

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.6.1 Specification of the SOA4All

Process Editor

Activity: Activity 1 – Fundamental and Integration Activities

Work Package: WP2 – SOA4All Studio

Due Date: M12

Submission Date: 28/02/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organization Responsible of Deliverable: SAP

Revision: 1.0

Author(s): Ivan Delchev SAP
Juergen Vogel SAP
Dr. Sven Abels TIE
Shiva Puram TIE

Project co-funded by the European Commission within the Seventh Framework Programme (2007-
2013)

Dissemination Level

PU Public X

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 2 of 45

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 21.01.09 Initial version, ToC defined Ivan Delchev (SAP), Juergen
Vogel (SAP)

0.2 27.01.09 Functional requirements defined Ivan Delchev (SAP)

0.3 28.01.09 Requirements from Integration with
SOA4All architecture Sven Abels (TIE)

0.4 28.01.09 State-of-the-Art in Process Modeling Shiva Puram (TIE)

0.5 02.02.09 Architecture Description added Ivan Delchev (SAP)

0.6 03.02.09 Use-cases added Ivan Delchev (SAP)

0.7 09.02.09 Polishing of sections, executive
summary Ivan Delchev (SAP)

 Internal Review Adrain Mos (INRIA), Stuart
Campbell (TIE)

0.8 24.02.09 Changes due to internal reviewers’
comments

Ivan Delchev (SAP), Sven
Abels (TIE)

1.0 27.02.09 Final version Ivan Delchev (SAP), Sven
Abels (TIE)

1.0 28.02.09 Overall quality format revision Malena Donato (ATOS)

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 3 of 45

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE OF THIS DELIVERABLE ________________________ 7

1.2 RELATIONS TO OTHER PARTS OF SOA4ALL __________________________ 7

1.3 INNOVATION IN PROCESS EDITING__________________________________ 8

1.4 STRUCTURE OF THIS DELIVERABLE _________________________________ 8

2. STATE-OF-THE-ART FOR PROCESS EDITORS ___________________________ 10

2.1 WEB-BASED PROCESS COMPOSERS _______________________________ 10

2.1.1 Lombardi Blueprint __ 10

2.1.2 Oryx ___ 11

2.1.3 Appian Anywhere ___ 12

2.2 DESKTOP-BASED PROCESS EDITORS ______________________________ 13

2.2.2 Eclipse BPEL __ 14

2.2.3 Oracle BPEL Process Manager ____________________________________ 15

2.2.4 SAP Netweaver __ 16

3. REQUIREMENTS __ 18

3.1 USE CASE OVERVIEW __ 18

3.1.1 Storage and Retrieval of Process Models ____________________________ 18

3.1.2 Process Modeling ___ 19

3.2 DOMAIN-ORIENTED DESIGN REQUIREMENTS ________________________ 20

3.3 REQUIREMENTS DERIVED FROM THE LIGHTWEIGHT NATURE _________ 21

3.4 USER INTERFACE REQUIREMENTS ________________________________ 22

3.5 REQUIREMENTS FOR ACHIEVING AN SOA4ALL STUDIO INTEGRATION __ 23

3.5.1 Storage ___ 23

3.5.2 Management ___ 23

3.5.3 Integration into the SOA4All Studio Dashboard ________________________ 23

3.5.4 Application of the Generic SOA4All Studio Design ______________________ 24

3.5.5 Reuse of the SOA4All UI library (i.e. UI widgets) _______________________ 25

3.6 SUMMARY OF REQUIREMENTS ____________________________________ 25

4. FUNCTIONAL SPECIFICATION __________________________ _______________ 27

4.1 CREATE, READ, UPDATE, AND DELETE (CRUD) A PROCESS ___________ 27

4.2 COMMON MODELING FUNCTIONALITY ______________________________ 28

4.3 GUIDED MODELING __ 29

4.4 PROCESS MODEL PATTERNS AND TEMPLATES ______________________ 30

4.5 DRAG & DROP __ 30

4.6 COLLABORATE USING COMMENTS _________________________________ 31

4.7 EXPLORE AND ORGANIZE __ 31

4.8 UNDO/REDO __ 32

4.9 AUTO-SAVE ___ 33

4.10 COMMUNICATION WITH EXTERNAL COMPONENTS ___________________ 33

5. ARCHITECTURE AND INTERFACE SPECIFICATION __________ _____________ 34

5.1 COMPOSER UI DESIGN ___ 34

5.2 COMPOSER ARCHITECTURE ______________________________________ 37

5.3 COMPOSER SERVER-SIDE INTERFACES AND DATA-FORMATS _________ 41

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 4 of 45

6. CONCLUSIONS AND NEXT STEPS ______________________________________ 44

REFERENCES ___ 45

List of Figures
Figure 1 Use Case: Storage and Retrieval of Process Models ...19

Figure 2 Use Case: Modeling of Processes ..20

Figure 3: Plugin Integration ..24

Figure 4 Save As in the SOA4All Composer ...28

Figure 5 Attaching Activities During Modeling ..29

Figure 6 Mock-up Smart Wizard Example ..30

Figure 7 Comments Feature in the SOA4All Composer ..31

Figure 8 Search and Browse ..32

Figure 9 Design Templates, UI Components & Examples and Dashboard from Task 2.434

Figure 10 Dashboard Entry Point for the SOA4All Composer ...35

Figure 11 SOA4All Modeling Canvas ...36

Figure 12 High-level SOA4All Composer Architecture with emphasis on the client-server
communication ...38

Figure 13 High-level SOA4All Composer Architecture ..39

Figure 14 Simplified UML Design of the SOA4All Composer Client-side41

List of Tables
Table 1: Lombardi Blueprint ...11

Table 2: Oryx ..12

Table 3: Appian Anywhere ...13

Table 4: Soyatec eBPMN ...14

Table 5: Eclipse BPEL ..15

Table 6: Oracle BPEL Process Manager ..16

Table 7: SAP Netweaver ..17

Table 8: Summary of all Requirements ...26

Table 9 Proposed Addressing Structure of the Process Composer Server42

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 5 of 45

Glossary of Acronyms

Acronym Definition

AJAX Asynchronous JavaScript and XML

CRUD Create / Read / Update / Delete

D Deliverable

EC European Commission

EXT GWT Extended GWT (Rich Internet Application Framework for GWT)

GWT Google Web Toolkit

JSON JavaScript Object Notation

MVC Model-View-Controller

RIA Rich Internet Application

UI User Interface

WP Work Package

WSDL Web Service Description Language

WSMO Web Service Modeling Ontology

XPDL XML Process Definition Language

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 6 of 45

Executive Summary
The SOA4All Process Editor (short: Composer), which is the intended output of Task 2.6, will
be a Rich Internet Application (RIA) for process modeling, built especially for the custom
light-weight modeling language of SOA4All. The Composer will be tightly integrated in the
SOA4All Studio architecture as a plug-in and will employ the same look and feel.

