have rated the service. Additionally, users will be able to get further details about the
service such as its technical description, performance data gathered about service or
documentation available. All this information will be accordingly retrieved from the various
repositories maintained in SOAAll (e.g., Crawled Registry, analysis results, etc).

Finally, in order to provide more flexibility for the user to retrieve services, the Service
Browser will allow generating keyword-based queries over the crawler registry [41], and it will
show a set of services for convenience based on their popularity, how recently they have
been added to the registry, or even based on the likelihood for the service to be relevant to
the user given his or her profile and previous behaviour from similar users.

The means for achieving the functionality described above will be detailed next, presenting
first the main use cases and then moving into more concrete details on how they are to be
performed.

Figure 6. Service Browser Use Case Diagram.

The Service Browser will provide the functionality described above through 4 main use cases
illustrated in Figure 6. Find Service By Query as indicated by its name allows users to find
services based on queries. The Crawler Registry supports keyword-based queries as well as
SPARQL queries based on the Service Ontology it uses [41]. Retrieve Services By Tag on
the other hand allows to retrieve services that have been attributed a concrete tag by the
users. Retrieve Services By Category allows users to find services that have been
categorised with respect to the high-level services domains category [38]. Finally, Retrieve
Service Information obtains all the known information about a given service. This use case is
in turn supported by 5 other use cases that retrieve parts of the information, namely the
service definition, related documentation, statistics, ratings, and reviews.

The implementation for most of these use cases will be rather similar, the main difference
been the backend component to which the request is forwarded. Find Service By Query,
Retrieve Service Definition and Retrieve Service Documentation contact the Crawler Registry
in order to obtain the list of services matching a query or the information stored about one

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 31 of 64

concrete service. The rest of the use cases depicted in Figure 6 on the other hand delegate
their query to SOAAll Studio Storage Service (see [12]) who will in turn send the query to the
Distributed Service Bus. In order to illustrate the process in both cases, Figure 7 shows the
sequence diagram for retrieving services based on a text-based query, and Figure 8 shows
the sequence diagram for retrieving the detailed information about the service.

Figure 7. Find Service By Query Sequence Diagram.

Figure 8. Retrieve Service Information Sequence Diagram.

3.3.2 Process Editor

In addition to providing annotations over existing services, the Service Provisioning Platform
will support the creation of composite semantic Web services. We contemplate in particular

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 32 of 64

two kinds of composite services, namely processes and mash-ups [16, 21, 22]. The former
refer to orchestrations of services that include a more or less complex control and data flow.
The latter, following Web 2.0 practices, aims at supporting the creation of simple composite
services and therefore limits the definitions to orchestrations whereby the control flow is
implicit in the data flow. The creation of composite semantic Web services will be supported
by the Process Editor which is part of the Service Provisioning Platform. Again this
framework is described in more detail in a separate deliverable [16] in order to devote the
level of detail it requires.

3.3.3 Annotations Recommender

The Annotations Recommender is one of the main components of the Provisioning platform.
Its main function, as the name suggests, is to assist the user in annotating a service by
recommending suitable annotations at different levels of granularity. The Annotations
Recommender analyses the service description and related documents in the crawled data,
and uses this information to suggest suitable annotations for the service as a whole (domain
and classification annotations) and for its individual properties (for example, input/output data
types and operations). The Annotations Recommender plays a key role for the semantic
description of services, since it reduces the amount of necessary manual work and increases
the accuracy of the resulting semantic service descriptions by actively involving the user.
This section gives an overview of the Annotations Recommender architecture and design.
Additional details, including activity diagrams and implementation requirements, are given in
the Annex.

The recommendation approach used for the SOAAll Annotations Recommender is a hybrid
one, combining both content-based and ontology-based recommendation [42]. The content-
based recommendation is implemented by computing similarity measures, between the
description of the new service to be annotated and previously annotated services. The
computation of these similarity manures is done by determining text correlations and
correspondence. For example, the k-Nearest Neighbour [43] approach determines which
service description is the ‘closest’ one to the service to be annotated, by representing each
service description as a term vector and comparing these term vectors. Other text-similarity
measures for making content based recommendation include, lexical matching methods [44]
and word-to-word similarity measures, using approaches that are either knowledge based
[45], [46] or corpus-based [47]. [48] provides a concise overview of the most common text-
similarity measures and their applications. The content based recommendation approach
used in the Annotations Recommender is going to be based on the k-Nearest Neighbour
approach, where the service descriptions are represented by computing the normalized term
frequency3 for each word and removing stop words4 and words with very low frequency5.
Previous work with k-Nearest Neighbour-based comparison and classification has show that
it delivers good results [42] and there exist already performant implementations.

The ontology-based recommendation is used to compensate for the shortcomings of content-
based approaches. While content-similarity approaches are successful to a certain degree,
they cannot always identify the semantic similarity of texts. For instance, there is an obvious
similarity between the text segments “I own a dog” and “I have an animal”, but most of the
current text similarity metrics will fail in identifying any kind of connection between these
texts. The Annotations Recommender will profit from the fact that service descriptions are

3 Number of times a term occurs in the text divided by the total number of terms in the text.
4 Stop words are very common words like “the” and “or”.
5 Dimensionality reduction is common and necessary in information analysis [49].

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 33 of 64

semantically annotated and will identify semantic similarities by using ontology inference [42,
50]. The goal is to achieve more accurate annotation recommendations by combining the two
recommendation approaches and compensating the weaknesses of text-similarity by using
ontology inference.

Figure 9 depicts the main components of the Annotations Recommender, based on the
hybrid recommendation approach. The Service Data Preprocessing component performs text
analysis tasks including i) term frequency extraction; ii) natural language analysis [51] and;
iii) keywords extraction [52]. These tasks do not require any user interaction and can be
performed in a pre-processing step, preparing the service data for the actual annotation
recommendation. The Relationship Analysis component implements the most important
tasks for the Annotations Recommender. It performs k-Nearest Neighbour similarity analysis
of the new service and previously annotated services, as well as it computes correlations for
determining semantic-similarity. Based on the results of the Relationship Analysis
component, a Set of Similar Services (SSS) is determined, whose annotations are used as
the basis for recommendations for the new service. The Relationship Analysis component
uses input data from the Service Data Preprocessing and from the Document Analysis,
which performs tasks for identifying service properties in a given service description.

Figure 9. Annotations Recommender Components.

The design of the Annotations Recommender is based on one main use case: Recommend
Service Annotations. Figure 10 visualizes this use case, and the included use cases
Recommend Service Annotations for WSDL Services and Recommend Service Annotations
for RESTful Services for making recommendations for WSMO-Lite and MicroWSMO
annotations respectively. The Annotations Recommender has one Service Annotating User
actor, who uses the Recommended Service Annotations results in order to complete a
semantic service description. The Annotations Recommender does not include a user
interface, but rather exposes its results through the Simple SWS Editing Framework
described in more detail in [37]. In a similar way, the Recommender uses the SOAAll
Distributed Service Bus (DSB) (see [53], [12]), which enables the access to Crawler Registry,
external services and User Profiles repository.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 34 of 64

Figure 10. Use Case diagram "Recommend Service Annotations".

Table 4. Artefacts in the "Recommend Service Annotations" Use case.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 35 of 64

In summary, the Recommend Service Annotations use case performs the following tasks.
First, as soon as new services without annotations are available, for example after being
collected by a crawler, a pre-processing of the service data is performed, which includes
term frequency and key words analysis. Based on these, similarity measures to already
annotated services are computed, and a domain and a classification are initially assigned to
the service. A ranked list of other possible domains and classifications is stored, so that the
user can easily change the initial service annotations. After these computation steps are
completed, the user initiates the next one by deciding to annotate a service, which thanks to

Activity Name Input Information Output Information Comments

1. Service
Preprocessing

- Service
Description
-Service Related
Documents

- List of Service
Properties
- Set of Similar Services
(SSS)
-Service Keywords

-Access to the Crawler Registry is required, which
returns a Service and its Related Documents
-The TF and Keywords extraction can be performed
by using system-external services. A connection to
these services would be a requirement.
- The Preprocessing does not involve any user
interaction and can be performed anytime previous
to the user-guided annotations
- The SSS can be an empty set, if there is not
enough training data, or annotated services.

2.Suggest
Service
Domain

-Service Keywords
-Service Properties
-Ontology for
Service Domains
-SSS

- Service Domain,
automatically assigned
to the Service
- List of Possible Service
Domains
-SSS, which is narrowed
down by assigning a
Domain to the Service

- The Domain Analysis does not involve any user
interaction and can be performed anytime previous
to the user-guided annotations. The Result is one
Domain assigned to the Service, and a list of
possible Domains, from which the user can choose,
if he wants to make a change.
-The generation of training data is a necessary and
essential step. It must be done before the
Annotation Recommender is in an operation state.
-The SSS can be an empty set, if there is not
enough training data, or annotated services.

