

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.3.1. Service Monitoring and
Management Tool Suite Design

Activity N: Activity 1 – Fundamental and Integration Activities

Work Package: WP2 - SOA4All Studio

Due Date: M6 and M12

Submission Date: 06/03/2009
Resubmission: 11/03/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organization Responsible of Deliverable: INRIA

Revision: 2.0

Authors: Adrian Mos
Carlos Pedrinaci
Jose Manuel Gómez-Pérez
Guillermo Álvaro Rey
Christophe Hamerling
Francoise Baude
Cristian Ruz

INRIA
OU
ISOCO
ISOCO
EBM
INRIA
INRIA

Reviewers: Lai Xu
Tomas Pariente Lobo

SAP
ATOS

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 2 of 56

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 20/01/2009

Initial revised structure, following M6
Interim Review. Initial high-level
architecture. Also explained the overall
alignment within SOA4All.

Adrian Mos

Carlos Pedrinaci

0.2 25/01/2009 Minor update on the structure, moved
architecture alignment to Intro.

Adrian Mos

0.3 26/01/2009 Added content in Requirements,
improved overall architecture, initial
description of BEP and MM, initial
content for Provenance Analysis and
the UI Consoles.

Adrian Mos

Christophe Hamerling
Jose Manuel Gómez-Pérez
Guillermo Álvaro Rey

0.4 05/02/2009 Added Executive Summary, analysis
use-cases, scalability, Proactive
functionality, and improved other
sections.

Adrian Mos

Guillermo Álvaro Rey

Francoise Baude

Cristian Ruz

0.5 06/02/2009 Minor updates Adrian Mos

0.6 23/02/2009 Added detailed API descriptions,
remaining introduction sub-sections,
and improvements to most sections.

Adrian Mos

Guillermo Álvaro Rey

Cristian Ruz

0.7 24/02/2009 Added section on Knowledge-Based
Semantic Monitoring, and minor
updates.

Carlos Pedrinaci

Adrian Mos

1.0 05/03/2008 Updated doc following internal review ALL

Final 11/03/2008 Overall format and quality revision Malena Donato (ATOS)

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 3 of 56

Table of Contents

EXECUTIVE SUMMARY __ 8

1. INTRODUCTION ___ 9

1.1 PURPOSE AND SCOPE __ 9

1.2 STRUCTURE OF THE DOCUMENT _____________________________________ 9

1.3 ARCHITECTURE ALIGNMENT ___ 9

2. REQUIREMENTS ___ 12

2.1 CONNECTION TO USE-CASES _______________________________________ 12

2.1.1 Actors __ 12

2.1.2 Examine Basic Service Information (B_SERV) ________________________ 12

2.1.3 Examine Extended Service Information (E_SERV) _____________________ 13

2.1.4 Examine Basic Process Information (B_PROC) ________________________ 13

2.1.5 Examine Extended Process Information (E_PROC) ____________________ 13

2.1.6 Examine Basic Infrastructure Information (B_INFR) ____________________ 13

2.1.7 Examine Extended Infrastructure Information (E_INFR) _________________ 14

2.1.8 Examine the Status of a Service (STATUS) ___________________________ 14

2.1.9 Examine the Goals that match a Process Template (GOALPROC) _________ 14

2.2 MULTI-LEVEL MONITORING AND MANAGEMENT _______________________ 14

2.2.1 Multiple Layers ___ 15

2.2.2 Monitoring and Analysis __ 15

2.3 SCALABILITY ___ 16

3. OVERALL ARCHITECTURE __ 18

4. MEDIATION AND BASIC EVENT PROCESSING ____________________________ 20

4.1 OVERVIEW ___ 20

4.2 EXISTING FUNCTIONALITY __ 21

4.2.1 WSDM ___ 21

4.2.2 COBRA/EVO __ 21

4.2.3 JMX / WSDM __ 21

4.2.4 ProActive / GCM __ 22

4.3 MISSING FUNCTIONALITY __ 22

4.4 APIS ___ 22

4.4.1 Monitoring Events ___ 22

4.4.2 Mediation and Basic Event Processing ______________________________ 23

4.4.3 Integration with UI Widgets __ 25

5. PROVENANCE ANALYSIS ___ 26

5.1 OVERVIEW ___ 26

5.1.1 Similarities between Goals __ 26

5.1.2 Obtaining the logs ___ 26

5.1.3 Graphical view ___ 27

5.1.4 Conclusion __ 27

5.2 EXISTING FUNCTIONALITY __ 27

5.2.1 KOPE __ 27

5.2.2 PRoM __ 27

5.3 MISSING FUNCTIONALITY __ 27

5.4 APIS ___ 27

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 4 of 56

6. KNOWLEDGE-BASED SEMANTIC MONITORING ___________________________ 29

6.1 OVERVIEW ___ 29

6.2 EXISTING FUNCTIONALITY __ 30

6.2.1 Events Ontology __ 34

6.3 SENTINEL __ 35

6.3.1 Overall Approach ___ 35

6.3.2 Architecture ___ 36

6.4 MISSING FUNCTIONALITY __ 38

6.4.1 Information Gathering __ 38

6.4.2 Information Generation ___ 39

6.4.3 Information Processing ___ 42

7. USER INTERFACE __ 43

7.1 EXISTING CONSOLES AND WIDGETS _________________________________ 44

7.1.1 PEtALS WebConsole __ 44

7.1.2 IC2D Monitoring __ 46

7.1.3 SUPER / SENTINEL UI __ 47

7.2 MISSING FUNCTIONALITY (UI MOCKUPS) _____________________________ 48

7.2.1 Search / Favorites View __ 48

7.2.2 Service Description __ 49

7.2.3 Monitoring Details ___ 49

7.2.4 Defining Alerts ___ 51

7.2.5 Monitoring Information in the Composition Editor _______________________ 51

7.2.6 Goals that Match Execution Templates ______________________________ 51

8. CONCLUSION AND NEXT STEPS __________ ERROR! BOOKMARK NOT DEFINED.

9. REFERENCES ___ 54

List of Figures
Figure 1. SOA4All Architecture. ..10

Figure 2. Summary of Analysis Platform Use-Cases ..12

Figure 3 - Multi-Layer SOA Spaces. ..15

Figure 4. Overall Architecture for the Service Analysis Platform ...18

Figure 5. Mediation and Basic Event Processing Overview ..20

Figure 6. Analysis Platform Events (simplified view) ...23

Figure 7. Interactions between the BEP and the Monitoring Mediator24

Figure 8. The Monitoring Mediator Interfacing with the Data Collectors25

Figure 9. Core Ontology for Business pRocess Analysis. ...31

Figure 10. Temporal relations implemented in Time Ontology. ...32

Figure 11. Events Ontology. ...34

Figure 12. Events Ontology State Model. ...35

Figure 13. Architecture of SENTINEL. ..37

Figure 14. Excerpt of the ontological model illustrating the different kinds of events.39

Figure 15. Metrics Ontology..41

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 5 of 56

Figure 16. Accessing the Analysis Platform User Interface through the Dashboard43

Figure 17. Monitoring Message Exchanges ..45

Figure 18. PEtALS High Level Monitoring and Management Architecture45

Figure 19. IC2D Monitoring and Analysis tool, for Grid applications and infrastructure47

Figure 20. Existing SUPER Monitoring Console ...48

Figure 21. Search / Favourites View ...49

Figure 22. Service Description ..50

Figure 23. Monitoring Details ..50

Figure 24. Defining Alerts ...51

Figure 25. Monitoring Information in the Process Editor ...52

Figure 26. Goals Matching Execution Templates ..52

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 6 of 56

Glossary of Acronyms

Acronym Definition

AP Analysis Platform

API Application Programming Interface

BAM Business Activity Monitoring

BEP Basic Event Processor

BP Basic Profile

BPA Business Process Analysis

BPEL Business Process Execution Language

BPM Business Process Monitoring

CML Conceptual Modeling Language

COBRA Core Ontology for Business pRocess Analysis

CPU Central Processing Unit

D Deliverable

EC European Commission

ESB Enterprise Service Bus

EVO Events Ontology

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol Overview

IC2D Interactive Control and Debugging of Distribution

JBI Java Business Integration

JMS Java Message System

KOPE Knowledge-Oriented Provenance Environment

MM Monitoring Mediator

MOWS Management of Web Services

MUWS Management Using Web Services

MXML "Magic eXtensible Markup Language"

OCML Operational Conceptual Modeling Language

PSM Problem-Solving Method

QoS Quality of Service

RIA Rich Internet Application

SCA Service Component Architecture

SENTINEL SEmaNTic busINess procEsses monitoring tooL

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 7 of 56

SOA Service-Oriented Architecture

SUPER Semantics Utilized for Process Management within and between
Enterprises

TMDA Task Method Domain Application

UML Unified Modeling Language

WP Work Package

WS-I Web Services Interoperability

WSA Web Service Addressing

WSBN Web Services Base Notification

WSDM Web Services Distributed Management

WS-RF Web Service Resource Framework

XML Extensible Markup Language

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 8 of 56

Executive summary
The Analysis Platform aims at providing SOA4All users with information about services and
processes in order to help them gain a better understanding of their use. Analysis information
is also used by SOA4All infrastructure in order to drive adaptive behavior, however in the
context of WP2, we focus on obtaining it and presenting it to the users. This document
presents the initial design of the SOA4All Studio Analysis Platform. It also addresses the
integration of the Analysis Platform in the overall Studio as well as within the overall project.

The design is the result of a requirements analysis integrating feedback from the use-case
work packages and it is detailed enough to allow immediate code implementations while
being generic enough for further evolutions and extensions. The document gives an initial
overall view of the platform architecture and continues with detailed descriptions of individual
modules. The sections on individual modules clearly identify existing work and how it will be
reused as well as required future work for achieving the desired functionality.

The Analysis Platform is connected to the SOA4All infrastructure through a system of
adaptors that facilitate the collection of monitoring events from several data sources,
including the DSB itself, the underlying grid and the execution engine. It is also internally
connected to the Studio using appropriate Studio services in order to benefit from repository
integration and direct exchanges with the editors.

The Analysis Platform is composed of

• The Mediation and Basic Event Processing components: responsible for obtaining
and normalizing events originating in data sources as well as performing basic
processing for extracting derived analysis data. These components also contain the
only entry points to the analysis repository and the runtime infrastructure, facilitating
appropriate interactions with the other components in the Analysis Platform.

• The Provenance Analysis component will produce domain-oriented interpretations of
past executions increasing the understanding about their results. The existing KOPE*
tool suite will be extended to classify low level information from different process
documentation infrastructures during process execution against a template repository
in the form of reusable Problem-Solving Methods (PSM).

• The Knowledge-Based Semantic Monitoring component, based on existing work in
the SENTINEL project, will detect deviations of the actual execution services from
their specification; but more importantly, it will support the explanation of process
execution with meaningful interpretations in a way closer to how users design and
reason. This feature will allow the interpretation of the monitored events by non-
expert users of the SOA4All through integration of appropriate information in the
Studio editors.

• Monitoring consoles for graphically displaying basic performance and usage
parameters to a variety of users ranging from end-users to technical administrators of
SOA4All domains.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 9 of 56

1. Introduction
1.1 Purpose and Scope
This deliverable provides the design and architecture of the Analysis Platform as well as its
integration in the wider scope of the SOA4All Studio. Although some detailed aspects of the
architecture and design might evolve as the project progresses, it is expected that the main
components of the platform as well as their interactions will remain stable. Therefore this
document will serve as a technical blueprint for the developments that are going to be
undertaken in Task 2.3. In addition, the document gives functional descriptions and user
interface requirements that will guide testing and development. Existing approaches that are
going to serve as a foundation to the platform are also described in the deliverable with
information about extending and integrating them in order to provide the complete required
set of functionalities for the Analysis Platform.