The Composer will allow non-technical users to compose light-weight processes from
semantically annotated web services. The user will be able to perform common modeling
activities such as creating, editing and deleting processes as well as rating, commenting,
collaborating on and organizing them. Context-aware wizards will be available to guide the
user during service composition. The process models will be stored in the modeling language
format and will be executable in the SOA4All infrastructure.

What differentiates the SOA4All Composer in comparison with other modelling tools is the
Web 2.0 approach – the use of the web as a platform and making the most of its intrinsic
advantages and the utilization of semantic and contextual information. By allowing the
consumption, re-mixing and composition of services and information from multiple sources,
the SOA4All Composer will create network effects through an “architecture of participation”
and the SOA4All ecosystem will become better as more people use it.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 7 of 45

1. Introduction
1.1 Purpose and Scope of this Deliverable
The purpose of Deliverable 2.6.1 is to identify the requirements, define the functionality, and
provide an architecture design of the SOA4All Process Composer (short: SOA4All
Composer). The Composer will be integrated in the SOA4All Studio as a plug-in component
and provide the complete functionality and expressive power of the light-weight modeling
language available to end users in a graphical manner. Moreover, the SOA4All Composer
will be positioned in the context of the SOA4All Studio and in the complete SOA4All
architecture by identifying relations to the rest of the SOA4All components.

1.2 Relations to Other Parts of SOA4All
As part of WP2, Task 2.6 and specifically Deliverable 2.6.1 “Specification of the SOA4All
Process Composer” are naturally connected to WP2 tasks as follows:

• Task 2.1 provides the functionalities and methodologies that service prosumers
(producers/consumers) require in order to provide new services or to enrich the existing
ones. It will permit them to model and annotate services easily. The SOA4All Composer
will use services provided from Task 2.1 functionality and model them into service
compositions. Semantic descriptions and annotations will be used to ease service
composition modeling.

• Task 2.2 deals with service discovery and the use of contextual factors in order to provide
users with the most relevant results. It envisions formal goals defined in WSMO, abstract
services, keyword discovery etc. Furthermore, it envisions the use of wizards that will
support users by transforming user requirements into formal and structured goals. The
SOA4All Composer will provide components that support and make use of the above-
listed functionality such as including abstract goals as parts of service compositions.
Results from discovery will be immediately ready for drag & drop inclusion in process
models.

• Task 2.3 will deliver a Monitoring and Management Tool Suite for the monitoring and
management of services and will provide support for the interpretation of provenance
information. The SOA4All Composer will include monitoring information such as QoS
during design time in order to give additional information to users.

• Task 2.4. The SOA4All Composer is related to Task 2.4, which provides components and
functionality to ease the development and the integration of tasks that have a need for
user-interactions. Task 2.4 will deliver an UI and an infrastructure framework that will
make it easier to, for example, create web 2.0 user interfaces, to store and manage data
in the SOA4All environment and to use communication functionalities. This SOA4All user
gateway, the so-called “SOA4All Studio” will serve as a connection point for T2.X
functionality. UI components and related functions include drag & drop, which will be
reused by 2.6 to actually implement the SOA4All Composer UI allowing people to drag &
drop process elements. In addition to this, a Dashboard view will seamlessly integrate the
Process Composer UI into the overall SOA4All Studio environment. A Graph
Visualization Widget will be used by the Process Composer to visualize a process model
on screen.

• Task 2.5 will evaluate the user interfaces developed in this work package and as part of
this will assess the Process Composer UI. The usability evaluation will serve as feedback
for consecutive development activities.

• Task 2.7. Finding and composing services from the billions of envisioned services
requires sophisticated recommendation mechanisms. Task 2.7 will support users by

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 8 of 45

recommending services throughout their interaction with the SOA4All Studio. Contextual
information from users’ interactions and social network will enhance the suggestion
mechanisms. The SOA4All Composer will interface with these functionalities in order to
provide users with most-relevant recommendations.

In addition to tasks positioned in the same WP as the SOA4All Process Composer, tasks in
WP6 also exhibit a close relation to Task 2.6 as follows:.

• Task 6.3. The Process Composer will provide the complete functionality and expressive
power of the light-weight context-aware process modeling language of Task 6.3 available
to end users in a graphical fashion. The stored process models will be represented as
editable and executable process descriptions. This relationship is pivotal - the Composer
must expose the modeling language in an intuitive and easy-to-use manner to its users.

• Task 6.4. In addition, the functionality of the Service Adapter of Task 6.4 will be used for
service context-based adaptation at design-time. The purpose of this tool is the
adaptation of services according to context (e.g. personal preferences, business rules,
etc.) and advanced mechanisms such as incremental revealing of service descriptions
involving trust and a negotiation process between parties.