3.Suggest
Service
Classification

-Service Domain
-Domain\
Classification
Dependencies
-Classification
Taxonomies
-SSS
-User Profile

- Service Classification,
automatically assigned
to the Service
- List of Possible Service
Classifications
-SSS, which is narrowed
down by assigning a
Classification to the
Service

- The Classification Analysis does not involve any
user interaction and can be performed anytime
previous to the user-guided annotations. Only the
Classification based on User Profile requires that a
user is logged onto the system (no user interaction
is required).
-The User Profile, can be used in the same manner
as the SSS. By computing similarity of the current
user to other users, the proper Service classification
can be determined. In contrast to the SSS similarity,
User Profile similarity has to be determined based
on an active user.

4.Suggest
Domain
Ontology

-Service
Classification
-Service Domain
-Domain
Ontologies
-Service Properties
-Service Keywords

- List of Recommended
Service Domain
Ontologies, the user
assigns one of them to
the Service
-SSS, which is narrowed
down by assigning a
Domain Ontology to the
Service

- A connection to a service for searching for existing
ontologies and semantic information (Watson [54],
Sindice [55]) is required
-This activity requires an active user to choose a
Domain Ontology from the list with suggestions.

5.Suggest
Annotations for
Service
Properties

-Domain ontology
-Service Properties
-SSS and Property
Annotations

- List of Service Property
Annotation Suggestions,
from which the user has
to choose

-In contrast to previous activities, this one requires
continuous user interaction.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 36 of 64

the pre-processing has already an identified domain and classification, as well as a set of
keywords and term frequencies. When the user wants to annotate each of the properties of
the service, the Annotation Recommender computes a list of domain ontology suggestions.
Based on the chosen domain ontology, the user can annotate the service in detail. These
steps which we have described from a high-level perpective are discussed in detail in the
following sections, starting with the required artefacts and continuing with a description of
each of the activities.

The Recommend Service Annotations use case comprises a number of activities, which
perform the tasks that are necessary for the computation of annotation recommendations.
Each of these activities has a set of requirements and effects, as well as a number of input
and output artefacts which are processed. A detailed activity-based overview on the inputs
and outputs is given in Table 4.

Considering the required input information and the resulting output, the Service Description
and the Service Related Documents are the only initially required input. The Service
Description is a WSDL file or a REST API text description, while the Service Related
Documents include descriptions of implementation details (html, MSWord, pdf document
formats), news and updates, user comments and feedback. The exact structure and content
of the Service Related Documents and how they are determined are described in [41].

In addition, to the initial input information, the Annotations Recommender requires access to
the semantic Web services Registry [21], the Crawler Registry [41], the User Profiles
repository currently being devised in T2.7 and a number of external services, such as
Watson6 [54] and existing NLP methods implementations7. This access is facilitated by the
DSB [12, 21, 53]. The overall result of the use case is an Annotated Service, while there are
several important intermediary artefacts, such as the Service Keywords and Service
Properties, which are cached and reused in several activities.

The Service Keywords are seen as the service’s content representation and serve as the
basis for determining similarity measures to other service descriptions. The Service
Keywords are computed during the Service Preprocessing activity. During the pre-
processing, term frequencies are computed, for all words present in the service description
and its related documents. These term frequencies are normalized, and the terms appearing
more often in the related documents, than in the description itself are assigned lower
weights, in order to decrease their importance in the service representation. Following is a
step, during which stop words and words with low frequencies are eliminated. The result is
the Service Keywords, which are used for determining a Set of Similar Services (SSS),
based on which annotation recommendations are made.

The Service Properties, on the other hand, are determined by directly analysing the WSDL
file or REST description. These include service operations, input and output types, address,
etc. and serve as the main elements for attaching semantic information. The Service
Properties are used together with the Service Keywords, to determine possible service
domain and classification, since the service operations, input and output carry indications for
functionality of the service. In contrast to the Service Keywords, the Service Properties can
be subsequently edited by the user, in order to ensure that all service properties are properly
identified and can be annotated.

The suggesting of a service domain and service classification (2. and 3.) requires the use of

6 Watson is an infrastructure component for the Semantic Web, a gateway that provides the
necessary functions to support applications in using the Semantic Web. In particularly, it
enables ontology keywords-based search.
7 ClearForest NLP services http://sws.clearforest.com/Blog/?page_id=6

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 37 of 64

a predefined Ontology for Service Domains and Classification Taxonomies. A service
Domain, as defined in the context of the Annotations Recommender represents is the
general application area of the service (for example, telecommunications). The Classification,
on the other had, described the taxonomy, based on which the service function can be
described (for example, NGOSS-based taxonomy [40]). Naturally, there is a correlation
between the domains and classifications, which is specified in the Domain\Classification
Dependencies document. This document specifies which classification taxonomies can be
assigned to which domains and vice versa. The Domain\Classification Dependencies
document will be composed manually; however, it can be updated and extended by the
users, by adding new domains and classification taxonomies.

As already mentioned, the suggesting of a service domain and service classification (2. and
3.) are based on the determined Similar Set of Service (SSS), which is computed by
calculating similarity measures between already annotated services and the service
keywords. However, no recommendations can be made, if the SSS contains no service, i.e.
the set is empty. This requires the manual creation of an initial set of training data. The
training data consist of manually annotated services, whereas, the goal is to cover as many
domains and classifications as possible. The provisioning of training data has to be done by
users who provide accurate annotations, with a certain level of expertise, because the
following recommendation relies completely on these initial annotations. In addition, since the
annotation of training data is a completely manual process, the MicroWSMO Editor and the
WSMO-Lite Editor can be used to ease the work. The resulting training data annotations can
than be used for determining similarity measures and adding new annotated service.

In addition, it must be pointed out, that a main point of weakness of all recommender
systems is the new-system cold-start problem [42]. This is typical in new systems, which
have only a few initial documents and input, on which similarity analysis can be based. As a
result the computed recommendations have a fairly low accuracy. In order to tackle this
problem, the Annotations Recommender will implement additional methods of probability
correlation analysis [56], whenever the set of similar services is empty, in order to ensure
that users can properly annotate services from the very beginning. The probability correlation
approach reflects the existing dependencies between the domains, the classifications and
the individual properties of a service and is computed by providing an initial probability table,
which is modified based on the given training data. In this way, a service property
annotations recommendation is based on the probability that it belongs to a given
classification and to a given domain. For example, a property “book title” is more likely to
occur in a book order service, than in a telephone registry service.

After discussing the most important artefacts involved in the Recommend Service
Annotations use case, it is also important to describe the corresponding activities. There are
two main types of activities. The first type does not require any user interaction and can be
completed offline, in a batch-manner as soon as new services without annotations are
available. Service Preprocessing, Suggest Service Domain, and Suggest Service
Classification are such activities, which automatically determine frequent terms, service
keywords, and assign a domain and a classification to the service. The second type of
activities are user-bound and require an active user to choose a domain ontology from a list
of suggested domain ontologies (Suggest Domain Ontology) and to choose an annotation for
each of the service properties (Suggest Annotations for Service Properties). Figure 11
visualizes the activity flow and the artefact modifications involved in the Recommend Service
Annotations use case.

The Service Preprocessing (Activity 1) computes the Service Keywords, an initial SSS and
the Service Properties. It must be pointed out that depending on the number of already
annotated services, the computation of the SSS, based only on the Service Keywords and
without any additional constrains, could need a lot of resources and time. Therefore, the

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 38 of 64

computation of the SSS may have to start after a domain is assigned to the service, which
narrows down the number of required comparison steps. After this, the SSS will be refined
during each activity.

Figure 11. Activity Diagram: "Recommend Service Annotations”.

This use case is cumulative for recommending annotations for both WSDL and RESTful
services. However, due to the difference in the descriptions and the different resulting
annotations (WSMO Lite and MicroWSMO) some of the activities include different subtask or
additional artefacts. For example, the Service Preprocessing for RESTful services not only
identifies service properties, but also generates a corresponding hREST [29] description.

The Annotations Recommender is based on past research and reuses some of the main
information retrieval and recommender systems techniques. These include document
representation by term frequency-based keywords, similarity measures computations and
classification approaches. However, the Annotations Recommender will adapt these
methods to the particular task, that is service description analysis. In addition, the service
pre-processing, as well as the multi-level recommendation, including domain, classification

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 39 of 64

and ontology recommendation, pose additional challenges.

3.3.4 Templates and Service Creation Wizards Manage ment Framework

Within the Service Provisioning Platform, we will provide wizards on top of the MicroWSMO
and WSMO-Lite editors [37], guiding our users through the necessary steps to complete the
annotation of services. The wizards shall trigger when necessary the invocation of the
Annotations Recommender (see Section 3.3.3) in order to give suggestions to the user.

By having intuitive wizards, we will increase the chances of having different kinds of users
interacting with the Service Provisioning Platform, for the wizards will be an easy way to
begin to use the platform. Hence, the first contact of SOAAll users, when acting as service
providers, will likely be easier through the use of wizards, and they will be initiated in service
provisioning in a smoother way.

Our particular approach towards these wizards will take advantage of the characteristics of
the Ext-GWT Framework that we will use in the components of the SOAAll Studio [12]. We
will present the wizard as a draggable box on top of the rest of UI components of the
platform, see Figure 12. Any actions taken by the user (e.g., answering to some question)
will trigger the appropriate actions in the Provisioning Platform, thus assisting the user in the
generation of semantic web services in a simple step-by-step way.

