

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.5.2. Summative Evaluation Report

Activity N: Activity 1 - Fundamental & Integration Activities

Work Package: WP2 - Service Deployment and Use

Due Date: M24

Submission Date: 28/02/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: The University of Manchester

Revision: 1.0

Author(s): Abdallah Namoune UNIMAN

Usman Wajid UNIMAN

Nikolay Mehandjiev UNIMAN

Reviewers: Sven Abels TIE

John Davies BT

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

CO Confidential, only for members of the consortium (including the Commission) X

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 2 of 36

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 10/01/2010 First proposal and table of content Abdallah Namoune (UniMan)

0.2 16/01/2010 Evaluation techniques and plan Abdallah Namoune (UniMan)

0.3 01/02/2010 Evaluation rational and scenarios Abdallah Namoune (UniMan)

0.4 04/02/2010 Usability problems probed by scenario one Abdallah Namoune (UniMan)

0.5 07/02/2010 Usability problems probed by scenario two Abdallah Namoune (UniMan)

0.6 08/02/2010 Usability problems probed by scenario three Abdallah Namoune (UniMan)

0.7 09/02/2010 Upcoming evaluation studies and Conclusions Abdallah Namoune (UniMan)

0.8 11/02/2010 Usability problems, evaluation and review of the
document

Usman Wajid (UniMan)

0.9 15/02/2010 Further revision of the deliverable and inclusion of
internal comments.

Abdallah Namoune (UniMan)

Nikolay Mehandjiev (UniMan)

1.0 25/02/2010 Addressing reviewers’ comments Usman Wajid (UniMan)

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 3 of 36

Table of Contents

EXECUTIVE SUMMARY __ 5

1. INTRODUCTION __ 6

1.1 INTRODUCTORY EXPLANATION OF THE DELIVERABLE _________________ 6
1.2 PURPOSE AND SCOPE __ 6
1.3 STRUCTURE OF THE DOCUMENT ___________________________________ 6
1.4 METHODOLOGY __ 6

2. USABILITY EVALUATION STRATEGY AND TECHNIQUES ___________________ 7

2.1 EARLY EVALUATIONS ___ 7
2.2 UPCOMING EVALUATIONS ___ 7
2.3 UPDATED USABILITY EVALUATION PLAN _____________________________ 8

3. PHASE TWO EVALUATION METHODOLOGY ______________________________ 8

3.1 EVALUATION RATIONALE __ 8
3.2 PROCEDURES OF EXPERT-BASED EVALUATION OF SOA4ALL STUDIO ___ 9

3.2.1 Evaluation Steps ___ 9
3.2.2 Usability Heuristics __ 10
3.2.3 Test Scenarios ___ 11

4. PHASE TWO EVALUATION RESULTS ___________________________________ 11

4.1 USABILITY PROBLEMS PROBED BY WP 7 SCENARIO __________________ 11
4.2 USABILITY PROBLEMS PROBED BY WP8 SCENARIO __________________ 16
4.3 USABILITY PROBLEMS PROBED BY WP9 SCENARIO __________________ 19

5. CONCLUSIONS __ 23

6. REFERENCES ___ 24

7. APPENDIX __ 25

List of Tables

Table 1: Updated Usability Evaluation Plan ... 8

Table 2: Nielsen Usability Heuristics ...10

Table 3: Usability Problems in the SOA4All Studio and their Corresponding Design
Recommendations, Probed by WP7 Scenario ..16

Table 4: Usability Problems in the SOA4All Studio and their Corresponding Design
Recommendations, Probed by WP8 Scenario ..19

Table 5: Usability Problems in the SOA4All Studio and their Corresponding Design
Recommendations, Probed by WP9 Scenario ..23

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 4 of 36

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

M12 Milestone 12 of the SOA4All project

M1 Milestone 1 of the SOA4All project

QoS Quality of Service

DL Description Logic

IPs Integrated Projects

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 5 of 36

Executive summary
The current document presents the results of the interim usability evaluations of SOA4All
Studio up to month M22. This second iteration of expert-based evaluation is a continuation of
the initial evaluation efforts reported in Deliverable D2.5.1, which proved to be invaluable to
developers of the Studio as it quickly highlighted the main design issues and suggested
design remedies at the early stages of the project. In this second phase of evaluation,
experts walked through the current version (M22 version) of the SOA4All Studio and focused
on inspecting new design flaws and proposing recommendations to counterbalance them.
On the contrary to the initial evaluation (reported in D2.5.1), in which experts used only one
scenario to steer the assessment, experts in this occasion employed the detailed scenarios
of WP7 (deliverable D7.2), WP8 (deliverable D8.1), and WP9 (deliverable D9.2) to
thoroughly investigate the Studio. The variety of user actions encapsulated by those three
scenarios allowed identifying various issues and testing many important features of the
Studio such as: the profile editor, composition editor, annotation editor, discovery platform,
consumption platform, and monitoring platform.

In general, the results of the current extensive expert-based evaluations pinpointed issues of
diversified severity in M22 version of the Studio. Some issues identified by the experts relate
to light-weight user interaction, such as movement, deletion and modification of
services/activities. Whilst, other relate to service composition (e.g. creation of bindings
between ontology elements and service elements), service consumption (e.g. executing and
interpreting the results of services), and service monitoring aspects (e.g. assessing the
quality of a particular service using its monitoring data). Corrective measures to overcome
both types of issue are highlighted for developers to address in the upcoming versions of the
Studio.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 6 of 36

1. Introduction
1.1 Introductory explanation of the deliverable
Continuous usability evaluation of software designs and artefacts is a crucial step in the
development of effective interactive software applications since it enables the detection of
design problems during the software life cycle and consequently proposes early solutions
before products are released for public consumption.

In deliverable D2.5.1, we reported results summarising early focus group-based and expert-
based evaluations of various end user development concepts, early prototypes, and software
artefacts. The current deliverable D2.5.2 details the latest evaluation efforts undertaken to
assess recent implementation and features added to the SOA4All Studio up to month M22 of
the project. It primarily presents results of the most up to date expert-based usability
evaluations carried out in the SOA4All project to assess different features and parts of the
Studio. In addition, the document highlights and justifies the need to update the evaluation
plan in accordance with the project deadline and effort spent to develop the SOA4All Studio
and its components.

1.2 Purpose and Scope
In essence, this deliverable mainly describes the second iteration of usability evaluations,
which we have carried out between month 18 and month 24 of the project, namely: an
extensive expert-based usability evaluation of the SOA4All Studio and its components,
guided by three different scenarios. At this stage of the project it is not appropriate to test the
Studio with end users since much functionality is not yet available, therefore we preferred to
perform cost-effective heuristics evaluation which checks conformity of the Studio to design
guidelines. The recommendations by evaluation experts will be fed into the development
process.

In this deliverable, we describe the evaluation approach and argue for the rationale behind
our evaluation strategy at this stage of the project. The evaluation focuses on only those user
activities specified in the work packages (WP7, WP8, WP9) scenarios which are supported
by the current version of the Studio.

1.3 Structure of the Document
The rest of this document is organised into five main sections. Section 2 restates the
evaluation strategy and techniques employed in SOA4All. Section 3 explains the evaluation
methodology and procedures of phase two of the project, alongside the rationale behind the
evaluation philosophy. Section 4 reports a comprehensive list of design flaws and proposes
proactive measures for developers of the components of the Studio in order to resolve them
in future versions. Finally, Section 5 summarises the major findings of this deliverable.

1.4 Methodology
At first, we had to assess the status of the Studio in order to decide which type of evaluation
best suits the most recent version of the Studio. This step was necessary since many
components in the studio heavily depend on the availability of other services. Subsequently,
three scenarios from Work Package 7, Work Package 8, and Work Package 9 were selected
owing to their diversity and practical relevance to guide and assist evaluators in the
evaluation process.

Following this, two experts repeated their initial expert-based evaluation reported in D2.5.1,

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 7 of 36

stepped through the Studio and inspected the latest usability problems. The problems were
then documented and design recommendations were proposed to overcome the detected
problems.

2. Usability Evaluation Strategy and Techniques
2.1 Early Evaluations
During the early usability evaluations of M14, we employed two techniques - focus groups
and expert-based evaluation - to firstly assess users’ understanding of services and service
composition, their perception of risks and benefits and willingness to take up end user
development activities, and secondly measure the usability of the SOA4All prototypes and
software artefacts.