1.3 Innovation in Process Editing
The SOA4All Composer will include many innovative features and technical advances into a
user-friendly service composition tool. Distinct features include:

• RIA architecture with desktop-like responsiveness

• Intuitive and user-context-aware modeling User Interface (UI)

• Modeling support via wizards and process templates

• Use of abstract goals as service composition building blocks, not only concrete services

• Generation of executable service compositions, runnable in the SOA4All environment

• Based on web principles and technology thus promoting scalability, openness for
extension and reuse

• Employs Web 2.0 concepts such as tagging, sharing, user collaboration, commenting,
ranking etc. to bring the value of collective intelligence, also called “wisdom of the
crowds”

• Considers semantic annotations and context information

• Specifically designed to work with the SOA4All light-weight modelling language

1.4 Structure of this Deliverable
This deliverable is organized in the following way:

• Section 1 gives an introduction to the scope and content of this deliverable

• Section 2 investigates in detail the current state-of-the-art in the process modeling area

• Section 3 elaborates the requirements for the SOA4All Composer and their origin.

• Section 4 gives the functional specification of the Composer

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 9 of 45

• Section 5 covers the foreseen architecture of the tool, its relation to other SOA4All
components and the potential use cases.

• Finally the Conclusions section summarizes the deliverable, presents the drawn
conclusions and suggests next steps

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 10 of 45

2. State-of-the-Art for Process Editors
Before designing the SOA4All Process Editor, an analysis is given for giving an overview
about the current state of the art in process composition. This overview is broken down into
two essential parts: Firstly, a list of web based process editors is presented and secondly a
list of desktop based products.

Obviously, the SOA4All process editor will be a web based application in order to stay
consistent with the overall SOA4All principles. However, nevertheless it is important to also
briefly look at desktop based solutions as they could contain a large number of approaches
and ideas that 2.6 could benefit from.

2.1 Web-Based Process Composers
This section will give an overview about existing tools in the market that may be used for
process composition. The following subsections will start with a short description and a list of
main features. Each section will then give a comparison to the SOA4All vision and will
highlight specific elements that SOA4All could learn from this product (if appropriate). Finally,
an overview table for each tool is given to quickly summarize the main facts.

2.1.1 Lombardi Blueprint

2.1.1.1 Description

The Lombardi Blueprint was initially released in April 2007 and is completely based on web
based modeling. From a technical perspective it uses Ajax and the Google Web Toolkit to
provide a seamless interface for process modeling. It has been developed to help users that
have little business process modeling experience construct high-level diagrams during the
discovery phases of a strategic planning cycle. Lombardi supports Business Process
Management Notation (BPMN). The latest release of Blueprint also includes a Visio importer
and can import a variety of drawings. Visio drawings have no underlying semantics, but
nevertheless drawings created using the BPMN stencil can be imported to Blueprint as
BPMN diagrams.

High-level capabilities of Lombardi Blueprint

• On-demand browser-based access, delivered in a “Software as a Service” (SaaS)
format. Blueprint is compatible with Windows Internet Explorer and Mozilla Firefox.
Further there's a round-trip integration with Lombardi TeamWorks.

• Interactive process discovery and mapping collaboration with shared workspaces

• Prioritization of problems based on severity and frequency. Further an opportunity
ranking is provided that is based on an impact score

• High-level map and detailed workflow modeling (BPMN-based) views of processes.
This implies a one-click creation of the project overview presentation and business
case.

• Complete history and audit trail for all changes for compliance purposes.

2.1.1.2 Comparison to the SOA4All approach

The process-modeling tool Blueprint uses BPMN as modeling language. From SOA4Alls
point of view, the whole set of BPMN elements is not easily understandable for non-
modeling-experts. It is envisioned to create a new language that can intuitively be used.
Further SOA4All will make use of semantic technologies to structure the content (e.g tagging

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 11 of 45

etc.). SOA4All will include more guidance along the modeling activity based on context or
recommendations.

2.1.1.3 Things that SOA4All can learn from this pro duct

Lombardi Blueprint provides an excellent example of an intuitive editing component that is
usable by non-experts. Although the editor is still far from perfection (as described above), it
still provides a very good example for some aspects such as the easy process definition
interface. This product can be seen as an example for an easy-to-use process definition user
interface for the SOA4All Composer.

2.1.1.4 Key-Facts

Feature Properties

Organization / Consortium Lombardi Software Inc.

License Commercial License

Online / Offline Editor Online

Modeling Language Business Process Management Notation
(BPMN)

BPEL Export (Yes / No) Yes

URL http://www.lombardisoftware.com/bpm-blueprint-
features.php

Table 1: Lombardi Blueprint

2.1.2 Oryx

2.1.2.1 Description

Oryx is a web-based editor for modeling business processes based on the BPMN language.
Oryx can create BPMN models and share them with other people in a team by publishing the
models that have been created. Although Oryx is focused on BPMN, it also provides some
capabilities of creating models in other languages such as EPC or the Petri net mark-up
language. It also allows extending the existing styles, which allows users to add new
modeling languages [Oryx].

High-level capabilities of Oryx:

• Web-based editor for modeling business processes in BPMN providing on-demand
browser-based access, delivered in a Software-as–a-Service (SaaS) style.

• Support of OpenID for identifying users. OpenID is required in order to save models that
have been created.

• SVG support is needed for editing functionality

• New functions may be added via a plug-in mechanism

• Different languages are supported out of the box: BPNM, EPC, PNML

2.1.2.2 Comparison to the SOA4All approach

Unlike SOA4All, Oryx does not aim in integrating any semantics or in integrating the results

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 12 of 45

into existing services. As such it is not capable of connecting existing web services. Instead
of this, it is focused on the graphical modeling process itself. In this sense, Oryx is similar to
a graphics editor. Currently Oryx does not support export of information into a standard
business process modeling language such as BPEL. However, according to the
documentation of the project, developers are currently working on this functionality. Oryx
itself is a set of JavaScript routines loaded into a web browser as part of a single document
describing the whole model where Models are represented in RDF format, where as SOA4All
is a RIA based on Web 2.0.

2.1.2.3 Things that SOA4All can learn from this pro duct

Oryx provides a very flexible editor that allows a realization of very flexible models. However,
this flexibility also makes it appear more like a graphic tool than a regular business process
editor. The support of OpenID and the possibility of exchanging models with other persons is
useful and should be considered by SOA4All as well.

