

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

SOA4All Analysis Platform
D2.3.2 Service Monitoring and Management Tool

Suite First Prototype

 - Prototype Documentation -

Activity N: Activity 1 – SOA4All Runtime

Work Package: WP2 – SOA4All Studio

Due Date: M18

Submission Date: 10/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: INRIA

Revision: 1.0

Authors:

Adrian Mos
Carlos Pedrinaci
Guillermo Álvaro Rey
Iván Martínez
Christophe Hamerling
Guillaume Vaudaux-Ruth
Dong Liu
Samuel Quaireau

INRIA
OU
ISOCO
ISOCO
EBM
INRIA
OU
INRIA

Reviewers Sven Abels
Florian Schnabel

TIE
SAP

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 2 of 29

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 02.08.2009 Kick-Off Version Adrian Mos INRIA

0.2 10.08.2009 Contribution on the status of KOPE
integration in the overall architecture

Guillermo Álvaro Rey, Iván
Martínez, SOCO

0.3 15.08.2009 Functional description of most of the
elements of the AP as well as the
architectural overlay and installation
instructions

Guillaume Vaudaux-Ruth,
INRIA

0.4 20.08.2009 Initial consolidated version Guillaume Vaudaux-Ruth

INRIA

0.5 21.08.2009 Descriptions of knowledge-level
widgets

Guillermo Álvaro Rey, Iván
Martínez, ISOCO

0.6 22.08.2009 Description of the time line widget and
OWLIM installation instructions

Dong Liu, OU

0.7 23.08.2009 Added Executive Overview,
Introduction and Summary; created a
new consolidated version

Guillaume Vaudaux-Ruth,
Adrian Mos, INRIA

0.8 31.08.2009 Revised document after internal review Guillaume Vaudaux-Ruth,
Adrian Mos, INRIA

1.0 04.09.2009 Minor corrections and changes Guillaume Vaudaux-Ruth,
Carlos Pedrinaci, Dong Liu,
Adrian Mos, INRIA, OU