Focus groups usually include a number of participants (6-10) who discuss different topics of
interest under the supervision of a moderator [1]. Focus groups help to elicit user
requirements and provide a better understanding of users’ perceptions and attitudes towards
end user development. The main findings of focus groups (M14) showed that ordinary end
users have a poor understanding of the technical details of services and service composition,
while they expressed great interest in undertaking development activities. In terms of risk,
people were concerned about their personal privacy and security. In terms of benefits,
people argued that enabling end users to develop specialised service-oriented applications is
interesting, useful, and will save the time. Further details of the results were published in [2].

In heuristic evaluation, on the other hand, usability experts go through the purported system
and check whether it conforms to well-known usability heuristics such as those proposed by
Jacob Nielsen who developed it from analysing 249 usability problems [3]. End users are not
involved in this type of evaluation. The result of this assessment is summarised as a record
of usability problems in the SOA4All Studio user interface and a list of accompanying
recommendations to design teams. In the first heuristic evaluation, experts used a realistic
scenario (One Stop Cloud Shop, D2.5.1) that contains a set of potential tasks to be
performed by a specified user whilst carrying out their daily job. At the end of the evaluation,
evaluators pinpointed the underlying problems in the Studio, related them to design
principles and most importantly suggested appropriate counteractive solutions to SOA4All
design teams. Further details of the initial evaluation results have been reported in D2.5.1.

2.2 Upcoming Evaluations
In future evaluations, especially when the Studio is fully functional and most of its features
are completely implemented, we plan to conduct a series of user-based evaluations that will
assess the usability of the final products of SOA4All. This type of evaluation is most
convenient for the third stage of the project (M24 – M36) because by then it is possible to
involve real end users in the evaluation process. Usually user testing provides rich user
interaction data and more insights about the actual problems users face when using a
particular interactive system, but it requires a certain degree of stability, maturity, and
integration of the software artefacts under investigation and SOA4All Studio has not yet
reached this stage at the time of evaluation. The researcher measures user performance
while carrying out typical tasks, after recording user interaction behaviour via video, audio,
and log recording programs. It is also possible to capture user opinions and satisfaction via
questionnaires and debriefing interviews. The researcher can later analyse the number and
type of problems users encountered, and calculate various objective performance measures
such as the time spent and number of errors to perform the tasks. For a deeper
understanding of the inspected problems, results of the usability testing will be analysed
using a usability post analysis process (i.e. Model Mismatch Analysis (MMA)) [4].

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 8 of 36

2.3 Updated Usability Evaluation Plan
Table 1 summarises the most suitable usability evaluation techniques for each Use Case in
WP7, WP8, WP9, and WP 2, and redefines a new evaluation deadline for the third stage of
the project, as M33 instead of M36. This change is motivated by the fact that user testing
together with the analysis of data consume a considerable amount of time. Moreover the final
evaluation report is due in M36, which is the end date of the SOA4All project. Hence, it is
only reasonable to carry out the user-based evaluations 3 months before M36 to be able to
analyse the data and submit the final deliverable on its due date, in order that an extension to
finish the project is not required.

Work
Package

Target end
users

First stage Second stage Third stage

Initial mock-ups,
low-fidelity
prototypes,

power point
presentations,

Initial prototypes,
high-fidelity
prototypes

End-user
products

WP7 End users
from public
sector

Focus groups

Heuristics
evaluation

Heuristics
evaluation

User testing

WP8 BT customers Focus groups

Heuristics
evaluation

Heuristics
evaluation

User testing

WP9 E-Commerce
User (Buyers,
Sellers,
Resellers)

Strategic priorities
interviews

Analysis of existing
user data

Heuristics
evaluation

User testing

WP2 General users

(e.g. students,
staff at
University)

Focus groups

Heuristics
evaluation

Heuristics
evaluation

User testing

Deadline of evaluation M14: 05 / 2009 M22: 01 / 2010 M33: 11 / 2011

Deliverable due date M18 M24 M36

Table 1: Updated Usability Evaluation Plan

3. Phase Two Evaluation Methodology
3.1 Evaluation Rationale
In contrast to the first stage of the usability evaluation, in which both focus groups and

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 9 of 36

heuristics evaluations were undertaken, only expert-based evaluations have been performed
in the second stage of the evaluation, which is aligned with the original usability evaluation
plan. The present evaluation aims to discover existing issues in various components of the
Studio and provide feedback and recommendations to designers in order to make further
improvements in the design of the Studio before the final user-based evaluations scheduled
for M33.

Our approach to evaluating SOA4All prototypes and software artefacts at this stage of
development mainly concentrate on expert-based inspection for various reasons. Firstly,
many parts of the Studio are still under development and it is not suitable to test their
applicability with end users. Secondly, the cost of user-based testing at this phase will
outweigh the benefits and scientifically it is not worthwhile testing features that are not
completed yet. Essentially, user-based evaluations mainly assess the interaction behaviour
between potential end users and interactive systems whilst trying to execute realistic tasks.
Unfortunately, at present it is not possible to realise pragmatic user interactions, which
envisage actual activities within specified contexts. Thirdly, for those Studio parts that are
implemented, it is not possible to create a typical user story for testing purposes. The
formulation of a coherent test scenario that embodies realistic user activities is not feasible
owing to the interdependency between many aspects of the Studio that are yet under
development. For the above reasons, it is more appropriate that heuristic evaluations are
performed to obtain the most useful results, whilst user testing should be held back until the
Studio is fully functional.

3.2 Procedures of Expert-based Evaluation of SOA4ALL Studio
Usability experts endeavoured to identify as many design issues as possible in the current
version of SOA4All Studio, especially those that relate to direct user interface manipulation
and end user development activities by checking Studio behaviour against the Nielsen
heuristics. Another motivating objective was to provide quick feedback to Studio developers
and generate recommendations to improve the user interface in the next development
iterations. In what follows, we present the evaluation procedure, heuristics, and scenarios
used to fulfil the objectives.

3.2.1 Evaluation Steps

Expert-based evaluation comprises six basic steps that were followed by the evaluators:

• Define the aim of the evaluation, the target end users, and the context of use for
SOA4All Studio: the intended end users of SOA4All Studio are general web users
who frequently use web 2.0 applications such as: Facebook1, Twitter2, and Wikis. The
SOA4All Studio will be used to create personal applications for general leisure, and
also for business purposes to generate revenue (such as: reselling services).

• Select heuristics: for the purpose of this evaluation, we selected the most used
heuristics of Jacob Nielsen [3, 5] for user interface design (section 3.2.2). There are
also other usability heuristics available, such as Jill Gerhardt-Powals cognitive
principles [6].

• Brief the evaluators about SOA4All Studio and how it is intended to be used:
developers of the Studio outlined the purpose of the SOA4All Studio and explained

1 http://www.facebook.com
2 http://www.twitter.com

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 10 of 36

how it can be used to usability evaluators.

• Each evaluator independently makes a first pass through the Studio to obtain an
overall impression about the general features and look and feel of the design.

• Each evaluator independently examines the aspects of the design in detail, working
through typical scenarios. In this second iteration of usability evaluation, three diverse
and comprehensive scenarios, which address different features of the Studio (e.g.
composition, consumption, monitoring, etc), were used to steer the usability
inspection process.

• Produce a record of problems, link each design problem to appropriate heuristics,
rate their severity on a 1-3 rating scale (1 = not severe at all, 3 = very severe), and
suggest solutions to counterbalance these problems.

3.2.2 Usability Heuristics

To perform our heuristic evaluation, we have selected the widespread and general-purpose
heuristics of Nielsen [5]. Table 2 lists and explains the ten heuristics defined by Nielsen.

ID Heuristic

H1 Visibility of system status: is the system continuously informing the users
what is going on using appropriate feedback? Are all things visible to the
user?

H2 Match between system and real world: does the system use familiar words,
phrases, and concepts to the users? Is information presented in a natural
and logical order? Are metaphors used effectively?

H3 User control and freedom: does the system support the undo and redo
actions? Are there clearly marked exits in case of a mistake? Can the user
easily go back to the initial stage?

H4 Consistency and standards: is the use of different components consistent
throughout the system? Have the platform conventions been followed?

H5 Error prevention: does the system eliminate error-prone conditions? Doe the
system ask for confirmation before executing a dangerous action?

H6 Recognition rather than recall: Are the objects, actions and options visible to
the user? Does the system offer visible instructions of how to use the
system?

H7 Flexibility and efficiency of use: does the system support both novice and
expert users? Does the system allow the users to skip unnecessary actions?

H8 Aesthetic and minimalist design: does the system contain the relevant
elements only? Is it free from distractive elements?

H9 Help users recognize, diagnose, and recover from errors: does the system
clearly describe the problem and suggest a way of recovery?

H10 Help and documentation: does the system provide clear and focused help
and documentation?