2.1.2.4 Key – Facts

Feature Properties

Organization / Consortium Hasso-Plattner-Institute

License Open Source

Online / Offline Editor Online

Modeling Language BPMN , EPC

BPEL Export (Yes / No) No

URL http://bpt.hpi.uni-potsdam.de/Oryx

Table 2: Oryx

2.1.3 Appian Anywhere

2.1.3.1 Description

Appian Anywhere is a browser based web application for modeling business processes. It is
built around the BPMN standard and allows users to add additional graphical elements to the
model such as pictures or photos. It allows users to group processes into different areas. For
example, a “support request”-process may be grouped into one set of process steps for the
support manager and one set of processes for the support ticket agent. Appian Anywhere is
available as a Software-as-a-Service (SaaS) model. [Appian]

High-level capabilities of Appian:

• On-demand browser-based access, delivered in a Software-as-a Service (SaaS) format

• Draw diagrams that instantly run as applications

• Application dashboards track processes and put documents at your fingertips and
manage work with custom screens that fit your style

• Get real time analytics on process and business data with drill-down investigation.

• Manage all your documents forms and training materials in the document repository

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 13 of 45

2.1.3.2 Comparison to the SOA4All approach

Appian Anywhere is much more technical than Lombardi Blueprint or Oryx. Its focus is on the
technical side of the process construction. In comparison to the SOA4All functionality, Appian
Anywhere does not support the integration of semantics and does not support sharing
information in a team. According to Appian, the integration of external processes is possible
although this has not been tested by the T6.3 team.

2.1.3.3 Things that SOA4All can learn from this pro duct

The grouping functionality of Appian helps users keep an overview about processes and
about the topics that are covered by those processes. It is therefore recommended to include
a similar functionality into the SOA4All Composer.

2.1.3.4 Key – Facts

Feature Properties

Organization / Consortium Appian

License Proprietary License

Online / Offline Editor Online

Modeling Language BPMN

BPEL Export (Yes / No) Yes

URL http://www.appian.com/product/anywhere.jsp

Table 3: Appian Anywhere

2.2 Desktop-Based Process Editors
This section describes several desktop based products in the area of process composition.
There are plenty of tools available in the market today but due to length limitations of this
deliverable, this section will focus on a selection of well-known tools in this domain.

The section uses the same structure as the web-based section.

2.2.1.1 Soyatec – eBPMNDescription

As a member of the Eclipse Foundation, Soyatec has based their product on the Eclipse
Rich Client Platform. As such, eBPMN is available as a desktop application only. The product
itself is therefore fully integrated into Eclipse and may be combined with other plugins. As
stated by the name, the eBPMN Designer is based on the BPMN language. It mainly targets
developers and requires at least a small amount of knowledge on how to use the Eclipse IDE
in order to create new models and projects [Soyatec].

High-level capabilities of eBPMN:

• Full object model of the BPMN 1.0 specification

• Tightly integrated into Eclipse

• Developer oriented

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 14 of 45

2.2.1.2 Comparison to the SOA4All approach

In comparison to the SOA4All approach, eBPMN has a different target group since it does
not aim in providing a modeling approach for everyone, nor does it aim at sharing process
models with other people. eBPMN is mainly targeting technical people that want to create a
business model for reflecting their IT processes. It is a purely desktop application.

2.2.1.3 Things that SOA4All can learn from this pro duct

eBPMN allows users to create many different processes and allows to add time specific
constraints. Although those are useful features, they are not crucial for SOA4All and can
rather considered to be ‘nice to have’ functionalities.

2.2.1.4 Key – Facts

Feature Properties

Organization / Consortium Soyatec

License Free and Commercial Versions

Online / Offline Editor Offline

Modeling Language BPMN

BPEL Export (Yes / No) Yes

URL http://www.soyatec.com/ebpmn/features.html

Table 4: Soyatec eBPMN

2.2.2 Eclipse BPEL

2.2.2.1 Description

The Eclipse BPEL project aims in creating a graphical BPEL designer for modeling business
processed within the Eclipse RCP framework. As such, the BPEL project follows a similar
approach to eBPNM. The project is currently in an incubation stage meaning that it is under
strong development and ongoing change [EclipseBPEL].

High-level capabilities of Eclipse BPEL:

• Creation of GEF & EMF based diagrams that are compliant to the BPEL specification
(after exporting)

• Grouping processes and defining conditions

• Providing a runtime framework for BPEL deployment into several BPEL engines

• Debugging BPEL processes with a step-by-step debugging approach

2.2.2.2 Comparison to the SOA4All approach

Similar to eBPNM, the Eclipse BPEL project mainly targets developers and technical experts.
The user interface tries to make the process generation simple and provides a compact user
interface. However, the process modeling is far from being usable by non-technical people
and it does not allow sharing processes or invoking services from a service directory.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 15 of 45

2.2.2.3 Things that SOA4All can learn from this pro duct

The idea of providing an integrated step-by-step debugger helps process designers to
validate the process functionality and to quickly detect problems in the process. As such
SOA4All would highly benefit from a similar debugging functionality.

2.2.2.4 Key – Facts

Feature Properties

Organization / Consortium Eclipse

License Open Source

Online / Offline Editor Offline

Modeling Language BPEL

BPEL Export (Yes / No) Yes

URL http://www.eclipse.org/bpel/

Table 5: Eclipse BPEL

2.2.3 Oracle BPEL Process Manager

2.2.3.1 Description

The Oracle BPEL Process Manager provides a developer-friendly and reliable solution for
designing, deploying and managing BPEL business processes. It has been one of the first
well-known and highly distributed process editors in the market and is available as a stand-
alone application, although being implemented on top of Eclipse.

The Oracle BPEL Process Manager contains more than a designer of business processes. It
also contains a BPEL execution engine and a sophisticated integration of external web
services. A large set of documentation and examples allows developers to define business
processes or to connect different web services into processes easily. [OracleBPEL]

High-level capabilities of Eclipse BPEL:

• Creation of BPEL processes using a graphical editor

• BPEL execution engine

• Real-world examples and detailed documentation

• Highly scalable solution, widely applied in different information systems

2.2.3.2 Comparison to the SOA4All approach

In comparison to the SOA4All approach, the Oracle BPEL Process Manager does not
consider an integration of semantic information. In addition to this, the usage of the Process
Manager required some technical knowledge about business process design and is not
suitable for non-experts.

