

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.1.3 Service Provisioning Platform First

Prototype
Activity N: AC1 – Fundamental and Integration Activities

Work Package: WP2 – Service Deployment and Use

Due Date: M18

Submission Date: 14/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: The Open University

Revision: 1.1

Author(s): Maria Maleshkova
Guillermo Álvaro Rey
Alex Simov

OU
iSOCO
ONTO

Reviewers: Sven Abels
Jacek Kopecky

TIE
UIBK

Project co -funded by the European Commission within the Seventh Framework Prog ramme (2007 -2013)

Dissemination Level

PU Public X

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 2 of 37

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 21/06/2009 Document structure, table of contents Maria Maleshkova (OU)

0.2 24/07/2009 Initial version Maria Maleshkova (OU)

0.3 27/07/2009 Improved version with screenshots and
step-by-step guide

Maria Maleshkova (OU)

0.4 04/08/2009 Completed descriptions of the
Feedback Framework and the
MicroWMSO Editor

Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO)

0.5 05/08/2009 First version of Section 2 Maria Maleshkova (OU)

0.6 17/08/2009 Complete initial draft Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO), Alex Simov (ONTO)

0.7 18/08/2009 Refined draft Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO), Alex Simov (ONTO)

1.0 27/08/2009 Addressing reviewers’ comments and
improving the content

Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO), Alex Simov (ONTO)

1.1 31/08/2009 Final version Maria Maleshkova (OU),
Guillermo Álvaro Rey
(iSOCO), Alex Simov (ONTO)

1.1 14/09/2009 Final editing Malena Donato (ATOS)

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 3 of 37

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 SERVICE PROVISIONING PLATFORM PROTOTYPE _____________________ 7

1.2.1 MicroWSMO Editor ___ 8

1.2.2 WSMO-Lite Editor ___ 10

1.2.3 Feedback Framework __ 11

1.3 CUSTOMISATION DONE FOR THIS DELIVERABLE _____________________ 12

1.4 ROADMAP FOR FUTURE PLANS____________________________________ 12

2. PROTOTYPE DOCUMENTATION _______________________________________ 13

2.1 INSTALLATION AND CONFIGURATION ______________________________ 13

2.2 HOW TO USE THE PROTOTYPE ____________________________________ 13

2.2.1 MicroWSMO Editor __ 13

2.2.2 WSMO-Lite Editor ___ 22

2.2.3 Feedback Framework __ 27

2.3 ADDITIONAL DOCUMENTATION ____________________________________ 27

3. CONCLUSIONS __ 28

ANNEX A. __ 29

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 4 of 37

List of Figures

Figure 1: Service Provisioning Platform Architecture ... 8

Figure 2: Lightweight MicroWSMO Editor ...14

Figure 3: Inserting hRESTS Tags ...15

Figure 4: Searching for Domain Ontologies ..16

Figure 5: Choosing a Domain Ontology ..17

Figure 6: Making Semantic Annotations ...18

Figure 7: Dashboard MicroWSMO Editor ...19

Figure 8: Service Properties Panel ...20

Figure 9: Exploring Domain Ontologies ..20

Figure 10: Inserting Semantic Annotations ...21

Figure 11: Deleting Semantic Annotations ..21

Figure 12: Saving Annotated HTML..22

Figure 13: WSMO-Lite Editor Activation from the Dashboard Menu23

Figure 14: WSMO-Lite Editor Activation from the Plug-in Overview Page.............................23

Figure 15: WSMO-Lite Editor..23

Figure 16: Lifting and Lowering Annotation...24

Figure 17: WSMO-Lite Editor Main Menu ...25

Figure 18: Repository Browser ...26

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 5 of 37

Glossary of Acronyms

Acronym Definition

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

CSS Cascading Style Sheets

D Deliverable

DSB Distributed Service Bus

EC European Commission

EXT GWT Extended GWT

FOAF Friend Of A Friend

FP Framework Program

FP7 The 7th Framework Program

GUI Graphical User Interface

GWT Google Web Toolkit

hRESTS HTML format for describing RESTful Services

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IT Information Technology

RDF Resource Description Framework

REST Representational State Transfer

SA-REST Semantic Annotations for RESTful Services

SOA4All Service-Oriented Architectures for All

SOAP Simple Object Access Protocol

SWS Semantic Web Service

UI User Interface

URI Uniform Resource Identifier

WP Work Package

WS Web Service

WSDL Web Service Description Language

XML eXtended Markup Language

XSLT XSL Transformations

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 6 of 37

Executive Summary
Nowadays, traditional web services are commonly used and have achieved a certain level of
acceptance. Still, the wider adoption of web service technologies is hindered by the fact that
most web service tasks require the completion of manual activities and as a result, web
service-based applications suffer from a lack of automation for key activities such as
discovery and composition. A solution to this problem is given by the semantic web service
technologies, which enhance services with semantic descriptions that are amenable to
automated reasoning, thus paving the way for the application for knowledge-based
algorithms to better support the automation of service-related tasks. The SOA4All
Provisioning Platform supports the creations of semantic web service descriptions by
leveraging users as the main source of information, using both direct user input and
automated information processing based on prior user-provided input. In addition, it enables
users to find relevant services and to put them together in order to compose new, more
complex services.

The here presented Provisioning Platform Prototype focuses on describing the implemented
functionalities of the MicroWSMO and WSMO-Lite Editors, which support users in creating
semantic descriptions of RESTful and WSDL-based services. In addition, this deliverable
presents the first prototype of the Feedback Framework, which enables users to rate and
recommend services based on their experience.

The purpose of this deliverable is twofold. First, it serves as a documentation of the first
Provisioning Platform Prototype, providing information about installation and configuration
guidelines as well as a description of the main functionalities of the components. Second, it
represents a user manual that gives instructions on how to use the different GUI elements
and how to complete simple and complex tasks by using the editors.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 7 of 37

1. Introduction
This deliverable introduces the components and features of the first Provisioning Platform
Prototype. It focuses on three main implementation contributions: the MicroWSMO Editor,
the WSMO-Lite Editor and the Feedback Framework.

1.1 Purpose and Scope
The purpose of this deliverable is twofold. First, it serves as a documentation of the first
Provisioning Platform Prototype, providing information about installation and configuration
guidelines as well as a description of the main functionalities of the components. Second, it
can be used as a user manual that gives instructions on how to use the different GUI
elements and how to complete simple and complex tasks by using the editors. It guides the
user through the process of creating semantic service descriptions and describes the
different tool functionalities.

This deliverable is structured as follows: This section provides a general overview of the first
Provisioning Platform Prototype, including a list of the functionalities implemented by each of
the prototype components as well as a summary of the planned prototype work for the next
Provisioning Platform deliverable; Section 2 includes installation and configuration
guidelines, followed by a detailed documentation of each of the components, including
descriptions of each of the GUI elements as well as a step-by-step scenario of how to use
the editors and the feedback framework; finally, Section 3 provides a short conclusion.

1.2 Service Provisioning Platform Prototype
The design of the Provisioning Platform foresees that it consists of six main components,
including:

1. The Simple SWS Editing Framework , which supports users in creating and
browsing semantic web service descriptions;

2. The Annotations Recommender , which reduces the manual effort required by
users, while annotating services, by automatically suggesting suitable domain
ontologies and annotations;

3. The Templates and Service Creation Wizards Management F ramework , which
supports the reusing of service compositions in the form of templates;

4. The Feedback Management Framework , which supports users in deciding, which
services to use based on ratings and tags;

5. The Import Facilities , for importing existing semantic services and compositions;

6. The Process Editor , which is developed within Task 2.6.

The first Service Provisioning Platform Prototype is based on three main component
implementations, focusing on the Simple SWS Editing Framework and the Feedback
Management Framework. Figure 1 provides an overview of the architecture of the
Provisioning Platform, while the highlighted components are the ones included in the first
prototype. The MicroWSMO editor, the WSMO-Lite editor and the Feedback Framework
implementations are described in more detail in the following sections, focusing on the
provided functionalities and user support.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 8 of 37

Figure 1: Service Provisioning Platform Architecture

1.2.1 MicroWSMO Editor

Both the MicroWSMO editor and the WSMO-Lite editor are part of the Simple Semantic Web
Services Editing Framework. It provides support for browsing existing services, annotating
WSDL services via the so-called WSMO-Lite Editor and RESTful services with the
MicroWSMO editor. WSDL service descriptions have a predefined structure and are given in
XML, therefore the editor provides main functionalities for XML visualization and Drag&Drop-
based XML editing. In contrast, RESTful services are described in plain HTML and as a
result, this editor provides functions for marking service properties within the HTML and
associating semantic content.

