

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.2.2 – Service Consumption Platform

First Prototype
Activity N: Activity 1 – Fundamental & Integration activities

Work Package: WP2 – SOA4All Studio

Due Date: M18

Submission Date: 03/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: ISOCO

Revision: 1.0

Author(s): Guillermo Álvaro Rey
Iván Martínez
Matteo Villa
Giovanni Di Matteo

ISOCO
ISOCO
TXT
TXT

Internal Reviewers: Freddy Lecue UNIMAN
John Davies BT

Project co -funded by the European Commission within the Seven th Framework Programme (2007 -2013)

Dissemination Level

PU Public X

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 2 of 39

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 06/07/2009 Document Initialized Guillermo Álvaro Rey

0.2 20/07/2009 Included RS and UI widget integration
paragraphs

Giovanni Di Matteo, Matteo
Villa

0.3 24/07/2009 Completed first version Guillermo Álvaro Rey

0.4 28/07/2009 Refined contents. All

0.5 29/07/2009 Version for internal reviewers All

0.6 31/07/2009 Internal Review Freddy Lecue

0.7 04/08/2009 Internal Review John Davies

0.8 17/08/2009 Addressed internal review comments Guillermo Álvaro Rey

0.9 31/08/2009 Final modifications All

1.0 03/09/2009 Minor edits and inclusion of draft paper
#2

Guillermo Álvaro Rey

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 3 of 39

Table of Contents

EXECUTIVE SUMMARY __ 7

1. INTRODUCTION __ 8

2. FUNCTIONAL SPECIFICATION OF THE SERVICE CONSUMPTION PLATFORM __ 9

2.1 DESCRIPTION OF THE PLATFORM __________________________________ 9

2.2 IMPLEMENTATION DETAILS AND INSTALLATION INSTRUCTIONS ________ 13

3. CHALLENGES __ _______________ 15

3.1 AUTOMATING SERVICE CONSUMPTION _____________________________ 15

3.1.1 From service descriptions to easy consumption ________________________ 15

3.1.2 Authentication issues __ 16

3.2 PLATFORM ADAPTATION ___ 17

4. INTEGRATION WITH OTHER COMPONENTS _____________________________ 22

4.1 STORAGE SERVICES (T2.4) _______________________________________ 22

4.2 FEEDBACK FRAMEWORK (T2.1) ____________________________________ 22

4.3 AUDITING SERVICE (T2.4) ___ 23

4.4 UI WIDGETS (T2.4) ___ 23

4.5 RECOMMENDATION SYSTEM (T2.7) ________________________________ 24

4.6 KEYWORD-BASED DISCOVERY (WP5) ______________________________ 25

5. CONCLUSIONS __ 26

6. REFERENCES ___ 27

ANNEX A. SHORT PAPER(S) __ 28

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 4 of 39

List of Figures
Figure 1: Consumption Platform: Left panel and dashboard area with some services 9

Figure 2: Examples of portlet buttons: Close, maximise, contract; Close, expand, minimise 10

Figure 3: Left Panel ..10

Figure 4: The six widgets in the lefthand panel ...11

Figure 5: Search results showing a list of suitable services ..12

Figure 6: Service GUI for inputs ...12

Figure 7: Service details tab ...13

Figure 8: Results of a service execution ...13

Figure 9: Consume button in the SOA4All Studio dashboard ...14

Figure 10: Layers involved in Service Consumption ...16

Figure 11: Recommendation area in CP main menu: “No suggestion” vs. “suggestions
available” appearance ..18

Figure 12: Recommended services by user profile ...18

Figure 13: Service portlet - "Suggestion" section disabled vs. enabled19

Figure 14: Service portlet with suggested services table displayed20

Figure 15: Selection of a suggested service ...21

Figure 16: Rating Widget integrated in a service portlet..24

Figure 17: Tag Widget integrated in a service portlet ..24

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 5 of 39

Glossary of Acronyms
Acronym Definition

D Deliverable

DRM Digital Rights Management

EC European Commission

GUI Graphical User Interface

GWT Google Web Toolkit

GXT Ext-GWT

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IPR Intellectual Property Rights

ISP Internet Service Provider

KPI Key Performance Indicator

N3 N-Triple

NLP Natural Language Processing

POS Part-of-speech

QoS Quality of Service

RIA Rich Internet Application

RDF Resource Definition Framework

RDF(S) RDF Schema

REST Representational State Transfer

RS Recommender System

SA-REST Semantic Annotations for RESTful Services

SAWSDL Semantic Annotations for WSDL and XML Schema

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SWS Semantic Web Service

T Task

UI User Interface

UNSPSC United Nations Standard Products and Services Code

W3C World Wide Web Consortium

WP Work Package

WS Web Service

WSDL Web Services Description Language

WSML Web Service Modeling Language

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 6 of 39

Acronym Definition

WSMO Web Service Modeling Ontology

WWW World Wide Web

XML eXtensible Markup Language

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 7 of 39

Executive summary

This deliverable describes the First Prototype of the Service Consumption Platform, the part
of the SOA4All Studio where end-users are able to consume services, discovering the most
suitable ones for them in a lightweight manner.

The document begins with a description of the platform, mentioning what is already
implemented and can be used. Specifically, the platform is described as a “personalized
homepage” for the consumption of semantically enriched services, with a portal layout where
different services can be opened and consumed in separate “portlets”1 (i.e., non-overlapping
windows containing different user-interface components), and a lefthand panel that acts as a
starting point for the consumption process in different ways. Some general implementation
details and installation guidelines are also covered.

The most important issues and challenges regarding the automation of service consumption
from semantic service descriptions are discussed, also addressing the problem of the
heterogeneity of authentication solutions. Another important aspect of the platform is its
adaptability to satisfy different user needs, and we explain how we tackle this issue by
making use of the Recommendation System.

Finally, special emphasis is placed on the fact that the platform is not a standalone
component, but an interconnected piece inside the SOA4All Studio, which uses the
functionalities of many other architectural components of the project. Thus, the document
also highlights the integration of the platform with other components of the project.

1 http://en.wikipedia.org/wiki/Portlet

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 8 of 39

1. Introduction

The Service Consumption Platform, first described in D2.2.1 [1], is the part of the SOA4All
Studio [2] where users can interact with the service world as service consumers, discovering
the most suitable ones for their purposes in a lightweight manner.

Based in Ext-GWT2, as the rest of the SOA4All Studio, the platform presents itself via a portal
layout3 where users can open several services, or sets of services (and in the future, goals)
and interact with those in a lightweight manner in a configurable way reminiscent of Web2.0
sites such as iGoogle4 or NetVibes5.

Services can be consumed in this platform as long as they have been semantically enriched
within the Service Provisioning Platform (WSDL services with the WSMO-Lite Editor, and
RESTful services with SWEET [3][4]). We have placed more emphasis in the consumption of
the latter, but we are at the same time working on a generic way of consuming WSDL
services too. In the future, the processes composed within the Process Editor [5] will also be
consumable in this platform.

Enabling this kind of consumption of services at the conceptual level (i.e., from the semantic
annotations attached to their syntactic definitions) requires moving from that layer to the
execution one underneath, as well to a presentation layer above. Suitable input and output
adapters and lowering (from semantic to syntactic level) and lifting (from syntactic to
semantic level) mechanisms have to take place, in an automatic and transparent manner,
from the semantic annotations. This document explains how the Consumption Platform is
tackling these issues (while we refer to the first short paper included in Annex A for further
information) in order to allow users to easily consume services.

Another challenge we face within this platform has to do with authentication issues, for many
of the existing service providers require the implementation of heterogeneous authentication
and/or authorization mechanisms. So far, we have implemented the most direct and
straightforward ones, while sketching the big picture of the problem, in order to be able to
solve it properly. We refer to the second short paper in Annex A for the work in progress in
this respect.