1.2 Structure of the document
The document starts with the Introduction section, which mainly presents the Analysis
Platform in the wider context of the SOA4All Studio. In Section 2 we present the
requirements originating in the use-cases that have been identified by the partners with
feedback from use-case work packages. In addition, a generic discussion of monitoring and
management needs in SOA environments sets the stage for the understanding of some of
the architectural decisions taken for the platform. Section 3 gives an overview of the
architecture highlighting the main components of the Analysis Platform. The three sections
that follow present different parts of this architecture. In Section 4 we present the lower-level
blocks handling the collection of events and basic processing and management operations.
Section 5 discusses techniques and an existing tool for provenance analysis, while Section 6
describes existing and future work related to knowledge-based monitoring. An overview of
existing graphical consoles that can be used as starting points in the development of the
Analysis Platform’s UI is given in Section 7, followed by a presentation of the different types
of views and UIs that will be developed in Task 2.3. Lastly, a short summary is given in
Section Error! Reference source not found..

1.3 Architecture Alignment
In this section we describe the alignment of the Service Analysis Platform with the SOA4All
architecture currently being devised in WP1. Given that the Service Analysis Platform is a
component of the SOA4All Studio, most of the details regarding its integration and alignment
with the project vision are common to that of the SOA4All Studio. Still, where necessary we
shall mention the specific details affecting the Service Analysis Platform. It is worth noting
however, that at the time of this writing, the architecture of the SOA4All project is in an early
stage and it is therefore not possible to provide a complete and thorough alignment.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 10 of 56

Figure 1. SOA4All Architecture.

Figure 1 provides a high-level view on the overall SOA4All architecture centered on the
infrastructural components, the main artifacts manipulated and how the SOA4All Studio is
integrated. Integration in SOA4All takes place through the so-called Distributed Service Bus
(DSB) which integrates notions from Enterprise Service Buses and Semantic Spaces into a
unified distributed infrastructure providing message-based and event-based communication,
as well as a distributed RDF repository. From a client perspective, the DSB provides access
to the platform services as well as the myriad of services provide by third parties. The
services offered through the bus include, traditional third-party WSDL and RESTful services,
light-weight Semantic Web Services based on annotations over traditional services, and
infrastructural services supporting actions such that the discovery, ranking & selection and
execution of services.

In a nutshell, the SOA4All Studio is the gateway for the user. It therefore provides a Web-
based interface for creating or enhancing annotations, browsing them, discovering suitable
services, invoking services, and finally analyzing their execution. These different
functionalities are provided by three different platforms composing the Studio. In particular,
the Service Provisioning Platform supports the user in providing annotations may them be,
WSMO-Lite, MicroWSMO, tags or ratings. The Service Consumption Platform allows the
user to browse, discover and invoke existing services. Finally the Service Analysis Platform
provides the means for users to analyze the execution of services either at runtime or post-
execution.

The SOA4All Studio, like every other component is integrated into the overall architecture
through the Distributed Service Bus. It is worth noting however that as opposed to platform
services that provide infrastructural services, the Studio is mainly a client for these different
components, allowing the user to interact with them in a seamless and transparent way. To
support this, there is an internal component within the Studio in charge of supporting the

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 11 of 56

interaction with the bus by making use of the appropriate messages and protocols. The
concrete formats and protocols are currently being established within WP1 but they will be
based on Web and WS-* standards.

The DSB also provides a scalable RDF storage & querying system. In particular, every
annotation provided by the user through the Service Provisioning Platform will ultimately be
stored for future use in the DSB. Similarly, raw monitoring data concerning the execution of
services, like the message exchanges, will be stored in the DSB for further reference.
Additionally, in order to support monitoring the execution of services—simple and
composite—the DSB provides a notification mechanisms such that applications can register
themselves as observers [1] for certain events of interest. Whenever any of these events
occur, the DSB—thanks to the templates binding mechanism provided by Semantic
Spaces—notifies any application interested.

The Service Analysis Platform will provide the means for analyzing the execution of services
both at near real-time as well as post execution. To this end the platform will access the
monitoring data gathered by the runtime infrastructure as it is pushed by the infrastructure or
on demand depending the kinds of analysis being performed. The Service Analysis Platform
contemplates three different modes for analyzing the data: real-time, periodic and on-
demand. Real-time computation ensures that results are calculated as soon as the data is
available. This mode is computationally expensive and will therefore only be applied to very
concrete cases based on user requirements. Periodic computation of analysis results will be
used for calculating certain data after some prefixed intervals of time. It is therefore less
computationally expensive than the previous one although it will also provide results in a less
frequent manner. Finally, on-demand analysis will be actively triggered by the user.

The Service Analysis Platform will support the users in defining the kinds of analysis they
want to be performed (e.g., average execution time), the computation mode required, and
finally presenting these results to the users using charts and other graphical representations
so that humans can better understand the results obtained. Additionally, the results obtained
at analysis time will be stored thanks to the DSB so that they can take part in future analysis
or even support the adaptation of the execution of services. These results will be fed back to
other parts of the SOA4All Studio so that when (re)designing processes/mashups or
selecting which service to use, past behavior of services can allow users to take better
informed decisions.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 12 of 56

2. Requirements
2.1 Connection to Use-Cases
The design of the Analysis Platform is being driven by requirements originating in use-case
analysis performed in connection with the work-packages WP7, WP8 and WP9. A summary
of the use-cases identified for the Analysis Platform is illustrated in Figure 2 using UML.

Figure 2. Summary of Analysis Platform Use-Cases

The following sub-sections present the actors and each of the use-cases.

2.1.1 Actors

• User: any user of the SOA4All platform, so our typical "non-technical" end-user

• Service Consumer: a User that is engaged in consumption of services, i.e. uses
SOA4All services in one form or another. Note that a Service Consumer can also be
a provider.

• Service Provider: a User that creates and provides services (basic or composed).
Note that a Service Provider can also be a consumer, in particular when providing
composite services.

• Infrastructure Admin: a role for people administering the technical infrastructure of a
SOA4All domain / node.

2.1.2 Examine Basic Service Information (B_SERV)

A Service Consumer wants to find out about basic performance and usage information for a
particular service. All the information is obtained for a particular time window that can be
selected using a time slider widget (at least a classic date selector). He/she can obtain the
following information:

• Performance

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 13 of 56

o avg. response time

o avg. throughput

• Status

o available XX % of the time

o NOT available

• Total number for requests

A UI mock-up for this use-case is presented in section 7.2.2.

2.1.3 Examine Extended Service Information (E_SERV)

A Service Provider needs to obtain information about a service. This information goes
beyond and is more detailed than what is available in B_SERV, which this use-case includes.
The extra information includes:

• User statistics for a service:

o how many independent users

o where do users come from

• Number of concurrent calls

o min (with date)

o max (with date)

• Which of the user's processes and compositions use this service

A UI mock-up for this use-case is presented in section 7.2.3.

2.1.4 Examine Basic Process Information (B_PROC)

A Service Consumer needs to find out basic information about processes/compositions that
he/she creates through the consumption of services. This requires a high-level view of the
process in the form of a simple one-level tree, in which the root represents the process name
and the included services are represented as leaves. For the overall process, as well as for
each of the included service, this use case will include the information specified in B_SERV.

A UI mock-up for this use-case is presented in section 7.2.5.

2.1.5 Examine Extended Process Information (E_PROC)

A Service Provider needs to obtain detailed information about process executions for the
processes that are offered to the outside world. This use cases includes all the information in
B_PROC and in addition it provides for each of the elements of the process tree (process
and services) additional information as offered by E_SERV.

A UI mock-up for this use-case is presented in section 7.2.5.

2.1.6 Examine Basic Infrastructure Information (B_INFR)

A Service Provider needs to find out basic information about the infrastructure his/her
services and processes are executing on. This is similar to information one can find out from
a web-hosting platform when hosting web-pages. It is helpful to know what the platform can
report regarding the usage of the resources the user has been allocated. The following
information should be available:

• Availability of the infrastructure

o % of time ON / OFF

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 14 of 56

• Capacity Information

o available bandwidth

o used bandwidth

2.1.7 Examine Extended Infrastructure Information (E_INFR)

An Infrastructure Administrator (such as an employee of a SOA4All infrastructure provider)
needs to obtain detailed information about the domains that are being administered. In
addition to the information presented in B_INFR, which this use-case includes, the following
data must be available:

• Existing nodes in the platform

• Platform Information

o types of protocols and their usage

o usage information for binding components / service engines etc.

• Overview of low-level message exchanges

• Other DSB statistics

2.1.8 Examine the Status of a Service (STATUS)

Any SOA4All User using the search and discovery capabilities of SOA4All will eventually find
a list of services that will be displayed. The user will need to have some elementary analysis
information associated in a graphical way to the elements of the list. The type of information
that can be displayed alongside listed elements includes:

• current availability (no time-window)

• average performance information (for the entire lifetime of just for the current day).

o response time

o throughput

A UI mock-up for this use-case is presented in section 7.2.1.

2.1.9 Examine the Goals that match a Process Template (GOALPROC)

A Service Consumer wants to obtain extra information about the different kinds of process
templates that are available. The user will be able to explore the different Goals that trigger
the kinds of executions defined by each process template. The logs of previous executions
will permit to show, for each template, a list of Goals that match the particular template to
certain degree:

• Name

• Description

• Percentage of matching (how much does that particular Goal match the selected
template)

A UI mock-up for this use-case is presented in section 7.2.6.

2.2 Multi-Level Monitoring and Management
SOA is seen as an enabler for business agility through better adaptation of IT resource to
business needs. This adaptation must be propagated throughout the information system,
from the business layer through the IT design layer and to the infrastructure layer. The
diagram in Figure 3 illustrates these three layers separated in two conceptual spaces: design

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 15 of 56

and runtime.

Figure 3 - Multi-Layer SOA Spaces.

2.2.1 Multiple Layers

The Business Level layer corresponds to the high-level, business-oriented definition of the
business processes. Throughout this document, by “business” we refer to the core-
application functionality and not necessarily to commercial activities. For instance, a
government’s business might include collecting taxes and providing healthcare, while a
company’s business might involve selling products. In this layer we typically see BPMN (or in
the context of SOA4All – lightweight process description) diagrams describing processes that
are very close to the actual business functionality of the organization. This challenge is
addressed by the tasks in SOA4All that focus on the process composition language as well
as user interaction.

Moving further on the modeling refinement axis, there is the IT SOA Level. The elements of
this layer are SOA entities with a technical connotation. Services available in Service
Registries and Repositories, executable orchestration processes defined with languages
such as BPEL (to be refined in WP6) or component and composite definitions as defined by
the Service Component Architecture (SCA) standard are all found at this level. Although
SOA4All end-users will not see nor define SCA artifacts directly, they will be manipulated for
providing adaptive behavior based on monitoring information, as architectural definitions on
the DSB and the process execution engine.

The Infrastructure Level is concerned with entities that are related to the architectural
definition of the SOA infrastructure. The infrastructure in SOA4All revolves around a
Distributed Service Bus (ESB) that contains process-execution engines, SCA containers as
well as lower-level grid-management components. As for the previous, IT SOA level, typical
SOA4All users will not work at this level of technical detail. However it is important to be able
to trace monitoring information to this level as well, as system administrators and
infrastructure developers would need such information.

2.2.2 Monitoring and Analysis

The SOA vision revolves around agility at all levels in the IT stack. Changes in business
requirements must be quickly resolved in the technical implementation of the system and
changes in the IT system must be visible and comprehensible in the business layer. For
instance, new services can be dynamically deployed and existing services can become

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 16 of 56

unavailable at runtime. In addition, QoS constraints must be observed and enforced at all
levels such that the contractual obligations are met.