Table 2: Nielsen Usability Heuristics

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 11 of 36

3.2.3 Test Scenarios

Expert evaluators were supplied with three distinct scenarios that were used to identify
design issues in the current version of the Studio (M22 version). The dissimilarity between
the three scenarios was very beneficial since it allowed (1) the testing of various critical parts
of the Studio, particularly the profile editor, discovery platform, annotation editor, composition
editor, consumption platform, and monitoring platform, as well as (2) the identification of
different problems in that relate to interaction and look and feel of the Studio.

Two evaluators of SOA4All Studio used the WP7, WP8, and WP9 scenarios described in
deliverable D7.2, D8.1, and D9.2 respectively to step through the Studio and focus their
assessment on particular Studio aspects and features. WP7 scenario comprises user tasks
that relate to the use of profile editor, discovery platform, consumption platform, and
composition editor of the SOA4All Studio. WP8 scenario comprises user tasks that relate
mainly to the use of profile editor, discovery platform, and composition editor. Lastly, WP9
scenario comprises user tasks that relate to the use of composition editor, consumption
platform, monitoring platform, and WSMO-Lite editor. For further details about the scenarios
refer to D7.2, D8.1, and D9.2.

4. Phase Two Evaluation Results
During the first evaluation study (reported in D2.5.1) the SOA4All studio offered very simple
features. The look and the feel of the studio was at preliminary level at that time and the
functionality provided by the studio was very basic, for instance users were not able to add
activities and goals to the process model and users cannot execute services in the
composition platform. In summary, during the last evaluation the studio did not support
development activities. However, significant improvements have been made in the studio
since the first evaluation study. For instance, in the current version you can execute services,
compose services and annotate services.

In this section of the deliverable, we report the usability design problems probed by the WP7,
WP8 and WP9 scenarios, link the problems to Nielsen’s usability heuristics, rate their
severity on a 3-point rating scale (where 1 = low severity, 2 = medium severity, and 3= high
severity), and finally propose design resolutions to remedy these problems.

4.1 Usability problems probed by WP 7 Scenario

Usability problem Severity
rating (1-3)

Design recommendation

The profile creation option is hidden in a tree
menu on the top-left corner of the screen,
which is difficult to find by a first time user

3 Either toggle on the menu at
all times clearly showing the
profile editor options or
provide an up-front button for
profile creation for ease of
use.

No comprehensive system support is
provided to users to illustrate how a profile

3 Provide clear instructions
and hints to users about how

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 12 of 36

can be created, especially with the necessity
to have an OpenID account. What is
OpenID? No instructions are provided in the
Studio.

to create a SOA4All profile.
This is very important to
novice users and beginners.

The three rectangular menu items (Create,
Consume, and Analyse) on the home page
are not very elaborative of what functionality
they offer. A novice user might easily be
asking herself, create what? an application,
a model, a process, an annotation, an
interface, etc?

1 Add descriptive text snippets,
that appear upon mouse-
hovering to explain what
functions these menu options
offer if a user decides to
commit to any of them.

During the logging in process, users are
directed to the OpenID website which is
confusing. Users then have to click on
“continue to Studio“ in order to be diverted
back to the Studio. The benefits of this
transit are questionable, as it adds no value.

2 There is no need to transit
users through intermediary
web sites such as: OpenID
website, hence users should
be kept in the Studio unless it
is absolutely necessary.

Once users are logged into the Studio, no
feedback is presented to indicate their
status. Therefore, users would not know if
they are still logged in the system. At certain
times, this was confusing and errors of the
Studio could be mistakenly linked to the
possibility of “not being logged in”.

3 At all times, the system
should notify users whether
they are logged in the system
or not via a message which
could be displayed on the
Studio to show their status.

No functionality is provided for users to log
off the Studio.

If users visit the profile editor, no greeting
message or information regarding their
status (logged in / logged out) is presented.

User can not create personal profiles, which
could be shared with other users. This may
be relevant in the case of collaborative
design activities.

2 Empower end users to log off
from the Studio any time they
want. It might also be
worthwhile to enable them to
create personal profiles
which contain contact details,
interests, a photo… etc.
Such information becomes
handy in collaborative
development activities or
could be used in the process
editor.

In case a user forgets his log-in information
(ID, password), there is no way to retrieve it .

1 In this situation, the Studio
must ask users to supply
their email address, to which
their log-in details will be
sent.

The Studio does not offer quick and easy
way to navigate back to the home page, or
navigate between pages of the Studio.

2 Add a link/logo that enables
users to easily access the
main/start page of the Studio.

Although the Studio is hosted within a web
browser, back arrows of the browser are not
working properly.

1 Ensure browser features
such as back and forward
arrows are fully operational.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 13 of 36

Since SOA4All Studio is
hosted within a web browser,
it is expected that users will
very much depend on
browser navigational
features.

Extending the menu of classes, in the
discovery platform, results in a long menu
hindered by pre-condition / effect windows
on the left hand side. Hence, menu items at
the bottom become invisible and
inaccessible to users.

2 Make sure the menu of
classes is viewable always to
facilitate user navigation.
Either relocate the pre-
condition / effect windows to
the right hand side or add a
vertical scroll bar to the menu
of classes.

Meaningless names are given to services
such as: service696, service32, etc. Users
will not be able to understand the purpose or
functionality of those services.

3 Use self-explanatory names
whenever possible to
represent services and
development-related
concepts.

Service discovery sometimes does not work
i.e. after pressing the ‘Search’ button no
results are displayed.

3 This can be a problem with
the server but in this case
there should be a message
displayed with the
appropriate content.

Too many technical details are shown to
users in the right hand windows (pre-
condition, effect, input message, output
message), in the discovery platform. Users’
understanding of such technical jargon is
very much dependent on their background
and knowledge. Whilst technical users are
likely to understand the content of these
windows, ordinary people will have no clue
of their meaning.

3 Either remove the pre-
condition, effect, input
message, and output
message windows if
unimportant or use natural
language to convey the
embodied technical details to
ordinary users.

Not sure how the pre-condition and effect
search windows can be used to find
particular services. No explanation or
instructions are offered to Studio users.

3 Provide examples and help
to show how to use the pre-
condition and effect search
windows on left side of the
discovery platform.

Searching for particular services in the
discovery platform, for example: Amazon
service, is not supported via a typical search
box. The functionality-based search is based
on the assumption that users will browse the
service classification on the left side to find
their preferred service.

3 Add a typical keyword-based
search box to enable easy
and quick search of services.
This is more efficient than
browsing the service
classification.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 14 of 36

It is not obvious how services that are found
using the discovery platform can be used,
since at the moment only information about
service classification, pre-condition, effect,
input message, and output message are
shown there and no link to other editors of
the Studio is exposed.

3 Ensure that users clearly see
how to use their target
services by adding options
that enable different
functionalities such as:
execution, composition,
consumption … etc.

Upon invoking the consumption platform,
several unmeaningful messages (info:
suggestions retrieved etc) are shown at the
bottom right corner of the Studio.

1 Remove such messages,
which might confuse and
distract user attention.

The consumption platform shows error
messages at the bottom right of the Studio
which might not be easily noticeable by
users. It is also hard to make associations to
the occurring problems.

2 The system feedbacks
should be associated to the
place where the problem
occurs.

Dialog windows in the consumption platform,
contain the close symbol (x) to left which is
unnatural.

3 Place the close symbol (x) on
the top right corner.

The maximize button changes its position
from centre to right after a window is
maximized and then minimized.

1 The maximize button should
always appear at one
position, better if it is in the
centre.

Every time a category is selected from the
categories tree in the consumption platform,
a new search box is added to the main
window below previous search windows.
Therefore, selecting (n) categories would
produce (n) search windows, which creates
an unpleasant design and badly manages
design space.

3 Instead, use only one search
box to display search results.
If the user selects a new
category, simply update the
existing search box. There is
no need to create a new one.

In case users select a particular category,
which has no services, an empty search
window is shown to the user with no
information.

1 Add meaningful messages /
feedbacks to inform users
about the results of their
actions and give advice in
case no services are found.

Service windows in the consumption
platform, are not resizable. Users can only
maximise them to full size. This hinders
users from organising services in the manner
they find most convenient.

1 Enable users to resize
service windows to the size
they desire. This will allow
them to arrange services in
the design space and make
most use of it.

At the time of testing it was not possible to
comment on, rate, or add found services to
the list of favourites in the consumption

2 It is crucial for the Studio to
enable users to share their
experience by commenting,
rating, and adding services to

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 15 of 36

platform. their list of favourites. This
gives them the feeling of
engagement and control.

Multiple selection of a particular service from
the search window adds the selected service
many times to the main window (i.e creates
duplicate services).