We also explain an important characteristic of the platform, which is the stress placed on
personalisation, as it adapts itself to satisfy better the needs of each user. In order to achieve
this, the platform makes the necessary calls to the Recommendation System (RS, [6]), which
is able to recommend items for a user, given his past usage of the platform, and his current
context.

The interaction with the RS shows that the Consumption Platform is not a component on its
own, but a piece of the whole SOA4All Studio which is interconnected with other ones. We
analyse in which way and via which calls these interactions take place.

In the rest of the document, we describe the general characteristics of the platform in Section
2, discussing how we are tackling the important issues in Section 3, and addressing the
integration of the platform with other components in Section 4. Section 5 discusses future
work and challenges, and concludes the deliverable.

2 http://extjs.com/products/gxt/
3 http://extjs.com/examples/pages/portal/portal.html
4 http://www.google.com/ig
5 http://www.netvibes.com/

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 9 of 39

2. Functional Specification of the Service Consumpt ion
Platform

2.1 Description of the platform
The Service Consumption Platform6 has been designed to support the interaction with many
services in different ways, with a portal-style visualization layout. This is in line with Web 2.0
“personalized homepages” such as iGoogle, NetVibes or My Yahoo!7, where the end-users
can interact with the content they want and organize it in the way that suits them most. The
Service Consumption Platform aims at being one of these startpages, only that for the
consumption of semantically enriched services instead of content in the form mainly of feeds.

With this approach, the platform contains a left panel that allows users to open services in a
number of different ways. These services, and sets of services, are opened in the main
dashboard view, where several of them can coexist organized in three different columns, as
depicted in Figure 1.

Figure 1: Consumption Platform: Left panel and dashboard area with some services

Following the portal kind of layout, individual “portlets” can be maximised to occupy the
whole dashboard area (and conversely minimised to their initial size), as well as contracted
to occupy only the header (and conversely expanded to their initial size), and obviously
closed when they are not going to be used anymore. Figure 2 shows some examples of
buttons to perform these actions. It is worth mentioning that some extensions have been
developed to the Ext-GWT Portal class into an AdaptivePortal class, in order to
support the desired extra features. This extended class is conveniently shared in the
SOA4All Studio in order to allow other client modules (such as the Analysis one) to make use
of it, and also to mutually benefit from the possible improvements (e.g., enabling an easy
addition of extra columns).

6 Available online at http://coconut.tie.nl:8080/soa4all/
7 http://my.yahoo.com/

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 10 of 39

Figure 2: Examples of portlet buttons: Close, maximise, contract; Close, expand, minimise

The lefthand panel, depicted in Figure 3, contains several ways to allow end-users to find the
services they need. It is divided into the following areas:

• “My Actions”: Usual actions of the user and bookmarked ones will be displayed in this
section, allowing them to be re-opened when required.

• “Recommendations”: The platform will recommend (through the Recommendation
System) items to the user in a proactive way, as we will see in Section 3.2.

• “Browse Categories”: A hierarchical way of navigating through a taxonomy, which is
at this stage fixed.

• “Search”: A direct way of finding services with a keyword based query, making use of
the underlying Discovery services.

• “Wizard”: It will guide the steps of the users to simplify service consumption. (Not
available yet.)

• “Tag Cloud”: Finding services through selecting popular tags used to describe them
displayed in a tag cloud format.

Figure 3: Left Panel

For further illustration, examples of the six aforementioned widgets that belong to the
lefthand panel are depicted in Figure 4 in their expanded view.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 11 of 39

Figure 4: The six widgets in the lefthand panel

Obtaining a list of results

Some of the widgets in the lefthand panel allow the user to directly open a service for
invocation. For instance, the “My Actions” and “Recommendations” widgets will contain
services that can be opened with just one click.

Additionally, in some cases the widgets in the left panel result in a list of services, which are
displayed in a portlet within the dashboard area. This is the case of the search results and
selections through categories or tags. In this case, this intermediate step helps users choose
the most suitable service from a list such as the one in Figure 5.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 12 of 39

Figure 5: Search results showing a list of suitable services

Consuming a Service

Finally, a service can be consumed. In order to do so, when the service is selected, either
from one of the options in the lefthand panel or from a list of results, a new portlet is opened.
This portlet contains some information about the service, and gives the user the ability to
invoke it by filling the necessary information. Section 3 gives more detail about the process of
creating the forms and processing the user inputs from the service descriptions. Figure 6
depicts an example of interface presented to the user for a weather service, with a Latitude
and a Longitude values to be filled in order to successfully interact with the service.

Figure 6: Service GUI for inputs

The “Details” tab displays additional information about the service. At this stage, feedback
provided by other users is displayed there, in the form of ratings, tags and comments,
through the interaction with the Feedback Framework, as explained in Section 4.2. In this
area, it is also possible for a user to provide extra feedback information. In the short term, it
is also expected to include here complementary information about the service, such
information coming from the Analysis Platform. Figure 7 depicts the Details tab of a service.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 13 of 39

Figure 7: Service details tab

When a user executes a service, the choices are sent to the server-side module, which
processes them and actually interacts with the service placing the call at the execution layer.
The response is parsed and processed back so the results can be presented to the user in
an additional “Execution” tab, such as the one from the invocation of the weather service in
Figure 8. It is worth noting that several execution tabs can be displayed after different
invocations of the same service.

Figure 8: Results of a service execution

2.2 Implementation Details and Installation Instruc tions
The Service Consumption Platform is part of and is fully integrated into the SOA4All Studio,
and as such it does not make sense on its own as a separate entity. In fact, the use of the
underlying Infrastructure Services as well as the UI Components provided by T2.4 [2] makes
our platform fully dependent on those, not to mention the other project resources invoked.

Being a part of the SOA4All Studio, the Consumption Platform is implemented in two
different modules inside soa4all-dashboard:

• soa4all-dashboard-gwt-module-consumptionplatform: This is the module
with the frontend functionality that is able to create the GUI and communicate with the
server-side modules.

• soa4all-dashboard-consumptionplatform-service: This is the module with
the backend functionality that the client module accesses.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 14 of 39

Importantly enough, the Consumption Platform service module is not the only service module
that the client module is able to access, for it is also wired to other service modules inside the
dashboard which provide extra functionality, such as soa4all-dashboard-auditing-
service for tracing the interactions of the users within the platform or soa4all-
dashboard-feedback-service to interact with the Feedback Framework.

In order to install and test the functionality of the Consumption Platform prototype, the whole
SOA4All Studio needs to be deployed. The procedure for the installation and setup of the
Studio is described in Section 4 of the D2.4.2 deliverable [8]. Once the Studio is running, the
Consumption Platform can be accessed through the Dashboard by clicking on the “SOA4All
Consume” button, as illustrated in Figure 9.

Figure 9: Consume button in the SOA4All Studio dashboard

However, end-users do not need to install anything to use the Studio. The only thing that
they need is a web browser, as they may simply invoke the SOA4All application by calling
the following web address, without needing to install any plugin:

http://coconut.tie.nl:8080/soa4all

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 15 of 39

3. Challenges

3.1 Automating Service Consumption
The Service Consumption Platform should not be seen as just a layer on top of discovery in
the sense that it merely permits the discovery of services, in several ways, for invocation. In
fact, there are a number of challenges to overcome in order to provide an efficient and
automated way to consume services.

The ideal scenario of SOA4All is that once services are annotated (via the Provisioning
Platform tools: WSMO-Lite Editor for WSDL services, and SWEET for RESTful services),
these can be directly consumed from the Consumption Platform.

However, the process of automating service consumption is not so straightforward and
indeed there are some issues to be tackled, which we refer to in this section. Firstly, the
platform has to deal with the service annotations in order to produce the input for users to
enter, and to give the responses in a meaningful way. (See section 3.1.1.) Secondly, there
are several authentication mechanisms, especially when we consider the new trend of REST
services, that prevent automation. We cannot disregard the fact that API definitions are
intended for humans to understand and deal with, and not machines. (See section 3.1.2.)