1.0 10.09.2009 Final Editing Malena Donato, ATOS

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 3 of 29

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

2. ARCHITECTURAL CONSIDERATIONS ____________________________________ 8

2.1 DATA SOURCES __ 8

2.2 BEP __ 9

2.2.1 Service-oriented methods __ 9

2.2.2 Process-oriented methods ___ 9

2.3 UI WIDGETS __ 10

2.4 KOPE INTEGRATION ___ 10

2.5 SENTINEL __ 11

3. PROTOTYPE FUNCTIONALITY IN THE STUDIO ___________________________ 13

3.1 OPENING THE ANALYSIS PLATFORM VIEWS FROM THE STUDIO ________ 13

3.2 VIEWS AND ORGANIZATION OF ANALYSIS WIDGETS __________________ 14

3.3 SERVICES __ 14

3.4 PROCESSES __ 15

3.5 CUSTOMIZABLE MONITORING DASHBOARD _________________________ 16

3.6 ANALYSIS WIDGETS ___ 19

3.6.1 Service Response Time History ____________________________________ 19

3.6.2 Service List __ 20

3.6.3 Service Description __ 20

3.6.4 Real-Time Alert Manager ___ 20

3.6.5 Time Window Selector ___ 21

3.6.6 Process Overview ___ 22

3.6.7 Process Event List __ 23

3.6.8 Process Event Detail __ 23

3.6.9 Process Time Line __ 24

3.6.10 Knowledge Analytics manager ___________________________________ 24

3.6.11 Knowledge Analytics for a Service ________________________________ 25

3.7 DEMO GENERATOR __ 26

4. INSTALLATION & SETUP__ 27

5. CONCLUSIONS AND NEXT STEPS ______________________________________ 29

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 4 of 29

List of Figures
Figure 1. Overall Architecture of the Analysis Platform .. 8

Figure 2: SOA4ALL Studio entry point ..13

Figure 3. The Analysis Platform Icon ..13

Figure 4. Selecting a View ..14

Figure 5. Service List ..14

Figure 6. Predefined Service Detail View ...15

Figure 7. Predefined Process View ..16

Figure 8. Empty Customisable Analysis Page ..17

Figure 9. Palette of Monitoring Widgets ..17

Figure 10: Monitoring Dashboard – Example #1 ...18

Figure 11: Monitoring Dashboard - Example #2 ...18

Figure 12. Service Response Time History Widget ...19

Figure 13. Service List Widget ..20

Figure 14. Service Description Widget ..20

Figure 15. Alert Manager Widget ..20

Figure 16. Alert Popup..21

Figure 17. Time Window Selector Widget ...21

Figure 18. Process Overview Widget ..22

Figure 19. Process Overview Widget Legend ...22

Figure 20. Process Event List Widget ...23

Figure 21. Process Event Detail Widget ...23

Figure 22. Process Time Line Widget ...24

Figure 23. Knowledge Analytics Manager Widget ...25

Figure 24. Knowledge Analytics (for a specific service) Widget ..25

Figure 25. DEMO Generator Interface ..26

Figure 26. Sesame Control Console ...28

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 5 of 29

Glossary of Acronyms

Acronym Definition

AP Analysis Platform

API Application Programming Interface

BEP Basic Event Processor

D Deliverable

DSB Distributed Service Bus

EC European Commission

EVO Events Ontology

GUI Graphical User Interface

KOPE Knowledge-Oriented Provenance Environment

SENTINEL SEmaNTic busINess procEsses monitoring tooL

SOA Service-Oriented Architecture

SUPER Semantics Utilized for Process Management within and between
Enterprises

WP Work Package

WSDM Web Services Distributed Management

XML Extensible Markup Language

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 6 of 29

Executive summary
This document accompanies the software deliverable D2.3.2 of the first prototype of the
SOA4All Analysis Platform. It describes the functionality of the prototype and places the
implementation in the architectural context described by deliverable D2.3.1.

The document presents in detail the views and widgets implemented in the Analysis
Platform, briefly presents programming interfaces for certain building blocks and includes
specific installation instructions that are not already covered by the overall Studio prototype
documentation presented in D2.4.2.

Please note that an “alpha” version of the Analysis Platform software, at the time loosely
integrated in the SOA4All Studio, was presented at the M12 review to complement the
architectural specifications in D2.3.1. It has since evolved significantly to include more
functionality and to seamlessly integrate into the overall Studio prototype.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 7 of 29

1. Introduction

1.1 Purpose and Scope
The SOA4All Analysis Platform (AP) aims to provide the SOA4All users with information that
would help them understand the performance characteristics and usage patterns of the
services and processes they use Such information must be presented at different levels of
abstraction in order to be adapted to the different stakeholders that may require analyzing
processes and service executions, as well as to the different types of problems or
opportunities that may appear. That is why the AP provides a wide array of widgets in its
graphical views, organized according to their potential use. Furthermore, as presented in the
document, the AP offers a completely customizable approach to data visualization so as to
correspond precisely to the expectations and needs that more advanced users have.

This document complements the previous T2.3 deliverable, D2.3.1, which presented in detail
the different building blocks of the AP, their integration into the overall architecture, as well as
their underlining concepts. Therefore, it does not go into details on any of these subjects and
stays focused on the current D2.3.2 prototype implementation. The document is to be used
in conjunction with D2.4.2 as the Analysis Platform is implemented as part of the Studio. In
fact the actual software of the prototype is part of the entire Studio codebase and its binaries
are integrated into the overall Studio server-side component, the .WAR file that groups all
Studio contributions (please refer to D2.4.2 for indications of how the .WAR file is structured).

1.2 Structure of the Document
The rest of the document is structured as follows:

- Section 2 presents some architectural considerations to better place the current
implementation in the context of the overall AP architecture. It shows the entities that
have been implemented and presents an overview of the APIs that are of interest to
Studio developers. However, Section 2 does not go into details about such APIs as
such details can easily be obtained from the javadoc descriptions. In addition, the
scope of the document is the prototype description primarily at the user-level.