The BPEL Process Manager is a very powerful and rather heavyweight application, allowing
the realization of almost all business processes for experts. In comparison to this, SOA4All
will focus on non-experts by providing a lightweight process editor.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 16 of 45

2.2.3.3 Things that SOA4All can learn from this pro duct

The documentation and provision of examples is outstanding in the Oracle BPEL Process
Manager. It helps people get started quickly with a complex product. It is therefore required
to create a similar set of examples for SOA4All users showing them how to create a simple
business process within just a few steps.

2.2.3.4 Key – Facts

Feature Properties

Organization / Consortium Oracle

License Proprietary License

Online / Offline Editor Offline

Modeling Language BPMN

BPEL Export (Yes / No) Yes

URL http://www.oracle.com/technology/bpel

Table 6: Oracle BPEL Process Manager

2.2.4 SAP Netweaver

2.2.4.1 Description

NetWeaver BPM supports a model-driven approach to managing business processes
throughout their lifecycle. It provides an integrated design and runtime environment that
enhances collaboration between business and IT through shared BPMN models, providing
descriptive context for both implementation design and performance monitoring. Business-IT
alignment and agility are also enhanced by close integration between BPM and business
rules throughout the lifecycle as well: modeling, execution, and management.

While focused on edge processes, NetWeaver BPM can also be used to compose core
application processes, such as local variations within a global enterprise. With its close
integration to SAP’s Enterprise Service Repository and existing enterprise services, SAP is
trying to evolve NetWeaver BPM into the BPMS of choice for SAP Business Suite customers
[SAP Netweaver].

High-level capabilities of SAP Netweaver include:

• Creation and debugging of executable business process models.

• Each business process model clearly defines the rules and exceptions governing the
process steps

• The process editor provides graphical modeling of activity flows using BPMN, with
implementation properties of each selected node in the diagram defined via point-click
property selection.

• NetWeaver BPM supports message flows and intermediate events, including attached
error events.

• BPMN allows event- and exception-handling to be described explicitly in the process
diagram.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 17 of 45

• The process editor distinguishes human tasks from automated services.

• BPMN diagrams created provides visual context for process monitoring at runtime.

2.2.4.2 Comparison to the SOA4All approach

In comparison to the SOA4All approach, SAP NetWeaver BPM requires technical knowledge
about business process modeling and execution and is thus not suitable for non-experts.
Furthermore, SAP NetWeaver BPM does not make use of semantic technologies in order to
support the discovery of services. In comparison to this, SOA4All will focus on non-experts
by providing a lightweight process editor

2.2.4.3 Things that SOA4All can learn from this pro duct

SAP NetWeaver BPM does not only concentrate on services but also considers human tasks
as an important artifact in process modeling. It is desired to use a similar approach in the
SOA4All Composer.

2.2.4.4 Key – Facts

Feature Properties

Organization / Consortium SAP

License Proprietary License

Online / Offline Editor Offline Editor

Modeling Language BPMN

BPEL Export (Yes / No) Yes

URL http://www.sap.com/platform/netweaver/
components/sapnetweaverbpm/index.epx

Table 7: SAP Netweaver

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 18 of 45

3. Requirements
This section defines the functional and non-functional requirements of the SOA4All
Composer. For achieving a good overview, it is split into the following subsections:

• use case overview – a description of typical tasks of the Composer

• domain-oriented design requirements

• requirements derived from the lightweight nature

• user interface requirements

• requirements for achieving a SOA4All Studio integration

3.1 Use Case Overview
Two pivotal use cases have been identified in the context of the SOA4All Composer –
“process model storage and retrieval” and “process modelling”. The emphasis is on the
interactions of the involved functionality.

For clarity reasons some functionalities have been omitted and some external functionalities
have been included.

3.1.1 Storage and Retrieval of Process Models

Creation, deletion, saving and loading of processes is naturally a pivotal use case for the
SOA4All Composer. It involves interactions with external components and functionality.
Figure 1 shows this use case modelled in UML notation.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 19 of 45

Figure 1 Use Case: Storage and Retrieval of Process Models

3.1.2 Process Modeling

Modeling processes involves choosing suitable services or defining abstract goals in a
variety of ways, configuration and composition through connections with configurable
semantics and using patterns, templates or wizards. Figure 2 shows this use case modelled
in UML notation.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 20 of 45

Figure 2 Use Case: Modeling of Processes

3.2 Domain-Oriented Design Requirements
The target group of the SOA4All Composer is users that have a solid idea on the processes
that they want to model but that are not necessary experts in this domain and that are also
not necessarily skilled in software development or IT-modeling systems. They can therefore
be considered to be domain experts.

As such the task of defining service compositions can be regarded as a generic end user
development, or design problem. The construction of appropriate representation and
interaction mechanisms is a typical meta-design problem [Fischer04], where designers are
creating an environment for other people to design solutions, in this case service composition
problems.

In literature, most experts of such design environments suggest the use of representations,
which are aligned with the domain tasks of their users. They also suggest to provide libraries
of problem solution templates and to offer advisory support to the users to reduce the risks of
errors. Such environments are known as Domain-Oriented Design Environments (DODEs)
[Fischer04]. The SOA4All process composer can be seen as a domain oriented software that
focuses on the process modeling / process composition domain although it will of course be
sector independent (i.e. allowing users to model all types of processes).

Following the design guidelines for Domain-Oriented Design Environments, it suggests an
interactive service composition model, where the following requirements are fulfilled:

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 21 of 45

R01: Search

Users have to be able to search for appropriate services or composition templates – either by
textual search or browse, or combination of both

R02: Result

Users should be able to narrow down results of the search according to personal profile
characteristics and context parameters

R03: Advisory Functionalities

The environment should support users with advisory and supporting functionality such as
attraction of elements to the right slots and repulsion from wrong ones, simplified
representation of templates and composite services and goals, filtering of incompatible
elements etc.