3.1.1 From service descriptions to easy consumption

The Service Consumption platform operates at a conceptual (semantic) level, thanks to the
annotations performed with the Provisioning Platform tools, hence dealing with instances as
inputs and outputs for the (semantically enriched) services. However, the actual execution of
services still happens at the same communication level, requiring an interchange of
messages, typically in XML in traditional WS services, but not restricted to those, for they
might also be through invocation of URLs and involving other format of responses such as
JSON in RESTful services.

The Consumption Platform needs to handle the conceptual-level data and their mappings to
the communication-level messages, thanks to the grounding information attached to the
service. This information describes how the semantic data should be written in an XML form
that can be sent to the service, and how XML data coming back from the service can be
interpreted semantically by the platform. These two processes are respectively known as
“lowering” and “lifting”, and they are depicted in the bottom part of Figure 10.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 16 of 39

Figure 10: Layers involved in Service Consumption

While the lowering and lifting mechanisms are important, they deal with only half of the
problem, for the conceptual level will also need to be mapped into graphical elements in the
Consumption Platform. Firstly, because the platform needs to display relevant forms and
input boxes for the users to complete with the information they desire. Secondly, because it
is desirable that the platform shows the results of the execution of the service in a format
more suitable for an end-user. It is important to note that we are aiming at permitting very
different kinds of users, including non-technical ones, interact with the service world, so we
want to hide the semantics to them when they are not needed.

We refer to the first paper attached in Annex A (“Towards a lighter way of consuming
semantically enriched services”) for further explanations on our position in this respect.

Additionally, the status of these adapters and mechanism in the Consumption Platform is
briefly covered here:

• Input adapter: We have already set up the basis for creating a generic input form from
the semantic information of the service. This AnnotationsExtractor creates the
interface that an end-user can complete in order to interact with the service, indicating
the relevant concepts that need to be entered.

• Lowering and Lifting mechanisms: Right now, these mechanisms are still hardcoded
for a small set of services, but we are at the same time aiming to integrate with the
Lifting and Lowering services provided by WP3, which will take place after M18. This
way, when there are lifting and lowering mechanisms available, our platform can treat
those steps automatically, as the actual mechanisms are out of scope of this platform.

• Output adapter: At this stage of development, the responses are displayed in generic
tables to the end-users. It is also foreseen to offer more options for creating more
suitable mappings from the conceptual layer in the future.

3.1.2 Authentication issues

There is another important challenge we have to face in order to enable the possibility of
easily consuming services just by analysing the semantic annotations used to describe them.
This challenge is related to the heterogeneity of authentication and authorization methods
used by different kinds of services. In particular, RESTful services have very different ways

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 17 of 39

to let third parties interact with them, and they usually ask for a key that they can provide on
request. While it is feasible to ask for and store these keys manually for a small set of
services, these methods prevent automation.

We refer to the second paper included in Annex A, a draft paper currently in preparation. The
most important outcome is that we have already identified several types of authentication
that service providers use in order to allow third-party websites interact with them. We plan to
adapt the WSMO-Lite ontology to support these authentication types. Additionally, we have
already taken into account the some of the simple cases, namely:

• services that use no method for authentication at all,

• services that authenticate via an API key sent in the url,

• services that require OAuth.

So far, for the latter two cases, the API keys and OAuth credentials are still stored by hand,
while further progress on automating the gathering of keys and credentials –related to a
user’s profile when applicable– is expected for the future.

3.2 Platform adaptation
Under an end-user point of view, one of the main goals the Consumption Platform wishes to
achieve is to facilitate the interactions with the user, assisting him to work with the anticipated
high volumes of SOA4All services. One of the ways followed to accomplish this aim has
been to exploit the Recommendation System (RS) functionalities, which give suggestions to
the user basing on his behaviour and on his past interactions with the platform.

The Recommender System is totally integrated in the SOA4All Consumption Platform in a
transparent way: the final user of the platform will receive simple and intuitive indications
about potentially useful services, without having to deal with any configuration or data
request. The system will study in a silent fashion the user actions and interests, providing
him the most suitable suggestions in the most appropriate way, in function of the current
context.

Currently, the RS exposes two kinds of functionalities to the Consumption Platform, both
based on the concept of collaborative filtering. Content-based recommendation will be
developed and integrated in the second half of the project.

The first kind of approach is totally based on user profiles. The SOA4All infrastructure logs all
the human interactions with the Consumption Platform, so the RS can use them to
automatically create users’ outlines.

As soon as a user logs into the platform, this component contacts the Recommender System
to check whether any suggestion is available for his profile. The RS returns back a list of
potentially interesting services for the specified user, together with their degree of possible
interest.

The suggested services are then displayed in the main menu, positioned on the left of the
dashboard, in a specific section called “Recommendations”. In case of new suggestions the
title in the menu changes colour, becoming red, to attract the visitor’s attention.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 18 of 39

Figure 11: Recommendation area in CP main menu: “No suggestion” vs. “suggestions
available” appearance

The user can expand the “Recommendations” section and, if suggestions are present, they
are presented in an interactive table. Services names are displayed with different shades of
colour: the darker the colour, the more confidence the recommendation has in the relevance
of the service to the user. Moving the mouse over a suggested service brings up a tool tip,
showing the average rating of the specific service and its suggestion confidence, as it is
depicted in the following figure.

Figure 12: Recommended services by user profile

A click on an item of the table will open the service portlet where all the service information is
displayed. In the main details section a brief explanation of the reason of the suggestion is
shown, together with the related degree of confidence.

The second kind of suggestion is based both on the user profile and on a selected service.
Such sort of recommendations are strongly linked to the currently selected service, so they
will be displayed in the bottom area of the service details portlet, in an ad hoc section called
“Suggestions”.

As soon as the user selects a service, the Consumption Platform retrieves its details and
contacts the RS to know if it’s possible to give any suggestion to the user about services
correlated to the selected one. If no suggestions are present for the current couple “logged
user – selected service”, because there are no services to suggest, or because the user has

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 19 of 39

not yet interacted with the service, this area of the portlet will be collapsed and not
selectable, as shown in Figure 13, on the left side.

As soon as the user interacts with the selected service, trying it or giving some positive mark,
the RS understands the user’s potential interest in that service and supplies back some other
services that other users considered in an “Amazon-like” style. In this case, the “suggestion
area” is activated and the user has the possibility to expand it as he does for the other
sections of the portlet.

Figure 13: Service portlet - "Suggestion" section disabled vs. enabled

In this dedicated area there is a table displaying the names of the suggested services and
the percentage of potential interest the user can have about each of them, as shown in
Figure 14.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 20 of 39

Figure 14: Service portlet with suggested services table displayed

When a user clicks on a service name in this table, a new service will be opened in a
separate portlet, as depicted in Figure 15, Such in a way the user will be able to have more
information about the suggested service and interact with it.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 21 of 39

Figure 15: Selection of a suggested service

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 22 of 39

4. Integration with other components

As mentioned before, the fact that the Consumption Platform is a component of the SOA4All
Studio makes it possible for the platform to use the Infrastructure Services and UI
components of the Studio, as well as the interaction with other server-side modules available
in the SOA4All Studio. Additionally, the Consumption Platform is also able to interact with
other architectural components of the project, via the DSB.

This section covers how the Consumption Platform is tied to each of these other
components.

4.1 Storage Services (T2.4)
The Storage Services are of utmost importance for many components of the Studio, and the
Consumption Platform is not an exception. These services allow us to easily store and
retrieve triplets into the Semantic Spaces, which eventually will be connected below to those
services.