3 The Studio should ensure no
duplicate services are added
to the main window of the
consumption platform.

In the process editor, all top left icons, which
are used for quick access to most used
options, are labelled with the term
“compose”. This does not signify their true
functionality.

3 Annotate top left icons with
text that reflect their true
functionality.

In File->Open menu, the “Load” button in the
‘Load Model’ dialog window seems like static
text, which might be confusing.

1 Ensure buttons have
clickable characteristics and
are easily differentiated from
static text.

Entering a wrong file name and pressing the
“Load” button in the ‘Load Model’ dialog
window does not bounce back any error
messages.

3 The Studio must notify users
of any errors they make and
offer clear ways of dealings
with them.

In order to open a process model, users are
requested to both select the file to open and
enter its name. This is time consuming and
error prone.

3 To open a particular process
model, users should only
need to select the target file.

It is not possible to close a particular process
model.

3 Add a close menu item to the
main menu to enable users
to close unwanted process
models

The menu “view” on the top left seems to
serve no purpose.

3 All unnecessary elements
should be removed from the
interface.

If users want to open a process model, whilst
another one is already open, no error
message is shown to warn users. Moreover,
the new process model is displayed on top of
the existing process model.

3 The Studio must warn users
about the possibility of losing
their work and ask them to
save it. If the user opens a
new process model, the
system should close the
existing one to avoid
confusing the user.

After opening a desired process model, it is
not possible to move or edit its elements
(such as: activities).

3 Empower users to
manipulate loaded process
models by editing, deleting or
moving their elements.

Deleting activities and goals works 3 The use of delete button on

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 16 of 36

sometimes but not always. the keyboard will be much
easier way to implement this
functionality

The processes in ‘Favorites’ tab do not
expand in the centre window. Nothing
happens when you click on them or drag
them onto the centre window

2 The functionality should be
implemented to allow users
to re-use the processes
saved in the ‘Favourites’
section.

‘Help’ button do not have any associated
functionality

2 Relevant functionality should
be implemented.

Simple editing like cut, copy and paste
cannot be performed from the ‘Edit’ menu on
the command bar

3 The functionality behind
editing operations should be
implemented

An incoming connector will only connect to
the left hook of ‘Parallel Split’ but not with the
top one.

2 The incoming connector
should be allowed
connection with the top hook
of ‘Parallel Split’

Table 3: Usability Problems in the SOA4All Studio and their Corresponding Design
Recommendations, Probed by WP7 Scenario

4.2 Usability problems probed by WP8 Scenario

Usability problem Severity
rating (1-3)

Design recommendation

The profile creation option is hidden in a tree
menu on the top-left corner of the screen,
which is difficult to find by a first time user

3 Either toggle on the menu at all
times clearly showing the
profile editor options or provide
an up-front button for profile
creation for ease of use.

No comprehensive system support is
provided to users to illustrate how a profile
can be created, especially with the necessity
to have an OpenID account. What is
OpenID? No instructions are provided in the
Studio.

3 Provide clear instructions and
hints to users about how to
create a SOA4All profile. This
is very important to novice
users and beginners.

Once users are logged into the Studio, no
feedback is presented to indicate their
status. Therefore, users would not know if
they are still logged in the system. At certain
times, this was confusing and errors of the
Studio could be mistakenly linked to the
possibility of “not being logged in”.

3 At all times, the system should
notify users whether they are
logged into the system or not
via a message which could be
displayed on the Studio to
show their status.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 17 of 36

No functionality is provided for users to log
off the Studio.

If users visit the profile editor, no greeting
message or information regarding their
status (logged in / logged out) is presented.

User can not create personal profiles, which
could be shared with other users.

2 Empower end users to log off
from the Studio any time they
want. It might also be
worthwhile to enable them to
create personal profiles which
contain contact details,
interests, a photo, … etc. Such
information becomes handy in
collaborative development
activities or could be used in
the process editor.

In case users forget their log-in information
(ID, password), there is no way to retrieve it.

3 In this situation, the Studio
must ask users to supply their
email address, to which their
log-in details will be sent.

The Studio does not offer quick and easy
way to navigate back to the home page, or
navigate between pages of the Studio.

2 Add a link/logo that enables
users to easily access the
main/start page of the Studio.

Although the Studio is hosted within a web
browser, back arrows of the browser are not
working properly.

1 Ensure browser features such
as back and forward arrows
are fully operational. Since
SOA4All Studio is hosted
within a web browser, it is
expected that users will very
much depend on browser
navigational features.

Extending the menu of classes, in the
discovery platform, results in a long menu
hindered by pre-condition / effect windows
on the left hand side. Hence, menu items at
the bottom become invisible and
inaccessible to users.

2 Make sure the menu of classes
is viewable always to facilitate
user navigation. Either relocate
the pre-condition / effect
windows to the right hand side
or add a vertical scroll bar to
the menu of classes.

Meaningless names are given to services
such as: service696, service32, etc. Users
will not be able to understand the purpose or
functionality of those services.

3 Use self-explanatory names
whenever possible to represent
services and development-
related concepts. Small
descriptions of the services
that can be activated via
specialised options may also
be added.

Service discovery sometimes does not work
i.e. after pressing the ‘Search’ button no
results are displayed.

3 This can be a problem with the
server but in this case there
should be a message
displayed with the appropriate
content.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 18 of 36

Too many technical details are shown to
users in the right hand windows (pre-
condition, effect, input message, output
message), in the discovery platform. Users’
understanding of such technical jargon is
very much dependent on their background
and knowledge. Whilst technical users are
likely to understand the content of these
windows, ordinary people will have no clue
of their meaning.

3 Either remove the pre-
condition, effect, input
message, and output message
windows if unimportant or use
natural language to convey the
embodied technical details to
ordinary users.

Not sure how the pre-condition and effect
search windows can be used to find
particular services. No explanation or
instructions are offered to Studio users.

3 Provide examples and help to
show how to use the pre-
condition and effect search
windows on left side of the
discovery platform.

It is not obvious how services that are found
using the discovery platform can be used,
since at the moment only information about
service classification, pre-condition, effect,
input message, and output message are
shown there and no link to other editors of
the Studio is exposed.

3 Ensure that users clearly see
how to use their target services
by adding options that enable
different functionalities such as:
execution, composition,
consumption … ect. A button
for selecting a service would be
helpful

It is not clear how users can start a
composition of services; no support is
provided (e.g. tutorials, help topics, etc).

3 Appropriate mechanisms
should be implemented to
enable system support for
service composition

No wizards are supplied to assist users in
matching or composing suitable services

3 Define wizards to assist users
in finding and composing
suitable and compatible
services

In the process editor, all top left icons, which
are used for quick access to most used
options, are labelled with the term
“compose”. This does not signify their true
functionality.

3 Annotate top left icons with text
that reflect their true
functionality.

The menu “view” on the top left seems to
serve no purpose.

3 All unnecessary elements
should be removed from the
interface.

Deleting activities and goals works
sometimes but not always.

3 Add prominent navigational
options and activate mouse /
keyboard to allow users to
delete unwanted process
model elements. The use of
delete button on the keyboard
will be much easier way to

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 19 of 36

implement this functionality

The purpose of the “data flow” / “control flow”
buttons at the bottom of the editor is not
clear.

3 Provide help text to clarify the
purpose of these buttons and
how they can be used by end
users.

The functionality underneath ‘Binding’ button
in not clear

3 A brief description of the
functionality offered by this
button would be helpful

When connecting activities in the process
editor, it is only possible to connect the right
hook of one activity with the left hook of
another. Right hooks cannot be connected to
right hooks of other activities located below
them.

1 Use different symbols / colours
to signify the start and finish
points of process model
elements (activities, parallel
split … etc).

It is not possible to change the names of
activities and connectors.

3 The Studio should allow users
to directly manipulate and edit
details of process model
elements.

It is not possible to close a particular process
model.

3 Add a close menu item to the
main menu to enable users to
close unwanted process
models

It is not possible to execute services in the
process editor. Hence, users will not be able
to test the results of their composition.

3 Implement this feature to
empower users to constantly
check their progress.

Table 4: Usability Problems in the SOA4All Studio and their Corresponding Design
Recommendations, Probed by WP8 Scenario

4.3 Usability problems probed by WP9 Scenario

Usability problem Severity
rating (1-3)

Design recommendation

In the process model, the purpose of “data
flow” / “control flow” buttons at the bottom of
the editor is not clear.