3.3 Requirements Derived from the Lightweight Natur e
One of the main objectives of SOA4All is to make service composition user-friendly. The
proposed SOA4All approach (using template-based service composition represented by
lightweight process models) seems to fit the class of problems with natural mapping to a
diagrammatic representation. However, the complexity of modeling interactions cannot be
fully represented by a single, simple representation.

One way forward is to abstract these aspects away and hide them from users. The problem
with this approach is that understanding the hidden aspects is often crucial for understanding
the overall behavior of the system. Mehandjiev and Bottaci [Mehandjiev96] have proposed
the use of assumption descriptions (explicit textual statement of the way missing aspects are
implemented by the system) to address this problem, but the mainstream approach seems to
rely on choosing appropriate metaphors for the representation in the hope that these evoke
the correct common sense assumptions about the missing aspects.

The problem with the latter solution is that some of this “common sense” knowledge seems
to depend on the background and other characteristics of the target group of users. We
would therefore need to proceed with user profiling techniques and systematic user-aware
design of our service composition representations, using formative and summative
evaluation techniques as appropriate.

The case studies and outline processes can be linked o create representations tuned to the
needs of users and case studies. Achieving the objectives of SOA4All requires the delivery of
a service composition interface that is tuned to the skills and tasks of our target users. The
long-term aim of SOA4All is to open up service construction to everyone, yet at first instance
our target users are those found in the SOA4All case studies (WP7-9).

The case studies are still in stages of initial definition, yet the following characteristics of our
end users are now clear:

• Most target users will have a professional background meaning that they have a clear
idea of what they want to model without being necessary modeling experts.

• Some target users will not be professional software developers and would not have
received significant training in programming nor system design.

These considerations have influenced the lightweight modeling language developed in Task
6.3 significantly and have led to a concise set of constructs, which yet achieve significant
modeling expressiveness. For a complete listing of the language constructs, please refer to

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 22 of 45

D6.3.1.

In addition to this, those considerations have a direct influence on the Composer:

R04: “Common Case Fast”-rule

Because of its lightweight nature, the Composer does not have to support all functions or a
fully blown process editor that is used for modeling all possible processes. Instead, a
concentration on the most commonly used functions is sufficient.

R05: Template support

The Composer needs to support template-based modelling (see D1.4.1A and D6.4.1).

R06: Non-technical details

The Composer can use expert terms but it should not use technical terms that might not be
understood by the domain experts. The actual technical language that is used internally
should be hidden from the user in the modeling process.

R07: Support drag & drop

The Compose should support drag & drop operations to allow users to assemble processes
using a well-known metaphor.

3.4 User Interface Requirements
The following design principles derived by Johnson et al provide the basis for all SOA4All
Studio applications [Johnson00]:

• The focus shall be on the users and their tasks, not the technology

• Function shall be considered first, presentation later

• It shall be conformed to the users' view of the task

• The users' task shall not be complicated

• Learning shall be promoted

• Information shall be delivered, not just data

• It shall be designed for responsiveness

• It shall be tried out on users

Considering the requirements that have been mentioned earlier, the following new
requirements can be extracted for the process editor:

R08: Functions first, presentation later

The Composer has to provide all identified functionality while the actual layout may be
improved at a later stage of the project. Finalized service compositions must be deadlock-
free and executable. Users should be able to reach a correct service composition state at
any stage through functionality supported by the Composer.

R09: User-based design

When creating the user interface, the target users should be kept in mind and given more
importance than the general SOA4All UI guidelines. Context-based support according to
personal profile characteristics and context parameters should be available.

R10: Fast reaction

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 23 of 45

The process composer needs to have near-instant responsiveness. .

R11: User validation

The process composer UI should be created in cooperation with users and should undergo
repetitive user validations

3.5 Requirements for Achieving an SOA4All Studio In tegration
The SOA4All Studio will provide a unified interface for all SOA4All users, bundling different
tools including the Composer. In addition to a general framework and UI design, the SOA4All
Studio provides a set of components that may be used by other tasks such as 2.6 in order to
help them creating user interfaces and in order to keep a holistic look & feel.

In terms of the T2.6 integration into the SOA4All Studio, the following elements should be
considered:

• Communication

• Storage

• Management

• Integration into the SOA4All Studio Dashboard

• Application of the generic SOA4All Studio design

• Reuse of the SOA4All UI library (i.e. UI widgets)

3.5.1 Storage

All storage and loading activities that will be performed in 2.6 will be based on the semantic
spaces provided by WP1 (see D1.3.1 and D1.4.1A). Task 2.4 will provide a simplified
interface for loading and storing data. This interface will provide four methods that can easily
be invoked by 2.6 when storing and loading process files: storeRDF, queryRDF, storeFile,
queryFile. A detailed specification can be found in Deliverable 2.4.1.

R12: Semantic Spaces usage

All storage processes should be performed using the 2.4 interface for storing elements in the
SOA4All semantic space.

3.5.2 Management

The SOA4All Studio will provide a management interface as described in D2.4.1. This
management interface allows the authentication of users and the management of user
profiles. This will be used by the Composer when checking process owners and when editing
existing processes. The interface that may be used is described in D2.4.1, Section 5.2. It
requires calling the corresponding methods with either WebService or RESTful calls from
within the Composer.

R13: User Profile Management

User profiles and management activities should be performed using the infrastructure
management services developed in T2.4 (see D2.4.1).

3.5.3 Integration into the SOA4All Studio Dashboard

The SOA4All Studio provides a dashboard view of all elements. This Dashboard is the
starting place for new SOA4All users. It shows them all parts and allows them to quickly jump
to the different components. For example, the user will see the Composer as a link in the

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 24 of 45

Dashboard menu and on the Dashboard starting page. Clicking this link will directly lead to
the Composer.

R14: Dashboard Integration

The Composer has to reuse the Dashboard plugin interface and to integrate into the SOA4All
Dashboard.

3.5.4 Application of the Generic SOA4All Studio Des ign

After registering as a plugin, the Dashboard will automatically add entries to the menus and
SOA4All Studio bars that will allow users to invoke the Composer. The following figure has
been taken from D2.4.1 and shows how the Dashboard will integrate the Composer plugin
and which parts may be controlled by the plugin.