Anyway, the fact that the Semantic Spaces are connected below is transparent for our
platform as a client of those services, for there is already a working version of the Storage
Services. The Consumption Platform does not care if the repositories are on one machine or
distributed into the Spaces, as we will interact with them through the same API.

The interaction with the Storage Services happens from the consumption server-side module
via RESTful calls to the available GET method, constructing the desired SPARQL query and
sending it in the header, which returns the desired RDF information, to be parsed
conveniently on reception:

STORAGE_SERVICE_URL/repositories/<repository-id>

Direct interaction with the Storage Services in the Consumption Platform so far happens only
in one direction, retrieving information. It is worth noting though that the platform also inserts
information into the Semantic Spaces through the Storage Services (e.g., feedback
information, logs), but in an indirect manner via other services, as we will see in the following
two subsections.

We retrieve the following information in our direct calls to the Storage Services:

• Service annotations stored in RDF. (We make different calls to obtain the necessary
details of a given service from the AnnotationsExtractor.)

• Categories stored in RDF. (Making the necessary calls to browse through the RDF
taxonomy.)

4.2 Feedback Framework (T2.1)
As we stated before, the Feedback Framework is implemented in another server-side
module (soa4all-dashboard-feedback-service) within the Dashboard of the SOA4All
Studio, making it possible to handle ratings, comments and tags associated to different
items.

Our platform needs to interact with this server-side functionality, and it will be possible to do
so by wiring it conveniently too with our client-side module. Then, it is only a matter of
asynchronously invoking the necessary methods and handling the responses with the
callback functions. For example:

((FeedbackClientServiceAsync)

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 23 of 39

RemoteServiceHelper.getInstance().setupRemoteService((ServiceDefTarget)
GWT.create(FeedbackClientService.class))).rateItem(itemId,rating,userId,
rateItemCallback);

The methods we are invoking are:

• rateItem

• getRating (Both by a specific user, and the average by all users)

• commentItem

• getComments (Both by a specific user, and the ones made by all users)

• tagItem

• getTags (Both by a specific user, and the ones assigned by all users)

As stated before, the two-way interaction with the repository of feedback information (in the
Semantic Spaces as well) is done through a separated server-side module, and not directly
though the invocation of the Storage Services.

4.3 Auditing Service (T2.4)
Other server-side functionality that we need is the ability to record the users’ interactions
within the platform (e.g., a user opens a service, a user invokes a service, etc.). The tracking
of these actions will be necessary for the Recommendation System to perform its
computations, as well as for the Analysis Platform.

Again, for the Consumption Platform to interact with the auditing server-side functionality (in
a server-side module: soa4all-dashboard-auditing-service) we have wired the
platform client-side module to it.

In this case, the method that we will be accessing asynchronously to record each action that
we want to (as long as it is expected in the ontology defined in D2.7.1 [6]) will be
“logAction”. In this example, we are tracking an invocation:

((AuditingClientServiceAsync)
RemoteServiceHelper.getInstance().setupRemoteService((ServiceDefTarget)
GWT.create(AuditingClientService.class))).logAction("ItemInvocation",
getCookie(), logParams, logActionCallback);

4.4 UI Widgets (T2.4)
The Consumption Platform exploits some common User Interface items, provided by T2.4, to
perform actions or display information, keeping a common graphical interface with the whole
SOA4All Studio environment. In particular, two widgets are used: the “rating widget” and the
“tag cloud widget”, both in the context of the “Details” tab of a service portlet.

The former is used in the “Rating” section, depicted in Figure 16, to display the average
rating for the selected service and to allow the user to express his mark for the displayed
service.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 24 of 39

Figure 16: Rating Widget integrated in a service portlet

The latter is used in the “Tags” section, shown in Figure 17, to display the tags users have
labelled the service with.

Figure 17: Tag Widget integrated in a service portlet

4.5 Recommendation System (T2.7)
The Consumption Platform performs its integration with the Recommender System through
the invocation of the RS APIs.

There are different kinds of API invocations, according to the type of recommendation
algorithm to be used: up to now a cyclic calls to the getServiceRecommendationByUser
function have been implemented, together with ad hoc calls to
getServiceRecommendationByUserAndService one.

All the interactions between the users and the Consumption Platform are automatically
logged into the semantic space, so the RS can periodically retrieve them to elaborate them
together with the previous ones, generating always more accurate user profiles.

Each time a user logs into the Consumption Platform, the Recommender System is
contacted to check whether any suggestion is available for the current user. The RS loads its
off-line computed data and returns back a list of potentially interesting services for the
specified user, together with their degree of possible interest. It should be underlined that
these suggestions are not produced at the moment the RS is queried, but they are the result
of a batch computation.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 25 of 39

The same interaction is performed periodically to update the suggestions to the user in real
time. The period elapsing between two invocations is the same time as between the updates
of the users’ profiles by the RS.

To retrieve this kind of recommendations, the CP invokes the
getServiceRecommendationByUser method of the RS APIs, providing the userURI of the
currently logged user and the maximum number of services to be returned.

The other implemented case, where RS suggestions are made available to the end user, is
the “Amazon-like” suggestion, based on the couple “current user – current service”. As soon
as the user selects a service, the CP retrieves the service details from the Semantic Spaces
and contacts the RS to know if it is possible to give any suggestion to the user about services
correlated to the one just selected. To ask for this information, the
getServiceRecommendationByUserAndService function of the RS APIs is invoked, passing
as parameters the logged user userURI, the current service serviceURI and the maximum
number of returned services.

4.6 Keyword-based discovery (WP5)
The Service Consumption Platform gives the ability to end-users of finding services in
several ways, as we have covered throughout the document. In this line, the easiest way for
users to find services will be by specifying a query with the objective of retrieving a list of
suitable services. Of course, our platform is not able to reply to those queries by itself, but
uses the underlying SOA4All Discovery component in order to retrieve the relevant sets of
services.

While it is intended to enrich the search options with NLP techniques in the future, as well as
by performing Goal-based, Input/Output-based discovery, what is available by now is the
keyword-based kind of discovery. Hence, we perform calls to the relevant method of the
Discovery API (D5.3.1, [7]) and use SPARQL queries over the service descriptions in order
to obtain a list of suitable service identifiers.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 26 of 39

5. Conclusions

The first prototype of the Service Consumption Platform, described in this deliverable,
already provides functionality for the consumption of semantically enriched services. While
there is a long way ahead to improve it and implement new functionality, the foundation has
been laid, on which we will build in the coming months of the project.

The platform is already integrated with many components of the SOA4All Studio (Storage
Services, UI Components, Feedback Framework, Auditing Service, Recommendation
System, etc.), and other architectural components of the project, such as Discovery, making
this platform part of a global toolbox, and leveraging many functionalities provided by other
components. We believe that this is an important characteristic of the platform, which is not
on its own as a separated tool, but belongs to and it is accompanied by other modules.
Again, the most important work in this respect of performing the first integrations will be
leveraged in the future for subsequent alignments with different modules, such as the
Analysis Platform.

The platform is already taking into account semantic service descriptions in order to produce
generic visual elements that end-users will interact with. More work on this aspect is to be
explored in the future, in order to further satisfy more specific UI requirements. Additionally,
integration with external (WP3) lowering and lifting mechanisms services are envisaged after
M18 as well.

Another challenge with respect to automation of service consumption is the way of dealing
with authentication issues. While we have explored the basic characteristics, there is still
work to be done in order to achieve a generic and reasonable solution. Furthermore,
additional challenges are expected, not only in terms of storage of keys and security, but
regarding parts of the process where the participation of a human cannot be easily
circumvented; for example, when asking a service provider for a key. Not to mention service-
provider requirements such as branding ones, which will be unfeasible for machines to
understand, no matter the degree of annotations attached to their descriptions.