Figure 12. Service Provisioning Wizard interacting with the Platform

This way, while the wizards will simplify things for the non-expert user, abstracting the
complex operations that take place below, at the same time we will be able to show the more
advanced users what do their selections in the wizard imply in the platform, allowing them to
understand what is going on, in which part of the overall process they are, and thus to learn
how can they perform those actions without the help of the wizard in successive interactions
with the platform.

From the technical point of view, wizard paths will be represented in the platform using XML.
The Service Creation Wizards component will parse those XML files in order to present the
relevant instructions to the user. The following Figure 13 is an example of the definition of a
wizard and how it would translate into the graphical element shown to the user.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 40 of 64

Figure 13. Wizard definition and translation to GUI example

3.3.5 Feedback Management Framework

SOAAll users (service prosumers) will be able to create new semantic web services within
the Service Provisioning Platform, and they will also provide useful information about them.
Our approach is similar to that of Web 2.0, where users are able to enrich the content by
providing additional information about it, typically in these ways:

• By tagging: Associating lightweight keywords which are relevant for a particular item.
• By rating: Assigning a numeric value from a predefined set, typically from 1 to 5, to an

item, indicating its subjective quality or degree of helpfulness.
• By evaluating: Writing textual reviews or comments about a particular item, which are

useful for other users.

In SOAAll, we want to allow users to give their feedback about services (and Goals) in the
aforementioned ways. While the Service Provisioning Platform mainly focuses on Services
(strictly speaking, about semantic descriptions of services made in WSMO-Lite and
MicroWSMO), the Service Consumption Platform [57] stresses the use of (WSMO) Goals
(and as such, service consumers will be “Goal prosumers”), we will consider here any kind of
feedback on the different items (Services and Goals), for it is information provided by the
users to enrich their descriptions. We will refer to the identifiers of both types of items
expressed as URIs in the following subsections as “idService” and “idGoal” respectively.

We enclose here the sequence diagram (Figure 14) envisioned for the Feedback
Management Framework, including the three kinds of feedback previously addressed.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 41 of 64

Figure 14. Feedback Management Framework sequence diagram

Regarding storage of feedback information, they all share a common approach: the relevant
information is stored in the semantic spaces provided by WP1 through the use of the SOAAll
Studio Infrastructure Services for Storage [12]. The sequence diagram depicts the interaction
of users with the repositories through the invocation of the SOAAll Studio Storage Services.

We will also make use of other SOAAll Studio facilities for generating Tag Clouds.
Additionally, with respect to ratings and comments, we will make use of the Review
vocabulary [33], therefore ensuring compatibility with existing systems such as Revyu.com
[34] and therefore ready to be integrated with the Linked Data initiative [35].

Another general guideline for the collection of feedback in SOAAll Studio is that we will
require that the user providing feedback is logged-in, i.e., we won’t permit anonymous
feedback. We will make use of the Management Services provided as part of the SOAAll
Studio Infrastructure Services [12] to easily map every feedback to the particular user
providing it.

In the following subsections, we will cover each of the three components that will take care of
the different kinds of feedback, and their technical details.

3.3.5.1 Tagging component

The Service Provisioning Platform will provide the user interface and underlying machinery
for tagging Services. The Service Consumption Platform will additionally make use of the
infrastructure devised here for allowing users to easily attach tags to Goals that are
considered relevant for describing them. The approach is similar to the one taken by Web 2.0
sites like Flickr [31] or Delicious [32], which allow to tag content (photos and urls,
respectively).

Technically, tags within this platform will be stored as RDF into the semantic spaces, through
the use of the SOAAll Studio Storage Services. Retrieving the tags from the repository will be
possible through the same gateway services. Additionally, this component will be able to

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 42 of 64

display “Tag Clouds”, making use of the Tag Cloud Widget provided by the SOAAll Studio UI
Components [12].

The following listing expresses in a simplified and schematic way, using Turtle notation for
informative purposes, our approach towards the vocabulary for storage of tags in the
semantic spaces. Note that different resources (rdfs:Resource) such as services or Goals
may have associations to tags. Each association can have a tag and a user who has
associated the keyword to the resource.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix tag: <http://www.SOAAll.eu/tags#> .

:Association a rdfs:Class;

rdfs:comment "An association of a tag to an item";
rdfs:label "Association";

:hasTag a rdfs:Property;

rdfs:comment "Used to specify the tag in an association";
rdfs:domain tags:Association;
rdfs:range tags:Tag;
rdfs:label "hasTag";

:hasAssociation a rdfs:Property;

rdfs:comment "Used to specify the item in an association";
rdfs:domain rdfs:Resource;
rdfs:range tags:Association;
rdfs:label "hasAssociation";

:Tag a rdfs:Class;

rdfs:comment "A keyword to describe items";
rdfs:label "Tag";

:tagger a rdf:Property;

rdfs:comment "The user that tags the item";
rdfs:label "tagger";
rdfs:domain tags:Association;
rdfs:range foaf:Agent;

The following Table 5 expresses the functionalities covered by this component, and the
components that it makes use of.

Table 5. Tagging component summary

Functionalities
covered

Tagging Services/Goals with relevant keywords

Retrieving tags of a given Service/Goal

Retrieving Services/Goals by selecting keywords

Components
used

SOAAll Studio Infrastructure Services: Storage Services

SOAAll Studio Infrastructure Services: Management Services

SOAAll Studio UI Components: Tag Cloud Widget

The following functions will deal with tagging Goals and retrieving the tagging information:

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 43 of 64

1) Function tagItem(idService or idGoal, tag, user)

It permits a user assign a keyword (tag) to a Service/Goal.

It implies that both the list of tags assigned to the item and the list of items assigned
to a tag in the repository are updated.

2) Function getItemTags(idService or idGoal) and getItemTags(idService
or idGoal, user): Tag[]

For a given Service/Goal, it retrieves its tags. A user can also be provided to the
function, in order to retrieve the particular tags that a user has chosen for the
particular item.

3) Function: getServices(tag[]) and getServices(tag[], user):
ServiceId[] and getGoals(tag[]) and getGoals(tag[], user): GoalId[]

For a given tag (or set of tags), this function returns the list of relevant
Services/Goals. It also can be restricted to the annotations of a particular user.

4) Function: getServiceTagCloud(number) and getGoalTagCloud(number)

It creates a tag cloud with the specified number of tags, making use of the Tag Cloud
Widget provided by the SOAAll Studio UI Components. A number of tags can be
passed as an argument, as that widget accepts an “amount” as an argument. It
returns the tag cloud as a graphical element.

3.3.5.2 Evaluations component

Informal evaluations of Services and Goals in the form of textual comments will be possible
thanks to this component. These comments can help users understand better the purpose of
the Service or Goal, and check previous experiences of users with them.

We will make use of the Review vocabulary in order to easily enable a way of storing
evaluations, following an existing approach. In particular, in the text property of the Review
class. The storage of the RDF-based Review instances will be again achieved through the
use of the Storage Services. The following listing shows the relevant parts of the Review
vocabulary for comments, expressed in Turtle:

:Review a rdfs:Class;
rdfs:comment "A review of an artistic work";
rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
rdfs:label "Review";
vs:moreinfo "core term";
vs:term_status "stable" .

:hasReview a rdf:Property;
rdfs:comment "Used to associate a work of art with a a review";
rdfs:domain rdfs:Resource;
rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
rdfs:label "hasReview";
rdfs:range <http://www.purl.org/stuff/rev#Review>;
vs:moreinfo "core term";
vs:term_status "stable" .

:text a rdf:Property;
 rdfs:comment "The text of the review";
 rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
 rdfs:label "text";
 vs:moreinfo "core term";
 vs:term_status "stable" .

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 44 of 64

The following Table 6 expresses the functionalities covered and components used by this
component, as not only writing evaluations and retrieving them will be supported, but also a
full text search on those.

Table 6. Evaluations component summary.

Functionalities
covered

Writing a comment on a Service/Goal

Retrieving comments of a given Service/Goal

Full text search of the comments made on Services and Goals

Components
used

SOAAll Studio Infrastructure Services: Storage Services

These functions will permit to cover the functionalities:

1) Function commentItem(idService or idGoal, comment, user)

It stores a comment by a user on a Service/Goal, updating the list of comments
assigned to it.

2) Function getComments(idService or idGoal) and getComments(idService
or idGoal, user): comment[]

For a particular Service/Goal, it returns a list of comments. It can be invoked with the
user as an extra parameter, allowing to retrieve specific comments of a user for a
given Service/Goal.

3) Function searchComments(string): idService[] or idGoal[]

For a set of words provided by the user, it returns a list of services or goals that have
reviews that match those words.

3.3.5.3 Ratings component

This component deals with the user-generated ratings of services and goals. It allows people
to rate those items, assigning a numeric value amongst a predefined set to them, and
retrieving those ratings conveniently.

As for the graphical part, we will rely on the Rating Widget provided by the SOAAll Studio UI
Components [12], while this component will also take care of storing and retrieving the data,
and about the logic used.