- Section 3 represents the main part of the document and provides a functional
description of the AP by describing the user-level entities that it offers. This is where
the views and widgets are presented together with their expected usage as well as
their interrelations. This part can be seen as a user-guide for the software delivered in
the D2.3.2 prototype.

- Section 4 describes how the prototype can be installed and run. Since the main
installation instructions are presented at the Studio-level in D2.4.2, this section only
covers those instructions that are complementary to the overall Studio installation.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 8 of 29

2. Architectural Considerations
This section briefly presents the architectural considerations for the first prototype of the
Analysis Platform. It can be seen as a complement to the D2.3.1 Deliverable, which
described the architecture and expected functionality of the Analysis Platform. As such it
does not cover in detail the different parts of the AP, it rather focuses on the concrete
implementation available for the main parts specified in D2.3.1.

Figure 1 below is a version of the diagram presented in D2.3.1 as Figure 4 (in Section 3). It
highlights the parts that have an implementation in this prototype and it shows the parts that
have been omitted in this version (the entities that are grayed out).

Figure 1. Overall Architecture of the Analysis Platform

It can be noted from the illustration that the connection to other editors in the Studio has
been omitted in this version. It will be implemented in the next prototype.

2.1 Data Sources
We have implemented in this version two initial data sources, one corresponding to the Bus
Collector and one corresponding to the Engine Collector in Figure 1. The data sources have
been assimilated to the Monitoring Mediator rather than passing through the communication
services of the Studio. A better separation will be implemented in the next phase.

The WSDMHandler entity available in this prototype is able to collect events from the WSDM1

1 Web Services Distributed Management (WSDM): http://www.oasis-open.org/committees/wsdm/

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 9 of 29

bus, convert them to the event hierarchy used by the BEP (as per Section 4.4.1 from D2.3.1)
and send them to the BEP.

Similarly, the EVOHandler can obtain events from the execution engine expressed in terms
of the analysis ontologies, namely EVO and COBRA (see D2.3.1), convert them to the
appropriate hierarchy and send them to the BEP for processing. In addition, it stores the
information from the events in the Analysis Warehouse. The current version relies on a
standalone repository based on Sesame2 and OWLim3. Future versions of the prototype will
directly interact with the storage functionality provided by the Distributed Service Bus.

2.2 BEP
The Basic Event Processor implementation in this prototype performs several important
functions. It obtains data from the data sources (implemented by the two handlers described
above), performs basic processing and provides the data to consumers (the console widgets,
the Knowledge Analytics component KOPE* and SENTINEL). For efficient local processing,
the BEP currently employs a high-performance local database – hsqldb4.

The BEP offers an API that provides simplified access to its data. This API is used by its
clients such as the UI widgets, KOPE or SENTINEL and is presented in a reduced form
below. The full descriptions of the methods can be found in the javadoc of the monitoring
module available in the SOA4All SVN repository under

trunk/soa4all-studio/soa4all-analysis-platform/monitoring-bep

A brief list of the main methods of this API is given in the next two sub-sections. Their
purpose is self-explanatory.

2.2.1 Service-oriented methods

public ServiceInfo getServiceInfo(Date fromDate, String serviceName);
public ServiceInfo getLastServiceInfo(int nbInfo, String serviceName);
public List<? extends ServiceInfo> getServices(Date fromDate);
public List<? extends ServiceInfo> getServicesWithoutState();
public ServiceInfo getServiceInfo(String serviceName, Date occurredAfter,

Date occurredBefore);
public List<? extends ServiceInfo> getServices(Date fromDate, IOperator

operator);

2.2.2 Process-oriented methods

public List<ProcessInfo> retrieveCurrentWholeProcessTrees();
public List<ActivityInstance> getKnownActivitiesWithEvents(ProcessInstance

processInstance);
public List<ActivityInstance> getKnownActivities(String processNamespace,

String processName);
public EventUpdate getProcessAndActivityLastEventsSince(Date startDate);
public EventHistory getLastEventsSince(Date startDate);

2 http://www.openrdf.org/
3 http://www.ontotext.com/owlim/
4 http://hsqldb.org

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 10 of 29

2.3 UI Widgets
A complete set of widgets grouped in pre-defined and customisable monitoring pages have
been implemented. These widgets are presented in detail in Section 3. They obtain their data
from the BEP using the BEP client interfaces discussed in Section 2.2.