The main goal of the Simple Semantic Web Services Editing Framework is to support users

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 9 of 37

in providing semantic annotations of existing web services, in order to enable the automation
of service discovery and composition. Therefore, the created semantic web services are the
basis for further activities and they are discovered, composed and executed by other
components provided my the SOA4All dashboard. This first prototype implementation of the
Simple SWS Editing Framework focuses on providing functionalities of the MicroWSMO and
WSMO-Lite editors, while the Service Browser will be implemented at a later stage.

The MicroWSMO editor, as the name suggests, supports users in creating MicroWSMO
semantic annotations of RESTful services. We have decided to call it SWEET: Semantic
Web sErvices Editing Tool and this name for the editor is used both in this deliverable and in
related publications. The MicroWSMO editor is implemented in two main versions. The first
version takes the form of a vertical widget displayed within a web browser. It is very
lightweight and can be used to directly annotate RESTful service descriptions visualized in
the browser window. The second implementation is integrated in the SOA4All dashboard and
uses the same layout and technologies as the other components, which are part of the
dashboard. Two current publications about the MicroWSMO editor are given in the Annex.

Both MicroWSMO editor implementations share common main functionalities:

• Insertion of hRESTS (D3.4.3) microformat tags in the HTML service descriptions in
order to mark service properties (service, operation, address, HTTP method, input,
output and label).

• Integrated ontology search for linking semantic information to service properties.

• Insertion of MicroWSMO (D3.4.3) model reference tags, pointing to the associated
semantic meaning of the service properties.

• Saving of semantically annotated HTML RESTful service description.

• Automatic extraction of RDF MicroWSMO service descriptions, based on the
annotated HTML, and saving of the resulting RDF.

Each of the MicroWSMO editor implementations addresses different user needs and
supports different use cases. The browser-based lightweight version is suitable for users who
are browsing for RESTful services and want to directly annotate the currently displayed
description. Whenever a user wants to create MicroWSMO annotations of the currently
viewed service, he/she can simply click on the bookmarklet1 of the MicroWSMO editor,
initiate it and directly use it. There is no need to start the complete SOA4All dashboard and
to load the RESTful service description. Instead, the user can complete all the service
annotation tasks directly from the web browser.

On the other hand, the implementation of the MicroWSMO editor, integrated in the SOA4All
dashboard, is suitable in cases where the user performs multiple tasks, in addition to
RESTful service annotation, and where a set of RESTful services are already loaded in the
dashboard, for example through the crawler component. For instance, the user can annotate
a multitude of services from the same domain and switch between the MicroWSMO editor
and the WSMO-Lite editor, depending on the service type. After the services are annotated,
he/she can use them in service compositions or directly execute them. Such more complex
use cases are better facilitated by the dashboard-integrated MicroWSMO editor.

1 A bookmarklet is a Web site bookmark that includes processing. Bookmarklets are written
with JavaScript code and perform additional useful functions. Just like dragging a URL to the
Favorites menu, the bookmarklet can be dragged from any Web site that offers it. When
clicked, the JavaScript in the bookmarklet is executed.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 10 of 37

Even though, both implementations share the same core functionalities, the dashboard editor
has some additional features. It includes a three-based view, which visualizes the annotated
service and enables the deleting and editing of annotations. In addition, the insertion of
hRESTS tags is made easier for the users by enabling only the tags, which can be used in
the current state of the annotation, and disabling all other tags. In this way, the user is
intuitively supported in making correct service annotations. The domain ontology
functionalities are also improved, by implementing a newer version of Watson’s2 API and
using paginated requests, which reduces the waiting times. Finally, the semantic service
property annotations can be deleted, which is not possible in the browser-based version of
the MicroWSMO editor.

The two MicroWSMO editors differ in implementation technology as well. The browser-based
prototype used the ExtJS3 JavaScript visualization library, JavaScript and Reverse Ajax
communication. In contrast, the dashboard editor is aligned with the technology of the other
SOA4All components and uses ExtGWT4, JavaScript and a proxy, which facilitates
communication by rewriting the HTML DOM of the website describing the RESTful service.
The dashboard is also session based and stores the ontology search results of a user in
his/her session.

In summary, we provide two prototype implementations of the MicroWSMO editor, which
support users in making semantic annotations of RESTful services in different use cases.
The first implementation is a web application displayed directly in the browser. It has all
necessary core functionalities but is very lightweight and is suitable for users who want to
annotate a RESTful service on-the-fly. The second implementation in completely integrated
in the SAO4All dashboard, has additional features and is suitable for users, who want to
annotate a multitude of services.

1.2.2 WSMO-Lite Editor

The WSMO-Lite Editor is a visual component of the SOA4All dashboard. The primary task of
the editor is to facilitate the manual annotation of WSDL service descriptions with semantic
information, following the WSMO-Lite service ontology specification and using the SAWSDL
annotation mechanism. Using the tool, the user is able to create new annotations on existing
description and also modify or remove already created annotations. The visual tree-based
representation emphasizes the essential parts of the modelling artefacts, while filtering all
irrelevant information. Informative tooltip balloons and auxiliary windows provide additional
detailed information on demand. The editing process itself uses simple and well-accepted
management techniques like Drag & Drop, context and drop-down menus to prevent the user
from unnecessary technical particularities.

This component intensively makes use of the Storage Services, developed in WP2 and
described in D.2.4.2. Through their RESTful API, the editor realizes its primary input/output
functionalities like retrieval of service descriptions (WSDL) and semantic models (different
kinds of ontologies); storage of service annotations (SAWSDL); retrieval of additional
resources like lifting and lowering schemas. The editor offers a lightweight repository browser
for easier navigation of the storage content.

The editor supports the following set of annotation functionalities:

2 http://watson.kmi.open.ac.uk
3 http://extjs.com/
4 http://extjs.com/products/gxt/

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 11 of 37

• Insertion of reference annotations in XML Schema elements to classes from the
information model ontology.

• Insertion of transformation annotations in XML Schema elements, providing the
proper mapping (lifting and lowering) between service specific XML data and
semantic model data.

• Insertion of functional annotations (capabilities and categories) for WSDL interfaces,
services and operations to appropriate functional and behavioural descriptions.

• Insertion of non-functional description annotations, specifying any details related to
the service implementation or the running environment.

• Removal of all kinds of annotations.

1.2.3 Feedback Framework

The Feedback Framework is implemented as a server-side module (SOA4All-dashboard-
feedback-service) inside the SOA4All Studio dashboard, exposing its functionalities to
client-side modules within the SOA4All Studio via its API. A client-side module, which is
already benefiting from the capabilities of the Feedback Framework is the Service
Consumption Platform, which allows users to rate, tag and comment on services, and to
retrieve this kind of information provided by previous users about them.

The functionalities that we have implemented permit interacting with the framework in two
different directions: Allowing users to provide new feedback information, and allowing them
to retrieve it. This information is stored in the Semantic Spaces thanks to the invocation of
the Storage Services.

When retrieving feedback information on a particular item, the framework is able to return it
related to a particular user, or the generic and aggregated feedback provided by different
users. This is the reason there are two overloaded methods for each of the “get” operations,
one with the user as parameter, and the other without it.

Following our general explanations on the framework available operations, these are the
methods that the Feedback Framework API provides so far:

Ratings:

public String rateItem(URI itemId, double rating, URI userId);
public RatingsResponse getRating(URI itemId):
public RatingsResponse getRating(URI itemId, URI userId);

Comments:

public String commentItem(URI itemId, String comment, URI userId);
public List<Comment> getComments(URI itemId);
public List<Comment> getComments(URI itemId, URI userId);

Tags:

public String tagItem(URI itemId, String[] tags, URI userId);
public List<TagResponse> getTags(URI itemId);
public List<TagResponse> getTags(URI itemId, URI userId);

The class RatingsResponse contains information such as the number of ratings and their
average value, while Comment contains the text of each comment and the user who made it.
On the other hand, TagResponse provides the text of the tag and its frequency.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 12 of 37

Regarding the underlying interaction with the Storage Services: For the “writing” operations,
the relevant RDF that follows the Review Schema5 and Tag Ontology6 is created in order to
invoke the RESTful Storage Operation. For the “reading” operations, a SPARQL query is
created to retrieve the necessary information.