With respect to the important factor of Context, we have already performed several steps into
what we call Platform Adaptation, by interacting with the Recommendation System, which is
able to provide recommendations based on the user and the actions being performed at a
given moment. The challenge after M18 is to extend the adaptation based on context to what
we call Service Adaptation, actually modifying the results of the execution of services.

Finally, it is worth noting that for the first prototype we have not placed emphasis on the
consumption of processes, neither to the use of goals as the anticipated key artifact to be
used to discover and interact with services. This is due to the fact that the architecture of the
project has not yet matured to fully support those artifacts, but we will of course
accommodate the platform for their use after M18, with the objective of complementing and
enriching its functionalities to fulfill its design.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 27 of 39

6. References
[1] G. Álvaro, S. Abels, N. Mehandjiev, F. Lecue, M. Villa: Service Consumption Platform

Design, D2.2.1, EU FP7 SOA4All project, February 2009
[2] S. Abels et al. SOA4All Studio First demonstrator + Interface Specification, D2.4.1, EU

FP7 SOA4All project, February 2009
[3] G. Álvaro, L. Cekov, N. Mehandjiev, L. Xu, S. Abels, J. Vogel, A. Simov, M.

Maleshkova: Service Provisioning Platform Design, Project Deliverable D2.1.1, EU FP7
SOA4All project, February 2009.

[4] C. Pedrinaci et al. SOA4All Provisioning Platform First Prototype, D2.1.3, EU FP7
SOA4All project, August 2009

[5] J. Vogel et al. SOA4All Process Editor First Prototype, D2.6.2, EU FP7 SOA4All
project, August 2009

[6] D. Cerizza, G. Álvaro, G. Di Matteo, G. Ripa, A. Turati, M. Villa. Recommendation
System First Prototype, D2.7.1, EU FP7 SOA4All project, August 2009

[7] S. Agarwal, M. Junghans, O. Fabre, I. Toma. First Service Discovery Prototype, D5.3.1,
EU FP7 SOA4All project, August 2009

[8] S. Abels, J.-P. Lombardi, J. Vogel, T. Pariente, G. Álvaro, I. Martínez, M. Dimitrov, A.
Simov : SOA4All Studio UI and Infrastructure Services First Demonstrator & Interface
Specification, D2.4.2, EU FP7 SOA4All project, August 2009

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 28 of 39

Annex A. Short Paper(s)

This Annex contains two publications related to the content of this deliverable, describing
research done within the Service Consumption Platform task. The first one has already been
accepted in JSWEB’09, and the second one is still work-in-progress:

1. G. Álvaro, I. Martínez, C. Ruiz: “Towards a lighter way of consuming
semantically enriched services”. Accepted in JSWEB 2009.

2. G. Álvaro, C. Pedrinaci, P. Grenon: “The ‘key issue’ in automating service
consumption”. Draft of paper to be submitted on completion to a relevant
conference.

Towards a lighter way of consuming semantically
enriched services

Guillermo Álvaro1, Iván Martínez1, and Carlos Ruiz1

Intelligent Software Components, Madrid, Spain
galvaro, imartinez, cruiz@isoco.com

Abstract. The use of semantics to enhance Web Service descriptions

paves the way to automating their discovery, composition and consump-
tion. Previous efforts in the area of Semantic Web Services such as the
top-down approach of the traditional WSMO conceptual framework im-
plied the realization of Semantic Web Services and Goals into WSML
files, where eventually the traditional services were grounded. We be-
lieve that this approach has lacked flexibility in order to involve a large
number of users interacting with the service world. In the FP7 SOA4All
project8, we explore a new paradigm that uses lightweight versions of

that framework, in order to deal with the problem with a bottom-up
approach, covering the service descriptions with semantic annotations.
In this paper, we describe our particular approach towards service con-
sumption, where we will need to enable mechanisms to move from the
conceptual level to the execution level underneath and the application

level on top of it.

1 Introduction

The Web has evolved to a paradigm where new content is produced constantly at a rate that we could
not imagine not so long ago. In the so-called Web 2.0 users act both as consumers and as producers
of content, therefore being prosumers (term coined by Alvin Toffler in his book The Third Wave [1]),
contributing to the exponential growth of information available in Internet nowadays.

In contrast, the number of WS-based services that the Web currently exposes is rather low9, and SOA
is largely still an enterprise specific solution exploited by and located within large corporations used
mainly for integration.

In order to reach a service world with a much more relevant number of services, we believe that the
same concepts of Web 2.0 should be applied, therefore promoting the role of “service prosumer". It is
also worth noting other approaches to services such as the REST architectural style [2], quite suitable
for the purpose of opening up the service world.

8 Service Oriented Architectures for All, http://soa4all.eu/
9 According to seekda.com the number of WSDL services available online on June 19, 2009 was 28.409.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 29 of 39

We also believe that the use of semantics to enhance Web Service descriptions will help us automate
their discovery, composition and consumption. While there have been efforts in the area of Semantic
Web services, they were perceived as rather heavyweight solutions not suitable for bringing the
service world to another level. In the FP7 SOA4All project [3] we explore more lightweight solutions
for adding semantic information to existing service descriptions.

In this paper, we focus on the aspects to be taken into account in order to provide an efficient
consumption of services that have been semantically annotated, while at the same time without
requiring users to know about the semantics and technicalities that lie underneath.

The rest of the paper is organized as follows: In Section 2, we describe the particular approach taken
into the SOA4All project towards the service world. Section 3 focuses on the particular characteristics
of the lightweight annotations that will be used. In Section 4, we elaborate on the different aspects that
need to be addressed in order to automate service consumption from their semantic descriptions. We
describe the different layers that are present, namely (a) the application layer, (b) the conceptual layer,
and (c) the execution layer, and the adapters and mechanisms envisaged to move from ones to the
others. Finally, Section 5 covers the challenges and future work, and summarizes the paper.

2 The SOA4All approach

SOA4All aims to contribute to a service world where billions of parties are exposing and consuming
services via advanced Web technology. In order to open up the service world to the desired paradigm,
SOA4All integrates four pillars, namely (i) Web principles and technology, as the underlying
infrastructure for the integration of services at a world wide scale, (ii) Web 2.0, as a means to leverage
human-machine cooperation, (iii) Semantic Web technology, in order to abstract from syntax to
semantics when required, and (iv) context management, as a way to provide users a customized
experience that suits their needs.

By mixing all these technologies, we plan to cater for the needs of different types of users, involving
both technical and non-technical people into the creation and consumption of services. Thus, while it
is true that semantics play a central role into the envisaged paradigm, we want to abstract users from
the technicalities that lie underneath whenever possible.

From the end-user perspective, the main outcome of the project will be the “SOA4All Studio", an easy-
to-use integrated framework that will permit different kinds of users, technical and non-technical, the
provisioning of new services (both by adding annotations to existing service descriptions and by
performing light compositions), and the consumption and analysis of those.

3 Towards lightweight annotations of services

So far, the efforts in implementing Semantic Web Services have taken place in a top-down approach,
such as the ones by OWL-S [4] or the WSMO [5] conceptual framework. This implied that Semantic
Web Services were realized within ontological frameworks, eventually linking them to WSDL services
via grounding mechanisms.

We take a more lightweight approach to implementing Semantic Web Services in a bottom-up
direction, enriching existing service descriptions with semantic annotations. This is possible for WSDL
descriptions thanks to SAWSDL [6] annotations that link to concepts of the WSMO-Lite ontology [7].

Furthermore, this lightweight approach is also able to take into account REST services thanks to
annotations over their descriptions in HTML pages through the use of hRESTS and MicroWSMO [8],
therefore opening up the set of services to the large number of providers that expose their
functionalities as RESTful APIs. It is worth noting that in the context of SOA4All, tools for adding light
semantic annotations have been developed both for WSDL services (WSMO-Lite Editor) and REST-
based ones (SWEET, Semantic Web sErvices Editing Tool[9]).