2.4 KOPE integration
The first version of the Knowledge Analytics (KOPE*) component focuses on the
(knowledge-level) analysis of services. We will expand the analysis to users and goals after
M18, while also performing more advanced computations taking advantage of the concepts
linked to the services used.

Currently, the component allows users to track the evolution of services over time, basing the
analysis on three top-level concepts derived from lower-level data:

• Frequency: How much a service is used. Derived from:

o Visibility frequency (how many times a service is opened)

o Invocation frequency (how many times it is actually consumed)

• Performance: How well the service behaves. Derived from:

o Time performance (how long the execution takes)

o Reliability performance (if the execution finishes well)

• User Perception: What do the users think about the service. Derived from:

o Ratings perception (average of the ratings)

o Reviews perception (number of ratings, comments and tags)

Once tracking is set for a service, the batch-processing component begins to extract relevant
information for that service each night. This component requires interactions with three
sources to obtain data:

• From the BEP, which will be queried for the necessary information about executions
of those services (important source for the calculations on Performance and
Invocation Frequency)

• From the Auditing Framework (actions of the users within the platform -e.g., open a
service, invoke a service-, stored in the Semantic Spaces via the Storage Services
provided by T2.4)

• From the Feedback Framework (ratings, tags and comments by the users, also
stored in the Semantic Spaces via the Storage Services, as explained in D2.1.3)

The results of the batch-processing computations (the analysis results) are stored in a new
repository in the Semantic Spaces via the Storage Services again. Hence, from the whole
bunch of execution logs, interaction logs, ratings, etc., we will have the relevant information
for each service ready to be accessed in an intermediate storage.

This information already computed will permit us display the three relevant concepts on a
selected time-frame, in order to see at a glimpse the evolution of these concepts over time.
This functionality is illustrated graphically by Figure 24, while Sections 3.6.10 and 3.6.11
cover with more detail the functionality that can be accessed by the graphical interface of the
Analysis Platform.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 11 of 29

The functions that our component make available via its API to other components, and which
we will also use for generating the graphs, are self-explanatory. They need a service
identifier and a time frame (dateIni and dateEnd) to retrieve the information from the
computations repository. These functions are:

getServiceVisibilityFrequency(serviceId, dateIni, dateEnd);
getServiceInvocationFrequency(serviceId, dateIni, dateEnd);
getServiceAggregatedFrequency(serviceId, dateIni, dateEnd);

getServiceTimePerformance(serviceId, dateIni, dateEnd);
getServiceReliabilityPerformance(serviceId, dateIni, dateEnd);
getServiceAggregatedPerformance(serviceId, dateIni, dateEnd);

getServiceRatingsPerception(serviceId, dateIni, dateEnd);
getServiceReviewsPerception(serviceId, dateIni, dateEnd);
getServiceAggregatedPerception(serviceId, dateIni, dateEnd);

getServiceAggregatedData(serviceId, dateIni, dateEnd);

startTrackingService(serviceId);
stopTrackingService(serviceId);

2.5 SENTINEL
SENTINEL5 makes use of semantic technologies to facilitate monitoring on business
processes and activities, namely it not only keeps track of execution of business processes,
but also derives business level knowledge from the low-level trails. On the other hand, both
the components deployed on the DSB and the underlying infrastructure continually generate
events, thus the monitoring tool relies on event processing. In short, the main functionalities
of SENTINEL are as follows:

- Processing the events collected through the BEP to, for example, update the
information about lifecycle of business processes, which is performed based on the
rule engine Drools.