Figure 3: Plugin Integration

The Dashboard will provide style sheets and icons that may be used by the Composer in
order to create a holistic look & feel. In addition to this, many elements will automatically be
provided by the Dashboard using the underlying GWT and Ext GWT frameworks.

R15: Holistic design adoption

The Composer should use a design that adopts to the Design Templates that are specified in
deliverable 2.4.1.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 25 of 45

3.5.5 Reuse of the SOA4All UI library (i.e. UI widg ets)

Another element that will be provided by task 2.4 of the SOA4All Studio is an extensive UI
library. This library consists of several UI widgets that may be used by other tasks and work
packages such as a widget for user ratings. All widgets have been described and defined in
details in D2.4.1.

However, those widgets that are most important for the SOA4All Composer are the graph
visualization widget and the drawing widget. Those widgets allow the Composer to create
flexible elements with specific shapes and to place them on a panel. Those elements will
therefore be the base for the Composer in order to create process diagrams that are follow
the graphical design described below.

R16: Component Reuse

The Composer should use the UI components and widgets defined in 2.4. This will allow the
Composer to stay consistent to other SOA4All developments in terms of the elements that
are used within to UI.

3.6 Summary of Requirements
The following table summarizes the requirements and also assigns a priority of either must,
should or nice-to-have:

Requirement Classification

R01: Search Must

R02: Result Should

R03: Advisory Functionalities Should

R04: “Common Case Fast”-rule Must

R05: Template support Must

R06: Non-Technical details Must

R07: Drag & Drop Should

R07: Functions first, presentation later Must

R08: User-Based design Should

R09: Fast reaction Must

R10: User validation Must

R12: Semantic Spaces usage Must

R13: User Profile Management Must

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 26 of 45

R14: Dashboard Integration Must

R15: Holistic design adoption Should

R16: Component Reuse Should

Table 8: Summary of all Requirements

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 27 of 45

4. Functional Specification
This section defines the functionalities of the different components of the SOA4All
Composer, which are to be realized in Task 2.6. These features correspond to the
requirements set by the modeling language specification, the user modeling needs and the
integration with the other components of the SOA4All Studio. Some of the functionalities
serve as a thin wrapper around functionalities developed outside Task 2.6, but will
nevertheless be listed here in order to indicate that users have direct access to them from
the Composer.

Functionalities listed in the following sections include:

• Create, Read, Update, and Delete a Process

• Common Modeling Functionality

• Guided Modeling

• Process Model Patterns and Templates Support

• Drag & Drop

• Collaborative Commenting

• Exploration and Organization

• Undo / Redo

• Auto-Save

• Integration with external components

4.1 Create, Read, Update, and Delete (CRUD) a Proce ss
The SOA4All Composer will support the standard creational activities such as create, read,
update and delete a process model. The graphically modeled service composition will be
translated into an extended XML Process Definition Language (XPDL) format defined in
D6.3.1 and persisted in the Semantic Spaces storage layer investigated in Task 1.3. The
opposite transformation will be supported in order to load and restore a process model from
its definition. Semantic Spaces offer an interface to store and retrieve files in a distributed
manner. Figure 4 presents the “Save As” functionality, made transparent to the user.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 28 of 45

Figure 4 Save As in the SOA4All Composer

4.2 Common Modeling Functionality
The SOA4All Composer will offer common modeling functionality related to graphical
composition of process models – addition and removal of process elements, rearranging,
configuration etc.

Currently, D6.3.1 has defined activities and connectors as the main building blocks in the
lightweight modeling language (for a formal model see D6.3.1). An activity may represent a
concrete Web Service Description Language (WSDL)-based web service, a REST service
endpoint, a Web Service Modeling Ontology (WSMO) goal, or a task that requires human
input. Users will be able to connect separate activities with configurable connectors with
AND, OR and XOR semantic in order to indicate connection flows and thus define complex
composition patterns. Figure 5 shows how a connection between two activities can be
created, with an emphasis on intuitiveness.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 29 of 45

Figure 5 Attaching Activities During Modeling

4.3 Guided Modeling
The Composer will offer two modes of modeling – free and guided.

The free mode is intended for experienced users, who can manage all steps such as placing
activities on the canvas, connecting the activities in a meaningful way, relating the activities
to actual services, specifying goals etc. without the need for additional support.

The guided modeling mode is intended to help inexperienced users perform these tasks by
offering them context-based step-wise guidance. Guided modeling will make use of wizards
or assistants, which will provide meaningful suggestions based on context information such
as currently selected activity or user-input such as goal of the process or search keywords.
This mode will employ external services such as Task 2.2 Service Consumption or Task 2.7
Service Recommendation. The user will be free to change modes at any time during process
modeling. Figure 6 shows an example of a mock-up smart wizard during process modeling.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 30 of 45

Figure 6 Mock-up Smart Wizard Example

The project intends to make use of recommendation, rating, semantic and context
information in the guided modeling wizards

.

4.4 Process Model Patterns and Templates
The SOA4All Composer will provide a set of predefined process patterns and templates to
users. Process patterns simplify the process of designing a solution by providing commonly
occurring behaviors in process modeling, which can be configured to match the concrete
requirements.

On a higher level, workflow templates combine different process patterns into more complex
compositions. Templates are also intended to be generic and configurable. Patterns and
templates are a subject of research for D.6.3.1 and this is where an exhaustive list can be
found.

4.5 Drag & Drop
The Composer will offer a canvas widget, on which the graphical service composition occurs.
Activities will be available in a separate toolbox widget and users will be able to simply Drag
& Drop (DnD) them on the canvas. Creating connection will also be intuitive by first selecting
the source then dragging and releasing the mouse at the destination.

Drag & Drop will also be available for services and processes regardless of whether they are
returned from search or favorites catalogue browsing. DnD is planned to be provisioned by
Task 2.4.

The modeling canvas will feature a Snap-To-Grid functionality, which automatically aligns
activities and other elements as they are placed on the canvas by snapping them to an

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 31 of 45

invisible grid. In this way, the designed process retains a certain structure and proper
alignment.