4 From light annotations to easy consumption

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 30 of 39

The use of light annotations that link service definitions to concepts in the WSMO-Lite ontology
permits us work at a conceptual level, dealing with instances as inputs and outputs for the
(semantically enriched) services. However, the actual execution of services still happens at the same
communication level, requiring an interchange of messages, typically in XML in traditional web
services, but not restricted to those, for they might also be through invocation of URLs and involving
other format of responses such as JSON in RESTful services.

An important difference of the bottom-up approach we have in SOA4All with respect to the top-down
approach of the plain-WSMO model (where WSDL services were grounded into complete WSML [10]
services) is that there is no need of a running semantic service execution framework such as WSMX
[11] or IRS-III [12], as there actually is in the traditional WSMO approach.

Instead, the Consumption Platform of the SOA4All Studio will need to handle the conceptual-level data
and their mappings to the communication-level messages. Web services generally communicate with
their clients using XML messages described with XML Schema. On the semantic level, however, Web
service inputs and outputs are described using ontologies. A semantic client then needs grounding
information that describes how the semantic data should be written in an XML form that can be sent to
the service, and how XML data coming back from the service can be interpreted semantically by the
client. In other words, the outgoing data must be transformed from an ontological form to XML and,
conversely, the incoming data must be transformed from XML to an ontological form. These two
processes are known as lifting and lowering, and they are depicted in the bottom part of Figure 1.

While the lowering and lifting mechanisms are important, they deal with only half of the problem, for
the conceptual level will also need to be mapped into graphical elements in the Consumption Platform
of the SOA4All Studio. Firstly, because the platform will display relevant forms and input boxes for the
users to complete with the information they desire. Secondly, as the platform will show the results of
the execution of the service in a format more suitable for them. It is important to note that we are
aiming at permitting very different kinds of users, including non-technical ones, interact with the
service world, so we want to hide the semantics to them when they're not needed.

Fig. 1. Layers in the consumption of semantically enriched services

The four aforementioned steps are detailed in the following subsections. We will illustrate our
explanations using an example of a service RDF description in Listing 1.1.

Listing 1.1. Example service

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:wsl="http://www.wsmo.org/ns/wsmo-lite#"
 xmlns:hr="http://www.wsmo.org/ns/hrests#"
 xmlns:sawsdl="http://www.w3.org/ns/sawsdl#"

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 31 of 39

 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
 <wsl:Service rdf:ID="service">
 <rdfs:isDefinedBy rdf:resource="http://...SMSService.php"/>
 <rdfs:label>Send SMS Service</rdfs:label>
 <sawsdl:modelReference rdf:resource="http://...#Consumer"/>
 <sawsdl:modelReference rdf:resource="http://...#SMS"/>
 <sawsdl:modelReference rdf:resource="http://...#Free"/>
 <wsl:hasOperation>
 <wsl:Operation rdf:ID="send.SMS">
 <rdfs:label>SendSMS</rdfs:label>
 <hr:hasAddress>http://...</hr:hasAddress>
 <wsl:hasInputMessage>
 <wsl:Message>
 <sawsdl:loweringSchemaMapping
 rdf:resource="http://...sms-lowering.xsparql" />
 <sawsdl:modelReference rdf:resource="http://...#Recipient"/>
 <sawsdl:modelReference rdf:resource="http://...#Message_Text"/>
 <sawsdl:modelReference rdf:resource="http://...#Sender"/>
 <sawsdl:modelReference rdf:resource="http://...#Message_Title"/>
 </wsl:Message>
 </wsl:hasInputMessage>
 <wsl:hasOutputMessage>
 <wsl:Message>
 <sawsdl:liftingSchemaMapping
 rdf:resource="http://...sms-lifting.xsparql" />
 <sawsdl:modelReference rdf:resource="http://...#SMS"/>
 </wsl:Message>
 </wsl:hasOutputMessage>
 </wsl:Operation>
 </wsl:hasOperation>
 </wsl:Service>
</rdf:RDF>

4.1 Input Adapter

Semantically enriched services will have relevant parts of their syntactic descriptions linked to
concepts of the WSMO-Lite ontology. The Input Adapter takes that semantic information in order to
produce suitable graphical elements (forms with input boxes, drop-down menus, etc.) so the users can
fill them and define their queries to the service.

From the RDF description of the service, the adapter looks for the “InputMessage" concept, and the
“modelReference" concepts attached to it. In our example (see lines 22-25) the Input Adapter finds
four different concepts to be taken into account, and generates a form with four gaps, depicted in
Figure 2.

Fig. 2. Graphical User Interface generated by the Input Adapter

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 32 of 39

We also plan to make use of WATSON [13] as a method to find relevant instances that suit the
concepts used for annotating the service descriptions. This way, we will be able to present users a set
of sensible options whenever possible.

4.2 Lowering

The lowering mechanisms take care of translating the instances of the conceptual layer to the
appropriate messages and calls to the service, depending on the kind of communication envisaged for
each case. It is worth noting that our model covers both XML messages over SOAP for WS services,
and also the invocation of REST methods via the appropriate URLs.

The lowering mechanisms consider the annotations over the service descriptions in order to map the
instances of the conceptual level into XML messages of the syntactic level. In our example, one can
spot (lines 20-21) the reference to an external XSPARQL [14] file to be used for this mapping.

4.3 Lifting

Lifting is the process of semantically annotating a source schema S with an ontology O. In our context,
the response by the service (in whichever format the service responses: XML, JSON, etc.) is
translated to instances. Note that this definition does not restrict the nature of the input schemas used
for the lifting process. Furthermore, based on the previous definition we can consider three different
approaches to the lifting problem:

• The most basic approach is to create a new ontology based on the source schema and use
that ontology for the annotation

• If an existing ontology should be used for the annotation, a mapping between the source
schema and the target ontology needs to be created

• Finally, a combination of the first two approaches could be used by creating a new ontology
from the source schema and by then mapping this ontology to an already existing one. For
this approach existing ontology mapping techniques could be reused.

Again, we rely on an external XSPARQL file, referred within the "OutputMessage" (see lines 30-31) to
perform the mapping.

4.4 Output Adapter

Once a service has been executed and our platform has the response information at the conceptual
level (thanks to the lifting mechanisms explained before), we are already able to present users the
returned instances (in our example, based on the concept found in line 32). However, we believe that
it is better to raise the abstraction level in order to provide users a more understandable output. It is
important to note again that the typical end-user of our platform won't necessarily be a technical user
aware of semantic implementations.

More technically advanced users will be able to create mappings between the response instances at
the conceptual level and some more suitable graphical elements that represent the same information
in a format more relevant for the user. For example, given a response with an instance of a coordinate
concept, it might be better to display a map with the returned point than showing an instance with its
attributes representing the latitude and longitude information.

5 Future Work and Conclusions

What we have described in this paper is a service-centric view, but it is important to mention that the
WSMO conceptual framework stresses a decoupled approach between semantic Web services and
Goals, artifacts that can be used to interact with them by defining some characteristics. As we plan to
inherit the advantages of the decoupled approach in the lightweight versions of the model, we will
need to take it into account for future adapters and lowering/lifting mechanisms, even though the
matching of goals and services itself will happen at the conceptual level.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 33 of 39

Another challenge we have to face is related to the heterogeneity of authentication and authorization
methods used by different kinds of services. In particular, RESTful services have different ways to let
third parties interact with them, and they usually ask for a key that they can provide on demand. While
it is feasible to store those keys manually for a small set of services, these methods prevent
automation. We have disregarded it in this paper, but will explore ways to overcome these methods in
the future.

To sum up, lightweight semantic annotations over descriptions of services can be useful in order to
open up the service world to a larger audience. In particular, we have focused here on how these
annotations are able to enhance the consumption of services, permitting a higher degree of
automation.