- Persisting data into the RDF repository, e.g. OWLIM.

- Computing metrics, e.g. the execution time of business processes.

- Visualizing raw events or results of metrics computation by different metaphors, e.g.
table, time line, etc.

The integration of SENTINEL is achieved by using the code generation tool of Elmo, which
generates the interface of storing and retrieving instances of the concepts in COBRA and
EVO ontologies from the RDF repository. In this way, the rule engine has access to the raw
event data, and also can persist reasoning results as RDF statements. The functions defined
in this component are:

5 Pedrinaci, C., Lambert, D., Branimir Wetzstein, Tammo van Lessen, Luchesar Cekov, and
Marin Dimitrov (2008) SENTINEL: A Semantic Business Process Monitoring Tool,
Workshop: Ontology-supported Business Intelligence (OBI2008) at 7th International
Semantic Web Conference (ISWC2008), Karlsruhe, Germany

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 12 of 29

getEventRepositoryManager();
getExecutionHistoryManager();
getMetricsRepositoryManager();
insertEvent(event);
computeMetric(metricName);

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 13 of 29

3. Prototype Functionality in the Studio
This section presents the user functionality of the Analysis Platform showing the concrete
interface offered by this prototype and how it can be leveraged to obtain information about
services and processes. The functionality offered by the different parts of the platform is
described together with the corresponding graphical widgets. We expect the actual users of
the AP to be people that have varying skills and knowledge about the SOA4All infrastructure.
They will range from people that have no knowledge of the platform to people that have
certain notions of the infrastructure (e.g. they know that there is an underlying bus and that
processes are executed in a process engine). The views and widgets of the AP cater to a
variety of such users presenting information at different levels of abstraction.

3.1 Opening the Analysis Platform Views from the Studio
Users can access the Analysis Platform views by selecting it from the main Studio
Dashboard view (illustrated in Figure 2). The icon corresponding to the AP is indicated in
Figure 3.

Figure 2: SOA4ALL Studio entry point

Figure 3. The Analysis Platform Icon

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 14 of 29

3.2 Views and Organization of Analysis Widgets
Currently, the AP has three main view sets. The selection of the view is done through the
menu bar, which is found in the upper part of the screen. It is illustrated in Figure 4.

Figure 4. Selecting a View

The first two views sets have pre-defined content and target two main monitoring areas:
services and processes. The third view set has user-definable content and provides
mechanisms that users can leverage to compose their console using a combination of
available widgets.

View sets can have multiple views and in the current implementation, the “Services” set has
two views, the “List” and “Detail”. More may be added to the view sets in the future.

3.3 Services
There are two views associated with this set. The first view (illustrated in Figure 5) is
intended to provide a way to display any list of services that might be of interest for the user
currently logged in. For instance, this could represent the favorite services or the services
most recently used. Each service has a link (its name) and an indicator that represents the
overall availability of the service.

Figure 5. Service List

Clicking on the service name takes the user to the detail view for it, as detailed below and
illustrated in Figure 6. The availability indicator can be red or green depending on whether
the service is unavailable or available respectively.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 15 of 29

Figure 6. Predefined Service Detail View

The Service Detail View contains a predefined set of widgets: the Service Description, the
Service Response Time History and the Time Window Selector. They are illustrated in more
detail in the sections below so they are not described here. They all show information
pertaining to a service that has been selected in the Service List page, if arriving at the detail
page from the list page, or to the latest service selected in the Service List page, if arriving at
the detail page directly from the menu bar.

3.4 Processes
The process view shown in Figure 7 contains a predefined set of widgets pertaining to
processes that are being executed by the platform and which are relevant to the user logged
in6. This page contains the Process Overview, Process Event List and Process Event Detail
widgets. All of these widgets are detailed in the sections below.