3 Provide help text to clarify
the purpose of these buttons
and how they can be used by
end users.

The functionality underneath ‘Binding’ button
in not clear

3 A brief description of the
functionality offered by this
button would be helpful

When connecting activities in the process
editor, it is only possible to connect the right
hook of one activity with the left hook of

1 Use different symbols /
colours to signify the start
and finish points of process

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 20 of 36

another. Right hooks cannot be connected to
right hooks of other activities located below
them.

model elements (activities,
parallel split … etc).

In the process editor, it is not possible to
change the names of activities and
connectors.

3 The Studio should allow
users to directly manipulate
and edit details of process
model elements.

At the current time, it is not possible to delete
unwanted elements of process models (such
as activities) from the design area.

3 Add prominent navigational
options and activate mouse /
keyboard to allow users to
delete unwanted process
model elements.

Some information, such as author and Date
created, on the left hand side of the process
editor have to be filled in by the user every
time a new model is created.

1 These attributes can be
automatically filled in by the
Studio using data from the
profile editor.

Icons at the top centre and top left of the
process editor are annotated with the word
“compose” which does not reflect their true
functionality.

3 Re-annotate each icon with
descriptions that reflect its
job.

It is unclear what connections between
activities mean. So, if two activities are
connected together via a connector, what
sort of relationship is there between the two
entities?

3 The system should enable
users to precisely describe
the type of connections
between different process
model elements, being data
flow, control flow … etc.

When connectors are selected, the system
does not clearly highlight the selection
making it difficult to manipulate the
connectors.

1 Clearly highlight user
selection of process model
elements using, for instance,
a high contrast colour, so
that further actions can be
made easily.

The “Profile” button at the top right corner of
the process editor does not invoke any
system action.

3 If this button does not
provide any added-value,
consider removing it.
Otherwise, implement its
functionality.

Right clicks on particular items (e.g. activity,
parallel split, etc) of the process model
invoke browser’s options. This design style is
not a problem in itself but can be improved,
especially with the fact that expert users
often use right clicks to quickly access
various functionalities.

1 It is more convenient if right
mouse clicks invoke Studio
options such as: ”delete,
rename, … etc” to
accommodate the needs of
different users (i.e. novice
and experts users).

If a user wants to save a particular process 3 For each process model,

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 21 of 36

model, she is constantly asked to retype the
desired name every time a save is
requested.

users should be asked to
provide a desired name one
time only. A “save as” option
should be added to the
process editor to enable
saving the process model
under different file names if
required.

If process model elements are added to the
design space, followed by clicking the “close”
button no error message is shown to warn
users. This sort of system behaviour is
dangerous since it may lead to loosing
existing development work.

3 Under no circumstances,
users must always be
warned in case they are
facing to lose their
development work.

Every time a category is selected from the
categories tree in the consumption platform,
a new search box is added to the main
window below previously added search
windows. Therefore, selecting (n) categories
will produce (n) search windows, which
produces an unpleasant design and badly
manages design space.

3 Instead, use only one search
box to display search results.
If the user selects a new
category, simply update the
existing search box.

Clicking on the same category twice in the
consumption platform, creates two
redundant search windows in the main
window.

3 Ensure that the search
results are not shown twice
to users.

In case users select a particular category,
which has no services, an empty search
window is shown to the user with no
information.

2 Add meaningful messages /
feedbacks to inform users
about the results of their
actions and give advice in
case no services are found.

Service windows in the consumption
platform, are not extendible. Users can only
maximise them to full size (the size of the
main window).

1 Enable users to resize
service windows to the size
they desire. This will allow
them to arrange services in
the manner they want.

It is not possible to comment on, rate, or add
found services to the list of favourites in the
consumption platform.

3 Allow users to comment on,
rate, and add retrieved
services to their list of
favourites. Such feedback
about services are invaluable
to other services consumers.

Every time, a particular service is selected
from the search window, it is added to the
main window, creating duplicate services.

3 Ensure no duplicate services
are added to the main
window of the consumption
platform.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 22 of 36

In the monitoring platform, it is unclear how
to assess the quality of the specific service,
especially for novice users. Some attributes
in service description, such as number of
failed requests and Number of requests,
could be meaningless to ordinary users.

3 The system should use
understandable measures /
ratings to enable users
understand whether a
service is of a high quality or
not.

Close symbol of the monitoring widgets is on
the left, which is uncommon.

2 Follow design conventions,
where close symbols are on
the most right corner.

In the WSMO-Lite editor, selecting the open
“Service Description” or “Ontology” option
from the File menu, followed by “List” button
lists all potential directories. The user then
has to navigate, using his knowledge, to the
right directory and find the desired file. This
is inefficient, wastes time, and error-prone
(user may open the wrong file).

2 The system should show
only relevant directories and
files. For instance: if the user
clicks on open “ontology”
option and clicks “List”
button, the system should
report the available
ontologies only, no other
directories or files should be
visible. Constraining user
options by omitting non-
relevant directories and files
decreases the chance of
making mistakes.

It is possible to open an ontology using the
“open service description” dialog window,
which is incorrect.

3 Ontologies should be opened
only using “open ontology”
dialog window.

“Quick Find” button and Ontologies Search
section at the bottom left of the WSMO-Lite
editor serve no purpose at the moment.

2 Either implement these
features, or remove them if
they are not meant to offer
any functionality.

It is possible to create multiple bindings
between same ontology element and service
element.

2 The Studio should disallow
duplicate bindings of the
same elements.

Whilst it is possible to bind ontology
concepts to service elements (e.g.
parameters of a message), there is no way
of knowing whether the created bindings are
practical and useful or not.

3 The system should support
the creation of meaningful
bindings by providing
examples, hints, an
automatic mappings
whenever possible. This will
minimise user efforts and
reduce the number of
potential wrong bindings.

Closing an existing service description or
opening a new one whilst another one
already exists, does not warn users of the

3 Whenever there is a chance
users might lose their
development work, the

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 23 of 36

WSMO-Lite editor. Thus,there is a possibility
of losing work.

Studio must warn them and
confirm whether they want to
proceed with their actions.

The “close” menu option clears only the
content of the main window. It is not possible
for users to clear the content of the Semantic
Models section. It is not possible to close an
existing ontology.

3 Ensure users can close an
existing ontology if they
desire to through
navigational options or a
close symbol. Add an option
to empower users to
delete/close the content of
the Semantic Models section.

Table 5: Usability Problems in the SOA4All Studio and their Corresponding Design
Recommendations, Probed by WP9 Scenario

5. Conclusions
The current heuristic evaluations have focused on inspecting usability issues within M22
prototypes and software artefacts of the SOA4All project. For this purpose, three different
scenarios embodying typical user actions were used to guide the evaluation procedure. It is
worth noting that not all actions of the test scenarios (of WP7, WP8, and WP9) were
investigated since many features and functionalities of the Studio still need to be completely
implemented. Hence, the evaluation efforts primarily concentrated on the available
functionality of the profile editor, consumption platform, composition editor, monitoring
platform, and annotation editor. The evaluation results presented in this document highlight a
number of issues related to the usability and functionality aspects of the Studio and in order
to address these issues, the evaluation experts have made appropriate recommendations
which have been included with the evaluation results.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 24 of 36

6. References

[1] Morgan, D. L. 1997. Focus Groups as Qualitative Research. California, Sage Publications

[2] Namoune. A, Wajid, U. Mehandjiev, N. Composition of Interactive Service-based
Applications by End Users. UGS2009 - 1st International Workshop on User-generated
Services

[3]Nielsen, J. 1993. Usability Engineering pp.214-216, Academic Press

[4]Sutcliffe, A. G. And Ryan, M. 2000. Model mismatch analysis: Towards a deeper
explanation of users' usability problems. Behav. Inf. Tech. 19, 1, 43-55

[5]Jakob Nielsen. Ten Usability, from http://www.useit.com/papers/heuristic/heuristic_list.html

[6] Gerhardt-Powals, J. 1996. Cognitive Engineering Principles for Enhancing Human-
Computer Performance.s International Journal of Human-Computer Interaction 8 (2): 189–
211

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 25 of 36

7. Appendix
The enclosed paper was presented in the 1st International Workshop on User-Generated
Services (ICSOC 2009), Stockholm, Sweden.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 26 of 36

Composition of Interactive Service-based Applications by End Users

Abdallah Namoune1, Usman Wajid1,and Nikolay Mahendjiev1,

1 Manchester Business School, Booth Street West,
Manchester, M15, United Kingdom

{abdallah.namoune, nikolay.mahendjiev, usman.wajid }@mbs.ac .uk

Abstract. In this paper, we investigate web users’ mental models of services, the underlying risks and
benefits of service composition, and the problems anticipated while combining web services into final
interactive applications. The study comprised three focus groups integrating group discussions and
questionnaires, with a total of 35 participants, the majority without specialist programming skills. The results
of the focus groups revealed a high degree of optimism towards service composition and consumption.
However, several concerns, primarily related to personal privacy, trust, and technical difficulty, were
highlighted during the focus groups. This paper discusses these concerns and proposes some ideas about how
to address them.