1.3 Customisation Done for This Deliverable
The here described first Provisioning Platform Prototype and its components are directly
contributing to the functionalities of the final version of the Provisioning Platform. There are
no major assumptions or customizations made in this version of the components. There are
two minor points, which are part of current work in progress and can be shortly mentioned.
First, the layout of the dashboard version of the MicroWSMO editor, given in the
screenshots, is not aligned with the overall layout of the dashboard. However, this will be
corrected by the time the first Provisioning Platform Prototype is submitted. Second, the
MicroWSMO editor is not connected directly to the Storage Services yet. Instead, the user
has the option to store the created semantic annotations in a suitable place of his/her choice.
This will the corrected for the following version of the editor.

1.4 Roadmap for Future Plans
The next Provisioning Platform Prototype will be available in month 30 and will be the final
and complete version of the Provisioning Platform. Still, versions and updates of separate
components will be released periodically before this deadline. The prototype will include
improved versions of the MicroWSMO and WSMO-Lite editors, in particularly focusing on
application stability and usability. However, it will also include a number of newly
implemented components. It will contain the Process Editor, which is developed as part of
Task 2.6. The Annotations Recommender prototype will assist users in making semantic
annotations of web services by automatically suggesting suitable domain ontologies and
service property annotations. It will include a component for computing similarity measures
between existing SWS and a recommender component, which compares the current service,
which the user wants to annotate, to already annotated services. The functionalities of the
Annotations Recommender prototype will not be directly visible, since it does not have its
own user interface. Instead, they will rather be recognized through new elements of the
MicroWSMO and WSMO-Lite Editors.

The next Provisioning Platform Prototype will also include an implementation of the
Templates and Service Creation Wizards Framework, containing a set of templates for
creating complex composite services and wizards for assisting the user in completing
different tasks supported by the Provisioning Platform. In addition, the prototype will include
implementation of the Import Facilities, providing functionalities for importing existing
knowledge models in order to reduce the overhead for annotating services but also for
eventually reducing the mismatches between different knowledge models, by using common
ontologies.

5 http://purl.org/stuff/rev#
6 http://www.holygoat.co.uk/owl/redwood/0.1/tags/

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 13 of 37

2. Prototype Documentation
This section of the deliverable provides practical information about using the first
Provisioning Platform Prototype. It provides installation and configurations instructions as
well as guidelines about the functionalities of the different elements of the editors’ GUIs. The
prototype documentation also includes step-by-step descriptions of how to created RESTful
and WSDL-based semantic service descriptions by using the MicroWSMO and the WSMO-
Lite editors. This section is concluded by description of the Feedback Framework component
functionalities.

2.1 Installation and Configuration
The MicroWSMO editor, the WSMO-Lite editor and the Feedback Framework comply to the
installation and configuration requirements of the SOA4All dashboard. These components
are part of the Provisioning Platform and are completely integrated in SOA4All dashboard.
Therefore, there are no additional installation tasks, which need to be completed and no
dependent software components, which need to be configured. The installation and
configuration guidelines of the SOA4All dashboard are described in D2.4.4.

The latest version of the Dashboard is available and regularly updated at:
http://coconut.tie.nl:8080/SOA4All/. However, it will be moved to the official SOA4All website in
the process of the development.

The web-browser-based version of the MicroWSMO editor, on the other hand, is not
integrated in the dashboard and requires some simple installation steps before it can be
used. The current version of the prototype requires the installation of the Firefox7 browser,
version 3.5 or later, with installed and enabled Firebug8 Firefox add-on, which supports the
communication between the website content and the JavaScript-based MicroWSMO editor
implementation. The installation of the editor itself is very simple. It is done by dragging the
editor link and dropping it in the bookmark panel of Firefox. After this, the editor can be
directly started by click on the bookmarklet and no additional installation is required. The
current editor prototype is available at http://sweetdemo.kmi.open.ac.uk/.

2.2 How to use the Prototype
This section describes in detail how each of the prototype components can be used. Each
implementation is described in terms of pointing out the functionalities of the GUI and a step-
by-step instruction how to complete some common tasks. This section includes descriptions
of the prototypes of the MicroWSMO Editor, the WSMO-Lite Editor, and the Feedback
Framework.

2.2.1 MicroWSMO Editor

As already mentioned, the first prototype of the Provisioning Platform includes two
implementations of the MicroWSMO editor, which support users in annotating RESTful
services in different use cases. The first implementation presented here is the web-browser-
based MicroWSMO editor. Figure 2 visualizes the GUI of the MicroWSMO Editor, which

7 http://www.mozilla-europe.org/en/firefox/
8 http://getfirebug.com/

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 14 of 37

takes the form of a vertical widget appearing on top of the currently viewed webpage. It
consists of four main panels, including the hRESTS Tags panel, the Service Properties
panel, the Domain Ontologies panel and the Annotations panel. Each of these panels will be
described in detail in the following sections.

Figure 2: Lightweight MicroWSMO Editor

The GUI has also a Save and an Export button as well as an icon for searching for domain
ontologies. As it can be seen, the implementation is very lightweight and contains only a few
elements. Still these elements provide the core functionalities needed in order to support the
user in annotating RESTful service descriptions.

The common tasks of the process of annotating RESTful services are:

1. Indentifying service properties by inserting hRESTS tags in the HTML service
description.

2. Searching for domain ontologies suitable for annotating the service properties.

3. Annotating service properties with semantic information.

4. Saving (annotated HTML) or exporting (extracted RDF) the annotated RESTful
service.

Each of these tasks is described in detail and is visualized by a screenshot of the
MicroWSMO editor.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 15 of 37

Figure 3: Inserting hRESTS Tags

Indentifying service properties by inserting hRESTS tags

This MicroWSMO editor is designed for use cases when a user is browsing the Web and
finds an interesting RESTful service, which he/she wants to semantically annotate. The
editor can simply be started by clicking on a bookmarklet, which executes the JavaScript
initializing the web application. After the editor is started, the user can begin to insert
hRESTS tags for marking the service properties.

In contrast to services described in WSDL, which have a clear structure and definition of the
operations, inputs and outputs, RESTful service descriptions are commonly given in plain
text. Therefore, it is necessary to somehow mark the service properties in the text
description. The MicroWSMO specification (D3.4.3) does this by introducing the hRESTS
microformat. The user can insert hRESTS tags by selecting the part of the description related
to a particular property and clicking on the appropriate tag. Figure 3 visualizes how an
operation can be marked. The getEvents operation content is selected and is marked by
clicking on the operation node in the hRESTS tree in the hRESTS Tags panel. As a result
the HTML tag class="operation" is inserted in the corresponding HTML <div> element. In this
way, the service properties are recognizable and machine processable. Naturally, in order to
create a meaningful service structure, the user should start by marking the complete service
body, followed by the operations, the inputs and outputs of the operations and the

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 16 of 37

corresponding address. The user can also mark the names of the service and of the
operations as labels, in order to make the resulting MicroWSMO description more user-
friendly. After the user builds up the service structure by marking all service properties with
hRESTS tags, he/she can continue by searching for suitable domain ontologies for
semantically annotating the service.

Figure 4: Searching for Domain Ontologies

Searching for suitable domain ontologies

The user can start searching for suitable domain ontologies by selecting a service property,
for example the input parameter “password” and clicking on the magic wand symbol. This
sends a request to Watson’s API9 for retrieving matching ontologies. The result is a tree
structure, where each of the nodes represents a matching concept, property or instance and
the corresponding ontology. For example, as it can be seen in Figure 4, the search based on
“password” returned a concept with label “PASSWORD_WATCHWORD_WOR…”, followed
by a “Password” concept, followed by a “Password” property, followed by a “Password”
instance, etc.

9 http://watson.kmi.open.ac.uk/WS_and_API.html

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 17 of 37

However, the user needs some additional information in order to be able to decide if this
semantic annotation is suitable for the service property. This additional information is
provided by clicking on the matching node, which expands and provides details about the
concept and the corresponding ontology. The user can receive more information about each
of the ontologies by switching to the Domain Ontologies panel (seen in Figure 5), which
includes a list of all concepts as well as a list of all the matching properties, which were found
for this ontology. For example, the ontology starting with “http://csd.abdn.ac.uk/research/...”
is a match for both the password and username input parameters and contains a list of
concepts, which can be viewed by clicking on the “All concepts” folder. Based on this
information the user can decide to associate a particular service property with semantic
information.