6 In this first prototype we do not differentiate between users. Support for this will be
implemented in future versions through the overall user-support capabilities of the Studio.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 16 of 29

Figure 7. Predefined Process View

3.5 Customizable Monitoring Dashboard
This page allows the user to create their own console, as they require. User identification will
be performed through the user profile and login functionality of the Studio, using OpenID
(please see D2.4.2 for more information on user-management). The custom monitoring
dashboard is similar in principle to the iGoogle7 pages where a user that has logged in can
have their own Google start page with different widgets. However in addition to the
placement functionality, we also aim to have appropriate synchronisation between the
widgets. An example would be when selecting a service from a service selection widget to
update the different service information widgets to actually point to the selected service.

When first loading this page, the customisable dashboard is empty and the user has the
option of choosing widgets from a palette on the left side of the screen, as illustrated in
Figure 8. By dragging widgets from the palette, the user can place them on the screen in the
desired place. The widgets can also be repositioned after they have been placed in the
console.

7 http://www.google.com/ig

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 17 of 29

Figure 8. Empty Customisable Analysis Page

The palette is shown in Figure 9.

Figure 9. Palette of Monitoring Widgets

To illustrate the customisation options for this page, Figure 10 and Figure 11 show
screenshots of two different versions that could be created within this layout.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 18 of 29

Figure 10: Monitoring Dashboard – Example #1

Figure 11: Monitoring Dashboard - Example #2

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 19 of 29

3.6 Analysis Widgets
The following subsections present each individual widget available in the current version of
the Analysis Platform Prototype.

3.6.1 Service Response Time History

Figure 12. Service Response Time History Widget

This widget illustrated in Figure 12 shows the evolution of the response time of a service and
can be automatically updated when a new event is received, using the Comet8 approach.

8 http://en.wikipedia.org/wiki/Comet_%28programming%29

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 20 of 29

3.6.2 Service List

Figure 13. Service List Widget

This widget illustrated in Figure 13 lists the services relevant to the user (e.g. favorites or
recently used). Clicking on the service name takes the user to the detail view for it, as
detailed in Section 3.3. The availability indicator can be red or green depending on whether
the service is unavailable or available respectively.

3.6.3 Service Description

Figure 14. Service Description Widget

This widget shown in Figure 14 provides a textual description of a service. It displays
performance information received using the WSDM standard. Note that Figure 14 does not
show the entire range of information displayed by this widget.

3.6.4 Real-Time Alert Manager

Figure 15. Alert Manager Widget

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 21 of 29

This widget shown in Figure 15 allows the definition of simple thresholds for service
execution times. When the execution time of the service exceeds the specified threshold, the
user is notified by a popup like the one in Figure 16 that an alert was raised.

Figure 16. Alert Popup

3.6.5 Time Window Selector

Figure 17. Time Window Selector Widget

This widget shown in Figure 17 allows the precise definition of the period of interest for
historical data (such as for the Service Response Time History). It is used to select a start
date and an end date as well as the time of the day for both dates with second-precision.
Widgets that need intervals to display or compute data take this interval into account in their
display. The “Live Result” tick-box available above the end-date selector is used to request
that values be updated in “real-time” as they arrive, when they are not already available in
the Analysis Warehouse.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 22 of 29

3.6.6 Process Overview

Figure 18. Process Overview Widget

The Process Overview Widget shown in Figure 18 displays a “real-time” overview of process
execution. It uses a tree-based hierarchy to illustrate processes and their instances that are
being executed, as well as those that have finished execution. For each process instance the
user can observe the evolution of its activities as they happen.

 Indicates a Process

 Indicates a Process Instance

 Denotes an Activity Instance which is never called by the current process instance

 Indicates that the Activity is ongoing

 Indicates that the Activity has finished execution

Figure 19. Process Overview Widget Legend

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 23 of 29

3.6.7 Process Event List

Figure 20. Process Event List Widget

This widget illustrated in Figure 20 displays in table format the headers of raw monitoring
events received from the process engine. When clicking on an event from the list, the
Process Event Detail Widget described below is updated to correspond with the selected
event.