The design space involves the progressive specification, design and development of SOA
concepts such as services and process by several different roles. This is achieved in
SOA4All through the use of the SOA4All Studio.

The runtime space involves the layers of infrastructure required to support the execution of
the artifacts manipulated in the design space explicitly, as well as those artifacts that are
implicit (the invisible infrastructure such as JVMs or Oss). This is addressed in the SOA4All
infrastructure components, most notably the Distributed Service Bus (DSB) and the process
execution engine (WP1 and WP6 respectively).

The capability to monitor components at all levels (technological and business) is therefore
essential to any technical stack supporting SOA. In order to facilitate the understanding of
real-time events originating in the infrastructure components, it is essential that the events be
conceptually mapped to the application-level entities defined in modeling layers. For this
bottom-up transformation of technical events into meaningful application-level events to
work, we need to inject specific information into components starting from the modeling
layers (operation represented by the modeling arrow). As the application is defined, such
“tracking” data can be attached to high-level components and successfully propagated
through subsequent layers via transformations and generative techniques (for instance when
creating deployment artifacts). Conversely, when events caught at runtime need to be
propagated and understood by the upper, application-level layers, the “tracking” data can
help in making correlations. In SOA4All such “tracking” information will be added at the level
of the DSB (including grid-level) as well as at the level of the process-execution engine.

The multi-layer monitoring and management behavior of the SOA stack is represented in
Figure 3 by the arrows traversing the layers. The solid arrows indicate the injection of
“tracking” information in the same direction and sense as the modeling arrow from the design
space. Elements (represented as circles) from higher-level layers are given a
correspondence into less abstract layers by the specification of modeling intent (several
iterations through Studio editors). This refinement operation is illustrated by the fact the one
circle in the business layer can correspond to multiple circles in the IT SOA and infrastructure
levels. The dotted arrows represent the monitoring event mapping operations, which are
responsible for progressively adding semantics to extracted data while traversing the layers.
The transformations are based on information previously injected in the design space. This
approach is presented in more detail in [2].

2.3 Scalability
SOA4All main objective is to provide a framework and an infrastructure that help to realize a
world where billions of parties are exposing and consuming services via advanced Web
technology.

The current web only exposes around 28,000 traditional WS-based web services1; SOA is
largely still an enterprise specific solution exploited by and located within large corporations
used mainly for integration. Nevertheless, as mobile devices and more efficient wireless
communications facilitate ubiquitous computing, and as optical and broadband
communication infrastructures expand, we expect the number of Web services to grow
exponentially in the next few years.

1 According to seekda.com the number of WSDL services available online on March 04, 2009
was 27.813

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 17 of 56

This near-term scenario imposes great scalability requirements on the overall SOA4All
infrastructure; and more especially on the Analysis Platform. For example, the monitoring
and provenance tools should cope with the exponential growth of the number of message
interchanges and the size of log files. The monitoring and management infrastructure should
be either able to handle growing amounts of work in a graceful manner (definition of
scalability given in [35]); or to be readily enlarged to cope with new workload on the fly (i.e.
should be elastic).

It is worth noting that within the project, the SOA4All Runtime and, in particular, Task 1.6
(Monitoring and Execution Context Management Infrastructure) will work in the generic
scalability issues regarding the gathering of large amounts of logs. Still, we address here
some subjects that are particularly relevant for our Analysis Platform.

For instance, it is important to note that being the scenario envisaged by SOA4All one where
a vast number of executions will take place, and so the data gathered, we cannot expect to
perform an exhaustive computation on those logs. Instead, our knowledge-level analysis
computations will be done in a "guided” way, as batch processes, on a smaller set of
previously extracted information.

In Section 3, we will address the different components that are part of the Analysis Platform,
which will help us differentiate the continuous (on the fly) collection of data from the
Distributed Service Bus (DSB) of WP1 and the analysis made on top, which will happen as
batch processes.

In particular, the knowledge-level environments that will be addressed in next section will
operate on the relevant information previously extracted from the data level, thus leveraging
the layered approach and the abstraction of information in a first step, and then operating just
on a minor set.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 18 of 56

3. Overall Architecture
This section gives a high-level overview of the Service Analysis Platform architecture. It is
illustrated in Figure 4, which presents the main components of the platform and their
connections to the external components. The elements within the light grey rectangle
correspond to Analysis Platform components while the elements drawn with a dashed line
represent external components. The thick arrows illustrate interactions between the Analysis
Platform and the external components.

Figure 4. Overall Architecture for the Service Analysis Platform

The main source of data for the Analysis Platform is the SOA4All Distributed Service Bus
(DSB), which is the backbone of the SOA4All runtime infrastructure. Several data collectors
(bus, grid and engine collectors) available through the bus will feed relevant monitoring data
to the AP, which in turn will be able to control and filter data collection through appropriate
management operations. In addition, the AP will be able to send management commands to
the DSB to instruct its components to perform a variety of infrastructural operations related to
the customization or control of DSB components.

We distinguish between two types of monitoring events that can be received from the DSB:
infrastructure events and application events. These will be detailed in section 4.

The following are the components of the Analysis Platform. They are briefly presented in this
section and a detailed description can be found in the following sections of this deliverable.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 19 of 56

• Monitoring Mediator (MM): Obtains Data from the DSB and the execution engines
using the Studio APIs. It is both a listener and a proactive entity: its main role is to
interface with the infrastructure developed in WP1 (it receives events and can also
filter and control the event sources); it can also talk to the management/monitoring
APIs in WP1

• Basic Event Processor (BEP): performs pre-processing of monitoring events from
the MM, including computing basic averages and statistics; provides data to KOPE*
and SENTINEL for knowledge extraction; feeds data to basic UI widgets; uses the
analysis warehouse to store derived information and basic computation results; the
BEP acts as a single point of entry to the analysis warehouse thus interfacing with the
other internal components of the analysis platform as well as with the Studio editors
requesting analysis information to display on diagrams.

• KOPE*: this environment will make use of PSM to interpret the environment
provenance information. It will produce domain-oriented interpretations of process
executions to increase user understanding of such executions, which will most likely
be potentially very large and complex. Since KOPE performs post-mortem analysis, it
will query the BEP for monitoring information when necessary.

• UI Widgets: basic graphical representation (as seen in mockups, such as average
response time for a service, availability etc.);

• SENTINEL: this environment will provide knowledge-based techniques in order to
detect and diagnose process deviations based on monitoring information and
informed by context data.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 20 of 56

4. Mediation and Basic Event Processing
This section presents the mechanisms used by the Analysis Platform to integrate with the
Studio editors and the runtime part of SOA4All as well as the event processing functionalities
that are going to be offered by the BEP module.

4.1 Overview
The focus of this section, as illustrated in Figure 5, is to describe the Monitoring Mediator and
the Basic Event Processor.

Figure 5. Mediation and Basic Event Processing Overview

The Monitoring Mediator (MM) will be the interface of the Analysis module to the runtime
platforms developed in WP1 and WP6. It will connect to the aggregated runtime data
collectors and will transform the events received into API calls to the Basic Event Processor.
In addition, the Monitoring Mediator will be used to relay management operations originating
in the Analysis Platform through to the runtime environments.

The Monitoring Mediator will use mechanisms complying with the WSDM standard to
communicate to the data collectors.

The Basic Event Processor (BEP) is responsible for

• Parsing the monitoring events received from the MM and to perform data processing
in order to extracts derived information (such as computing averages and basic
aggregated events)

• Communicating raw and derived to upper-level processing entities, the KOPE* and
SENTINEL engines.

• Updating the Ext-GWT data structures used by the basic UI widgets.

• Storing derived events into the analysis warehouse using the Studio Storage
Services. These derived events can originate in the BEP itself or indeed can arrive

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 21 of 56

from KOPE* or SENTINEL.

4.2 Existing Functionality
There are several existing data collectors for different runtime systems, including Petals
ESB, Proactive/GCM as well as execution engines such as SUPER SSB.

We will use existing standards and ontologies for monitoring, as outlines in the following
subsections.

4.2.1 WSDM

WSDM uses Web services as a platform to provide essential distributed computing
functionality, interoperability, loose coupling, and implementation independence. The OASIS
WSDM working group has defined two specifications which we will use to provide efficient
monitoring and management APIs, namely MUWS (Management Using Web services) and
MOWS (Management of Web services).

• MUWS [26] defines how to represent and access the manageability interfaces of
resources as Web services. Standard manageable resource definitions create an
integration layer between managers and the different management protocols used to
instrument resources.

• MOWS [27] defines how to manage Web services as resources and how to describe
and access that manageability using MUWS. It provides mechanisms and
methodologies that enable manageable Web services applications to interoperate
across enterprise and organizational boundaries. The MOWS specification allows
integration of management with Web services-based business applications and
processes.

WSDM rests over several Web services specifications that have been standardized by
different organizations. They include:

• WS-I Basic Profile (BP) [28] WS-I BP consist on a set of non-proprietary Web
services specifications, along with clarifications to (and amplifications of) those
specifications in order to promote interoperability.

• WS-Resource Framework (WS-RF) [29] WS-RF offers a standardized way to express
the relationship between stateful resources and Web services. Therefore it provides
mechanisms to access and manipulate the state of values that persist across, and
evolve as a result of, Web service interactions.

• WS-Based Notification (WSBN) [30] WSBN is a group of specifications related to
WSRF that permits event driven communication between Web services.

• WS-Addressing (WSA) [31] WSA provides a standard representation for services
references. WSA provides also transport-neutral mechanisms to address Web
services and messages.

4.2.2 COBRA/EVO

• for process-level monitoring: see Section 6 for details on these existing ontologies.

4.2.3 JMX / WSDM

• for infrastructure-level monitoring: The DSB infrastructure components (including the
PEtALS ESB and the Proactive Framework) are mainly implemented using the Java
technology and so use the Java Management eXtensions (JMX) for management.
Since the JMX technology is quite simple to use and extend, components developers
have extended their initial management goal to provide monitoring functionality.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 22 of 56

However, JMX is a Java based technology used by Java developers for Java
developers. In order to expose this functionality in a more generic way, components
will also provide Web service compliant monitoring and management features using
the WSDM specification by wrapping the JMX API.

4.2.4 ProActive / GCM

• ProActive/GCM allows to raise JMX events from the grid infrastructure-level. These
events include the transmission of requests between components, and also lower
level details like process load in the involved machines, and CPU/memory usage.
Any client application can subscribe to these events in order to collect monitoring
data from the infrastructure, and present it or wrap it for further analysis. For
achieving scalability, a specialized ProActive-based JMX connector is used, which
takes advantage of ProActive communication features in the transport of JMX
messages.

4.3 Missing Functionality
• The Monitoring Mediator

• The Basic Event Processor

• Analysis Warehouse. This element will be developed as an interface to the
Semantic Space. For the purpose of this document, its functionality is represented as
a set of classes.

• A Monitoring Event Structure. The MM needs to interface with the runtime
platforms and obtain monitoring events. The MM will therefore receive the runtime-
generated events from data collectors and will convert them to events corresponding
to the event-structure defined by the Analysis Platform. This structure will embed in a
unified manner the different events structure from the different monitoring targets. In
particular it will embed business activity monitoring events (COBRA/EVO), service-
level events (WSDM) and infrastructure events (JMX / WSMO).

• Integration with Basic Widgets: the BEP will provide data for basic Ext-GWT
widgets that will display simple monitoring information (availability for a service, status
of a process execution, performance data for a service and a process).

4.4 APIs
This section describes the main interfaces of the different components involved in the
Analysis Platform architecture.