We have covered the need to move between the semantic world where the annotations belong to the
syntactic level underneath, where the actual communication with the service happens, and also to the
application level on top. Achieving this in a graceful manner through the appropriate mechanisms will
improve the act of consuming services, therefore contributing to the desired service world.

References

1. Toffler, A.: The Third Wave. Bantam Books, New York (May 1984 (1980))
2. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis (2000)
3. Domingue, J., Fensel, D., González-Cabero, R.: Soa4all, enabling the soa revolution
on a world wide scale. In: Proceeding of the 2nd IEEE International Conference
on Semantic Computing (ICSC), IEEE Computer Society (August 2008) 530{537
4. Martin, D., Burstein, M., Hobbs, E., Lassila, O., Mcdermott, D., Mcilraith, S.,
Narayanan, S., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: Owl-s:
Semantic markup for web services. Technical report (November 2004)
5. Lausen, H., Polleres, A., Dumitru: Web service modeling ontology (wsmo). avail-
able at: http://www.w3.org/Submission/WSMO/ (Jun 2005)
6. Kopeck_y, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for
wsdl and xml schema. IEEE Internet Computing 11(6) (2007) 60{67
7. Vitvar, T., Kopeck_y, J., Viskova, J., Fensel, D.: Wsmo-lite annotations for web
services. In: ESWC. (2008) 674{689
8. Kopeck_y, J., Gomadam, K., Vitvar, T.: hrests: An html microformat for describing
restful web services. In: Web Intelligence. (2008) 619{625
9. Maleshkova, M., Gridinoc, L., Pedrinaci, C., Domingue, J.: Supporting the semi-
automatic acquisition of semantic restful service descriptions. In: ESWC 2009
poster session. (2009)
10. De Bruijn, J., Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummenacher, R.,
Polleres, A., Predoiu, L.: Web service modeling language (wsml). W3C Member
Submission (June 2005)
11. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: Wsmx - a semantic
service-oriented architecture. In: IEEE International Conference on Web Services
(ICWS'05), Los Alamitos, CA, USA, IEEE Computer Society (2005) 321{328
12. Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B.,
Pedrinaci, C.: Irs-iii: A broker-based approach to semantic web services. Web
Semant. 6(2) (2008) 109{132
13. Sabou, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Motta, E., d'Aquin, M.,
Dzbor, M.: Watson: A gateway for the semantic web. In: ESWC 2007 poster
session. (June 2007-06)
14. Akhtar, W., Kopecky, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling be-
tween the XML and RDF worlds and avoiding the XSLT pilgrimage. In Hauswirth,
M., Koubarakis, M., Bechhofer, S., eds.: Proceedings of the 5th European Semantic
Web Conference. LNCS, Berlin, Heidelberg, Springer Verlag (June 2008)

The “key issue” in automating service consumption

Guillermo Álvaro1, Carlos Pedrinaci2, and Pierre Grenon2

1 Intelligent Software Components, Madrid, Spain
galvaro@isoco.com

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 34 of 39

2 Open University, Milton Keynes, UK
fc.pedrinaci,p.grenong@open.ac.uk

Abstract. ... please note: this is a working draft ...

1 Introduction

(some ideas to be refined for the introduction)

Web services were created with the objective of enabling distributed applications, and from their birth
they were seen as the suitable technology to support integration amongst companies in Internet.
However, currently there are not many services available in the Web, and therefore the business
opportunities and advantages for end-users are less than the initially expected.

Nowadays, Web APIs are being used with more frequency. They seem to be simpler than traditional
WS.

In SOA4All3, we aim at providing an infrastructure (the SOA4All Studio4) that enables the semantic
annotation of services to support composition, discovery, etc. of services.

Currently, there are many standards, languages and technologies to deal with security and
authentication issues. However, regarding Web APIs, there are not so many standards, and hence
most of their functionalities, even if public, require authentication to be used, and there exist too many
different methods with different protocols.
...
The “interacting with billions of services” in SOA4All is depicted as follows: Semantically enriched
versions of traditional services (WSDL-based and RESTful) are produced using WSMO-Lite and
MicroWSMO. Then thanks to these annotations, services can be consumed in SOA4All (either in a
direct manner or even as part of compositions).

The problem here is that many of the services to be consumed, especially the RESTful ones, are not
automatically consumable. This is due to the fact that service providers typically want to have control
on which mashups are using their APIs and how, so they ask for some kind of authentication (usually
login/password combination or an authentication key, etc., but that's not so simple), and by just
annotating a service, it doesn't mean that SOA4All will have the necessary credentials at all.
...
As part of the Consumption Platform of the SOA4All Studio, we have developed an authentication
service capable of, based on annotations over the authentication methods of the services, allow third-
party applications such as our SOA4All Studio, to interact with the services that request credentials.
We present such a service in this paper, and we also provide an ontology that can be used to
annotate the authentication methods of services and which our service is capable of interpreting.

2 Related Work

• Mashup systems (Google, Yahoo, etc)
• Auth systems here? (OAuth, etc)
• Yahoo! Query Language (YQL):http://developer.yahoo.com/yql/

3 Analysis of Authentication Methods

As a first step in order to overcome this issue and be able to interact with a greater number of services
(not only with the few ones which don't ask for credentials), we want to identify the different kinds of
authentication existing out there.

The APIs have been roughly grouped by the different methods of authentication (and authorization)
they use, but even within each of those groups, there is a great deal of heterogeneity that complicates

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 35 of 39

things up. What is more, in many cases we have spotted APIs that use a combination of the
addressed methods.

3.1 API credentials to be sent in the URL

This is the simplest case, where the service provider issues some credentials which need to be used
by the third party to authenticate each query against the service. In this case, the third party includes
the so-called “API key”, in plain, as an extra parameter in the URLs used to interact with the service.

The name of the “key" parameter is different amongst different services, and it is worth noting that it
might even consist of several parameters, such as “login" and “password", issued to a specific partner.
The following two URLs are examples of this kind of authentication, the former one with a key
parameter, and the latter with a user and a password:

http://ws.audioscrobbler.com/2.0/?method=geo.getevents&lat=51&long=0&api key=xxx
http://happenr.com/webservices/getEvents.php?username=xxx&password=xxx&town=...

While including the credentials in the URL is a simple process, it is important that these have to be
granted by the service provider beforehand. Here again, there is a great deal of heterogeneity, as
different providers tend to issue keys in different manners. To cite some examples, Happenr5 has a
contact form where third party developers can ask for the keys, while in other services such as Bit.ly6

or Jambase7 one has to sign in before and then ask for the key. Additionally, in many cases this
process is not completely automated and involves a person from the service provider dealing with the
creation of the new credentials, and someone from the third party needs to be in contact with them.

Another specific characteristic that present some of the service providers is the scope of the
credentials, as the issued key might be only valid for a specific domain. This is the case of the
GoogleMaps API8, which is not a RESTful API but a Javascript container, and where the key is issued
to a specific Google account and bound to a specific domain where the map will be located.

3.2 API credentials to be sent somewhere else

In other cases, the service provider issues an API key in a similar way, but it doesn't expect it in the
URL of the invoked methods. The API description informs about where the credentials need to be sent
in order to authenticate the third party against the service provider.

For example, the Hoovers WSDL API9 requires third party applications to include the issued key in the
SOAP header like this:

<soapenv:Header>
<web:API-KEY>YOUR-API-KEY</web:API-KEY>
</soapenv:Header>

3.3 HTTPS with HTTP-Auth

In opposition to the previous cases, where generic credentials were used to authenticate each of the
calls to the service, some APIs require the credentials of a specific user. This usually happens when
the action to be achieved has to do with a personal user account within the service provider (e.g.,
posting a link to del.icio.us10 is associated to the del.icio.us user and not to the application calling the
API). The HTTPS protocol can be used for this purpose.