The Review vocabulary addressed in the previous section also contemplates ratings as part
of a Review, so we will use it for our purposes. Like in the previous cases, storing and
retrieving the instances from the semantic spaces repository through the SOAAll Studio
Storage Services. In the Review vocabulary, the Review class includes two different
properties: positiveVotes and totalVotes (integers), by which a rating by a particular
user is defined.

The following listing shows these relevant parts of the Review vocabulary regarding ratings:

:Review a rdfs:Class;
rdfs:comment "A review of an artistic work";
rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
rdfs:label "Review";
vs:moreinfo "core term";
vs:term_status "stable" .

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 45 of 64

:hasReview a rdf:Property;
rdfs:comment "Used to associate a work of art with a a review";
rdfs:domain rdfs:Resource;
rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
rdfs:label "hasReview";
rdfs:range <http://www.purl.org/stuff/rev#Review>;
vs:moreinfo "core term";
vs:term_status "stable" .

:reviewer a rdf:Property;

rdfs:comment "The person that has written the review";
rdfs:domain <http://www.purl.org/stuff/rev#Review>;
rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
rdfs:label "reviewer";
rdfs:range foaf:Person;
vs:moreinfo "core term";
vs:term_status "stable" .

:positiveVotes a rdf:Property;

rdfs:comment "Number of positive usefulness votes (integer)";
rdfs:domain <http://www.purl.org/stuff/rev#Review>;
rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
rdfs:label "positiveVotes";
rdfs:range rdfs:Literal;
vs:moreinfo "proposed by iterating.com";
vs:term_status "testing" .

:totalVotes a rdf:Property;

rdfs:comment "Number of usefulness votes (integer)";
rdfs:domain <http://www.purl.org/stuff/rev#Review>;
rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
rdfs:label "totalVotes";
rdfs:range rdfs:Literal;
vs:moreinfo "proposed by iterating.com";
vs:term_status "testing" .

We have decided that the component will allow one rating per user and service, so when a
particular user rates again the same service, he will be updating the data, but not storing a
second rating. As each Review is performed by a “reviewer”, it will be easy to check if a user
has rated the item before or not.

The following Table 7 shows the functionalities that this component covers, and the
components that it uses to achieve so:

Table 7. Goal Ratings component summary.

Functionalities
covered

Ability to rate a Service/Goal.

Ability to retrieve the average rating of a Service/Goal.

Ability to retrieve a particular rating of a user on a Service/Goal.

Components
used

SOAAll Studio Infrastructure Services: Storage Services

SOAAll Studio UI Components: Rating Widget

These functions will permit dealing with ratings:

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 46 of 64

1) Function: rateItem(idService or idGoal, positive votes, total votes,
user)

It stores a new rating on a Service/Goal by a user, specifying the number of “positive
votes” as well as the “total votes” (i.e., the maximum number that the user could have
chosen). If the user had rated the same item before, the rating is updated, but not
added.

2) Function getRating(idService or idGoal): average rating, number of
ratings
 and getRating(idService or idGoal, user): positive votes, total
votes

If it is invoked without specifying a particular user, it returns the average rating of a
Service/Goal (taking into account all the positive and total votes of each rating on that
item), as well as the total number of ratings. It can be invoked with a particular user
as a parameter, in which case his rating for the item (expressed in positive votes
versus total votes) is returned.

3.3.6 Import Facilities

We previously mentioned the main requirements that had to be fulfilled by the Provisioning
Platform. Among these we highlighted the need for importing existing knowledge models in
order to reduce the overhead for annotating services but also for eventually reducing the
mismatches between different knowledge models, using instead common ontologies.

Given the scope of the SOAAll Studio, we address this requirement in a rather indirect way
by allowing users to automatically retrieve and use existing ontologies from the Web. In fact,
the current evolution of the Semantic Web has taken us to a situation where thousands of
ontologies are available on the Web. In the light of this situation several researchers have
worked on search engines able to find, index, and serve third-party ontologies to users and
applications over the Web. The Provisioning Platform will make use of these systems for
importing existing ontologies and using them directly when annotating services. Among the
systems we intend to integrate it is worth mentioning Watson [28], developed at the Open
University and a similar system called Sindice developed by the University of Galway [55].
We shall integrate them in this very order as the development progresses.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 47 of 64

4. Related Work and Envisaged Progress
In this section, we provide an overview of the state of the art in the field touched by the
Service Provisioning Platform as described in the previous sections.

4.1 Service Modelling and Tagging
Service Modeling can be defined as the task in charge of generating services—simple or
composite—that can then be used by end-users or developers to achieve their objectives.
Services definition is the first and foremost task involved in the development of any service-
oriented system and it has therefore been subject of much development and research. Work
in this area range from pure business analysis to the deepest technical details of creating
Web services [58]. In this section we shall limit ourselves to the IT landscape. The reader is
referred to [59] for a broader review of the state of the art.

Research in service modelling from an IT perspective has mostly been dominated by work in
Service-Oriented Architecture and related technologies [60, 61], and on Business Process
Management. The former aims to support the development of IT systems out reusable,
platform independent and loosely-coupled Web services. The latter tries to better support
execution of business processes within and between enterprises through IT systems such as
ERP, CRM, and Workflow Engines [62]. From a service provisioning perspective most of the
research in the area has focussed on the definition of methodologies or overall approaches
[63-65], on the theory behind processes and workflows [62, 64, 66, 67], and on the definition
of languages for modelling processes and services [23, 66, 68-74].

There have been a number of research and industry strength products developed that
support users in creating web services out of legacy code—see for instance IBM’s
WebSphere toolsuite [75] or Apache Woden [76]—or that help creating more complex
processes like a number of Eclipse plugins such as the BPMN Modeler [77] and the BPEL
designer [78], or commercial products such as IBM’s WebSphere toosuite or Intalio’s BPMN
editor [79]. For brevity we shall not perform an exhaustive listing of these tools since they all
provide a similar set of functionalities.

The approaches mentioned so far are mostly thought as desktop-based technologies in the
sense that the editors are essentially local heavyweight applications. More recent trends on
the Web around so-called Web 2.0 technologies are promoting what is commonly referred to
as Mash-ups. Mash-ups are basically extremely simple processes which merge several
sources of information. Mash-ups typically build upon a systematic application of REST
principles allowing to save resources on the server-side both at runtime and at design time
while creating the machinery for handling them [24, 80]. They therefore allow the provisioning
of services over the Web using technologies other than SOAP or WSDL which are more
common within enterprise settings.

Currently many web sites and companies provide part of their services via Web APIs so that
they can take part into innovative mash-ups, see [20] for an extensive list. The proliferation
of mash-ups has provoked the creation of a number of editors able to support users via Web-
based editors. See for instance Yahoo! Pipes [1], the Open Mashups Studio [81] or Microsoft
Popfly [82].

Despite the extensive set of technologies and tools developed around services, the uptake is
not as it was initially expected. Despite the appealing characteristics of service-orientation
principles and technologies, their application remains largely limited to large corporations
and, effectively, we are still far from truly benefiting from the promised simplicity for
constructing agile and interoperable systems. To address this, semantic Web services
(SWS) combine Web services with semantic technologies in order to better support the
discovery, composition and execution of Web services. Among the main initiatives in this
respect we can mention WSMO [7], OWL-S [6], WSDL-S [8] and SAWSDL [25]. Along these

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 48 of 64

languages for defining semantic web services there have also been a number of tools
created. For instance, WSMO Studio [83], WSMT [84] or the IRS Broker [85] support users in
the creation of WSMO compliant semantic web services. Similarly, WSDL-S and OWL-S
services can be created with the corresponding editors [86, 87]. Finally, editors such as
WSMO Studio or Radiant [88] can generate SAWSDL compliant annotations, and there exist
engines that use SAWSDL annotations for discovery like Lumina [89].

Even though the semantic web services languages and tools previously exposed have been
around for some time already, these tools are typically desktop-based editors targeted at
experts. Their inherent complexity reduces the scalability of the techniques employed and
presents too big a knowledge-acquisition overhead, which is limiting the spread of semantic
web services technologies. The Provisioning Platform devised herein is, to the best of our
knowledge, the first fully-fledged world-wide scale framework for creating semantic web
services through a Web-based intuitive user interface adapted to users with various degrees
of expertise in services and semantic technologies.

A final body of work which is worth mentioning regards the application of folksonomies [90,
91] for annotating SWS. The underlying idea is to give the user the possibility to tag the
services, instead of adopting complex SWS annotations (e.g. no pre- and post-conditions are
defined). The resulting folksonomy – which increases in complexity with the number of the
user tagging the services - can be used to infer relationships between services, and, for
example, drive the automatic service composition. The work described in [90] is at a very
early stage of development, and therefore no concrete implementations are described or
provided. To the best of our knowledge, no other approaches are currently using tags in the
area of SWS. The Provisioning Platform will therefore be among the first approaches to apply
research in folksonomies to the area of services.

4.2 Natural Language Processing Systems
Natural Language Processing is a large area, which includes topics like text understanding
and machine learning. We have concentrated on a subset: Information Extraction, a term
which has come to be applied to the activity of automatically extracting pre-specified sorts of
information from short, natural language texts.