4.4.1 Monitoring Events

The Analysis Platform considers two main types of events:

• Infrastructure Events: dealing with technical information originating in the SOA4All
Infrastructure: the DSB, the Process Engine and the lower-level layers including the
grid.

• Application Events: dealing with information originating in the application-level
components executing on top of the SOA4All infrastructure. These are further
separated into Service Events and Business Activity Monitoring (BAM) Events.
The former correspond to individual services being executed in SOA4All domains or
indeed outside SOA4All-managed infrastructure (in which case the information is
simply collected using WSDM interfaces when available). The latter correspond to
processes executed by the SOA4All infrastructure. For these events we are using the
EVO ontology (see section 6) since it already provides a useful event classification for

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 23 of 56

business processes and activities.

Figure 6 shows a simplified view of the monitoring events that will be considered by the AP. It
does not show the entire EVO hierarchy of events as that is referred to in more detail in
section 6.

Figure 6. Analysis Platform Events (simplified view)

The main classes involved are:

MonitoringEvent: abstract, top-level event class containing basic getters and setters for
properties related to execution time and reception time. This class is at the top of the
hierarchy.

InfrastructureEvent: top-level infrastrcture event class to serve as hierarchy root for all
events originating in the execution platforms.

ApplicationEvent: the top-level application event class.

BAMEvent: the top-level business process event class, in effect the bridge between the AP
event hierarchy and the EVO ontology. This class is the parent of all the process and activity
related events.

ServiceEvent: the parent for all the service-level events. We target in particular WSDM-
type monitoring information originating in the execution platforms.

4.4.2 Mediation and Basic Event Processing

The Basic Event Processor (BEP) provides a single point of entry in the Analysis Platform for
the events arriving from the monitoring sources as well as for the interactions between other
modules in the AP and the basic collected data. Figure 7 illustrates the interactions between

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 24 of 56

the Monitoring Mediator and the BEP as well as the relationship with the collected basic
monitoring data.

Figure 7. Interactions between the BEP and the Monitoring Mediator

The Monitoring Mediator notifies the BEP of any new monitoring events received from the
data collectors, using BEP’s eventArrived() method. It passes as a parameter the event
instance corresponding to the hierarchy defined in Section 4.4.1. The BEP also provides
methods for other components of the AP to use when requesting the list of existing services
or processes. These lists are represented here as classes, as this is useful for understanding
the kind of information they will contain as well as in the construction of a very first demo for
M12. However, these classes will be replaced by the Analysis Warehouse, which will provide
persistent support for monitoring information. It is important to note that the BEP also
provides information for the basic UI widgets that directly display monitoring information (see
section 7.2 for mock-ups related to the display of monitoring information).

The Monitoring Mediator and its role in interfacing with the data collectors are illustrated in
Figure 8. In essence, the MM is a collection of handlers for different types of data collectors
(as illustrated in the figure through different classes for an EVO Handler, a WSDM Handler
and a Grid Handler respectively). Each handler can be instructed to start and stop listening
for events (perhaps other management operations will be added to this interface in the
future).

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 25 of 56

Figure 8. The Monitoring Mediator Interfacing with the Data Collectors

4.4.3 Integration with UI Widgets

For integration with basic UI Widgets, the COMET push-based programming model [32] will
be used, as mandated by the SOA4All design strategies, defined in D2.4.1 through its GWT
implementation, the rocket-gwt library [33]. In a nutshell, this technology overcomes the
limitations of HTTP where the client drives the communication, by maintaining instead an
open communication channel with clients so that if necessary the server can notify them
about relevant information. This model implies that the BEP will push data to the ext-gwt
widgets, which will get updated as required whenever events of interest arrive, or when new
derived monitoring data is generated (i.e. by SENTINEL or KOPE*). Several classes will be
used corresponding to the data required by each of the widgets. They will be update by the
BEP and in turn will invoke the COMET-style updating method on the corresponding widgets.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 26 of 56

5. Provenance Analysis
5.1 Overview
Within the Analysis Platform, the post-mortem analysis of executions will be very important in
order to extract valuable information that will enhance subsequent executions. In particular,
Provenance deals with tracing the origin of data, and we will extend previous work, adapting
it to the needs of the project.

In SOA4All, and in particular within this work package, we have stressed the importance of
finding Goals in order to discover the right services. We believe that we can extract very
important conclusions by analyzing the executions that different Goals trigger, and the
knowledge we infer from this analysis will enrich service consumption, that we will also
address.

More precisely, we would like to use the information of previous executions in order to find
similarities between Goals in terms of the (composed) executions they result in (if they are
composed). We believe this is interesting, for we could find similarities not based on
the semantics of the Goals, but on the executions they would imply.

Then, the information we will be able to extract about the similarities of the Goals will be
relevant for the Recommendation System (to be developed in T2.7), as we will able to
categorize Goals, and that system will be able to use it to suggest similar Goals. Eventually,
the Recommendation System will be able to deliver those recommendations to the Service
Consumption Platform, closing the loop between consumption and analysis, enriching the
subsequent interactions with the platform, thus fulfilling our needs.

Additionally, it will be possible to use the information about similar Goals for reverse
engineering of Goals and processes.

5.1.1 Similarities between Goals

First, to achieve this, we will find patterns in the executions thanks to process templates. As
to the templates, we will use explicitly defined specifications of processes, as provided by the
process editor (T2.6), as templates that define well-known execution patterns. These
templates will allow us to discover occurrences of such patterns amongst the logs produced
by the execution of a composition of services previously triggered by a Goal, where such
composition is not the result of the enactment of a process model but of the execution of a
Goal, instead. In other words, we will use explicitly defined knowledge (process models) to
classify implicitly defined processes (summarized as the Goal triggering the invocation).

Thus, the similarities between Goals are obtained as a consequence of classifying the
executions of the service compositions they trigger with respect to the available templates.
So, if goal G1 triggers an execution compliant with template T in a ratio of X% and goal G2 is
compliant with T in a Y%, G1 and G2 will be similar in a value returned by a function
operating on X and Y, which we will investigate, (e.g. their average).

5.1.2 Obtaining the logs

This component will retrieve the logs directly from the Basic Event Processor, as depicted in
Figure 4. Being a post-mortem tool, instead of receiving constant events from the stream, it
will pull the information from it.

We will align the information about templates that we need to spot with the BEP, in order to
be able to discover occurrences of those templates, and relate them to the Goals that have
triggered those executions.

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 27 of 56

5.1.3 Graphical view

The most important outcome of our post-mortem analysis will be fed back into the service
consumption lifecycle through the Recommendation System, as explained. However, the
Analysis Platform user interface will also include a widget for observing the Goal similarities
as spotted with this component. We refer here to the UI Mockup depicted in 7.2.6.

5.1.4 Conclusion

Thus, by and large, the objective is to find, for each Goal, similar Goals (in terms of the
execution patterns they result in). This information will be displayed in the platform, but more
importantly, it will also be able to enrich the Recommendation System (T2.7), already
providing relevant information of similar Goals, so when a user invokes a Goal, the relevant
ones can be presented to him as an option in the future. This is interesting to further close
the loop between Consumption, Analysis and Recommendation.

5.2 Existing Functionality
5.2.1 KOPE

The approach of Knowledge Oriented Provenance Environment (KOPE, [36]) is to provide
users with meaningful interpretations of process executions, explaining provenance in a way
closer to how domain experts reason on a given problem, and facilitating their
comprehension, using problem-solving methods (PSM). We will reuse and extend KOPE in
order to obtain meaningful interpretations about service consumption.

5.2.2 PRoM

In addition to the process models (templates) that will come from the process editor, as
previously explained, we will also be able to perform analysis based on previous executions
with the help of PRoM [34], the Process Mining toolkit. The scenario will be that also PRoM
will populate the template libraries with new templates that can be later reused for finding
similar Goals as addressed before.

5.3 Missing Functionality
The missing functionality within our component will be covered by the KOPE* extensions,
and we can summarize them here:

• For a given Goal, find out to which degree does it match each of the available
execution templates.

• For each of the execution templates, find out which are the Goals that match them
more.

• For any two given Goals, find the degree of similarity between them, depending on
the execution they trigger.

5.4 APIs
We will enable a way of finding the degree of similarity of a certain Goal with the given
patterns. The result will be a list with the different templates and how much they match with
the executions of a Goal:

getGoalExecutionPatterns(Goal): pattern x - degree of matching []

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 28 of 56

Additionally, we will be able to find out: which are the most relevant Goals for a given pattern,
and to which degree:

getExecutionPatternGoals(pattern): Goal x - degree of matching []

We will also be able to find out the most similar Goals to a given one, and to which degree:

getSimilarGoals (Goal): Goal x - degree of matching []

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 29 of 56

6. Knowledge-Based Semantic Monitoring
The vision pursued by SOA4All whereby billions of services would be provided, adapted,
enhanced, created, and consumed on a world-wide scale poses important technical
challenges. Among the challenges it poses this deliverable is particularly concerned with
those related to the monitoring of services. In this section, as opposed to current practices
within the state of the art in Web services monitoring, we focus on raising the level of
abstraction within monitoring technologies in order to better support the interpretation of
monitoring information by humans and machines.

We base our techniques on previous research as carried within SUPER2 EU project (FP6-
026850) in the context of Business Process Management (BPM). The reason for this is two-
fold. On the one hand, BPM is undoubtedly one of the most demanding fields with respect to
the support for advanced monitoring of processes and services given that enterprises’
subsistence directly depends on them. On the other hand, achieving the SOA4All vision, in
addition to obtaining an appealing infrastructure and toolset able to support the proper
execution of services, requires also an appropriate support for carrying businesses over the
Web. After all, the possibility to generate benefits out of technologies is most often the main
aspect to achieve real impact at a large scale.

6.1 Overview
BPM intends to support “business processes using methods, techniques, and software to
design, enact, control, and analyze operational processes involving humans, organizations,
applications, documents and other sources of information” [4]. BPM acknowledges and aims
to support the complete life-cycle of business processes which undoubtedly involves the
analysis and reengineering of process models. However, BPM has made more evident the
difficulties for obtaining automated solutions from high-level business models, and for
analyzing the execution of processes from both a technical and a business perspective [5].
The fundamental problem is that moving between the Business Level and the IT Level is
hardly automated. Deriving an IT implementation from a business model is particularly
challenging and it requires an important and ephemeral human effort, which is expensive and
prone to errors. Conversely analyzing automated processes from a business perspective,
e.g., calculating the economic impact of a process or the performance of departments within
an organization, is again an expensive and difficult procedure, which typically requires a
human in the loop.

One of the distinguishing characteristics of BPM solutions with respect to traditional Workflow
Management Systems is commonly referred to as Business Process Analysis (BPA) [4]. The
main goals pursued by BPA are on the one hand the verification or validation of the
execution with respect to prescribed or expected processes, and on the other hand the
identification of potential improvements of business processes. The knowledge gained in this
phase is thus employed for reengineering and fine tuning existing process definitions. This
area therefore comprises a wide-range of fields such as Business Activity Monitoring,
Business Intelligence, Business Process Mining and Reverse Business Engineering. The
importance of BPA is widely acknowledged and in fact all the main vendors provide their own
solutions [6]. The quality and level of automation provided by these tools are rather similar
and not surprisingly major efforts are devoted to presenting the information in a simple yet
meaningful way better supporting humans in the analysis phase.