Keywords: Web services, service composition, end user development, service-based applications.

1 Introduction

Service Oriented Architecture (SOA) technologies are becoming very popular on the Internet,
especially in the form of independent services [1]. Their key benefit is reuse, indeed existing web
services can be loosely coupled to produce new composite web services through the so called process
of “service composition”. Whilst only a small proportion of users, often with considerable computing
knowledge and programming skills, can construct complex service based applications, the majority of
online users are unable to exploit the advantages offered by SOA technologies and develop service-
oriented applications tailored to one’s needs. This difficulty can be linked to the complexity of the
composition process which is carried out using advanced composition languages, and to the limited
technical knowledge of ordinary users. In this respect, the research challenge lays in simplifying the
composition process so that various services can be combined into interactive applications, and
abstracting this process from unnecessary technical complexity. Such research promises to promote
the consumption and reuse of web services, especially by ordinary web users. When creating such
user-friendly service composition interface, we also need to consider user expectations regarding the
trade-off between the costs of learning new tools and the benefits they expect to get from using them.
For example, the spreadsheet interface hides aspects such as order of calculations and propagating
updates, and minimises learning costs by using familiar metaphor of calculation tables and accounting
books. The balance between costs and benefits is likely to differ for different groups of users and
different target domains (e.g. [8,10]), yet we believe that identifying user attitudes and expectations
towards service composition is a key to predicting successful uptake [8,10,11], hence it is the focus of
the study reported in this paper.

Currently, end users can add web services as widgets/gadgets to their personal pages in a
lightweight manner; this is particularly relevant to networking websites such as: Facebook [2] and
personalized homepages such as: iGoogle [3] and myYahoo [4]. Users of these websites can select
from a list of services and position them on their personal pages. The services are visually represented
as independent windows and the users can interact with these services and customize their look and
that of their personal pages. Although the widget-based model is simple and enables hosting different
services together, it does not support service composition. Indeed, the web services, represented as
widgets, are autonomous and do not interact with each other, thus restricting their usefulness for
creating more complex assemblies. For instance, given a flight service, a car service, a hotel service, a
card payment service, and an insurance service, users should be able integrate them to form a mini
holiday organizer application. Service composition not only fulfils users’ needs but also allows easy
extension and customization of applications; thus, saving considerable time and resources.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 27 of 36

Another advanced and rich approach to end user development of applications follows the mash-up
based model. In this particular case, end users combine existing services and web feeds from multiple
sources into a single web-based application using specialized mash-up editors, such as: Open Mashups
Studio [6] and Yahoo!Pipes [5]. The major drawbacks of this approach relies in, firstly, the modelling
skills needed to understand the data flow between services and secondly the strong emphasis on data
aggregation while giving less importance to functionality aggregation.

Whilst the mash-up based model is complex and lacks flexibility, the widget-based model does not
support any interaction between services offered by different service providers, This motivates the
pressing need for more effective approaches to compose low-level services into interactive service-
oriented applications by non-programmers. Easy to use and flexible service composition authoring
tools that simplify the composition process should be offered. This is the main objective of the EC
funded project, SOA4All [7].

Here we report on a study which aims to identify the balance between user expectations about costs
and benefits of the SOA4All vision, and to chart users’ concerns and background as relevant to this
vision. It is worthwhile to note that this paper focuses on service composition and consumption by
human actors and not by software agents. Focus groups were used as a self-contained method to
conduct this study since no suitable prototype was available to evaluate at that stage. Focus group is an
efficient technique used to collect qualitative data and generate concentrated information on a specific
topic. It is argued to be better than user observation and individual interviews owing to the group
interaction which provides detailed insights into opinions and experiences of participants [18].

This paper is organized into the following sections: Section 2 reviews the latest work on service
composition. Section 3 provides a short description of the SOA4All project. Section 4 details the
procedures carried out in the focus groups. Section 5 reports the findings of this research study.
Section 6 presents a discussion about the findings and suggests various solutions to encounter the
highlighted problems. Finally, Section 7 summarizes the paper.

2 Service Composition by End Users

Service Composition is broadly supported by two main approaches: workflow-based scripting of
service components, and AI-based automatic composition of service components, reasoning with pre-
and post-conditions. Further details are available elsewhere [13, 22,233].

A large number of visual representations for service composition and interaction have been
proposed with the purported aim to make the composition more user-friendly (e.g. Zenflow [14]).
However, most of them are ad hoc, i.e. they use technology-led representations and metaphors, which
are not derived from user studies. Only a few of them have been evaluated in terms of usability and
cognitive effectiveness. For example, Lets Dance [15] has been evaluated using the framework of
Cognitive Dimensions [Error! Reference source not found.], but iterative testing and enhancement
have not been documented in the related references. The framework of cognitive dimensions contains
14 principles describing aspects that are relevant to cognition [17]. It aims to evaluate the usability of
interactive information artefacts (e.g. software applications) and non-interactive information artefacts
(e.g. notations, programming languages) by non-specialists. Vitabal WS [16] is a version of an earlier
visual language tuned to the needs of web service composition. It has been evaluated using the
cognitive dimensions framework, yet it targets experienced web service developers and hence would
have different characteristics from the service composition representations to be developed by
SOA4All.

We believe that technology-led ad hoc visualizations will not work. Indeed opening up service use
and development to people who are not professional programmers (we call them end users) requires
the delivery of user interfaces that are task-oriented rather than technology-oriented, that is they
should be tuned to the expected skills and foreseen tasks of our target users. Activities such as service
construction and composition will involve non-trivial problem-solving in a context called End User
Development (EUD) [12]. EUD research results provide an insight into the type of software interfaces

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 28 of 36

and motivational factors likely to support end user activities.

Sutcliffe et. al. [11] see the trade-off between expected benefits and learning costs as a main
determinant of uptake of an End User Development tool by its users. This has been extended to
organizational context by Mehandjiev et. al. [10], who identify a number of risks and benefits for end
users being involved with the development of software, including the construction of software
services. These factors have then been used to underpin a number of quantitative studies in concrete
domains, aiming to elicit the likelihood of uptake for end user development ideas in the specific
context of that domain (e.g. [8]). The workshops reported here are an example of one such application
of this approach to the target domains of SOA4All.

Several research studies have attempted to explore end user perception of software development,
for example: McGill and Klisc [19] argue that end user developers of web development are aware of
the associated risks and benefits and it is crucial to involve them in the development of approaches to
minimise risks. Due to the difficulty of learning traditional programming languages, Myers et. al [20]
report a number of studies aiming to elicit understanding of how people think about a particular task
and design natural programming languages and environments that support the way end user
developers are thinking. The generated data about user behaviour is used to build intuitive and usable
programming environments. More recently, Namoune et. al [21] report on a user study in which
potential problems of service composition are extracted when using a visual composition tool
(although at its early stages of development). The main findings show that end users have difficulty
connecting services together and understanding specialised service- related terms such as: operations,
parameters, data types. Overall, review of available literature demonstrates that research in end user
development of service based applications is very rare and most studies are in their infancy.

3 SOA4All

The research presented in this paper is part of the ongoing work on SOA4All, which is an EC-funded
project that focuses on acquiring end user perception of web-services, and then using this vital
information to develop sophisticated tools and techniques that can enable end-users from a variety of
background to use web-services. In this respect, SOA4ALL aims at opening up services to the scale
and accessibility typical for the WWW. On the technical front it includes the use of Web2.0 principles
and state-of-art techniques for semantically tagging, retrieving and composing services. The
developments on the technological front will result in addressing the specific needs of end users and
allow them to implement innovative business models in order to address niche markets.

In order to support the entire service lifecycle (service discovery to service consumption)
SOA4ALL intends to provide a coherent and domain independent platform where a massive number
of parties can expose and consume services. To facilitate in the development of such a platform,
research within SOA4ALL involves clarifying the requirements as to how end users from a variety of
backgrounds can not only interact with individual services but also compose different services to
achieve their desired objectives. The requirement gathering process is realized by several end user
studies (focus groups) and the results of some of these studies have been reported here.

The results obtained from the focus groups give a holistic view about the perception of target end-
users. These results will be fed into to the design of SOA4ALL studio. SOA4ALL studio is envisioned
as a rich web-based platform that will provide users with a unified view covering the whole lifecycle
of services, including design-time, run-time and post-mortem analysis. It will provide the starting
point for end-users that get in touch with SOA4ALL. In essence, the SOA4ALL studio represents a set
of components to facilitate the composition of web-service based applications for novice users. The
functionality offered by the studio will automatically help the end-users with the selection and
placement of related web-services within the user interface.