In this section we give a brief overview of state-of-the-art systems which apply traditional IE
techniques for semantic Web applications such as annotating Web pages with metadata. We
shall first cover traditional approaches to Information Extraction and secondly we will
introduce the main systems that make use of ontology-based techniques to support the
processing.

4.2.1 Information Extraction Approaches

AeroDAML [92] is an annotation tool created by Lockheed Martin which applies IE
techniques to automatically generate DAML annotations from Web pages. The aim is to
provide naive users with a simple tool to create basic annotations without having to learn
about ontologies, in order to reduce time and effort and to encourage people to semantically
annotate their documents. Aero-DAML links most proper nouns and common types of
relations with classes and properties in a DAML ontology.

There are two versions of the tool: a Web-enabled version which uses a default generic
ontology, and a client-server version which supports customised ontologies. In both cases,
the user enters a URI (for the former) and a filename (for the latter) and the system returns
the DAML annotation for the Webpage or document. It provides a drag-and-drop tool to
create static (manual) ontology mappings, and also includes some mappings to predefined
ontologies.

Amilcare [93] is an IE system which has been integrated in several different annotation tools
for the Semantic Web. It uses machine learning (ML) to adapt to new domains and

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 49 of 64

applications using only a set of annotated texts (training data). It has been adapted for use in
the Semantic Web by simply monitoring the kinds of annotations produced by the user in
training, and learning how to reproduce them. The traditional version of Amilcare adds XML
annotations to documents (inline markup); the Semantic Web version leaves the original text
unchanged and produces the extracted information as triples of the form <annotation,
startPosition, endPosition> (standoff markup).

MnM [94] is a semantic annotation tool which provides support for annotating Web pages
with semantic metadata. This support is semi-automatic, in that the user must provide some
initial training information by manually annotating documents before the IE system (Amilcare)
can take over. It integrates a Web browser, an ontology editor, and tools for IE, and has been
described as ”an early example of next-generation ontology editors” [94], because it is Web
based and provides facilities for large-scale semantic annotation of Web pages.

S-CREAM (Semi-automatic CREAtion of Metadata) [95] is a tool which provides a
mechanism for automatically annotating texts, given a set of training data which must be
manually created by the user. It uses a combination of two tools: Onto-O-Mat, a manual
annotation tool which implements the CREAM framework for creating relational metadata
[96], and Amilcare. As with MnM, S-CREAM is trainable for different domains, provided that
the user creates the necessary training data. It essentially works by aligning conceptual
markup (which defines relational metadata) provided by Ont-O-Mat with semantic markup
provided by Amilcare.

Despite the very promising results obtained by these tools, we have to note that none of
them have been applied for the annotation of services. Typically these tools are generic and
do not allow the user to customise them for particular domains other than through training.
As a consequence one typical criticism is that they do not provide the user with a way to
customise the integrated language technology directly. While many users would not need or
want such customisation facilities, users who already have ontologies with rich instance data
will benefit if they can make this data available to the IE components. However, this is not
possible when “traditional” IE methods like Amilcare are used, because they are not aware of
the existence of the user’s ontology.

4.2.2 Ontology-Based Information Extraction Approac hes

Ontology-Based IE (OBIE) uses of a formal ontology as one of the system’s resources and
typically make use of some reasoning at runtime. As a result, as opposed to IE techniques,
OBIE techniques does not just find the (most specific) type of the extracted entity, but it also
identifies it, by linking it to its semantic description in the instance base. This allows entities
to be traced across documents and their descriptions to be enriched through the IE process.

Magpie [27, 97] is a suite of tools which supports the interpretation of Web pages and
”collaborative sense-making”. It annotates WebPages with metadata in a fully automatic
fashion and needs no manual intervention by matching the text against instances in the
ontology. It automatically populates an ontology from relevant Web sources, and can be
used with different ontologies. The principle behind it is that it uses an ontology to provide a
very specific and personalised viewpoint of the WebPages the user wishes to browse. This is
important because different users often have different degrees of knowledge and/or
familiarity with the information presented, and have different browsing needs and objectives.
Magpie’s main limitation is that it does not perform automatic population of the ontology with
new instances, i.e., it is restricted only to matching mentions of already existing instances.

The PANKOW system (Pattern-based Annotation through Knowledge on the Web) [98]
exploits surface patterns and the redundancy on the Web to categorise automatically
instances from text with respect to a given ontology. The patterns are phrases like: the
<INSTANCE> <CONCEPT> (e.g., the Ritz hotel) and <INSTANCE> is a <CONCEPT> (e.g.,
Novotel is a hotel). The system constructs patterns by identifying all proper names in the text

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 50 of 64

(using a part-of-speech tagger) and combining each one of them with each of the 58
concepts from their tourism ontology into a hypothesis. Each hypothesis is then checked
against the Web via Google queries and the number of hits is used as a measure of the
likelihood of this pattern being correct.

The system’s best performance on this task in fully automatic mode is 24.9% while the
human performance is 62.09%. However, when the system is used in semiautomatic mode,
i.e., it suggests the top five most likely concepts and the user chooses among them, then the
performance goes up to 49.56%. PANKOW therefore illustrates that semi-automated
techniques can outperform to great extent automated techniques (with results quite close to
those obtained by humans alone) by requiring strategic guidance and support from users.

The SemTag system [99] performs large-scale semantic annotation with respect to the TAP
ontology, which contains about 65,000 instances. It first performs a lookup phase annotating
all possible mentions of instances from the TAP ontology. In the second, disambiguation
phase, SemTag uses a vector-space model to assign the correct ontological class or
determine that this mention does not correspond to a class in TAP. The disambiguation is
carried out by comparing the context of the current mention with the contexts of instances in
TAP with compatible aliases, using a window of 10 words either side of the mention.

The SemTag system is based on a high-performance parallel architecture –Seeker, where
each node annotates about 200 documents per second. The demand for such parallelism
comes from the big volumes of data that need to be dealt with in many applications and
make automatic semantic annotation the only feasible option. In general, a parallel
architecture of a similar kind is often an important ingredient of large-scale automatic
annotation approaches, whereas semi-automated techniques can reduce the overhead to an
important extent by “utilizing” the user as one of the main sources of information and
knowledge.

The Knowledge and Information Management system (KIM) is a product of OntoText Lab
[100]. KIM is an extensible platform for semantics-based knowledge management which
offers IE-based facilities for metadata creation, storage, and conceptual search. The system
has a server-based core that performs ontology based IE and stores results in a central
knowledge base. This server platform can then be used by diverse applications as a service
for annotating and querying document spaces. The ontology-based Information Extraction in
KIM produces annotations linked both to the ontological class and to the exact individual in
the instance base. The instance base of KIM has been pre-populated with 200,000 entities of
general importance that occur frequently in documents.

Like in the previous case, there exist tools that provide good results and relatively mature
and scalable solutions. However, to the best of our knowledge, none of the tools exposed
above have been applied and adapted for the annotation of services. Therefore, the WSMO-
Lite and MicroWSMO editors part of the platform supported by the Annotations
Recommender, will be the first editors to appropriate address the semi-automated annotation
of services over the Web.

4.3 User Profiling and Recommender Systems
Three different approaches are known in literature in order to derive models for representing
Web users and identify their interests: collaborative filtering, content-based analysis,
browsing behaviour modelling; they differ on the basis of the data source used.

1) People interacting with collaborative filtering based systems have to actively express an
interest, rating the contents they are viewing. This allows the system to give “friendly
suggestions” (filter) based on the opinions of other users belonging to the same community
(from this the term “collaborative”).

Collaborative filtering systems have been proposed in [101]. In this cases, it is required an

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 51 of 64

active and explicit participation from the user community: each user has to rate the content of
Usenet news articles. A form of automation it is here introduced by applying a k-nearest
neighbour algorithm to find groups with similar interests.

For a complete review of the implicit participation systems see [102].

In a recent work of Sugiyama [103] user’s profiles are derived from the choices made after a
query submission to a search engine and from the contents of the following selected pages.
A modified collaborative filtering is then applied to a user-term matrix (instead of user-item
matrix in classic collaborative filtering). Users’ term vectors are then compared to find
homogeneous communities.

2) Content based recommendation systems build a model of relevant source of information
and compare it with the contents which are of interest for the user. Collaborative filtering is
here implicit, in the sense that user’s choices are helpful to state the relevance of similar
items. The main techniques applied in this field can be grouped in clustering [104], bayesian
networks [105] and rule-based systems [106].

In [42] a computer science ontology is used for bootstrapping the current user’s interests, in
order to achieve the “cold start” problem arising when the user is unknown to the system.
Documents viewed by the user are associated to a topic by using a variant of the nearest
neighbour algorithm. Collaborative filtering is then performed on a user-topic matrix.

Content personalized Web pages present different information to different users and diverge
from link personalization, that only adapts the link anchor structure and leave unmodified the
substantial information part. In My Yahoo! [107] user’s preferences are collected from explicit
indication or semi-automated inference from navigation activity, asking the user to choose
from general areas to more specific topics.