3.6.8 Process Event Detail

Figure 21. Process Event Detail Widget

This widget illustrated in Figure 21 displays the details of a raw event selected in the Process
Event Detail widget. The properties type, origin, creation time and concerned instances of
business processes or activities, can be found in this widget.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 24 of 29

3.6.9 Process Time Line

Figure 22. Process Time Line Widget

As illustrated by Figure 22, the Process Time Line widget visualizes both the raw events and
the instances of business processes or activities through the metaphor of time line. Every
small circle in Figure 22 represents a monitoring event, whilst every bar symbolizes an
instance of process or activity. When clicking on an event or an instance, more details
appear in the pop-up window. This widget is implemented based on the SIMILE Time Line9,
which supports visualization of both instantaneous and continuous artefacts.

3.6.10 Knowledge Analytics manager

The Knowledge Analytics (KOPE*) component can be configured to track the information of a
service over time, in a way that the necessary computations take place in a regular basis
from the moment of its configuration.

This widget permits configuring new tracks on services, and then opening an additional
widget (explained next) for each of the services being tracked. Figure 23 depicts the setting
of a new track on a service, and the possibility to select one of the three already configured
by clicking on the “Open” button.

9 http://www.simile-widgets.org/timeline/

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 25 of 29

Figure 23. Knowledge Analytics Manager Widget

3.6.11 Knowledge Analytics for a Service

Figure 24. Knowledge Analytics (for a specific service) Widget

This widget displays the Knowledge Analytics for a selected service that has been previously

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 26 of 29

set to be tracked by the previous widget. It displays the three main concepts (frequency,
performance and user perception) already computed by the component using a time scale.
Figure 24 depicts this graph where those concepts can be compared over time.

It is also possible to expand each of those concepts in order to see with more detail the
evolution of the related lower-level concepts over time.

It is worth noting that the time scale used by this widget can be modified by using the Time
Window Selector widget addressed in Section 3.6.5.

3.7 DEMO Generator
This section refers to functionality that is not directly part of the prototype but which is used to
illustrate the functionality of the prototype. The Analysis Platform prototype needs data obtain
through its data sources in order to be able to display analysis information through its
widgets.

We have built a Demo Generator application that is responsible for generating data to be
used when “real” data arriving from the SOA4All Infrastructure is not available. This
application generates data that corresponds to the WSDM and EVO event sources and it
presents a simple user-interface that can be used to control the generation independently of
the Studio pages of the Analysis Platform. This interface, illustrated in Figure 25, is available
through a web page found at this relative address: http://[SOA4All Studio
Address]/DemoHelper/.

Figure 25. DEMO Generator Interface

The first button is used to clear the internal DB used by the BEP, in order to start with fresh
data. The other buttons marked with START and STOP for WSDM and EVO control the
event flow for these two sources.

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 27 of 29

4. Installation & Setup
In order to test the functionality of the Analysis Platform prototype, the SOA4All Studio needs
to be installed. The procedure for the installation and setup of the Studio is described in
Section 4 of the D2.4.2 deliverable. Once the Studio is running, the Analysis Platform can be
accessed through the Dashboard as indicated in Section 3.1.

Note that the Analysis Platform prototype can currently be tested by simply pointing your
browser to

http://coconut.tie.nl:8080/soa4all

where the Studio currently runs.

When installing on a new machine, apart from the indicated procedure for installing the
Studio, an extra step that is required for the first prototype of the Analysis Platform to run is
the installation of a local DB software that is used internally by the BEP to buffer monitoring
events. This software, called “hsqldb” is available for download at http://hsqldb.org. We have
tested the prototype with version 1.8.0 of hsqldb, which needs to be downloaded and
installed with all its default values on the system that runs the Studio. The installation
involves unpacking the downloaded archive. Once the software is installed, it needs to be
started with the following command:

"java -cp hsqldb.jar org.hsqldb.Server -database.0 file:monitoringdb
-dbname.0 monitoringdb"

Once the hsqldb server is started, the generation of events can be controlled through the
prototype DEMO generator as described in Section 3.7 and results observed in the
appropriate pages as described throughout Section 3.