We refer to Business Activity Monitoring (BAM) as the technology in charge of “providing
real-time access to critical business performance indicators to improve the speed and

2 http://www.ip-super.org/

 SOA4All –FP7 – 215219 D2.3.1. Service Monitoring and Management Tool Suite Design

© SOA4All consortium Page 30 of 56

effectiveness of business operations” [4]. For its very nature, within BAM the previously
mentioned difficulties are even more outstanding. We have previously argued for the use of
semantic technologies, namely ontologies and Problem-Solving Methods, as a means to
enhance the state of the art in BPA [7]. In the light of this vision, we have defined Core
Ontology for Business pRocess Analysis (COBRA) [8], which provides a core terminology
where business practitioners can map domain-specific knowledge in order to analyze their
business processes. We have also defined additional extensions for capturing semantically
the logs produced by IT systems and for deriving knowledge in terms of COBRA. In the
remainder of this section we shall present our existing technology and will introduce where
appropriate the necessary extensions or adaptations to deal with the monitoring of services
within SOA4All.

6.2 Existing Functionality
COBRA, depicted in [8], provides a core terminology for supporting BPA where analysts can
map knowledge about some particular domain of interest in order to carry out their analyses.
It is worth noting that COBRA does not aim to provide a fully-comprehensive
conceptualization for supporting each and every kind of analysis since the scope would
simply be too big to be tackled appropriately in one ontology. Instead COBRA provides a
pluggable framework based on the core conceptualizations required for supporting BPA and
defines the appropriate hooks for further extensions in order to cope with the wide-range of
aspects involved in analyzing business processes. COBRA has been developed using the
Operational Conceptual Modelling Language (OCML) [9], which provides support for
executing the definitions in the ontology as well as export mechanisms to other
representations including OWL and WSML. COBRA builds upon two ontologies, namely
Base Ontology and Time Ontology, and is currently enhanced with Events Ontology for
capturing audit trails, and Events Analysis Ontology which provides a set of generic reusable
rules and relations3. Base Ontology provides the definitions for basic modeling concepts such
as tasks, relations, functions, roles, numbers, etc. The interested reader is referred to [9] for
further information. The other ontologies will be briefly described in the remainder of this
section.

Although fully describing COBRA is outside of the scope of this document we introduce in
this section those aspects that are necessary for understanding the rest of the document.
COBRA provides a pluggable framework based on the core conceptualizations required for
supporting BPA and defines the appropriate hooks for further extensions in order to cope
with the wide-range of aspects involved in analyzing business processes. COBRA divides
the world into Temporal Entities and Persistent Entities whereby the former are entities that
have a temporal extent whereas the latter are essentially independent of time. Time Ontology
provides a temporal reference by means of which one can determine temporal relations
between Temporal entities based on a slightly extended version of Allen’s interval relations
[10], see Figure 10.

3 The ontologies can be found at http://kmi.open.ac.uk/people/carlos

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

Figure 9. Core Ontology for Business pRocess Analysis.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

Figure 10. Temporal relations implemented in Time Ontology.

Core concepts in COBRA are Business Activity and Business Activity Realisation. Business
Activity represents the specification of a business activity at a high-level where aspects
such as the control flow are abstracted away. There are two kinds of Business Activities,
namely Process and Activity. Activity represents atomic Business Activities whereas
Processes are composedOf at least two Business Activities. Business Activity Realisations
are Time Spanning Entities which represent the actual execution of Business Activities.
Mirroring Business Activities, Process Instance and Activity Instance are the two kinds of
Business Activity Realizations considered. Despite their name, which originates from BPM
literature [4], both are concepts which represent the actual executions of Processes and
Activities respectively. In the current version of COBRA that we will use within SOA4All,
Business Activity and Business Activity Realizations have been renamed to Workflow
Activity and Workflow Activity Realization respectively. The reason for this is mainly to
accommodate the wider range of situations we will encounter within the project which is not
uniquely limited to business processes but rather to any Workflow Activity, may this be a
BPEL workflow, a Web service or even a Semantic Web service.

COBRA uses this high-level categorization as a foundational basis but it does not go
however much further in the reuse of existing foundational ontologies for it aims at
supporting analysis of processes and a complete grounding into this kind of ontologies
would carry an important computational overhead. Instead, we provide a simple
categorization of Persistent Entities specifically tailored to our needs, though informed by
DOLCE, whereby we contemplate Physical and Non-Physical Entities which are disjoint.
Physical entities are those that have a mass.

Physical and Non-physical Entities are further refined into Agentive and Non-Agentive. The
distinction between these classes which are obviously disjoint, is that Agentive Entities are
those that can take an active part within some specific activity. Finally, we define Agent as
the union of both Physical and Non-Physical Agentive Entities. We include for reference
and self-containment a few concepts widely used within BPM. For instance, we include
Object, Person, Organization, Software Agent, and Role. COBRA, for its purpose is to
provide core definitions for supporting workflow analysis, does not refine these classes any
further. Instead they serve as placeholders for including additional conceptualizations as
defined within SUPER, or other approaches like the Enterprise Ontology [11] or TOVE [12].
By doing so we aim at reducing the ontological commitment, while we support the seamless
integration of further specific conceptualizations. Finally, since sometimes one needs not
specify a concrete instance but rather the type, e.g. ``you require a computer'', we have

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 33 of 56

defined the meta-class Persistent Entity Type such that all the sub-classes of Persistent
Entity are instances of Persistent Entity Type. This is depicted in Figure 9 by means of a
double-headed arrow.

Workflow Activity Realizations are the bridge between the high-level conceptualization of
the BPM domain and the low-level monitoring information captured at runtime by the IT
infrastructure. Thus, Workflow Activity Realizations are further characterized by an
execution history, a life-cycle, and the current state of the execution. The execution history
is a set of Monitoring Events relevant for monitoring the life-cycle of a Workflow Activity, see
Figure 9. Monitoring Events are Instantaneous Entities generated by Agents. They are
characterized by a reception timestamp which is to be filled by the logging infrastructure
upon reception of an event. The main goal of this attribute is to support monitoring even in
environments where clock synchronization mechanisms are hardly applicable. Additionally,
Monitoring Events can have a causality vector, i.e., the set of Monitoring Events that
caused that particular event. This supports capturing the actual derivation of events by the
monitoring infrastructure as necessary for Complex Event Processing. Finally, Monitoring
Events might be characterised by additional associated data, which is expressed as Data
Value instances. These instances identify a particular parameter and the value associated
to it.

Monitoring Events are further refined into Message Events and Workflow Activity Monitoring
Events (renamed from Workflow Activity Monitoring Event). The former accommodates
Event-Based environments so that their execution can also be traced. The latter supports
monitoring the life-cycle of Workflow Activity Realizations in Process-Aware Information
Systems. Workflow Activity Monitoring Events therefore concern a specific Process
Instance and, depending on the granularity of the event occurred, may also concern an
Activity Instance. Similarly to the proposals in [13][14], Workflow Activity Monitoring Events
are centered around the notion of state model. Every event identifies a particular transition
within the state model, the transition being indicated by means of the leadsToState
attribute. Conversely the canOccurInState attribute allows to ensure that the transitions are
consistent with the prescribed state model or to detect anomalies within the execution
history possibly due to missing events.

COBRA supports the definition of specific state models is a simple ontological form by
means of the Workflow Activity State concept which has a set of possibleNextStates.
Workflow Activity States are used to further characterize Workflow Activity Realisations with
the hasLifeCycle and hasCurrentState slots. The former captures the overall life-cycle of
Workflow Activity Realizations as a set of Life-Cycle Periods which are Time Spanning
Entities whereby the executed Workflow activity was in a particular state. The latter is a
shortcut for avoiding heavy usage of temporal reasoning in order to obtain the current state.
On the basis of these Life-Cycle Periods it is possible to revisit the complete life-cycle of a
Workflow Activity Realization in a suitable manner for interval-based temporal reasoning.
Instead of prescribing a particular state model and the corresponding events COBRA
remains agnostic from the domain-specific details. Still, we provide an extension, i.e.,
Events Analysis Ontology, with a set of generic event processing forward-chaining rules
that can derive information based Workflow Activity Monitoring Events. These rules will be
detailed in the next section.

Finally, given that COBRA aims to support Business Process Analysis, both Persistent
Entities and Workflow Activity Realizations are characterized by a set of Analysis Results.
Analysis Results are Instantaneous Entities of a Quantitative or Qualitative nature4. Being

4 Note that we have used slot renaming for occursAt.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 34 of 56

part of the core ontology for analyzing business process, this allows us to reuse results
across different types of analysis, which paves the way for enhancing current techniques
[13]. For instance, metrics computed at runtime can be reused when performing Reverse
Business Engineering, mining results can be applied during monitoring, etc.

6.2.1 Events Ontology

COBRA has been extended with a reference Events Ontology (EVO) [8] that provides a set
of definitions suitable to capture monitoring logs from a large variety of systems and ready
to be integrated within our core ontology for analysing business processes. EVO is a
semantic monitoring format employed by the SUPER execution infrastructure which
includes Workflow Engines [15] (e.g., the Apache ODE BPEL execution engine) and
Semantic Execution Environments [16] such as WSMX [17] and IRS-III [18]) that supporting
the execution of Semantic Web services. Therefore the monitoring format has shown its
applicability to the purposes of SOA4All. Nevertheless, it is based on existing syntactic
formats, e.g., MXML [19] or the Audit Trail Format by the Workflow Management Coalition
[14] which therefore confers it the ability to capture logs generated by a plethora of systems
as those one could envision in SOA4All. The ontology is depicted in Figure 11.

Figure 11. Events Ontology.

As prescribed by COBRA, EVO is centered around a state model that accounts for the
status of processes and activities, see Figure 12. The state model has been captured
ontologically and enhanced with additional relations. For instance it is possible to determine
whether an Activity Instance has been allocated-- isAllocated--which is true for those that
are either in state Running, Suspended, or Assigned. It is also possible to determine
whether a Process is active-- isActive--which is equivalent to Running, or inactive--

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 35 of 56

isInactive--which is true for the rest of the states, etc.

The state model does not distinguish between Process Instances and Activity Instance. The
reason for this is mainly to simplify some tasks, e.g. monitoring of active Workflow Activity
Realisations. Still, this necessary distinction is preserved within the logs by means of the
Workflow Activity Monitoring Events defined, see Figure 11. EVO includes two subclasses,
namely Process Monitoring Event and Activity Monitoring Event. EVO currently captures
seven Process Monitoring Events and twelve Activity Monitoring Events based on the state
model in Figure 12. Process Monitoring Events capture the different transitions which are
possible for Process Instances. A Process Instance can be Instantiated, Started,
Suspended, Resumed, Completed, Aborted and Terminated. Activity Monitoring Events, in
addition to the typical execution events, contemplate the distribution of work to Agents.
Thus, there are events that capture the scheduling of activities, the Assignment,
ReAssignment, or Relief of activities to specific agents. Additionally like MXML, EVO
contemplates the possibility for skipping activities either manually or automatically, which
lead to a correct completion. Finally, EVO captures the abortion of activities by means of
two events Activity Aborted and Activity Withdrawn. The distinction between the two lays in
the fact that only started activities can be aborted.

Figure 12. Events Ontology State Model.

6.3 SENTINEL
In order to achieve the level of automation and genericity required by businesses we
advocate for an extensive use of semantic technologies. In the remainder of this section we
will describe SENTINEL (SEmaNTic busINess procEsses monitoring tooL), a tool that
advances the state of the art in BAM by making an extensive use of semantic technologies
in order to support the integration and derivation of business level knowledge out of low-
level audit trails generated by IT systems. Within SOA4All we will build upon our initial work
on SENTINEL and we will extend it towards supporting more advanced monitoring
functionalities on top of the project infrastructure.

6.3.1 Overall Approach

BAM is the meeting point between Data Warehousing, Business Intelligence, Process
Monitoring and Process Mining. It is therefore based on the integration and application of

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 36 of 56

diverse technologies, which are already challenging on their own. The quality and level of
monitoring provided by state-of-the-art monitoring tools are rather similar and not
surprisingly major efforts are devoted to presenting the information in a simple yet
meaningful way better supporting humans in the interpretation of monitoring information
[15].