Figure 5: Choosing a Domain Ontology

Annotating service properties

The annotation of service properties can be easily done by selecting the service property and
clicking on the corresponding semantic concept. For example, as it can be seen in Figure 6,
“password” is automatically highlighted in red and can be associated with the “password”
concept by clicking on it. As a result, the rel="model" and href HTML tags are inserted and the
modified HTML is the following:

<a><h3 id="nid2" background-color="lightgrey" rel="model"
href="http://www.daml.org/services/owl-s/1.1/Concepts.owl#Password">password</h3>

The user can annotate as many service properties as necessary and use only one or
different ontologies. The resulting HTML service annotation is in accordance with the
MicroWSMO specification and enables the automatic extraction of RDF MicroWSMO service
descriptions from the annotated HTML.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 18 of 37

Figure 6: Making Semantic Annotations

Saving or exporting the annotated RESTful service d escriptions

After the insertion of hRESTS tags is complete and the required service properties are linked
to semantic information, the resulting annotated HTML can be saved. The data can be stored
locally by the user or be posted directly in the SOA4All service repository. The annotated
HTML can be used for extracting RDF MicroWSMO service descriptions, which can easily be
done by clicking on Export.

The second implementation of the MicroWSMO editor is more extensive and is integrated in
the SOA4All dashboard. It is based on the ExtGWT technology and has more visualization
components than the web-browser-based implementation. Figure 7 illustrates the GUI of the
MicroWSMO Editor. It consists of three main panels, including the Semantic Description
panel, the Navigator panel and the Annotation Editor panel. It provides the same common
functionalities, including: indentifying of service properties by inserting hRESTS tags in the
HTML service description; searching for domain ontologies suitable for annotating the
service properties; annotating service properties with semantic information and saving or
exporting the annotated RESTful service. However, it provides a number of additional
features, which make the using of the tool more user-friendly and the operation more stable.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 19 of 37

Indentifying service properties by inserting hRESTS tags

The main difference between the web-browser-based editor and this one is that here the
service description is visualized within the editor (in the Navigator window) instead of in the
browser itself. The insertion of hRESTS tags is done in the same way, by selecting the text
describing the service property and clicking on the corresponding node in the hRESTS tags
tree. However, there are a number of main important additional features that need to be
mentioned. First, each of the tag nodes is enabled and disabled depending on whether the
user can select it in the current status of the service annotation or not. For example, the Input
node is disabled, if there are no marked operations in the service description. In this way, the
user is guided through the process of marking service properties and it is ensured that the
resulting service structure is correct.

Figure 7: Dashboard MicroWSMO Editor

Second, the inserted hRESTS tags are represented in a tree structure in the Semantic
Description panel, which tracks the user’s annotation actions. The tree shows, which service
properties are already marked and if the user recognizes a mistake, he/she can delete the
corresponding hRESTS node and remark it.

Searching for suitable domain ontologies

The domain ontologies search is again based on Watson. The user can search for suitable
domain ontologies for a given service property by selecting it and clicking on the search icon
(Figure 8). The results are displayed in the Service Properties panel. This panel has a
number of additional useful features. First, the retrieving of ontologies matches is paginated.
If the first set of ontology results is insufficient, the user can search for more results by
clicking on “view more”. Second, the search is session based and the user preserves his/her
ontology search while annotating different service descriptions. Third, all search results can
be collapsed or expanded, by clicking on the up and down arrows on top of the panel. This
makes browsing of the ontology matches easier. Finally, the search is restricted with a
timeout so that if there are problems with Watson’s API or the response is taking too long,
the application will not be blocked.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 20 of 37

Figure 8: Service Properties Panel

The implementation of the Service Properties and Domain Ontologies panels supports the
user in choosing a suitable ontology for annotating the individual service properties of the
complete RESTful service. These supporting functionalities are visualized in Figure 9. The
user can view the URI of each of the matching concepts, properties or instances and the
corresponding ontology. Additional information is available in the Domain Ontologies panel,
which shows all service properties that can be annotated with one particular ontology as well
as a list of all concepts. The entries of both panels can be expanded or collapsed in order to
ease the navigation.

Figure 9: Exploring Domain Ontologies

Annotating service properties

Once the user has decided, which ontology to use for the service property annotation, he/she
can do an annotation by selecting the part of the service and clicking on “Semantic

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 21 of 37

Annotation” in the Service Properties context menu. An example annotation is visualized in
Figure 10. The result of the annotation is the same as when using the web-browser-based
MicroWSMO editor: the model and href tags are inserted in the HTML to mark the association
of the particular HTML element with the semantic concept.

Figure 10: Inserting Semantic Annotations

A summary of the already made annotations it given in the Annotations panel. An additional
functionality of this panel is that annotations can be removed by choosing “Delete” from the
context menu. In this way, the user can remove incorrect annotations and substitute them
with new ones without having to reload the tool and start the annotation process from the
very beginning.

Figure 11: Deleting Semantic Annotations

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 22 of 37

Saving or exporting the annotated RESTful service d escriptions

Finally, when the user is finished with annotating the HTML RESTful service description with
hRESTS and MicroWSMO tags, the resulting annotated service can be saved or exported by
clicking on the “Save” or “Export” buttons. Figure 12 shows that when the user clicks on
“Save”, a pop-up window is opened, which allows him/her to choose a destination for saving
the annotated HTML. The export provides a RDF transformation of the annotated HTML. The
result is the MicroWSMO description of the semantically described RESTful service. In future
implementations of the editor, SWS can directly be published in the SAO4All service
repository, where they can be reused and discovered by other users.

Figure 12: Saving Annotated HTML

Further functionalities of the dashboard MicroWSMO Editor

It is important to point out that the editor provides options for customizing the way service
descriptions are viewed. First, if the Navigator panel displays services, which already contain
MicroWSMO elements, these elements will be recognized and automatically highlighted so
that the user can manipulate them and integrate them in his/her own annotation of the
service. Second, the way the service properties and semantic information is highlighted can
be modified very easily by simply substituting the current CSS file with a new one, which
uses different text font and colours.

2.2.2 WSMO-Lite Editor

The WSMO-Lite editor is implemented as a component of the dashboard of the SOA4All
Studio. It can be activated either from the main menu of the dashboard (Figure 13) under
WSMO-Lite category, or from the Plugin overview page (Figure 14).

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 23 of 37

Figure 13: WSMO-Lite Editor Activation from the Dashboard Menu

Figure 14: WSMO-Lite Editor Activation from the Plug-in Overview Page

Having selected any of the two activation methods, the browser window is occupied by the
WSMO-Lite Editor main window (Figure 15).

Figure 15: WSMO-Lite Editor

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 24 of 37

The editor area consists of several major components:

Semantic Models view

This panel contains tree representations of ontological data, which are relevant for the
annotation process. The user controls what kinds of ontologies are loaded in this view.
Regardless of the representation format, the ontologies are visualized in a uniform
hierarchical style, representing class/sub-class, member-of and part-of relations. The nodes
in the representation are described in more details (types, URIs, etc.) by tooltip messages
when the mouse pointer is moved over them. Nodes corresponding to ontological classes
and individuals are reference targets for service annotations. They can be dragged to certain
WSDL elements in the service representation in the editor area and thus establishing links
between the service descriptions and the semantic models. To facilitate the navigation in the
ontological data (which in general can be large and complex), a Quick Find … functionality
is supported, which helps the user in locating certain concepts while typing fragments from
the names/URIs.

Main editor window

This is the place where the annotation process takes place. The component replicates to
certain extent the WSDL structure of a service description in a tree-like form, containing self-
explanatory nodes with appropriate image icons and text labels. In contrast to the XML
representation of WSDL, which is intended mainly for machine processing, the visual
component reveals only the essentials of the definitions, which are interesting for the human
user. If necessary, additional information can be found in tooltip balloon messages on
certain, selection sensitive elements.