3) The browsing behaviour modelling approach analyzes the interactions between the user
and the Web. Web-log data provide information about activities performed by a user from the
moment he enters a Web site to the moment he leaves it [108] and allows us to separate
browsing sessions. Session clustering is useful for discovering both groups of users,
exhibiting similar browsing patterns, and groups of pages, having related contents (pages are
clustered on the basis of how often they appear together across navigation patterns).
Algorithms for sessions clustering can be classified into two approaches: similarity-based
and model-based (or probabilistic) [108].

Compared to similarity-based methods, which assign user to a cluster only on the base of a
given session similarity measure, model-based methods offer better interpretability: each
model directly characterizes the corresponding cluster. Model-based clustering techniques
have been widely used and have shown promising results in many applications involving
Web data [104, 108].

More specifically, in the model-based approach, users’ session clusters are generated as
follows: a user arrives at the Web site in a particular time and is assigned to a cluster with
some probability. The number of clusters is determined by using several probabilistic
methods, such as BIC (Bayesian Information Criterion), bayesian approximations, or
bootstrap methods [109]. The behaviour of each cluster is governed by a statistical model
and the user’s behaviour is generated from this model. Each cluster has a data-generating
model with different components. Clusters are defined by learning the parameters of each
probability distribution function, used to assign people to the various clusters, and the
number of components. The model structure can be determined by model selection
techniques and parameters estimated using maximum likelihood algorithms, e.g. the EM
(Expectation-Maximization) [98].

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 52 of 64

5. Conclusions
In this document we have introduced the motivations, requirements and the design of the
Service Provisioning Platform. We have provided a detailed design of the components
involved, leaving the editing frameworks for [16, 37] that provide detailed design of these key
components.

In order to simplify the creation of semantic web services the Provisioning Platform described
in this deliverable will provide a set of tools allowing users to i) find relevant services taking
into account user profiles and previous history of service usage, ii) annotate them helped by
a recommender system and iii) persist the resulting semantic web services so that they can
be used by anyone. Therefore in this respect, the Provisioning Platform aims to leverage
users as the main source of information using interchangeably direct user input and
automated processing informed by prior user-provided information to simplify the annotation
of services.

Based on the semantic web services modelled by users, the Provisioning Platform will
support users in the definition of composite semantic web services. To this end, it includes
both a Mash-up and a Process Editor with which users can put together existing semantic
web services in novel forms giving rise to new and more complex services. The Mash-up
editor will allow users to create composite services that have a simple workflow. This kind of
composite service will therefore allow any kind of user to create relatively complex services
in an easy way in a similar vein to that of Yahoo! Pipes [1] for example. The Process editor
on the other hand will address the requirements of more advanced users that may need to
create complex workflows.

Essential to the overall vision of the Provisioning Platform is the central role played by users
during the overall life-cycle of services. Users are at the same time service providers, when
they define or compose new services, service consumers, when they utilize services or
compose new services out of existing ones, and knowledge providers and/or consumers
when they annotate or simply use services. An important aspect of this vision is that it blurs
the distinction between service providers and service consumers which rather coexist in a
transparent way allowing, for instance during the composition of services, the same
individual to play both roles so that the newly created service can automatically become
available for others. As a result, the overall platform benefits from an ever growing repository
of services with increasingly richer annotations provided by users making the provisioning
platform an extremely rich and dynamic services marketplace.

The implementation of the Service Provisioning Platform outlined here will be elaborated
within future work and will be described in upcoming deliverables D2.1.3-D2.1.6 as well as
2.6.2 and 2.6.3.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 53 of 64

6. References
1. Yahoo!: Yahoo! Pipes. http://pipes.yahoo.com/ (2008)
2. Booth, D., Liu, C.K.: Web Services Description Language (WSDL) Version 2.0 Part 0: Primer. W3C
(2007)
3. Clement, L., Hately, A., von Riegen T. Rogers, C.: UDDI Specification Version 3.0.2. OASIS (2004)
4. Stollberg, M.: Scalable Semantic Web Service Discovery for Goal-driven Service-Oriented
Architectures. Austria (2008)
5. Seekda: Seekda home page. http://seekda.com (2008)
6. Martin, D., Burstein, M., J., H., Lassila, O., McDermott, D., McIlraith, S., Paolucci, M., Parsia, B.,
Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf (2004)
7. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue, J.: Enabling
Semantic Web Services: The Web Service Modeling Ontology. Springer (2007)
8. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A., Verma, K.: Web Service
Semantics - WSDL-S. http://www.w3.org/Submission/WSDL-S/ (2005)
9. Norton, B., Pedrinaci, C., Domingue, J., Zaremba, M.: Semantic Execution Environments for
Semantics-Enabled SOA. it - Methods and Applications of Informatics and Information Technology Special
Issue in Service-Oriented Architectures (2008) 118--121
10. Fensel, D., Kerrigan, M., Zaremba, M. (eds.): Implementing Semantic Web Services: The SESA
Framework. Springer (2008)
11. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into Executable
Processes. 3rd International Semantic Web Conference (ISWC 2004) (2004) 380--394
12. Abels, S., Lombardi, J.-P., Delchev, I., Pariente, T., Álvaro, G., Dimitrov, M.: First Demonstrator \&
Interface Specification. EU FP7 SOAALL project (2009)
13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley (1994)
14. Vogel, J., Schnabel, F., Mehandjiev, N.: Requirements Specification. EU FP7 SOAALL project (2008)
15. Richardson, M., Martínez, I.: Web21c Requirements. EU FP7 SOAALL project (2008)
16. Delchev, I., Vogel, J., Abels, S., Puram, S.: Specification of the SOAAll Process Editor. EU FP7
SOAALL project (2009)
17. Schreder, B., Villa, M., Abels, S., Zaremba, M.: Future C2C eCommerce Requirements and Scenario
Descriptions. EU FP7 SOAALL project (2008)
18. OASIS Web Services Business Process Execution Language (WSBPEL) TC: Web Services Business
Process Execution Language Version 2.0 Committee Specification. http://docs.oasis-
open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf (2007)
19. Musser, J.: ProgrammableWeb: 1000 web APIs.
http://blog.programmableweb.com/2008/11/03/1000-web-apis (2008)
20. ProgrammableWeb: Web 2.0 API directory. http://www.programmableweb.com/apis/directory
(2008)
21. Krummenacher, R., Hamerling, C., Lorre, J.-P., Baude, F., Legrand, V., Merle, P., Ruz, C., Pedrinaci,
C., Liu, D., Richardson, M., Pariente, T.: SOAAll Reference Architecture Specification. EU FP7 SOAALL
project (2009)
22. Schnabel, F., Born, M., Xu, L., González-Cabero, R., Lecue, F., Mehandjiev, N.: First Specification Of
Lightweight Process Modelling Language. EU FP7 SOAALL project (2009)
23. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Language
(WSDL) 1.1. http://www.w3.org/TR/wsdl (2001)
24. Richardson, L., Ruby, S.: RESTful Web Services. O'Reilly Media, Inc. (2007)
25. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema.
http://www.w3.org/TR/sawsdl/ (2007)
26. Vitvar, T., Kopecky, J., Viskova, J., Fensel, D.: WSMO-Lite Annotations for Web Services. In:
Hauswirth, M., Koubarakis, M., Bechhofer, S. (eds.): Proceedings of the 5th European Semantic Web
Conference. Springer Verlag, Berlin, Heidelberg (2008)
27. Dzbor, M., Motta, E., Domingue, J.: Magpie: Experiences in supporting Semantic Web browsing. Web
Semantics: Science, Services and Agents on the World Wide Web 5 (2007) 204--222
28. d'Aquin, M., Motta, E., Dzbor, M., Gridinoc, L., Heath, T., Sabou, M.: Collaborative Semantic
Authoring. IEEE Intelligent Systems 23 (2008) 80--83