Often companies invest in very expensive customized solutions that integrate domain-
specific details in order to increase the level of automation. After long periods of
consultancy and development, quite advanced solutions can be obtained but their benefit in
mid and long term is not so clear. The business world is characterized by ever changing
conditions, and one key to success is precisely the capacity to adapt and react to these
changes. Customized applications make typically certain assumptions that after a while do
not hold anymore. As a consequence, companies need to engage into expensive
development processes in order to readapt the software. What is needed instead are
general purpose solutions that can handle heterogeneity and evolution and still support
advanced BAM facilities.

Despite the advances so far, there is still a long way to go to achieve the level of
adaptability in process-aware systems that current businesses require. The reason for this
is mainly that the semantics of the data manipulated concerning some specific business
domain, are only present in the head of the business analyst and are not available for
automated processing by machines [5]. Automating these tasks in a domain-independent
manner requires capturing both static knowledge, like for example a company’s processes
and organizational structure, and procedural knowledge such as how to detect that a
process will miss a deadline.

Conceptualizing static knowledge in a way that can support automated reasoning by
machines is well supported by means of ontologies [20]. On the other hand, research in
Knowledge Engineering has shown that Problem-Solving Methods (PSM) are an
appropriate way for encapsulating procedural knowledge in a reusable way [21][22]. PSM
are reusable knowledge-based components able to support the development of highly
complex systems by integrating diverse task-specific but domain-independent expertise for
solving knowledge intensive tasks using ontologies as the lingua franca [21][22]. Their
genericity stems from the formalization of the relevant concepts for performing a specific
task in an ontological form constructing in this way a formal interface to the task-specific
expertise. This interface can then be used for applying the problem-solving expertise over
domain specific data by defining mappings that bridge the gap between both
conceptualizations. Additionally there is often a conceptual separation between the task to
solve and the method used which supports the application of diverse techniques on a per
case basis. Research in Knowledge Engineering has shown that PSM are an appropriate
means for abstracting away the complexity of Knowledge-Based Systems leading to
modular solutions that support the maintenance and evolution of the systems [21][22].

SENTINEL therefore aims to support advanced monitoring techniques by making use of
extensive conceptualizations of businesses and Workflow Activities as presented in the
previous section, together with PSM able to provide domain-independent expertise for
analyzing workflow executions automatically.

6.3.2 Architecture

Figure 13 presents the overall architecture of SENTINEL including external components
that interact with the tool represented as computers or repositories. These components
represent infrastructural services from SOA4All (e.g., Semantic Execution Environment,
Provisioning Platform, etc) as well as third-party servers providing services over the Web.
The monitoring tool will connect to these external components through the SOA4All
communication infrastructure, i.e., the Distributed Service Bus that uses Enterprise Service

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 37 of 56

Bus [23] implementations as well as the Triple Spaces infrastructure [24]. In addition to
message routing and endpoint virtualization life-cycle management facilities will allow for
starting, stopping, removing components and/or artifacts that are deployed to them.

Figure 13. Architecture of SENTINEL.

The architecture of the monitoring tool is basically decomposed into three main parts. At the
lowest level there is the support for accessing repositories capturing knowledge about
domains, users, processes, services, previous executions, or even metrics and deviations.
This knowledge will be used by the other two components, namely the analysis engines
(i.e., Metrics Computation Engine and Deviations Detection Engine) and the advanced
graphical user interface.

In order to support effectively monitoring services, the monitoring tool will be connected to
the SOA4All monitoring platform in order to process monitoring messages populated by the
execution infrastructure. This notification machinery is expected to be provided in an
efficient yet distributed way by the Triple Space infrastructure developed in WP1. Upon
reception, events will be processed by the tool to populate the user interface, to derive new
knowledge, and to trigger additional computations in a similar vein to that of Complex Event
Processing [25]. This will include rules that detect certain conditions (e.g., the instantiation
of a process, its completion, etc) and derive additional knowledge to be stored in the
repositories. For example, any time a new event is received, the status of the process
instance should be updated including the different states of the process instance during its
life-cycle, the agents (systems or humans) involved, etc.

The main underlying characteristic of SENTINEL is the use of semantic technologies as the

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 38 of 56

key pillar for achieving a domain-independent yet highly automated and advanced
monitoring tool. The tool will be supported by a set of spaces capturing information about
processes, agents, etc as illustrated in Figure 13. This information will be captured in terms
of the ontologies previously introduced, namely COBRA and EVO, as well as additional
domain-specific models.

6.4 Missing Functionality
The current status of SENTINEL based on the research carried out in SUPER already
highlighted some of the main benefits that can be achieved in monitoring by using semantic
technologies. However, most of the work was necessarily devoted to establishing a solid
basis for developing new processing techniques. In SOA4All we will build upon the results
obtained in order to better profit form the use of semantic technologies for the monitoring of
services and service-based applications. In particular we shall expand the gathering of
information to contemplate the infrastructure and interactions with external services. We
shall expand our software towards the generation of further information in ways that can
better support the analysis of services. This information will be the basis for supporting the
developing of advanced processing algorithms to detect process deviations. And finally, we
will indeed open up our software to the Web, offering a dynamic and Web-based user
interface able to bring both detailed and high-level information as required by different
users. In the remainder of this section we shall cover these aspects in more detail.

6.4.1 Information Gathering

As we previously introduced, the events that will be communicated will expressed in terms
of COBRA and EVO. For the purposes of SOA4All, the ontological model has been
extended with support for capturing infrastructure messages in order to monitor the
SOA4All infrastructure, and variable changes in order to get a detailed view on process
executions. The former will be supported by means of the concept Infrastructure Message
in COBRA, whereas the latter will be captured using Variable Changed Event instances,
see Figure 14.

On the basis of these new events, SENTINEL will support monitoring the infrastructure
tracking things like the deployment of services, and it will also support the monitoring of any
communication with external services. These interactions will be the main means for
SOA4All software to gather knowledge about services owned by third-parties, paving the
way for determining overall performance figures about them, or whether the correct
Message Exchange Pattern was used.

The use of an ontological representation of the monitoring information, will allow us for
instance to display, query and filter the information in generic terms or to access additional
information captured within the different repositories. For instance, if an event refers to a
concrete Process Instance we can access the Process Instance definition and visualise
graphically its definition using a graphical representation. Additionally we will include
statistical information concerning processes and their executions. This view will be
populated with metrics and so-called Key Performance Indicators concerning workflow
activities and their execution. This information will be backed by Semantic Spaces as a
distributed repository which will deal with the technical intricaties for manipulating large
amounts of interconnected data efficiently.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 39 of 56

Figure 14. Excerpt of the ontological model illustrating the different kinds of events.

6.4.2 Information Generation

Raw monitoring information is important in that it allows to derive additional information
about the execution of some software in sufficiently abstract terms allowing us to determine
whether the execution was correct, whether it can be improved, etc. Some of this
information, e.g., process execution time, can be computed automatically independently
from the domain and have therefore been included by default in the tool. However, most of
the data that can be derived and that can be of interest to the users when analysing
processes, is domain dependent. For instance, the computation of the Quality of Service
depends on the set of parameters taken into account and the priorities given to them.

The current version of SENTINEL supports the derivation of additional knowledge based on
the raw events captured by the monitoring infrastructure in a rather ad-hoc form [37]. In
particular, general-purpose metrics about the execution time, or the number of failures are
embedded within the software and are computed continuously. Additional metrics can be
added by hand and some work was devoted to supporting the definition of metrics by users.
However, metrics definition remains a complex process and their integration within the
overall monitoring process needs to be improved.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 40 of 56

6.4.2.1 Metrics Definition

We will enhance SENTINEL with better support for defining and computing domain-specific
metrics. Our approach will be based on previous research on Problem-Solving Methods. In
particular, we build upon the Task Method Domain Application (or as we previously stated
TMDA) framework [9] for Knowledge-Based Systems reuse and development. In a nutshell,
TMDA prescribes constructing Knowledge-Based Systems based on the definition of task
ontologies that define classes of applications (e.g., diagnosis, classification), method
ontologies that capture the knowledge requirements for specific methods (e.g., heuristic
classification), domain ontologies which provide reusable task-independent models, and
application ontologies for integrating domain models with domain-independent problem
solvers.

Metric computation will be thus defined within the TMDA framework as a kind of task that
takes a Metric definition as input and returns a Quantitative Analysis Result with the actual
value for the Metric at that particular point in time, see Figure 15. A key aspect in order to
support metrics computation concerns the support included for defining the metrics
themselves. In this respect we will use Metrics Ontology that will provide us with the
capacity for specifying and computing metrics, as necessary for analysing and managing
business processes and services, in a domain-independent way.

On the basis of our conceptualization we can capture kinds of metrics, e.g., “process
instance execution time”, as well as specific metrics to be computed, e.g., “process
instance X execution time”. The former are defined as concepts, whereas the latter are
modeled as instances. In this way we can provide libraries of metrics such as general
purpose ones, or specific for some domain like Supply-Chain, and at analysis time the
analyst can specify which of these metrics should be computed over which entities by
instantiating them. This provides a convenient way for organizing metric definitions and
seamlessly supports the comparison of results by kind of metric, e.g., “which is the process
which takes longer”, as well as it allows tracking their evolution over time.

Central to Metrics Ontology is the concept Metric which is defined as a Quantitative
Analysis. Metrics are specified by a set of input roles that point to domain-specific
knowledge [9]. We refine Metrics into two disjoint kinds, Function Metrics and Aggregation
Metrics. A Function Metric is a metric that can be evaluated over a fixed number of inputs.
For example, the Metric Process Instance Execution Time is a Function Metric which takes
as input one Process Instance. Conversely, Aggregation Metrics (e.g., “average process
execution time”) take an arbitrary number of individuals of the same kind (e.g., a set of
Process Instances) as input. Therefore, Aggregation Metrics are computed over a
population in order to obtain an overall perception of some aspect of interest such as the
average execution time of some particular process. The population to be processed can be
defined intensionally as an (domain-specific) ontological query so that the metric
computation can focus on certain processes, or resources of interest. In this respect the
use of semantic technologies play a key role towards supporting business analysts in the
analysis of processes, allowing them to use their domain-specific terminology and still use a
generic machinery to process the information in a seamless way.

The current state of the tool support the automated computation of metrics defined as
specified earlier. However, defining these metrics by hand is not a trivial task given the
required conceptualisation work to be performed as well due to the particular syntax for
representing them. In SOA4All we will therefore devote efforts to supporting users in
defining these metrics in more convenient ways. To this end we will provide user interface
support that will represent a simple entry point for users to define metrics and will internally
generate the required ontology elements for further processing.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 41 of 56

Figure 15. Metrics Ontology.

6.4.2.2 Metrics Computation

In order to support the automated computation of metrics, which is indeed metric
dependent, each metric has a computation expression which is defined as a unary
procedure. In this respect it is worth noting that the language used to define the metrics
themselves as well as to develop Metrics Computation Engine is Operational Conceptual
Modelling Language (OCML) [9]. OCML seamlessly supports the integration of static and
dynamic knowledge paving the way for a rapid prototyping of a fully operational solution. It
is worth noting however that OCML provides support for importing and exporting data
represented in other languages such as OWL and WSML and therefore allows the wider
application of our techniques over data represented in Semantic Web and semantic Web
services formalisms.

Currently, general purpose metrics are computed continuously and user-defined metrics are
computed on demand and based on the whole body of data. Indeed, these restrictions are
too important. Not every event during the lifecycle of processes or services will affect all the
metrics, users may want to compute their metrics periodically or at concrete moments, and
the computation of metrics may often benefit from previously available results.