The annotation of the service elements with references to semantic model entities is done by
dragging the target entity from the Semantic Models view and releasing it on the selected for
annotation schema element. As a result, a new visual node, labelled with
sawsdl:modelReference prefix, appears as a child of the annotated node, denoting the
annotation itself. This or any other annotation can be deleted (if necessary) with context
menu action Delete.

Figure 16: Lifting and Lowering Annotation

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 25 of 37

Certain service elements, more precisely XML schema elements, might have structural
transformation annotations, which define the mapping between xml structures and
ontological data. These mapping specifications play essential role when the service
functionality is consumed, first by transforming conceptual information into xml message
elements (lowering) and afterwards transforming the result messages into conceptual level
responses (lifting). The annotations with such structural mappings references can be
accomplished by a set of context menu actions on selected schema element (Figure 16).

The user can specify directly URLs of mapping schemas (Add actions) or can select
schemas from the Storage Services repository (D.2.4.2). Similar to the model reference
annotations, the structural transformation annotations appear as child nodes of the annotated
element, marked by sawsdl:loweringSchemaMapping and sawsdl:liftingSchemaMapping
labels and corresponding image icons. Multiple annotations for service elements are allowed
for both model references and transformation annotations.

WSDL Preview

This window provides a short overview of the service element selected in the editor,
emphasizing on the SAWSDL annotation. This way the user is able to observe the
annotation both in graphical and textual formats in parallel.

Main Menu

The main menu component (Figure 17) provides the basic input/output related functionalities
of the editor.

Figure 17: WSMO-Lite Editor Main Menu

• Open … > Service Description

Opens a WSDL service description in the editor for annotation. The description might
contain already SAWSDL annotations, which are detected and visualized
correspondingly. The selection of a service description from the repository is
supported by a simple Repository Browser component.

• Open … > Ontology

Opens an ontology definition in the Semantic Models view. This conceptual
information (classes, individuals, etc.) serves for annotating service elements. The
selection of ontologies from the repository is supported by the Repository Browser
component.

• Save …

Saves the service description (opened in the editor) and any annotations made on it.
The annotated service is stored in a repository supported by the Repository Browser
component. On successful completion, the user is provided a direct link (URL) to the
stored description, which can be shared or opened directly in a new web browser
window.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 26 of 37

• Close

Closes the service description currently being opened in the editor.

Repository Browser

This component (Figure 18) enables browsing any repository, based on the Storage Services
API developed in WP2 (D. 2.4.2) directly from the WSMO-Lite editor. Its primary role is
facilitating the storage and retrieval of service and ontological descriptions.

The visual layout consists of two sections:

• Storage Service URL

The deployment location of the Storage Services. Having provided a correct URL, the
user can retrieve the content information of the repository by using the List button.

• Repository Content View

Provides information about the content of the currently selected storage service
instance. Apart from browsing the repository structure, the user can also retrieve a
quick textual preview of any selected document without opening it in the editor. This
is done by using context menu action Preview on any selected document.

Figure 18: Repository Browser

A typical use case scenario for the WSMO-Lite editor component is:

1. Locating and opening a WSDL service description (which might already contain any
annotations).

2. Locating and loading semantic models (ontologies) appropriate for annotation (if they
are not already loaded).

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 27 of 37

3. Adding, deleting or simply browsing service annotations.

4. Saving the annotated service description in a repository.

5. Closing the service description (done automatically if a new one is loaded).

2.2.3 Feedback Framework

The Feedback Framework is a server-side module inside the SOA4All Studio. As such, it is
not intended to be used by end-users directly, but rather through the interaction with client-
side modules that make use of the framework.

Suitably enough, the Feedback Framework is already connected to the Service Consumption
Platform client-side module, which leverages the functionalities of this framework. Thus, the
best way of “using” the framework is by connecting to the Consumption Platform (available
through the main SOA4All Studio dashboard area) and interacting with it.

Inside the Consumption Platform, one can open a service, selecting it from the different
options in the left panel. General feedback information about the service is provided under
the “Details” tab, so the aggregated rating is displayed as well as the tags used by different
users to describe the service and the comments made on it. The Consumption Platform
module retrieves this information by invoking the three different “get” methods of the
Feedback Framework without specifying a particular user.

If the user is logged into the platform, he will be able to see the rating he has assigned to the
service, the tags he has associated to it, and the comments he has made. The Consumption
Platform retrieves this information by invoking the three different “get” methods of the
Feedback Framework specifying the logged user.

Additionally, if the user is logged in, he/she can update his/her rating on the service, as well
as providing a new tag or set of tags, or a new comment. The Consumption Platform is able
to store new feedback information by calling the three different “write” methods of the
Feedback Framework.

Finally, even though it is out of scope of the Feedback Framework itself, it is worth
mentioning that the Consumption Platform displays some of the feedback information by
making use of the widgets made available by the SOA4All Studio UI Components.
(Additionally, any other module that integrates with the Feedback Framework will also be
able to do the same.) We are particularly referring to the Rating Widget (which displays the
1-to-5 ratings with stars) and the Tag Cloud widget (which shows tags in different sizes and
colours, depending on their “weight”) described in more detail in D2.4.2.

2.3 Additional Documentation
In addition to this deliverable, which described the main components of the first Provisioning
Platform Prototype, we created a website, which provides additional information on the
MicroWSMO editors. It is available at http://sweet.kmi.open.ac.uk/ and contains a short
introduction, as well as descriptions of the prototypes and documentation how to use them.

The WSMO-Lite editor is delivered with a flash demo movie representing a complete end-to-
end scenario, focusing on the different steps of the annotation process.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 28 of 37

3. Conclusions
The deliverable describes the components and the functionalities of the first Provisioning
Platform Prototype. Through the SOA4All Provisioning Platform semantic web service
technologies are more widely adopted, especially by supporting the creation of semantic web
service descriptions by using both direct user input and automated information processing,
based on prior user-provided input. In particular, this is enabled through the MicroWSMO and
WSMO-Lite Editors, which support users in creating semantic descriptions of RESTful and
WSDL-based services. In addition, this deliverable presents the first prototype of the
Feedback Framework, which enables users to rate and recommend services based on their
experience.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 29 of 37

Annex A.

This annex contacting two publications describing research done within the scope of the
SOA4All Provisioning platform:

1. Maria Maleshkova, Jacek Kopecky, Carlos Pedrinaci: Adapting SAWSDL for
Semantic Annotations of RESTful Services. To appear in Proceedings of Beyond
SAWSDL Workshop, OnTheMove Federated Conferences & Workshops 2009.

2. Maleshkova, M., Gridinoc, L., Pedrinaci, C., and Domingue, J. (2009) Supporting the
Semi-Automatic Acquisition of Semantic RESTful Service Descriptions, Poster at
ESWC 2009

Adapting SAWSDL for Semantic Annotations of RESTful Services
Maria Maleshkova1, Jacek Kopeck y2, Carlos Pedrinaci1

1 Knowledge Media Institute (KMi)

The Open University, Milton Keynes, United Kingdom

m.maleshkova@open.ac.uk, c.pedrinaci@open.ac.uk

2 STI Innsbruck, Innsbruck, Austria

jacek.kopecky@sti2.at

Abstract. RESTful services are increasingly been adopted as a suit-able lightweight solution for creating service-based

applications on the Web. However, most often these services lack any machine-processable description and therefore

a significant human labour has to be devoted to locating existing services, understanding their documentation, and

implementing software that uses them. In order to increase the automation of these tasks, we present an integrated

lightweight approach for the creation of semantic RESTful service descriptions. Our work is based on hRESTS, a

microformat for including machine-readable descriptions of RESTful service within existing HTML service

documentation. We complement hRESTS by the MicroWSMO microformat, which uses SAWSDL-like hooks to add

semantic annotations. Finally, we present SWEET – Semantic Web sErvices Editing Tool - which effectively supports

users in creating semantic descriptions of RESTful services based on the aforementioned technologies.

1 Introduction
Currently, there is an increased use and popularity of RESTful services [1], which offer a more lightweight

alternative to the SOAP- and WSDL-based approach. As a result, more and more Web applications and

APIs follow the Representational State Transfer [2] (REST) architecture principles and expose

functionalities in the form of RESTful Web services. This trend is supported by the Web 2.0 wave, which

drives the creation of user-centered Web applications for communication, information sharing and

collaboration. Popular Web 2.0 applications by Yahoo, Google and Facebook offer easy-to-use, resource-

oriented APIs, which not only provide simple access to diverse resources but also enable combining

heterogeneous data coming from diverse services, in order to create data-oriented service compositions

called mashups. Even though RESTful services are already widely accepted, their potential is restricted by

the current low level of automation due to the lack of machine-readable descriptions and the limited

applicability of the Semantic Web Services automation technologies.