Following the example of del.icio.us just mentioned, a third party could allow a user to request a set of
tags associated to him (https://api.del.icio.us/v1/tags/get), and his credentials should be sent using
HTTP-Auth to do so. Otherwise, a pop-up window will appear informing that the service requires a
user and password.

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 36 of 39

Needless to say, the mashups making use of these kind of APIs (like the del.icio.us one11) rely on the
fact that users have an account created within the service provider.

3.4 Basic HTTP Authentication

This form of authentication is similar to the previously explained, but using plain HTTP authentication.
With this kind of authentication, the credentials of the user can be sent, Base64-encoding the
username and the password12.

An example of an authorization within a third party request (Base64 encoding of the “Aladdin:open
sesame” user-password pair):

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Several services such as blip.fm13 and simpy14 use this method, with the login and password of the
user accounts in the domains are used.

3.5 Signed requests

In some cases, the credentials provided by the service are not sent in plain, but they have to be used
to sign the requests in several fashions. Here again we can see different methods and places for
signing the requests, which can be also used in combination with the previous ones. To list a few of
these ways to sign methods:

• The Amazon Simple Storage Services (Amazon S315 specify a way of using a shared secret to
produce a HMAC-SHA1 of selected elements within the request, which needs to be sent along
with the access key in the HTTP Authentication header16.

• Daylife's API17 specifies a method by which the signature is produced performing an MD5 over
the access key, the shared secret and the core input for the call, and then sent in the URL18.

• The Blip.fm API19 involves a secret key, a nonce and a timestamp in order to generate a
HMAC-SHA1 signature that needs to be sent in the URL along with the other parameters.

• The Seesmic service20 requires a signature done by performing MD5 over the login+password
of a particular user, not over an API key21.

In order to depict one of these examples, the Amazon S3 example would involve performing the
signature as explained in their documentation and then including it in the header like this:

Authorization: AWS AWSAccessKeyId:Signature

3.6 OAuth

Motivated by the lack of a global solution in the area of authentication amongst websites, OAuth22 was
born. It is an open protocol to allow (simple and standard) secure API authorization, which involves a
token-passing mechanism with authorizations on them. OAuth allows a given user to grant access to
their private resources on the service provider to the third-party site.

By following this protocol, both service providers and third-party developers can implement the
necessary and standard steps of authorizing users of the service provider within the third-party
application, and then the external application can use the authorized token to retrieve information of
the user inside the service provider. One of the advantages of dealing with a standard method is that
developers can find libraries in several programming languages that help them abstract from the
whole complex process and re-use them for interactions within different scenarios and amongst
different applications.

Even though this protocol has been subject to some critics, specially after a security issue was
identified (and addressed in the version 1.0a of the protocol), an increasing number of service
providers are enabling this standard way of dealing with the authentication issue. Prominent examples

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 37 of 39

of these are the Twitter API23, which supports OAuth as one of its authentication mechanisms, or Fire
Eagle24.

3.7 Other custom processes involving tokens

Apart from the aforementioned effort of OAuth, there are several other authentication methods that
involve tokens applied in complex ways that don't follow a standard. Most of these protocols are
proprietary methods implemented by big players in the service area. To name a few of these custom
protocols, Google has AuthSub25, AOL has OpenAuth26, Yahoo has BBAuth27, and other APIs such as
the ones by Upcoming28, Flickr29 also implement their own methods.

3.8 APIs that only work in certain places

The fact that a service provider exposes its functionalities via an API does not necessarily mean that
they can be used for programming applications that run anywhere, even if its methods can be invoked
via a RESTful interface. In some cases, the scope of use of the API is limited to a particular site (as it
happens with Facebook applications) or set of sites that implement some characteristics (e.g., Google
Gadget containers, Facebook Connect sites).

In the case of Google Gadgets30, “web-based software components based on HTML, CSS, and
JavaScript”, we are not facing a proper RESTful API, but a set of Javascript-based resources, so it
makes sense that those cannot run outside a special container (i.e., a website able to display
gadgets).

However, the case of Facebook is very illustrative, because it has a REST interface which permits
developers make calls to them, implementing a custom method for authenticating the requests31.
However, in principle, an application developed with that API has to run within the Facebook platform,
and not in an external site.

The other circumstance in which a third-party website can make use of the Facebook API is to use
Facebook Connect32. Any website can integrate with Facebook Connect by performing some previous
steps, which span from asking the credentials to uploading and configuring some files into their site33.
This way, they can use the methods of the API, for example to get the (Facebook) friends of a user
when he's logged in with his Facebook account.

Thus, even if the integration with these systems is possible, these custom steps involving additional
files and configuration are obviously an obstacle on automation.

3.9 Summary of authentication methods

...In order to get an idea about the authentication methods used by different service providers, we
refer to the extensive collection of APIs listed in programmableweb.com... (note: even though it is not
well organised regarding auth mechanisms; explore how to get numbers of some of the cases, e.g.,
signed requests, API key sent somewhere else)

...We also include in Table 1 methods that do not require an authentication method at all...

Table 1. Authentication Methods
Authentication Method

Number of APIs

None 102
API credentials to be sent in the URL 536-?
API credentials to be sent somewhere else ?
HTTPS with HTTP-Auth 13
Basic HTTP Authentication 144
Signed requests ?

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 38 of 39

OAuth 45
Other custom processes involving tokens ?
APIs that only work in certain places ?

4 An ontology of Authentication Methods

ToDo

5 Evaluation

...Refer to the Consumption Platform with link to online version of the SOA4All Studio)

...Annotate several services of the different kinds(, ask for the credentials...) and test that the SOA4All
Authentication system deals with them properly.

6 Conclusions

...Some challenges:

• How do we ask for credentials to the sites when it has to be done through a form or via email,
etc? Do we assume that the service can be annotated but pending credentials until an
“advanced” user does it for everyone?

• We should note that API keys generally have a limited number of uses.
• Also: Service-provider requirements such as branding (see Yelp: they ask to place one of their

logos in the mashups created with their API)

Footnotes:

3 Service Oriented Architectures for All, http://soa4all.eu/
4 Available at...
5 http://www.happenr.com/info/api
6 http://code.google.com/p/bitly-api/wiki/ApiDocumentation
7 http://developer.jambase.com/
8 http://code.google.com/apis/maps/
9 http://developer.hoovers.com
10 http://delicious.com/
11 http://delicious.com/help/api
12 http://en.wikipedia.org/wiki/Basic access authentication
13 http://api.blip.fm/
14 http://www.simpy.com/doc/api/rest
15 http://aws.amazon.com/s3/
16 http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAuthentication.html
17 http://developer.daylife.com/docs
18 http://cookbook.daylife.com/docs/DayPI101
19 http://api.blip.fm/
20 http://wiki.seesmic.com/index.php/Main Page
21 http://wiki.seesmic.com/index.php/SeesmicAPIAuthentication

22 http://oauth.net/
23 http://apiwiki.twitter.com/Authentication
24 http://Fireeagle.yahoo.net/developer
25 http://code.google.com/intl/es-ES/apis/accounts/docs/AuthSub.html
26 http://dev.aol.com/api/openauth
27 http://developer.yahoo.com/auth/
28 http://upcoming.yahoo.com/services/api/token auth.php
29 http://www.ickr.com/services/api/auth.spec.html
30 http://code.google.com/intl/en-US/apis/gadgets/docs/spec.html

 SOA4All – FP7 215219 D2.2.2 – Service Consumption Platform First Prototype

© SOA4All consortium Page 39 of 39

31 http://wiki.developers.facebook.com/index.php/How Facebook Authenticates Your Application
32 http://wiki.developers.facebook.com/index.php/Facebook Connect
33 http://wiki.developers.facebook.com/index.php/Connect/Setting Up Your Site#Referencing Facebook Connect