Metrics computation will therefore be extended in order to cover for these requirements. In
particular we shall contemplate 3 main modes of computation: on demand, periodic,
continuous (possibly based on some condition. The first mode, which is already available,
will allow users or other applications to trigger the computation of a given metric on
demand. The second mode, will allow the specification of a time interval upon which a
metric will be computed. In this way users can save computational resources by indicating
that particular metrics should only be computed after a certain amount of time has elapsed.
Finally, the third mode will allow the specification of conditions which, when met, will trigger
the computation of metrics.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 42 of 56

These three modes will provide users with the possibility to specify when metrics should be
computed thus paving the way for saving computational resources, which in monitoring
tools is an important requirement. Additionally, we shall explore means for computing
certain metrics incrementally so that previous calculations can reduce the amount of work
to be performed. This is foreseen to have a great performance impact on the computation
of what we previously referred to as aggregation metrics given that only a very reduced
portion of data will have to be taken into account for computing new metric values.

6.4.3 Information Processing

Deriving information from raw events is necessary for properly analysing processes and
services. This is, indeed, a basic requirement whether the final analysis will be performed
by users or by some software. However, the amount of data that needs to be generated
and processed poses important problems. On the one hand, although higher-level derived
information is more scarce and useful than raw data, how the information is represented
(internally and visually) determines to an important extent how easily it can be analysed. On
the other hand, processing the data is time consuming and how fast we obtain some
information may determine which actions can be taken, if any.

Analysing the information is typically a human task, therefore most efforts are often devoted
to presenting the data visually in ways that can better support humans in analysing
monitoring information. Although we mention these aspects (see Section 7.1.3 for more
details), having information represented semantically paves the way for the application of
knowledge-based techniques for their analysis. Our work in this respect will focus on two
main issues. On the one hand we shall explore how we can guide the exploration and
derivation of monitoring data using high-level strategic knowledge. On the other hand we
will work further on supporting the application of knowledge-based software for processing
the monitoring data.

Guiding the exploration and derivation of monitoring data aims to better support the
processing of information by focusing the efforts on those aspects that are expected to be
of most relevance. The main idea is that, by knowing the potential impact of certain aspect
we can devote more efforts to computing things that will shed more light on the current
status of services or processes. To this end we plan to develop the ideas previously
described in [39] which is based on the notion of high-level goals and objectives and maps
them down to operational concerns that can be measured. In this way, by knowing which
are our users main goals or concerns, we can decide which metrics are relevant and
compute only these on demand, saving resources and producing data which is mostly
driven by users’ interests.

Finally, the automated processing of monitoring data will based on the application of PSM
ideas in order to provide a generically applicable engine as well as a set of interchangeable
methods that can be selected and applied at runtime depending on their suitability. The
main idea is to accommodate the large variety or services, users, and domains by means of
a set of generically applicable expert modules. Initial work has already been devoted to
applying heuristic classification for determining trusted services [40]. In the project we shall
expand this work to better link to the monitoring machinery and information. We will
therefore explore the application of heuristic classification as the main epistemological
approach to diagnosing process and services by allowing us to classify them with respect to
predefined classes.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 43 of 56

7. User Interface
The widgets, consoles and screens that will be used by the Analysis Platform will be
accessible in a unified and integrated manner through the SOA4All Studio. The point of
entry to the Analysis Platform, from a user point of view, will be the SOA4All Studio
Dashboard (described in D2.4.1), as illustrated in Figure 16. By clicking the “Analysis”
button, the user will have access to the different views and widgets described in this
section.

Figure 16. Accessing the Analysis Platform User Interface through the Dashboard

Monitoring information is often structured around three different views [14]: (i) the Process
View which is concerned with key performance indicators of processes and services; (ii) the
Resource View centered around the resources, human or mechanized, required for
executing processes; and (iii) the Object View which focuses on business objects such as
inquiries, orders or claims. These three views are populated with statistical information such
as the minimum, the maximum, the average or the deviation of some parameter of interest.

These views are of major relevance to analysis and management, and as a consequence
they are typically supported by monitoring tools such as Business Activity Monitoring
solutions. However, different users have different roles, interests, access rights, and
preferences and these vary depending on the specific scenario, the focus of their analysis,
etc. The user interface of a fully-fledged general purpose solution must therefore be
characterized by its flexibility [14]. This includes for instance support querying, filtering and
ordering the information according to user defined specifications [38]. Indeed, given the
kinds of users addressed, the specification of these queries and filters should be supported
in a simple way so that humans can browse the existing execution information effectively.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 44 of 56

Similarly, different domains exhibit particular characteristics, which impede a “one size fits
all” approach. The monitoring tool should therefore support users in defining their own
visualization templates to be populated with relevant monitoring information. The
visualization framework should be supported by a wide range of graphical representations
such bar charts, line charts, pie charts, time series charts, etc. Additionally, the visualisation
framework should support the presentation of user-defined information combining diverse
statistical information about processes, etc.

The use of knowledge-based technologies will play a major role in bringing flexibility to the
analysis tool suite to be able to adapt to a myriad of users and services in a seamless way.
On the one hand the use of a formal conceptual model closer to human understanding than
low-level syntactic representations will bring the body of knowledge to a higher level of
abstraction more suitable for human interpretation. On the basis of this conceptual model
we shall support humans in defining queries or navigating through the data by simply
following the conceptual schema and generating the appropriate ontological queries
transparently. This will allow, among other things, to seamlessly navigate across the three
layers previously introduced (Infrastructure Level, SOA Level, Business Level). Additionally,
we will envisage the use high-level strategic models such as the one presented in [39] in
order to guide the presentation of analysis information driven by the importance and impact
data can have on underlying services and their related interdependencies.

7.1 Existing Consoles and Widgets
This section presents existing UI elements that are relevant in the context of the Analysis
Platform. Even though these consoles focus on lower-level technical monitoring
information, they can serve as good starting points for further development in a more user-
oriented direction. In fact, some elements of these consoles will be migrated to GWT and
integrated in a consistent way into the wider Analysis Platform UI.

7.1.1 PEtALS WebConsole

The PEtALS WebConsole illustrated in Figure 17 is a WEB based GUI which provides
distributed monitoring and management features for the PEtALS Distributed Enterprise
Service Bus.

The JBI specification PEtALS is based on defines a JMX management API that has been
extended to provide advanced management and monitoring features.

This console uses the JMX API to:

− Collect data from all the containers of the management domain, processes this data
and display JBI message content and useful statistics like service response time,
service and container load, message queue sizes and message repartition.

− Manage the JBI artifacts. It is possible to start, stop, deploy and un-deploy artifacts from
the web browser and check their states.

The WebConsole also provides:

− an embedded JBI client used to invoke hosted JBI services directly from the web
browser without any additional deployment or configuration.

− A module to configure JBI services, add endpoints, and create service proxies without
any generation on the client side.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 45 of 56

Figure 17. Monitoring Message Exchanges

Figure 18. PEtALS High Level Monitoring and Management Architecture

The high-level architecture of the WebConsole illustrated in Figure 18 provides a single
access point to manage containers distributed over several nodes and domains. The web
application hosted on any Web Application server is connected to an intermediate layer (the
data collector) which is in charge of:

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 46 of 56

− Establishing connections to the monitoring and management PEtALS API. These
connections are possible since each PEtALS node have a complete knowledge of the
network topology. It means that at initialization time, the data collector get all the
connection information from its single access point and is able to create all the distant
connections with remote containers. With this approach a command (JMX call) sent to
a container from the client (the web application) transits through the data collector layer
and is 'routed' to the right container.

− Aggregating data from containers. The data collector can subscribe to JMX events
raised by remote containers and aggregate this data which is then exposed to external
clients (the WebConsole for example). A example of aggregated data is a message
exchanged between containers. To be able to follow this message and to display all the
steps, the message is time-stamped on each exchange partner and a global message
exchange is exposed on data collector API.

7.1.2 IC2D Monitoring

IC2D is a GUI based on Eclipse RCP (illustrated in Figure 19), which allows to monitor the
infrastructure of distributed and grid applications (developed using ProActive/GCM), and
deployed using ProActive/GCM deployment model. IC2D subscribes to JMX events raised
by ProActive and displays the active objects, JVMs, and ProActive nodes involved in the
application, the communication relationships among them, the time spent in
communication, along with infrastructure details like the machine load, CPU usage, and
memory consumption. It also allows to trigger actions on the infrastructure, like migration of
active objects between different nodes.

IC2D acts as a grid collector that subscribes to JMX events from all nodes hosting the grid
application. For scalability purposes, collection of distributed events, and distributed
triggering of JMX (MBeans) actions are supported by a new JMX connector: instead of
relying upon the classical RMI connector for JMX, we rely on a ProActive-based JMX
connector that takes advantages of all ProActive communication features (asynchrony,
parallelism, security) in order to transport JMX management messages [3].

Although IC2D is not necessarily a monitoring and analysis application/console suitable for
the SOA4All end-user, it could be useful for a SOA4All infrastructure provider administrator,
in order to analyze parameters of the grid infrastructure. Other metrics can be plugged in if
required. However, any client application can subscribe to the ProActive provided JMX
events to get the same monitoring information. So, some relevant and aggregated events
could be usefully propagated up to the SOA4All analysis platform designed in the current
T2.3 and highlighted in this document. To achieve this, it would only be a matter of defining
a Grid collector as shown in Figure 5, that would gather, filter and aggregate JMX ProActive
events, so making them available for further collection by the analysis platform.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 47 of 56

Figure 19. IC2D Monitoring and Analysis tool, for Grid applications and infrastructure

7.1.3 SUPER / SENTINEL UI

The current version of SENTINEL as developed within SUPER makes use of a traditional
desktop-based user interface (as illustrated by the screenshot in Figure 20). In the context
of SOA4All, the Graphical User Interface of SENTINEL will be built on top of the
monitoring machinery by making use of the graphical user interface libraries been
developed as part of the SOA4All Studio, see D2.4.1. As a consequence any user with a
Web browser will benefit from a fully-fledged monitoring interface with an extensive support
for the visualization and manipulation of ontologies, the representation of processes, and
the access to underlying infrastructural components. Indeed, the runtime infrastructure will
be adapted accordingly, see D1.4.1 for additional details.

The user interface will include real-time visualization of monitoring events as they are
populated by the execution infrastructure. In order to do so, we shall use the Comet
implementation being integrated within the SOA4All Studio infrastructure, which will allow
the server to actively push information, as it is available. Further details on how this is
achieved can be found in D2.4.1.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 48 of 56

Figure 20. Existing SUPER Monitoring Console

Finally, given the vision of the project that contemplates a large number of users, services
and domains, we need to accommodate a large variety of requirements. We shall leverage
our ontology-based representation of monitoring data and derived information in order to
accommodate these different scenarios in a seamless way. In particular, in addition to the
typical monitoring dashboard facilities we shall provide an ontology-based query assistant
that will support users in the generation of queries over the analysis data. This user
interface will be informed by the ontologies previously described and will allow users to
explore the information derived in an intuitive way through the simple generation of
ontological queries through a point & click interface. This interface will allow the selection of
instances of certain concepts based on a set of conditions over the attributes. As a result of
the user interaction, an ontological query in SPARQL will be generated and sent to the
Analysis Data Warehouse for its interpretation.

7.2 Missing Functionality (UI mockups)
The mockups presented in this section illustrate the UI functionality that will be developed
as part of the Analysis Platform. The entire set of widgets that are illustrated here will be
provided by the Studio as components and will fit visually and functionally into the Studio
interface (see D2.4.1). They will be programmed and configured by the Analysis Platform in
order to drive the display of relevant data in the relevant context.