Web 2.0 principles contributed significantly to the uptake of RESTful ser- vices. As a result, the

value of Web 2.0 applications is not only for the direct user, who can receive customized information, but

also in exposing functionality through public REST-based APIs. However, the fact that these APIs were

inspired by user-centered applications has resulted in the creation of user-oriented descriptions. Even

though, the APIs are meant for machine consumption, the descriptions themselves are plain unstructured

HTML documents.

The lack of machine-readable descriptions is only one of the challenges, which have to be

addressed in order to provide a certain level of automation for RESTful service. The fact that the majority

of existing RESTful service descriptions have no semantic annotations, also has to be taken into

consideration. Semantic Web Services (SWS) are proposed as means for automating many common tasks

involved in using Web services. Discovery, negotiation, composition and invocation can have a higher level

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 30 of 37

of automation, when Web service are supplemented with semantic descriptions of their properties.

Similarly to traditional SWS, which improve the automation of WSDL-based solutions, the adding of

annotations to RESTful services can bring further automation to the process of creating mashups, in

addition to the discovery and invocation tasks.

In this paper we present an integrated lightweight approach for the creation of semantic

annotations of RESTful service by adapting SAWSDL [3]. For the creation of machine-readable RESTful

service descriptions we use the hRESTS (HTML for RESTful Services) microformat [4]. Microformats [5]

offer means for annotating human-oriented Web pages in order to make key information machine-

readable, while hRESTS, in particular, enables the creation of machine- processable Web API descriptions

based on available HTML documentation.

hRESTS is complemented by the MicroWSMO microformat [6], which enables using SAWSDL-like

annotations to RESTful services. MicroWSMO introduces additional HTML classes, in order to enable the

specification of a model reference, in addition to lifting and lowering relations for data grounding. More-

over, concrete semantics can be added by applying WSMO-Lite [7] service semantics, which enable the

integration of RESTful services with WSDL-based ones. In this way, discovery and composition

approaches no longer need to differentiate between WSDL and RESTful services, but rather simply be

based on the integrated WSMO-Lite service semantics.

The creation of semantic RESTful services, including both hRESTS tagging and semantic

annotation, is supported by SWEET: Semantic Web sErvices Editing Tool10
3. SWEET assists users in

injecting hRESTS and MicroWSMO within RESTful HTML service descriptions, thus enabling the effective

creation of se- mantic descriptions. It hides formalism complexities from the user and assists him/her in

adding service metadata.

The remainder of this paper is structured as follows: Section 2, provides an analysis of common

ways of describing RESTful services, while Section 3 uses this analysis to deduce a lightweight RESTful

service model. Our approach for creating machine-readable service descriptions, including the hRESTS

microformat and the provided tool support, is described in Section 4. In Section 5, we present our

adaptation of SWASDL for RESTful services, by describing the properties of MicroWSMO and the tool

support for semantic annotations offered by SWEET. Section 6 presents an overview of related formalisms

and approaches. Finally, 7 provides some detail on future work and a conclusion.

2 Common RESTful Service Descriptions
In order to be able to find services and interact with them, RESTful services, and services in general, need

to be described in some way. While Web applications and Web APIs contain HTML documentation, which

is understandable for human users, it needs to be extended in order to become machine-readable and -

processable as well. WSDL [8] is an established standard for Web service descriptions, however, it has not

found wide adoption for RESTful services and only a few such services have WSDL descriptions. Similarly,

WADL [9] does not seem to be gaining acceptance among API provides and instead Web applications and

APIs are usually described in textual documentation. However, in order to support the automation of

RESTful services, certain key aspects of the descriptions have to be made machine-readable.

Listing 1. Example HTML Service Description
1 <h1>Send SMS Service</h1>

2 <p>This is a Short Message Service (SMS).<p>

3 Example usage http://my.test.serv.com/SendSMS.php?recipient=tel:

4 447712345678&message=messagetext&sender=User&title=TheMessage</br>

5 <h2>SendSMS Method</h2>

6 recipient<p>List of recipent phone numbers in the format "tel:"

7 followed by an international phone number</p>

8 message<p>Content of the message.</p>

9 <h2>The result is a sent SMS.</h2>

Our approach suggests the hRESTS microformat, which can be used to tag service properties and

produce a machine-readable service description on top of existing HTML documentation. In order to

identify which elements of the service description need to be marked with hRESTS tags, we analyze

10 http://sweet.kmi.open.ac.uk/; http://sweetdemo.kmi.open.ac.uk/

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 31 of 37

existing RESTful service descriptions and derive a lightweight RESTful service model, which consists of

service properties required for the completion of the discovery, composition and invocations tasks.

Common RESTful service descriptions are usually given in a Web page, which contains a list of the

available operations, their URIs and parameters, expected output, error message and an example. The

description includes all details necessary for a user to execute the service or use it in a mashup. Based on

an existing repository for Web APIs4, which contains more than 1380 APIs, manually collected over time,

we have identified three basic types of descriptions.

Listing 1 shows an example of the first type of HTML descriptions of RESTful services. These

descriptions contain only one or a number of operations, which are described with their corresponding

parameters and URIs, within the same Web page. However, a lot of Web 2.0 applications contain a

plenitude of operations. In this case, the second type of descriptions, includes one main page for 4

programmableweb.com the service and a number of linked pages, each of which describes one operation.

This results in the requirement that the microformat used to annotate the service descriptions should

include not only operations, URIs, HTTP methods, inputs and outputs but should also enable the linking of

multiple operations from different Web sites to one \root" service description.

Listing 2. Example Resource-Oriented Description
activity blogs auth

- Flickr . activity .userComments - Flickr. blogs . getList - Flickr.auth.checkToken

- Flickr. activity .userPhotos - Flickr. blogs .postPhoto - Flickr.auth.getFrob

Finally, the last type of RESTful service descriptions are the resource-oriented ones. Listing 2 shows parts

of the flickr11
 API documentation, where operations are not simply listed but they are rather grouped,

based on the resources which they manipulate. In the example, there are three resources (activity, blogs

and auth), each of which has a set of operations. Similarly, in this case the requirements for the

microformat include that separate operation descriptions can be linked to a particular resource and one

RESTful service. Based on these three types of RESTful service descriptions, we derive a lightweight

RESTful service model that can effectively support the creation of machine-readable service descriptions.

3 Lightweight RESTful Service Model
The service examples given in Section 2 serve as the basis for identifying key service properties present in

the textual documentation. These properties are formalized in a model, which specifies the service

properties used for creating machine-readable RESTful service descriptions by marking HTML with

hRESTS microformat tags.

Generally, a RESTful service description consist of several operations, each of which is performed

over a HTTP method and has a particular address (URI or a parameterized URI). Operations have inputs

and outputs with corresponding data formats. In addition, outputs of one operation may link to other

operations, creating a resource based \choreography". Also, a number of operations can have distributed

descriptions but belong to the same service, or can have different outputs but a common set of input

parameters.

In summary, the elements, which have to be identified in an unstructured HTML service

description are the service body, the operations, the input and output, the address and the HTTP method.

As it can be seen, this list is very similar to the one of the WSDL structure and provides the basis for a

machine readable description, which can be extended and annotated with additional in- formation such as

semantic descriptions and nonfunctional properties.

4 Machine-readable Descriptions of RESTful Services
In order to support the creation of machine-readable descriptions, we use the hRESTS microformat.

Microformats facilitate the translation of the HTML tag structure into objects and properties. As a result,

the visualization of the HTML description remains unchanged, while the microformat uses class and rel

XHTML attributes to mark key service properties. In this way, the hRESTS microformat enables the

creation of machine-readable RESTful service descriptions, on top of existing HTML documentation.

11 www.flickr.com/services/api/

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 32 of 37

Figure 1:SWEET: hRESTS Annotation

hRESTS consists of a number of classes based directly on the properties identified in the previous

section. However, even if the hRESTS microformat enables the creation of machine-readable RESTful

service descriptions, the manual annotation of an HTML service description with hRESTS is a time-

consuming and complex task. In order to support users in adopting hRESTS, we have developed SWEET.