The high-level view of SOA4All architecture is shown in Figure 1 (below):

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 29 of 36

Figure 1: High level description of the SOA4All architecture.

4 Methodology

Three separate focus groups, involving 35 participants without programming skills (25 students and 10
academic and research staff) (range 19 to 40 years with a mean of 26 years) were undertaken within
the Centre for Service Research at the Manchester Business School to acquire a better understanding
of end users perception about web services, and the likelihood of uptake of user development. Each
focus group lasted for approximately one hour; participant responses were recorded using audio
recorders and questionnaires. The overall strategy was to first introduce participants to the topic of
web services composition by end users through a presentation, followed by capturing their subjective
judgment about the topic through a questionnaire, and finally discuss several issues in small groups.
All participants were invited to perform these tasks:

1- Provide a definition of web services
2- Listen to a 20 minute presentation in which they were familiarized with web services and the

concept of service composition; this was facilitated by examples
3- Fill in a service composition questionnaire
4- Discuss the potential risks and benefits of service composition and anticipate the composition-

related problems; this was carried out in small discussion groups containing 5 participants each
5- Propose solutions to resolve the highlighted problems

4.1 Service Composition Questionnaire

The service composition questionnaire used in our study contains three main parts, as follows:

Part 1.

• My experience with Service Composition is (none 1-2-3-4-5 expert)
• I find web service composition interesting (disagree 1-2-3-4-5 agree)
• Please list the Service Composition languages and systems you are familiar with (or circle

these examples: iGoogle, Facebook, Yahoo!Pipes, BPEL4WS, BPML, BPSS, OWL-S,
WSCI, WSCL, WSFL, Semantic Pipes)

• How often do you compose services or build service based applications (daily – weekly –
monthly – less often - never)

• What are your favourite service composition languages or systems?

Part 2.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 30 of 36

Service composition by users (SCU)

• Is useful (disagree 1-2-3-4-5 agree)
• Is easy to achieve (disagree 1-2-3-4-5 agree)
• Brings about a more efficient way of conducting on-line activities (disagree 1-2-3-4-5 agree)
• Is unfeasible (disagree 1-2-3-4-5 agree)
• Is error-prone (disagree 1-2-3-4-5 agree)
• Can be used to break organisational rules and policies (disagree 1-2-3-4-5 agree)

Part 3.

Please tell us your opinion about the following ways of encouraging and supporting Service
composition by users (SCU)

• Examples of successful SCU can stimulate one to try it (disagree 1-2-3-4-5 agree)
• Recognising and rewarding SCU effort will make people more willing to try it (disagree 1-2-

3-4-5 agree)
• Attending a training course could help people to start SCU (disagree 1-2-3-4-5 agree)
• SCU quality standards and testing will decrease risks (disagree 1-2-3-4-5 agree)

Although the questionnaire contains some questions which are difficult to assess at this stage, for
example, it is practically hard to assess whether “composition is easy to achieve” without actually
trying it, the principal aim was to drive first impressions about service composition and most
importantly to check users’ acceptability of this innovative idea. In addition, the results will provide a
reference point to advanced evaluation stages when end users perform composition using our
composition authoring tool.

4.2 Introductory Presentation

The introductory presentation “The Internet of Services”, presented by one of the authors, aimed to
introduce the concept of service and provide examples of service composition. It explained the
difference between conventional services, software services and hybrid services, where human-
performed services are enabled through software interfaces and services, such as buying a book
through Amazon.com. The influence of current Web2.0 technologies was argued to enable end users
to take part in the development of the web, and the idea is to move this influence to the internet of
services. Following this, Yahoo! Pipes was used as a motivating example (Figure 2). Figures about the
number of web services found were also reported (27.684 services and 7284 providers during the last
2 years), as suggested by the SEEDKA service crawler. Next, the motivation behind SOA4All was
introduced to the attendees, with the project aiming to transform the current web of information into a
web of services through which users of services could also become producers of applications, or what
we call “Prosumers”.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 31 of 36

Figure 2: Yahoo! Pipes as a Stimulating Example

 Then the scenario driving further discussions was introduced, the creation of a Meet Friends
composite service. This hypothetical composite service allows a particular user to organise a meeting
with friends at short notice. The Meet Friends composite service contains four services; service one
fetches the address of friends from social networking sites (e.g. Facebook), service two finds out
which friends are in the vicinity of the target venue, service three finds out weather and travel
information for proposed meeting venue from a 3rd party, and service four sends out invites and
directions using an SMS service. Finally, the presenter showed some mockups of a future authoring
service composition tool (Figure 3). Participants were invited to ask questions related to aspects of the
presentation before starting the focus groups.

Figure 3: A Mockup of the SOA4All Studio – a user-friendly composition tool under development in
SOA4All

5 Results

The results of the three focus groups undertaken are divided into three main themes, as follows:

5.1 Web Services and Service Composition Perception

The pre-test questionnaires revealed that more than 85% of the participants considered themselves as

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 32 of 36

not experts in terms of software and service development. 60% of the users specified that they have
“never or less often” composed services or built service based applications. The qualitative analysis of
the responses gathered in the focus groups showed that 25 user comments relate to service
understanding. The results demonstrated diverse user understanding/definitions of services; these
definitions varied between: features assisting users, solutions to issues, components of business
process, offerings to customers, information provision, and execution of transactions. In general,
users’ definitions concentrated on two main aspects, (1) describing attributes/features of services such
as: services are intangible and they have a back end, (2) describing specific interactions with users in
the form of service consumption, such as: providing users with information, helping users, and
delivering expertise.

Table 1. Service composition questions, rated between (1= disagree and 5= agree)

 Service composition by users Mean
answer

 SD

 … I find web service composition interesting 4.20 0.76

 … is useful 4.44 0.82

 …brings about a more efficient way of conducting
on-line activities 4.12

0.96

 …is easy to achieve 3.32 1.19
 … is unfeasible 2.26 1.18
 … is error-prone 2.54 0.87
 … can be used to break organisational rules and
policies 3.50

1.08

Ways of encouraging and supporting Service
composition by users

 Examples of successful SCU can stimulate one to
try it 4.69

0.52

 Recognising and rewarding SCU effort will make
people more willing to try it 4.15

0.90

 Attending a training course could help people to
start SCU 4.38

0.77

SCU quality standards and testing will decrease
risks 4.32

0.76

When asked whether service composition is interesting, 80% of users showed a high level of
interest (mean = 4.20 /5, questions were rated on a five-point Likert scale where 1 corresponds to
disagree and 5 corresponds to agree). Users also rated the usefulness of service composition high
(mean = 4.44 /5), as well as the efficiency of service composition in promoting the accomplishment of
online activities (mean = 4.12 /5). However, service composition by end users was regarded nor easy
neither difficult (mean = 3.32 /5). In terms of error-proneness, fears were evident about the possibility
of creating errors by ordinary web users (mean = 2.54 /5). Users concerns that relate to disruptive use
of service composition (i.e. service composition can be used to break organizational rules and policies)
were rated high (mean = 3.5 /5). Finally, 77% of the users disagreed or remained natural in regards to
the question: “service composition by users is unfeasible” (mean = 2.26 /5).

In regard to user support, users agreed that successful examples (mean = 4.69) and training courses
(mean = 4.38) could encourage people to be actively involved in the composition of services and
development of service based applications. In summary, end users demonstrated a high level of
interest and strongly agreed that service composition is useful and possible, but expressed uncertainty
about the difficulty and potential misuse of service composition by the general public (Table 1).

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 33 of 36

5.2 Risks and Benefits

The discussion about the balance between risks and benefits is based on work [8-11] explaining the
uptake of software development by end users (known as End User Development) as a rational
economic decision based on the balance of perceived costs and perceived benefits of each user. The
ongoing program of research in this area aims to analyse the factors which impact this perceived
balance, and to discover organizational and technical strategies which aim to tip the balance in favour
of the benefits, thus supporting the uptake of such technologies.

In terms of benefits, discussions in the focus groups mainly focused on the usefulness of reusing
composition knowledge (40% out of all benefit responses), and the time users can save as a result of
this (30% out of all benefit responses). Giving ordinary users control over service composition would
empower them to produce various service oriented applications that can be tailored to their needs
(15% out of all benefit responses), such as meta-search engines, thus saving them time and enabling
them to obtain rich results.