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 54 of 64

29. Kopecky, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for Describing RESTful Web
Services. The 2008 IEEE/WIC/ACM International Conference on Web Intelligence (WI2008). IEEE CS Press,
Sydney, Australia (2008)
30. Sabou, M., d'Aquin, M., Motta, E.: Exploring the Semantic Web as Background Knowledge for
Ontology Matching. Journal of Data Semantics (2008)
31. Yahoo!: Flickr. http://www.flickr.com/ (2008)
32. Yahoo!: Delicious. http://delicious.com/ (2008)
33. Ayers, D., Heath, T.: Review Vocabulary. http://vocab.org/review/review.rdf (2007)
34. Heath, T., Motta, E.: Revyu: Linking reviews and ratings into the Web of Data. Web Semant. 6 (2008)
266--273
35. Linked Data Community: Linked Data - Connect Distributed Data across the Web.
http://linkeddata.org/ (2008)
36. Domingue, J., Fensel, D., Davies, J., González-Cabero, R., Pedrinaci, C.: The Service Web: a Web of
Billions of Services. BT Technology Journal 26 (2009) (To appear)
37. Álvaro, G., Cekov, L., Mehandjiev, N., Xu, L., Abels, S., Vogel, J., Simov, A., Maleshkova, M.:
Service Modelling Tools Design. EU FP7 SOAALL project (2008)
38. Service Finder Consortium: Service Finder Classification Ontology. http://www.service-
finder.eu/ontologies/service-categories.rdfs (2008)
39. Service Finder Consortium: Service Finder Home Page. http://www.service-finder.eu/ (2008)
40. TMForum: NGOSS Overview. http://www.tmforum.org/Overview/1912/home.html (2008)
41. Brunner, M., Steinmetz, N., Fabre, O., Dimitrov, M.: First Crawler Prototype. EU FP7 SOAALL
project (2009)
42. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems.
ACM Transactions on Information Systems 22 (2004) 54--88
43. Song, Y., Huang, J., Zhou, D., Zha, H., Giles, C.L.: IKNN: Informative K-Nearest Neighbor Pattern
Classification. PKDD 2007: Proceedings of the 11th European conference on Principles and Practice of
Knowledge Discovery in Databases. Springer-Verlag, Berlin, Heidelberg (2007) 248--264
44. Salton, G., Buckley, C.: Term Weighting Approaches in Automatic Text Retrieval. Readings in
Information Retrieval, Ithaca, NY, USA (1987)
45. Wu, Z.: Verb semantics and lexical selection. Annual Meeting of the Association for Computational
Linguistics (1994) 133--138
46. Leacock, C., Chodorow, M.: Combining local context with WordNet similarity for word sense
identification. WordNet: A Lexical Reference System and its Application (1998)
47. Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. Twelfth European
Conference on Machine Learning (ECML-2001) (2001)
48. Mihalcea, R., Corley, C.: Corpus-based and knowledge-based measures of text semantic similarity. In
AAAI’06 (2006) 775--780
49. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34 (2002) 1--47
50. Maguitman, A.G., Menczer, F., Erdinc, F., Roinestad, H., Vespignani, A.: Algorithmic Computation
and Approximation of Semantic Similarity. World Wide Web 9 (2006) 431--456
51. Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Categorization. ICML '97:
Proceedings of the Fourteenth International Conference on Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1997) 412--420
52. Yih, W.-t., Goodman, J., Carvalho, V.R.: Finding advertising keywords on web pages. WWW '06:
Proceedings of the 15th international conference on World Wide Web. ACM, New York, NY, USA (2006) 213--
222
53. Shafiq, O., Vitvar, T., Gorroñogoitia, Y., Pedrinaci, C., Abels, S., Filali, I., Villa, M., Richardson, M.,
Huet, F., Gonzalez-Cabero, R.: Semantic Spaces: A Unified Semantic Data Coordination Infrastructure. EU FP7
SOAALL project (2008)
54. d'Aquin, M., Sabou, M., Motta, E., Angeletou, S., Gridinoc, L., Lopez, V., Zablith, F.: What Can be
Done with the Semantic Web? An Overview Watson-based Applications. In: Gangemi, A., Keizer, J., Presutti,
V., Stoermer, H. (eds.): SWAP, Vol. 426. CEUR-WS.org, Rome, Italy (2008)
55. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.: Sindice.com: a
document-oriented lookup index for open linked data. IJMSO 3 (2008) 37-52
56. Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services. The SemanticWeb -
ISWC 2003 (2003) 258--273
57. Álvaro, G., Abels, S., Mehandjiev, N., Lecue, F., Villa, M.: Service Consumption Platform Design. EU
FP7 SOAALL project (2008)

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 55 of 64

58. Baida, Z., Gordijn, J., Omelayenko, B., Akkermans, H.: A Shared Service Terminology for Online
Service Provisioning. Proceedings of the Sixth International Conference on Electronic Commerce (ICEC04),
Delft, The Netherlands (2004)
59. Krummenacher, R., Vitvar, T., Perdinaci, C., Grenon, P., Agarwal, S., Vogel, J.: SOAALL Baseline and
State of the Art. EU FP7 SOAALL project (2008)
60. Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R., Adams, J.,
Verschueren, P.: Patterns: Implementing an SOA Using an Enterprise Service Bus. IBM (2004)
61. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)
62. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management: A Survey. In:
van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.): Business Process Management, Vol. 2678.
Springer (2003) 1-12
63. Dustdar, S.: Reconciling Knowledge Management and Workflow Management Systems: The Activity-
Based Knowledge Management Approach. Journal of Universal Computer Science 11 (2005) 589--604
64. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems, Vol. 1. The
MIT Press (2004)
65. Pedrinaci, C., Brelage, C., van Lessen, T., Domingue, J., Karastoyanova, D., Leymann, F.: Semantic
Business Process Management: Scaling up the Management of Business Processes. Proceedings of the 2nd IEEE
International Conference on Semantic Computing (ICSC) 2008. IEEE Computer Society, Santa Clara, CA, USA
(2008)
66. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle River,
NJ, USA (1981)
67. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns.
Distributed and Parallel Databases 14 (2003) 5--51
68. van der Aalst, W., Dumas, M., ter Hofstede, A.: Web service composition languages: Old wine in new
bottles? : Proceedings of EUROMICRO'03. IEEE Computer Society (2003) 298--307
69. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL for Semantic Web Services
(BPEL4SWS). On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops (2007) 179--188
70. Maurice, Bucciarone, A., Gnesi, S.: A survey on Service Composition Approaches: From Industrial
Standards to Formal Methods. Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle
Ricerche (2006)
71. Leymann, F., Roller, D.: Modeling business processes with BPEL4WS. Information Systems and E-
Business Management (2006) 1--20
72. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith,
D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language for Web Services Version
1.1. http://www-128.ibm.com/developerworks/library/specification/ws-bpel/ (2003)
73. Object Management Group: Business Process Modeling Notation Specification - Final Adopted
Specification. Available at http://www.bpmn.org (2006)
74. Mitra, N.: SOAP Version 1.2 Part 0: Primer. W3C Recommendation.
http://www.w3.org/TR/soap12-part0/ (2003)
75. IBM Corporation: WebSphere. http://www-01.ibm.com/software/websphere/ (2008)
76. Apache Software Foundation: Woden. http://ws.apache.org/woden/ (2008)
77. Eclipse: BPMN Modeller.
http://www.eclipse.org/projects/project_summary.php?projectid=stp.bpmnmodeler (2008)
78. Eclipse: BPEL Designer.
http://www.eclipse.org/projects/project_summary.php?projectid=technology.bpel (2008)
79. Intalio: Business Process Management Suite. http://bpms.intalio.com/ (2008)
80. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. (2000)
81. Open Mashups: Open Mashups Studio. http://www.open-mashups.org/ (2008)
82. Corporation, M.: Microsoft Popfly. http://www.popfly.com/ (2008)
83. Dimitrov, M., Simov, A., Konstantinov, M., Momtchev, V.: WSMO Studio - a Semantic Web Services
Modelling Environment for WSMO (System Description). In: E.~Franconi, M.~Kifer, W.~May (eds.):
Proceedings of the 4th European Semantic Web Conference (ESWC), Innsbruck, Austria (2007) 749--758
84. Kerrigan, M., Mocan, A., Tanler, M., Fensel, D.: The Web Service Modeling Toolkit - An Integrated
Development Environment for Semantic Web Services. ESWC '07: Proceedings of the 4th European conference
on The Semantic Web. Springer-Verlag, Berlin, Heidelberg (2007) 789--798

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 56 of 64

85. Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Pedrinaci, C.: IRS-III: A
broker-based approach to semantic Web services. Web Semantics: Science, Services and Agents on the World
Wide Web 6 (2008) 109--132
86. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: METEOR-S web service annotation framework.
WWW '04: Proceedings of the 13th international conference on World Wide Web. ACM Press, New York, NY,
USA (2004) 553--562
87. Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S., Senanayake, R.: The OWL-S
Editor–A Development Tool for Semantic Web Services. The Semantic Web: Research and Applications (2005)
78--92
88. Large Scale Distributed Information Systems -- University of Georgia: Radiant.
http://lsdis.cs.uga.edu/projects/meteor-s/SAWSDL/ (2008)
89. Large Scale Distributed Information Systems -- University of Georgia: Lumina.
http://lsdis.cs.uga.edu/projects/meteor-s/SAWSDL/ (2008)
90. Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semant. 5 (2007)
5--15
91. Meyer, H., Weske, M.: Light-Weight Semantic Service Annotations through Tagging. In: Dan, A.,
Lamersdorf, W. (eds.): Service-Oriented Computing - ICSOC 2006, Vol. 4294. Springer, Heidelberg (2006)
465--470
92. Kogut, P.: AeroDAML: Applying Information Extraction to Generate DAML Annotations from Web
Pages. First International Conference on Knowledge Capture (K-CAP 2001). Workshop on Knowledge Markup
and Semantic Annotation (2001)
93. Ciravegna, F., Dingli, A., Wilks, Y., Petrelli, D.: Adaptive information extraction for document
annotation in amilcare. SIGIR '02: Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, New York, NY, USA (2002) 451--451
94. Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.: MnM: Ontology
Driven Semi-automatic and Automatic Support for Semantic Markup. EKAW '02: Proceedings of the 13th
International Conference on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic
Web. Springer-Verlag, London, UK (2002) 379--391
95. Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM - Semi-automatic CREAtion of Metadata. EKAW
'02: Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management.
Ontologies and the Semantic Web. Springer-Verlag, London, UK (2002) 358--372
96. Handschuh, S., Staab, S., Maedche, A.: CREAM: creating relational metadata with a component-based,
ontology-driven annotation framework. K-CAP '01: Proceedings of the 1st international conference on
Knowledge capture. ACM, New York, NY, USA (2001) 76--83
97. Domingue, J., Dzbor, M.: Magpie: supporting browsing and navigation on the semantic web. IUI '04:
Proceedings of the 9th international conference on Intelligent user interfaces. ACM, New York, NY, USA
(2004) 191--197
98. Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web. WWW '04: Proceedings of the
13th international conference on World Wide Web. ACM, New York, NY, USA (2004) 462--471
99. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Mccurley, K.S.,
Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: A Case for Automated Large Scale Semantic
Annotations. Journal of Web Semantics 1 (2003) 115--132
100. Kiryakov, A., Popov, B., Ognyanoff, D., Manov, D., Goranov, K.M.: Semantic annotation, indexing,
and retrieval. Journal of Web Semantics 2 (2004) 49--79
101. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: applying
collaborative filtering to Usenet news. Commun. ACM 40 (1997) 77--87
102. Kappel, G., Proll, B., Retschitzegger, W., Schwinger, W.: Customisation for ubiquitous web
applications\&\#58; a comparison of approaches. Int. J. Web Eng. Technol. 1 (2003) 79--111
103. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile constructed
without any effort from users. WWW '04: Proceedings of the 13th international conference on World Wide Web.
ACM, New York, NY, USA (2004) 675--684
104. Padhraic: Modeling the Internet and the Web: Probabilistic Methods and Algorithms. (July,2003)
105. Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative
Filtering. Morgan Kaufmann (1998) 43--52
106. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce.
EC '00: Proceedings of the 2nd ACM conference on Electronic commerce. ACM, New York, NY, USA (2000) 1
107. Manber, U., Patel, A., Robison, J.: Experience with personalization of Yahoo! Commun. ACM 43
(2000) 35--39