SWEET is a JavaScript Web application, which requires no installation and has the form of a vertical

widget, which appears on top of the currently browsed Web page. This tool overcomes a number of

difficulties associated with the annotation of Web applications and API descriptions, including the fact that

the HTML documentation is viewed through a browser and that the user who wants to annotate the

service descriptions, usually does not have access to manipulate or change the HTML.

Therefore, we provide a browser-based annotation solution, which can be started on top of the

currently viewed RESTful service description. Figure 1 shows a screenshot of SWEET. hRESTS tags can

simply be inserted by selecting the relevant part of the HTML and clicking on the corresponding class

node in the hRESTS panel of SWEET. In this way, the hRESTS annotation process is less error-prone, less

time-consuming and much simpler for the user. The result is hRESTS annotated HTML, which can easily be

converted into RDF (\Export" button), by using an implemented XSLT stylesheet.

Listing 3 shows the previous service description example, annotated with hRESTS by using

SWEET. It visualizes the usage of the microformat annotations, as well as the structure restrictions, which

exist for the different classes. The complete Web service or API description is marked by the service class.

The service may have a label, which can be used to mark the human-readable name of the service. A

machine readable description can be created, even if there is no service class inserted. It is sufficient that

the HTML description contains at least one operation, which is marked with the operation class. The

operation description itself includes the address where it can be executed and the HTTP method. Input

and output details as well as a label can also be part of the operation.

Listing 3. Example hRESTS Service Description
1 <div class="service" id="svc">

2 <h1>Send SMS Service</h1>

3 <p>This is a Short Message Service (SMS).<p>

4 Example usage

5 http://my.test.serv.com/SendSMS.php?recipient=

6 tel :447712345678&message=messagetext&sender=User&title=TheMessage

7 <div class="operation" id="op1">

8 <h2><code class="label">SendSMS Method</code></h2>

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 33 of 37

9

10 recipient<p>List of recipent phone numbers in the format "tel:"

11 followed by an international phone number</p>

12 message<p>Content of the message.</p>

13 <h2>The result is a sent SMS.

14 </h2></div></div>

The hRESTS address class is used to specify the URI of the operation. Similarly, the method class

specifies the HTTP method used for the operation. The final two elements used are input and output. They

are used on block markup and indicate the operation's input and output. These two elements serve as the

basis for extensions given by microformats, which provide additional semantic information or details

about the particular data type and schema information. Finally, user-oriented labels can be attached to the

service, operation, input or output classes.

The current version of SWEET directly supports the annotation only of the ¯rst, most common

type of RESTful service descriptions, where all details about a service are provided within one webpage.

However, the two other types of descriptions can easily by annotated as well, by making some minor

manual modifications. First, one API description can have one main page and a number of separate pages,

which describe each of the operations. In order not to lose the link between the separate parts of the

description, the service page is modified to include rel="section" after each of the links pointing to the

operation Web pages and each of the operations is modified to include rel="start", which points to the

main service description. As a result the start and section relations link the pages together. The second

requirement, that a number of operations can be grouped based on the resource, to which they apply, is

implicitly solved. All of the grouped operations have the same subset of input parameters, which can

additionally be emphasized by adding semantic annotations as described in Section 5.

5 Semantic Descriptions of RESTful Services
hRESTS marks the key properties of the RESTful service and provides a machine- readable

description based on the available HTML documentation. The result can effectively be used as the basis for

adding extensions for supplementary in- formation and annotations. In addition, it enables the adapting of

SAWSDL [3] properties for adding semantic annotations to RESTful services because the hRESTS view of

services is analogous to the WSDL one. Even though, hRESTS already provides a certain level of

automation by enabling the creation of machine-readable descriptions, a higher level of automation of the

discovery, composition, ranking, invocation and mediation service tasks can be archived by extending

service descriptions with semantic annotations of their properties. As a result, Semantic RESTful Services

(SRS) can be developed following and adapting approaches from the Semantic Web Services (SWS).

SAWSDL specifies how to annotate service descriptions, provided in WSDL, with semantic

information by defining three XML attributes with equivalent RDF properties. The modelReference points

to URIs identifying appropriate semantic concepts, while liftingSchemaMapping and

loweringSchemaMapping associate messages with appropriate transformations between the level of

technical descriptions (XML) and the level of semantic knowledge (RDF).We adopt these SAWSDL

properties as extensions to hRESTS as part of the here described MicroWSMO microformat. Therefore,

MicroWSMO represents the SAWSDL layer for RESTful services, based on top of hRESTS, instead of WSDL.

Consequently, MicroWSMO has three main elements, which represent links to URIs of semantic concepts

and data transformations. model indicates that the URI is a link to a model reference, while lifting and

lowering point to links for lifting and lowering transformations.

Since the WSMO-Lite [7] ontology is used for describing the content of SAWSDL annotations in

WSDL, we also adapt it for MicroWSMO. WSMO- Lite specifies four aspects of service semantics including

information model, functional semantics, behavioral semantics and nonfunctional descriptions, instances of

which are linked to the MicroWSMO annotations. It is important to point out that since both MicroWSMO

and SAWSDL can apply WSMO-Lite service semantics, RESTful services can be integrated with WSDL-

based ones. Tasks such as discovery, composition and mediation can be performed based on WSMO-Lite,

completely independently from the underlying Web service technology (WSDL/ SOAP or REST/HTTP).

The task of associating semantic content with RESTful service properties is even more time- and

effort-demanding than the insertion of hRESTS tags. Therefore, SWEET supports users in searching for

suitable domain ontologies and in making semantic annotations in MicroWSMO. Whenever, a user wants

to add semantics to a particular service property, for example, an input parameter, he/she has to select it

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 34 of 37

and click on the \magic wand" symbol, which send a request to Watson [10]. Waston is a search engine,

which retrieves relevant ontologies based on keyword search.

Figure 2. SWEET: Semantic Annotation

The results are presented in the service properties panel visualized in Figure 2. The searched for

property is the root of the tree, populated with nodes that represent the found matches. In the example,

recipient was found to be a property (\P") in an ontology located at http://protege.stanford.edu. If the

user needs additional information in order to decide whether the particular semantic annotation is

suitable or not, he/she can switch to the domain ontologies panel, which provides a list of all concepts and

the corresponding property matches. The user can make a semantic annotation by simply selecting the

property instance and clicking on one of the semantic matches in the service properties panel. The result

is a MicroWSMO annotated HTML description, which can be saved in a repository (button \Save") or be

converted into RDF (button \Export").

Listing 4 shows our example service description annotated with MicroWSMO using SWEET. Line

4 uses the model relation to indicate that the service sends SMS, while line 12 associates the input

parameter recipient with the class Recipient. The lowering schema for the recipient is also provided in line

13.

Listing 4. Example MicroWSMO Service Description
1 <div class="service" id="svc">

2 <h1>Send SMS Service</h1>

3 <p>This is a

4

5 Short Message Service (SMS).<p>

6 Example usage

7 http://my.test.serv.com/SendSMS.php?recipient=

8 tel :447712345678&message=messagetext&sender=User&title=TheMessage

9 <div class="operation" id="op1">

10 <h2><code class="label">SendSMS Method</code></h2>

11

12

13 recipient (

14 lowering)<p>List of recipient phone numbers in the format "tel:"

15 followed by an international phone number</p>
</div></div>

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 35 of 37

6 Related Work
hRESTS is not the only alternative that can be used for the creation of machine- readable descriptions of

RESTful services. WADL (Web Application Description Language) [9] and even WSDL 2.0 [8] can be used

as description formats. They provide well-structured and detailed forms of descriptions. However,

probably due to the user-centered context of Web 2.0 and of the resulting API descriptions, WADL and

WSDL seem to add complexity and still the majority of the API descriptions are provided in unstructured

text. We use hRESTS, which is relatively simple, easy to use, can be applied directly on the existing HTML

descriptions, supports the extraction of RDF and can provide a basis, for the future adoption of dedicated

formats such as WADL.

Another description approach if offered by RDFa [11]. RDFa can be effectively used for

embedding RDF data in HTML. However, following the simplicity and lightweight principles perused with

hRESTS, it needs to be investigated to what extent and in which use cases RDFa can be used for hRESTS. A

parallel approach to RDFa would be the use of GRDDL [12] on top of hRESTS. GRDDL is a mechanism for

extracting RDF information from Web pages and is particularly suitable for processing microformats.