In terms of risks, the biggest fear was about loosing control over personal information (8% out of
all risk responses), especially when the effect is mediated through the effect of social interactions (e.g.
your friends exposing information about you), or through the service provider (information
aggregator), which may pass your personal information (e.g. phone number) to other sub-contracting
services, which may or may not be bound to the data protection principles. Technical difficulty
imposed by service compose was also amongst the biggest fears of end users (8% out of all risk
responses). Errors in putting information together were also possible, especially when the composition
is performed by inexperienced users and un-trusted third parties.

Moreover, users felt that services may no longer be there when they need them, and that any
recommendation support for services may be biased to a set of services.

The participants also discussed what could be the social and organisational support for user-based
service development. The following ideas emerged:

• “Go with the flow” – once everybody is doing it, people will join, mirroring success in other
technologies;

• Non-trivial examples of successful use will also help (to sell benefits), this was felt quite
strongly;

• Community-level control mechanisms such as feedback, etc. would ensure validation of
services and, together with a validating body/watchdog may help to ensure the trust, which is
considered vital for uptake of user-driven service composition.

5.3 Composition Problems

Although users favoured the idea of assembling services to formulate interactive applications that
fulfils their daily needs, several service composition-related issues were raised, in particular:

• Services complexity: services are usually represented using their functional elements
(operations and parameters) which are often not understood by ordinary web users.

• Services compatibility: users expressed frustration in regards to aggregating heterogeneous
services from different service providers. How do they ensure the business services they are
trying to combine together are technically compatible with each other?

• Composition steps: users agreed that it might be problematic to define the single steps
required to combine services together and the order in which these services should be
executed due to their lack of technical knowledge and skills. This issue becomes more
complicated in the case of many services (for example: 100 atomic services).

• Other less aggravated user interface-related concerns evolved around the use of the service
composition editor, for example: direct manipulation of web services (i.e. selection, deletion,
etc) within the design space could be the main source of frustration.

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 34 of 36

In terms of technical support which can be provided by the composition editor, the following
themes emerged:

• The difference between naïve and professional users was felt to lie partially in the awareness
about the consequences of one's actions; this awareness should be supported;

• Full automation such as Google search results will frustrate owing to lack of control by the
end users, a balance should be maintained;

• Tools should offer clarity of process in respect to building and using;
o Context and personalization;
o Reuse of designs.

6 Discussion

End users with no or little computing knowledge showed either no or basic knowledge of the technical
aspects of services, i.e. they could not provide a technical definition of services. This result is expected
as our target group has no specialist technical skills. Essentially, they perceived services as elements
which deliver services (be it information, help, solutions … etc) to accomplish specified users goals.
This view emphasises that services need to be abstracted from their technical complexity and
presented in a way that efficiently describes their purpose/functionality, especially for ordinary web
users.

Users showed a high likeability towards the idea of composing services into personalised
interactive applications. This agrees with the current trends that end users are becoming proactive
about developing the web. Users argued that service composition will save them time and enable them
to develop applications on the fly and without the need to acquire considerable technical knowledge.
Hence, it is important that end users are able to develop service-based applications without the need to
learn programming languages and modelling notations.

To overcome the aforementioned problems, various tentative remedies that will form the functional
requirements of a future visual service composition authoring tool –currently under development - are
proposed in this section:

Promote service composition awareness: even though web users have experience adding
autonomous services to their networking or personalised sites, the composition of services imposes a
totally new and different challenge. Therefore, the composition editor should clearly communicate
“the composition aspect” of services. Users’ awareness of the possibility to develop service-based
applications should be elevated via the right amount of publicity to familiarize ordinary people with
SOA technologies.

 Simple service composition: this research aims to increase service reuse by ordinary users, it is
therefore crucial to simplify service composition by hiding the technical aspects of services from
users. Composition should be as easy as dragging and dropping a service into a design space, followed
by creating connections between the selected services. No programming knowledge or expensive
training should be required.

Guided service composition: users should be supplied with wizards, tutorials, and help messages to
guide them through the composition process within an easy to use composition tool. This is
particularly important to overcome the services compatibility and composition steps definition
problems.

7 Conclusion

This paper reports on the results of three focus groups aiming to gauge end users’ perception of web
services and their acceptability of service composition. Generally, users showed a high willingness to
develop interactive service-oriented applications, but expressed fears that relate to the complexity

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 35 of 36

underlying the composition process and to the knowledge required to build software applications. In
future research, various composition design approaches of different complexity levels will be offered
to accommodate end users with various skills and backgrounds within an easy to use online authoring
tool, formally known as SOA4All studio.

Acknowledgments. This research work is supported by the EC funded project SOA4All. We would like
to thank the students and academic and research staff of the University of Manchester for taking part
in this study.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures, and Applications. Springer
Verlag (2004)

2. FaceBook, http://www.facebook.com/

3. iGoogle, http://www.google.com/ig

4. MyYahoo, http://my.yahoo.com/

5. Yahoo! Pipes, http://pipes.yahoo.com/pipes/

6. Orange Labs, Open Mashups Studio, http://www.open-mashups.org/

7. SOA4All, http://www.soa4all.eu/
8. Mehandjiev, N., Stoitsev, T., Grebner, O., Scheidl, S., Riss, U.: End User Development for Task Management:

Survey of Attitudes and Practices. In Proceedings of IEEE Symposium on Visual Languages and Human-Centric
Computing. Herrsching am Ammersee, Germany. IEEE Press. ISBN : 978-1-4244-2528-0 (2008).

9. Fischer G., Giaccardi E., Ye, Y., Sutcliffe A.G., and Mehandjiev N.: Meta-Design: A Manifesto for End-User
Development. Communications of ACM, a Special Issue on End User Development (2004).

10. Mehandjiev, N., Sutcliffe, A., Lee, D.: Organisational View Of End-User Development, in H Lieberman, F Paterno, and
V Wulf, eds, End User Development, Human-Computer Interaction Series , Vol. 9, XVI, 492 p., Hardcover ISBN: 1-
4020-4220-5 (2006)

11. Sutcliffe, A., Lee, D., Mehandjiev, N.: Contributions, Costs and Prospects for End-User Development, Proceedings of
HCI International, Lawrence Erlbaum Associates, Inc. New Jersey, USA (2003)

12. Sutcliffe, A. and Mehandjiev, N. 2004. Introduction: Special Issue on End User Development. The Communications of
ACM, 47, 9, 31-32. (2004)

13. Jinghai R, Xiaomeng Su. A Survey of Automated Web Service Composition Methods by: Semantic Web Services and
Web Process Composition, Vol. 3387/2005, pp. 43-54 (2005)

14. Martinez, A., Patino-Martinez, M., Jimenez-Peris, R., and Perez-Sorrosal, F. ZenFlow: A Visual Web Service
Composition Tool for BPEL4WS. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing. VLHCC. IEEE Computer Society, Washington, DC, 181-188 (2005)

15. Johannes Maria Zaha, Alistair P. Barros, Marlon Dumas, Arthur H. M. ter Hofstede: Let's Dance: A Language for
Service Behavior Modeling. OTM Conferences (1) 145-162 (2006)

16. Li, Karen Na-Liu. Visual Languages for Event Integration Specification. PhD Thesis, University of Auckland,
Department of Computer Science (2008)

17. Thomas Green, T., Blackwell, A.: Cognitive Dimensions of Information Artefacts: A Tutorial,
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf (1998)

18. Morgan, D. L.: Focus Groups as Qualitative Research. California, Sage Publications, (1997)

19. McGill, T. and C. Klisc. End User Perceptions of the Benefits and Risks of End User Web Development. Journal of
Organizational and End User Computing 18(4): 22-42 (2006)

20. Brad A. Myers, John F. Pane and Andy Ko, Natural Programming Languages and Environments. Communications of
the ACM. (special issue on End-User Development). Vol. 47, no. 9. pp. 47-52 (2004)

21. Namoune, A., Nestler, T., and Angeli, A.D. End User Development of Service-based Applications. 2nd Workshop on
HCI and Services at HCI 2009 Cambridge, (2009)

22. Hoffmann, J., Bertoli, P., and Pistore, M. Web service composition as planning, revisited: in between background
theories and initial state uncertainty. In Proceedings of the 22nd National Conference on Artificial intelligence - Volume
2. A. Cohn, Ed. Aaai Conference On Artificial Intelligence. AAAI Press, 1013-1018 (2007)

SOA4All – FP7215219 D2.5.2. Summative Evaluation Report

© SOA4All consortium Page 36 of 36

23. Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. Service-Oriented Computing: State of the Art and
Research Challenges. Computer 40 (11), 38-45. DOI= http://dx.doi.org/10.1109/MC.2007.400 (2007)