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 57 of 64

108. Cadez, I., Heckerman, D., Meek, C., Smyth, P., White, S.: Model-based clustering and visualization of
navigation patterns on a web site. (2000)
109. Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based
cluster analysis. The Computer Journal 41 (1998) 578--588

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 58 of 64

Annex A. Annotations Recommender
The following sections provide some additional details and information on the architecture
and the design of the Annotations Recommender.

Figure 15 visualizes the architecture overview of the Annotations Recommender. The
graphical user interface is realized by the Simple SWS Editing Framework, which includes
editors for WSMO Lite and MicroWSMO descriptions. In this way, the Annotations
Recommender has no user interface of its own and performs mainly computation
functionalities. The access to required input data is facilitated through the SOAALL Social
Service Cloud, which enables data flow to the SWS Library, the Crawled Data and to
External Services (i.e. Watson).

Figure 15. Annotations Recommender Components.

A description of the main use cases (Figure 16) was already given in the section 4.3.2 of this
deliverable. The following activates diagrams, however, show in more detail the sub-activities
includes within each main activity as well as the functionality differences in the
implementations of the WSDL and RESTful service annotations recommendation.

Figure 17 shows an overall sequence of the activities involved in the Recommend Service
Annotations use case. Each of the activities one through five are described in an extra
activity diagram, which includes more detail on the functionality and the information flow.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 59 of 64

Figure 16. Use Case diagram "Recommend Service Annotations".

Figure 17. Activity Diagram: "Recommend Service Annotations”.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 60 of 64

Table 8. Service Preprocessing Artefacts.

Activity Name Input Output Preconditions and Effects Comments

1. Service
Preprocessing

- Service
Description
-Service
Related
Documents

- List of Service
Properties
- Set of Similar
Services (SSS)
-Service
Keywords

-Access to the Service
Repository is required, which
returns a Service and its
Related Documents
-The TF and Keywords
extraction can be performed
by using system-external
services. A connection to
these services would be a
requirement.

- The Preprocessing does
not involve any user
interaction and can be
performed anytime
previous to the user-
guided annotations
- The SSS can be an
empty set, if there is not
enough training data, or
annotated services.

Service Preprocessing (Figure 18, Table 8) includes activities for term frequency analysis,
computation of service keywords and similarity analysis based on the k-Nearest Neighbour
approach. Since, the service property analysis is not based on any of the results of the
keywords analysis it can be preformed in parallel. The overall results of the activity are an
initial SSS, the Service Keywords and the identified Service Properties.

Figure 18. Activity Diagram: "Service Preprocessing".

Figure 19, in contrast to the general service preprocessing, shows additional activities, which
have to be preformed specifically for RESTful services. After indentifying the service
properties, these have to be marked with hREST mark-up, which is used as the basis for the
following annotation in MicroWSMO format.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 61 of 64

Figure 19. Activity Diagram: "Service Preprocessing for RESTful Services".

Table 9. Suggest Service Domain Artefacts.

Activity
Name

Input Output Preconditions and Effects Comments

2.Suggest
Service
Domain

-Service
Keywords
-Service
Properties
-Ontology for
Service
Domains
-SSS

- Service Domain,
automatically
assigned to the
Service
- List of Possible
Service Domains
-SSS, which is
narrowed down by
assigning a
Domain to the
Service

- The Domain Analysis does
not involve any user interaction
and can be performed anytime
previous to the user-guided
annotations. The Result is one
Domain assigned to the
Service, and a list of possible
Domains, from which the user
can choose, if he wants to
make a change.

-The generation of
training data is a
necessary and essential
step. It must be done
before the Annotation
Recommender is in an
operation state.
-The SSS can be an
empty set, if there is not
enough training data, or
annotated services.

The description of the Suggest Service Domain activity (Table 9, Figure 20) emphasizes the
importance of providing training data and manually annotating service descriptions, in order
to be able to properly compute similarity measures. In addition, it shows that additional
measures have to be implemented in order to ensure a good accuracy of the annotations
recommendation, if the SSS contains only a few entries. This can be done by performing a
statistical analysis based on the correlations between service domain, classification and
properties.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 62 of 64

Figure 20. Activity Diagram: "Suggest Service Domain".

Table 10. Suggest Service Classification Artefacts.

Activity
Name

Input Output Preconditions and
Effects

Comments

3.Suggest
Service
Classification

-Service Domain
-Domain\
Classification
Dependencies
-Classification
Taxonomies
-SSS
-User Profile

- Service Classification,
automatically assigned
to the Service
- List of Possible
Service Classifications
-SSS, which is
narrowed down by
assigning a
Classification to the
Service

- The Classification
Analysis does not
involve any user
interaction and can be
performed anytime
previous to the user-
guided annotations.
Only the Classification
based on User Profile
requires that a user is
logged onto the system
(no user interaction is
required).

-The User Profile, can
be used in the same
manner as the SSS. By
computing similarity of
the current user to
other users, the proper
Service classification
can be determined. In
contrast to the SSS
similarity, User Profile
similarity has to be
determined based on
an active user.

Once the service is assigned to a domain, a corresponding service classification can be
computed (Figure 21, Table 10). If the SSS is empty, this is done on the basis of the
Domain\Classification Taxonomy Dependencies document, which is manually composed,
prior to the preprocessing process. However, if the SSS is not empty, it can be used to verify
and improve the results based only on the correlation of domains and classification
taxonomies.

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 63 of 64

Figure 21. Activity Diagram: "Suggest Service Classification".

Table 11. Suggest Domain Ontology Artefacts.

Activity Name Input Output Preconditions and Effects Comments

4.Suggest
Domain
Ontology

-Service
Classification
-Service Domain
-Domain
Ontologies
-Service Properties
-Service Keywords

- List of Recommended
Service Domain
Ontologies, the user
assigns one of them to
the Service
-SSS, which is
narrowed down by
assigning a Domain
Ontology to the Service

- A connection to a service
for searching for existing
ontologies and semantic
information (Watson,
Sindice8) is required
-This activity requires an
active user to choose a
Domain Ontology from the
list with suggestions.

The computation of suggestions for a domain ontology (Table 11, Figure 22) is based on
querying Watson with the service keywords and adjusting the results based on the SSS.
Recommendation based strictly on the SSS would be ineffective, since this would allow the
user only to use ontologies, previously used and disable the introduction of new ones.

8 Semantic Web search engine. http://sindice.com/

SOA4All –FP7 – 215219 D2.1.1 Service Provisioning Platform Design

© SOAAll consortium Page 64 of 64

Figure 22. Activity Diagram: "Suggest Domain Ontology".

Table 12. Suggest Annotations for Service Properties Artefacts.

Activity Name Input Output Preconditions and Effects Comments

5.Suggest
Annotations for
Service
Properties

-Domain ontology
-Service Properties
-SSS and Property
Annotations

- List of Service
Property Annotation
Suggestions, from
which the user has to
choose

-In contrast to previous
activities, this one requires
continuous user interaction.

The annotation of service properties is an iterative process, where the user annotates one
property at a time. The list of annotations suggestions is computed based on the domain
ontology and similarity measures to already annotated similar properties.

Figure 23. Activity Diagram: "Suggest annotations for Services".