In the area of tools supporting the semantic annotation of services, ASSAM [13] enables the

annotations of services with WSDL-based descriptions. It provides user interface tools as well as some

automatic recommendation components, however, it can only be used on WSDL-based descriptions and

does not support RESTful services.

7 Conclusion and Future Work
Current RESTful services can be found, interpreted and invoked not without the extensive user

involvement and a multitude of manual tasks. This situation can be alleviated through the creation of

machine-readable descriptions. Based on such descriptions, crawlers and search engines can better find

services, and developers can better use them. Moreover, extended with semantic annotations, RESTful

services can even be discovered, composed and invoked automatically, following the principles of the

SWS.

In this paper, we have built on a lightweight RESTful service model, based on the hRESTS

microformat that enables the tagging of key service properties and therefore supports the creation of

machine-readable service descriptions. We complemented hRESTS by the MicroWSMO microformat,

which adapts SAWSDL for the semantic annotation of RESTful services. Finally, we have shown the tool

SWEET, which effectively supports users in creating semantic descriptions of RESTful services based on

hRESTS and MicroWSMO.

Future work will include the development of additional functionalities of SWEET, which will

better support users in the creation of semantic RESTful annotations. Better visualization components,

such as structure and properties highlighting are planned. In addition, some work will be devoted to the

automatic recognition of service properties such as operations and input parameters, so that the amount

of manual work required by the user can be reduced.

The work presented here is partially supported by EU FP7 project SOA4All.

References
1. L. Richardson, S. Ruby: RESTful Web Services. O'Reilly Media, May 2007.

2. R. T. Fielding: Architectural styles and the design of network-based software architectures. PhD thesis, University of

California, 2000.

3. J. Kopeck y, T. Vitvar, C. Bournez, J. Farrel. SAWSDL: Semantic Annotations for WSDL and XML Schema. IEEE

Internet Computing, 11(6):60-67, 2007.

4. J. Kopeck y , K. Gomadam, T.Vitvar: hRESTS: an HTML Microformat for Describing RESTful Web Services.

Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence (WI-08), 2008.

5. R. Khare, T. Celik: Microformats: a pragmatic path to the semantic web (Poster). Proceedings of the 15th

international conference on World Wide Web, 2006.

6. J. Kopeck y, T. Vitvar, D. Fensel, K. Gomadam: hRESTS & MicroWSMO. Technical report, available at http://cms-

wg.sti2.org/TR/d12/, 2009.

7. T. Vitvar, J. Kopeck y, J. Viskova, D. Fensel. WSMO-Lite Annotations for Web Services. In the Semantic Web: Research

and Applications, ESWC 2008.

8. Web Services Description Language (WSDL) Version 2.0. Recommendation, W3C, June 2007. Available at

http://www.w3.org/TR/wsdl20/.

9. M. J. Hadley: Web Application Description Language (WADL). Technical report, Sun Microsystems, November 2006.

Available at https://wadl.dev.java.net.

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 36 of 37

10. Watson - The Semantic Web Gateway: Ontology Editor Plugins. http://watson.kmi.open.ac.uk. Online November

2008.

11. RDFa in XHTML: Syntax and Processing. Proposed Recommendation, W3C, September 2008. Available at

http://www.w3.org/TR/rdfa-syntax/.

12. Clarke, F., Ekeland, I.: Gleaning Resource Descriptions from Dialects of Languages.Recommendation, W3C,

September 2007. http://www.w3.org/TR/grddl/.

13. A. Hess, E., Johnston, N., Kushmerick: ASSAM: A tool for semi-automatically annotating semantic web services. In

Proceedings of International Semantic Web Conference, 2004.

Supporting the Semi-Automatic Acquisition of Semantic RESTful Service

Descriptions

Maria Maleshkova, Laurian Gridinoc, Carlos Pedrinaci, John Domingue
Knowledge Media Institute (KMi)

The Open University, Milton Keynes, United Kingdom

fm.maleshkova, l.gridinoc, c.pedrinaci, j.b.domingueg@open.ac.uk

Abstract. This paper presents SWEET: Semantic Web sErvices Editing Tool, the first tool developed for the semi-

automatic acquisition of semantic RESTful service descriptions, aiming to support a higher level of automation of

common RESTful service tasks, such as discovery and composition.

1 Introduction
The increasing importance and use of Web services have resulted in researchers proposing Semantic Web

Services (SWS) as means for automating many common tasks involved in using Web services. Discovery,

negotiation, composition and invocation can have a higher level of automation, when Web service are

supplemented with semantic descriptions of their properties. On the other hand, the growing popularity

and use of Web 2.0 technologies has led to the increased adoption of the RESTful paradigm. Not only are

RESTful services more lightweight than WSDL-based services because they follow no strict description

format. They also enable combining heterogeneous data coming from diverse services, in order to create

data-oriented service compositions called mashups. Similarly to traditional SWS, which improve the

automation of WSDL-based solutions, the adding of annotations to RESTful services can bring further

automation to the process of creating mashups, in addition to the discovery and invocation tasks.

Current approaches in the area of semantic RESTful services (SRS) include the development of

formalisms for the semantic annotation. MicroWSMO [3] is one such formalism, which relies on the

hRESTS [1] microformat for describing the main aspects of a service such as operations, inputs and

outputs, and uses hooks for relating semantic information. SA-REST [2], on the other hand, uses the

grounding principles of SAWSDL and RDFa for marking service properties. Even though, there is some

research done targeted at supporting the use of SRS, for example in the form of mashups [2], there are no

contributions aiming to support the acquisition of semantic descriptions of RESTful services.

SWEET: Semantic Web sErvices Editing Tool is the first tool developed to assists the semi-

automatic acquisition of SRS. Its goal is to hide formalism complexities from the user and to assist him/her

in adding metadata by recommending suitable annotations. As a result, SWEET contributes directly to

improving the automation of the discovery and composition of RESTful services.

2 Supporting the Annotation of RESTful Services
SWEET consists of three main components, including the visualization component, the data preprocessing

component and the annotations recommender. The annotations recommender assists the user in

annotating a service by suggesting suitable annotations for the service as a whole (domain ontology

recommendation) and for its individual properties. This component is based on a hybrid recommendation

approach combining content based recommendation, implemented by computing similarity measures,

between the description of the new service to be annotated and previously annotated services, and

 SOA4All –FP7215219 D2.1.3 Service Provisioning Platform First Prototype

© SOA4All consortium Page 37 of 37

ontology-based recommendation. The data preprocessing component implements functionalities for data

preparation for the visualization component, cashing mechanisms and simple rule-based analysis. Finally,

the main task of the visualization component is to implement the user interface, which enables users to

identify service properties based on the MicroWSMO ontology, to choose an appropriate domain ontology

based on the annotations recommender suggestions, and to annotate service properties by making model

reference to the domain ontology. In addition, the visualization component assist the user in recognizing

the service structure and properties by graphically highlighting the service address, operations, inputs

and outputs. This component is inspired by PowerMagpie [4], taking the form of a vertical widget as an

extension of a classical web browser. In this way, the user can view the RESTful service description in a

browser, start SWEET and make annotations. The result is a MicroWSMO service description, which can

be shared and reused by other users. While all three components have complete specifications, including

design models and computational methodologies, only the visualization component is fully implemented

and the other two are still under development.

SWEET is a major contribution towards providing semantics for RESTful services, since it reduces the

amount of necessary manual work by making an- notation suggestions and hides formalism complexity

behind an effective and easy-to-use user interface. The development of SWEET is based upon work

partially supported by the EU funding under the project SOA4All (FP7 - 215219).

References
1. Kopecky, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for Describing RESTful Web Services. In

Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence (WI-08), 2008.

2. Sheth, A. P., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and Easier-to-Use Services and Mashups.

In IEEE Internet Computing, 11(6):9194, 2007.

3. Kopecky, J., Vitvar, T.: MicroWSMO. WSMO Working Draft. http://www.wsmo.org/TR/d38/v0.1/20080219/,

February 2008.

4. Dzbor, M., Motta, E., Domingue, J.: Magpie: Experiences in supporting Semantic Web browsing. Web Semantics:

Science, Services and Agents on the WWW, 2007