7.2.1 Search / Favorites View

When users search for services or when they sign on to their session on the Studio, they
could get a list of services. A simple monitoring visual clue can be attached to the services
in the form of an ON / OFF indicator (green / red), as illustrated in Figure 21. This could
signal the availability of the service in the moment of the search. The user can quickly
check the same information over a given duration (in which case a percentage can be
associated with the icon to indicate percentage of availability). The user can also click on
Monitoring Details to quickly go a detailed page for monitoring data (see below). In the case
of composite services, there will also be a Service Composition button that will take the

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 49 of 56

user to the composition / process editor WP2 / WP6 (see below) where monitoring
information can be displayed in context.

Figure 21. Search / Favourites View

7.2.2 Service Description

By clicking on the service name, the user can probably go to something like a description
page for the service (as in all other views here, it is up to the Studio designers to define
such screens). The description can contain some basic, aggregated monitoring information
in condensed graphical form. By clicking on see the details link, the user can obtain the
detailed monitoring information (see Figure 22).

7.2.3 Monitoring Details

On the monitoring details page, the user has a variety of graphical widgets for browsing
monitoring data. The user can select what type of data to display and can also select the
date range for historical data (slider or date-selection fields). In addition, the user can see
the advertised QoS parameters for the service. Where available, alerts can be examined
and defined (see Figure 23).

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 50 of 56

Figure 22. Service Description

Figure 23. Monitoring Details

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 51 of 56

7.2.4 Defining Alerts

In order to be notified of events such as QoS violation the user must be able to define alerts
(essentially filters triggering notification events or other types of actions). The mock-up in
Figure 24 illustrates this functionality and shows the type of visual controls that can be
involved.

Figure 24. Defining Alerts

7.2.5 Monitoring Information in the Composition Editor

As mentioned above, for composed services or for processes, it is important to present the
monitoring information in the context of the composition. Therefore, the editors used to
compose services should be leveraged when displaying the monitoring information. In
Figure 25, a Reservation service composed of 3 other services is illustrated. The Weather
service is in orange indicating an alert associated to it. The user can see the monitoring
averages associated to Weather or the list of alerts raised by it. Note that the average
values are presented next to the values for the entire composed service (Reservation). This
helps put the values of one service in perspective with regard to the entire execution
values, therefore showing the relative impact of the service. As in other views, the user can
always choose to obtain monitoring details or create new alerts, depending on the context.

7.2.6 Goals that Match Execution Templates

The composition of services will result in several process templates. The view illustrated in
Figure 26 will show the different Goals that trigger the execution of each kind of process
template, and to what degree.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 52 of 56

Figure 25. Monitoring Information in the Process Editor

Figure 26. Goals Matching Execution Templates

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 53 of 56

8. Conclusion and next steps
The Analysis Platform will obtain data from the SOA4All infrastructure and the Studio
editors, will analyze and extract knowledge from it and will present meaningful information
to the end-users as well as to the automatic adaptation mechanisms developed in SOA4All.

This document sets the architectural and technological basis for the development of the
Analysis Platform. It describes in detail the components that will be created as well as the
existing foundations which are to be extended in order to provide the complete required
functionality, as identified through the requirements analysis. The document also provides
visual descriptions of the future Analysis user interface and describes the usage scenarios
in which it will be used.

The Analysis Platform has strong connections to other tasks in the SOA4All DoW. In
particular it is naturally related to T1.6 for monitoring event extraction, to T2.4 for general
Studio integration, to T2.6 for integration of monitoring information in process views and to
T6.5 for runtime adaptation of process executions based on event analysis. Beside these
tasks, T2.3 has connections with the entire set of services provided by WP2. As part of the
next steps, collaboration with all these identified tasks is crucial and will be particularly
pursued.

As described in the DoW, the first prototype of the Analysis Platform will be developed by
M18. All major functionalities will be available by M18, even if some will be of a rudimentary
nature. The BEP and MM will be functional, while KOPE and SENTINEL will benefit from
extensions and initial integration into the overall platform. Also by M18, the user interface
will be aligned with developments in the Studio. Lastly, M18 will bring initial integration with
the DSB and the Semantic Space. A fully functional and complete prototype will be
available by M30, completely integrated in the Studio and the overall SOA4All
infrastructure.

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 54 of 56

References
[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley (1994)

[2] A. Mos, A. Boulze, S. Quaireau, and C. Meynier, “Multi-layer perspectives and spaces in
SOA”, In Proceedings of the 2nd international Workshop on Systems Development in SOA
Environments (SDSOA'2008), ICSE'08, Leipzig, Germany, May 2008.

[3] F. Baude, V. Legrand, V. Lestideau, Large Scale Service Deployment - Application to OSGi.
3rd Int. conf. on Autonomic and Autonomous Systems (ICAS 2007), June 2007, Athens.

[4] van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management: A
Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.): Business Process
Management, Vol. 2678. Springer (2003) 1-12

[5] Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business Process
Management: A Vision Towards Using Semantic Web Services for Business Process
Management. In: Lau, F.C.M., Lei, H., Meng, X., Wang, M. (eds.): ICEBE. IEEE Computer
Society (2005) 535-540

[6] Watson, H.J., Wixom, B.H.: The Current State of Business Intelligence. Computer 40 (2007)
96--99

[7] Alves de Medeiros, A.K., Pedrinaci, C., van der Aalst, W., Domingue, J., Song, M., Rozinat,
A., Norton, B., Cabral, L.: An Outlook on Semantic Business Process Mining and Monitoring.
Proceedings of International IFIP Workshop On Semantic Web \& Web Semantics (SWWS
2007) (2007)

[8] Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A Core Ontology for Business Process
Analysis. 5th European Semantic Web Conference (2008)

[9] Motta, E., Lu, W.: A Library of Components for Classification Problem Solving. The Open
University (2001)

[10] Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26
(1983) 832--843

[11] Uschold, M., King, M., Moralee, S., Zorgios, Y.: The Enterprise Ontology. Knowledge
Engineering Review 13 (1998) 31--89

[12] Fox, M.S.: The TOVE Project Towards a Common-Sense Model of the Enterprise. IEA/AIE
'92: Proceedings of the 5th international conference on Industrial and engineering applications
of artificial intelligence and expert systems. Springer-Verlag, London, UK (1992) 25--34

[13] Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task taxonomies for knowledge content.
EU 6FP METOKIS Project D07 (2004)

[14] Muhlen, M.z.: Workflow-based Process Controlling. Foundation, Design, and Implementation
of Workflow-driven Process Information Systems., Vol. 6. Logos, Berlin (2004)

[15] van Lessen, T., Nitzsche, J., Dimitrov, M., Karastoyanova, D., Konstantinov, M., Cekov, L.: An
Execution engine for BPEL4SWS. 2nd Workshop on Business Oriented Aspects concerning
Semantics and Methodologies in Service-oriented Computing (SeMSoc) in conjunction with
ICSOC (2007)

[16] Norton, B., Pedrinaci, C., Domingue, J., Zaremba, M.: Semantic Execution Environments for
Semantics-Enabled SOA. it - Methods and Applications of Informatics and Information
Technology Special Issue in Service-Oriented Architectures (2008) 118--121

[17] Fensel, D., Kerrigan, M., Zaremba, M. (eds.): Implementing Semantic Web Services: The
SESA Framework. Springer (2008)

[18] Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Pedrinaci, C.:
IRS-III: A broker-based approach to semantic Web services. Web Semantics: Science,
Services and Agents on the World Wide Web 6 (2008) 109--132

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 55 of 56

[19] van Dongen, B.F., van der Aalst, W.M.P.: A Meta Model for Process Mining Data. In: Missikoff,
M., Nicola, A.D. (eds.): EMOI-INTEROP, Vol. 160. CEUR-WS.org (2005)

[20] Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5 (1993) 199--220

[21] Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de Velde, W.V.,
Wielinga, B.: Knowledge Engineering and Management: The CommonKADS Methodology.
MIT Press (1999)

[22] Studer, R., Benjamins, R., Fensel, D.: Knowledge Engineering: Principles and Methods. Data
Knowledge Engineering 25 (1998) 161-197

[23] Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston, USA (2003)

[24] Fensel, D., Krummenacher, R., Shafiq, O., Kuehn, E., Riemer, J., Ding, Y., Draxler, B.: TSC -
Triple Space Computing. Journal of electronics & Information Technology (Elektrotechnik &
Informationstechnik), special issue on ICT research in Austria (2007)

[25] Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing, Boston, USA (2001)

[26] Web Services Distributed Management: Management Using Web Services (MUWS 1.1) Part 1
OASIS Standard, 01 August 2006 Available at: http://docs.oasis-open.org/wsdm/wsdm-
muws1-1.1-spec-os-01.pdf

[27] Web Services Distributed Management: Management of Web Services (WSDM-MOWS) 1.1
OASIS Standard, 01 August 2006 Available at: http://docs.oasis-open.org/wsdm/wsdm-
mows-1.1-spec-os-01.pdf

[28] Basic Profile Version 1.0, 16 April 2004, Available at: http://www.ws-
i.org/Profiles/BasicProfile-1.0.html

[29] Web Services Resource 1.2 (WS-Resource) OASIS Standard, 1 April 2006, Document
identifier: wsrf-ws_resource-1.2-spec-os, Available at: http://docs.oasis-open.org/wsrf/wsrf-
ws_resource-1.2-spec-os.pdf

[30] Web Services Base Notification 1.3 (WS-BaseNotification), OASIS Standard, 1 October 2006,
Document identifier: wsn-ws_base_notification-1.3-spec-os, Available at: http://docs.oasis-
open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

[31] (WSA, 2004) Web Services Addressing (WS-Addressing), W3C Member Submission, 10
August 2004, Available at: http://www.w3.org/Submission/ws-addressing/

[32] The COMET Programming Model, http://en.wikipedia.org/wiki/Comet_(programming)

[33] Google, The rocket-gwt Framework, http://code.google.com/p/rocket-gwt/wiki/Comet

[34] Boudewijn F. van Dongen, Ana Karla A. de Medeiros, H. M. W. Verbeek, A. J. M. M.
Weijters, Wil M. P. van der Aalst: The ProM Framework: A New Era in Process Mining Tool
Support. ICATPN 2005: 444-454

[35] Bondi A. B., Characteristics of scalability and their impact on performance, Proceedings of the
2nd international workshop on Software and performance, Ottawa, Ontario, Canada, 2000,
ISBN 1-58113-195-X, pages 195 – 203

[36] Gómez-Pérez, J. M. and Corcho, O. 2008. Problem-Solving Methods for Understanding
Process Executions. Computing in Science and Engg. 10, 3 (May. 2008), 47-52. DOI=
http://dx.doi.org/10.1109/MCSE.2008.78

[37] Pedrinaci, C., Lambert, D., Wetzstein, B., van~Lessen, T., Cekov, L., Dimitrov, M.: SENTINEL:
A Semantic Business Process Monitoring Tool. Ontology-supported Business Intelligence
(OBI2008) at 7th International Semantic Web Conference (ISWC), Karlsruhe, Germany (2008)

[38] W. Hur, H. Bae, and S.-H. Kang. Customizable Workflow Monitoring. Concurrent

 SOA4All –FP7 – 215219 –D2.3.1 Analysis Tool Suite Design

© SOA4All consortium Page 56 of 56

Engineering, 11(4): 313–325, 2003.

[39] C. Pedrinaci, I. Markovic, F. Hasibether, and J. Domingue. Strategy-driven business process
analysis. In 12th Conference on Business Information Systems (BIS), 2009.

[40] Galizia, S., Gugliotta, A., Pedrinaci, C.: A Formal Model for Classifying Trusted Semantic Web
Services. 3rd Asian Semantic Web Conference (ASWC 2008), Bangkok, Thailand (2008)