SwiftOWLIM serves as the RDF repository for the demonstration of the monitoring and
management tool. In order to install SwiftOWLIM, the following pre-requisites should be
installed and available:

• Java Virtual Machine 1.5 or later

• Tomcat 6.0 or later

Before installing SwiftOWLIM, Sesame should be installed on Tomcat by deploying the
'openrdf-sesame.war' and 'openrdf-workbench.war', which can be found in the binary
distribution of Sesame. As a plug-in for Sesame, OWLIM is installed under Sesame by
simply copying 'owlim.jar' and 'trree.jar', which can be found in the lib directory of the
SwiftOWLIM distribution, to the directory 'openrdf-same/WEB-INF/lib'. In this way,
SwiftOWLIM can run in the remote access mode.

The installation of SwiftOWLIM is accomplished by taking the above steps. Here, we explain
how to create the semantic repository:

• Browse the data directory of OWLIM, and create a new directory 'templates' there.

• Create a file named 'soa4all.ttl' under the 'templates' directory, and add the following
contents to the file:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rep: <http://www.openrdf.org/config/repository#>.
@prefix sr: <http://www.openrdf.org/config/repository/sail#>.
@prefix sail: <http://www.openrdf.org/config/sail#>.
@prefix owlim: <http://www.ontotext.com/trree/owlim#>.

[] a rep:Repository ;
 rep:repositoryID "soa4all" ;

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 28 of 29

 rdfs:label "SOA4All Monitoring Data Repository" ;
 rep:repositoryImpl [
 rep:repositoryType "openrdf:SailRepository" ;
 sr:sailImpl [
 sail:sailType "swiftowlim:Sail" ;
 owlim:ruleset "owl-max" ;
 owlim:partialRDFS "true" ;
 owlim:noPersist "true" ;
 owlim:storage-folder "monitoring-data-storage" ;
 owlim:base-URL "http://www.ip-super.org/ontologies/execution-
history#" ;
 owlim:new-triples-file "new-triples-file.nt" ;
 owlim:entity-index-size "200000" ;
 owlim:jobsize "200" ;
 owlim:repository-type "in-memory-repository" ;
 owlim:defaultNS "http://www.ip-super.org/ontologies/execution-
history#"
]
].

• Copy the 'templates' directory to 'OpenRDF Sesame console' directory, which is
automatically created by running the command-line based Sesame console at the
first time.

• Run Sesame console, connect to the repository, and create the soa4all repository by
command 'create soa4all.' as shown in Figure 26.

Figure 26. Sesame Control Console

 FP7 – 215219 – Prototype Documentation D2.3.2 SOA4All Analysis Platform First Prototype

© SOA4All consortium Page 29 of 29

5. Conclusions and Next Steps
This document presented the software deliverable of the first prototype of the Analysis
Platform. It can be noted that significant functionality is available in this implementation,
demonstrating successful integration within the overall SOA4All Studio as well as feasible
targets for the different components of the AP.

There are however important remaining developments for the AP. Different editors, such as
the process editor from T2.6 need to use information generated by the AP to augment their
graphical displays. The APIs that are available and that were presented in Section 2 may
need to be refined to correspond to this need. The AP also needs to properly handle user
identity in order for the presentation of information to correspond to each user’s services and
processes as well as to the customized dashboard.

The AP needs to consolidate the usage of the semantic storage in conjunction with the
needs of other tasks and WPs. More information is potentially required to be placed in this
storage; it may also need to collect more information from the storage to compute more
complex metrics.

One of the main remaining challenges however refers to the scalability ambitions of SOA4All,
which requires the AP to scale accordingly. The current prototype already supports a
distributed environment and it will need to be tested and potentially refactored to correspond
to the wide distribution of its data sources both from functional as well as non-functional
points of view (i.e. dealing with large amounts of data in information presentation as well as
ensuring that the AP infrastructure can cope with the demands).