4.6 Collaborate Using Comments
A collaborative commenting feature will allow users to model, discuss, and exchange ideas in
a collaborative fashion. Comments will be realized as annotations attached to process
elements, which add an additional descriptive value to the process model. Comments will be
stored together with the process and potentially could be used for service discovery. Figure
7 presents the commenting feature of the Composer.

Figure 7 Comments Feature in the SOA4All Composer

4.7 Explore and Organize
The SOA4All Composer will allow the user to explore and organize processes and services,
both his/her own and those deployed by others. See Figure 8 for an example screen of
favorites browsing.

Explore :

• Search: By accessing search functionality of the SOA4All Studio, more specifically
Task 2.2

• Browse: By browsing through categories and tag-clouds.

• Favorites: By navigating through processes that have been added to the favorites.

Organize :

• By adding processes to favorites catalogue and organizing them in a folder structure

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 32 of 45

Figure 8 Search and Browse

As part of the exploration possibilities, the user will be able to examine services in more
detail by reading their detailed descriptions such as WSDL documents, WSMO descriptions,
mark-up and plain text descriptions or even associated images. These will be visualized
together with additional information coming from other SOA4All components such as rating,
monitoring and analysis information etc. The actual content is provided externally, the
SOA4All Composer supplies the necessary component to support a large set of
representations.

4.8 Undo/Redo
A desirable feature for an interactive and user-friendly modeling application is the ability for a
user to make recent changes undone. The possibility of undoing and redoing user
commands gives the user a feeling of security. This is especially important for inexperienced

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 33 of 45

users in the early learning phase but also contributes to the effectiveness of advanced users
as well. The presence of undo/redo support is a good indicator of the maturity of an
application.

The SOA4All Composer will feature an Undo functionality, which would support reverting
major modeling steps – e.g., adding an activity, removal of activity etc. The provisioning of
undo functionality for non-critical steps such as text editing is still under consideration.

4.9 Auto-save
The SOA4All Composer will include Auto-save in predetermined regular intervals in order to
reduce the risk and impact of data loss in case of crash or freeze. Auto-save backups will be
stored in the externally provided, semantically-enriched Semantic Spaces storage.
Intermediate saves will be purged whenever the user finishes their work.

4.10 Communication with External Components
The SOA4All Composer is a part of the SOA4All Studio and is related to many different
components in the complete SOA4All ecosystem. As such it will provide means to
communicate with all related components as needed.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 34 of 45

• Common Look &
Feel suggestion

• Providing
stylesheets, etc.

Design
Templates

• Based on Ext GWT

• SOA4All typical
components

• Web 2.0 style

UI Components
& Examples

• Overview Page /
Start page

• Linking to the
different WP results

Dashboard

2.4.2: UI Library

5. Architecture and Interface Specification
The SOA4All Composer will be implemented as a web-based desktop-like modeling
application. It will be based on the Google Web Toolkit (GWT) [GWT] and an extension
library ExtGWT [ExtGWT]. The Composer will be registered in the SOA4All Studio as a plug-
in, respecting the specification elaborated in D2.4.1. For functionality not offered by these
two frameworks custom native JavaScript through JSNI (JavaScript Native Interface) will be
used.

Rich Internet Applications tend to have an ever-increasing size and complexity and large
applications are difficult to manage. This is where the Google Web Toolkit (GWT) shines - it
brings the manageability of Java to RIAs. The same code used to perform business logic can
be executed on client-side, server-side or both depending on the application requirements. In
this way, so-called progressive enhancement can be conducted – development begins with a
standard approach – working markup/basic client-side scripting and server-side logic, and
then iteratively enhance it in layers to add functionality for the browsers that can handle it, so
that it always works, even if a layer is missing or broken.

5.1 Composer UI Design
The Composer will make use of the UI components developed in Task 2.4 (see Figure 9) and
will respect the provided stylesheets and common look & feel suggestions.

Figure 9 Design Templates, UI Components & Examples and Dashboard from Task 2.4

Among all components to be delivered by Task 2.4, the most relevant for the SOA4All
Composer are:

• A Graph Visualization Widget

• A Drawing API

• Integration into the SOA4All Dashboard including a flexible menu toolbar

• List components for search results and list entries

• A tag cloud widget

However, Task 2.4 provides only a set of generic UI widgets and will hence not provide all

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 35 of 45

Composer specific components. The generic widgets will be customized in order to fit the
Composer requirements. In addition, a number of custom GWT widgets will be developed in
2.6 in order to complete the requirements of the SOA4All Composer:

• Modeling Canvas supporting Drag & Drop, internally using the Graph Visualization
Widget from Task 2.4

• Modeling Tools Widgets

• Pluggable Wizard Widget that can be instantiated as different specialized Wizards

As part of the SOA4All Studio, the entry point to the SOA4All Composer will be from the
Dashboard View, as illustrated in Figure 10.

Figure 10 Dashboard Entry Point for the SOA4All Composer

After entering the Composer the user has the choice to use different ways to build service
compositions – e.g search, browse favorites, start modeling wizards, use patterns and
templates etc. Figure 11 shows a screenshot of the SOA4All Composer UI during modeling -
with opened Modeling Canvas and Tools components.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 36 of 45

Figure 11 SOA4All Modeling Canvas

The lightweight modeling language of Task 6.3 defines a core set of constructs for modeling
service compositions. According to D6.3.1 the limited set of components at this moment is
intentional to make sure that the language remains light-weight and usable by a broad
spectrum of users. D6.3.1 cites that a study has revealed that the average subset of BPMN
used in most of the existing process models consists of just nine different symbols. The
SOA4All Composer will try to minimize the modeling effort by explicitly omitting modeling
elements from the language such as gateways as separate visual elements as they are
believed to be hard to understand for non-technical users. They will be modeled implicitly by
allowing multiple outgoing and incoming connections from activities. The input and output
endpoints of activities will be configurable to mimic gateway functionality.

The set of visual components currently consists of the elements listed in Table 1. This table
also presents the graphical representation of these constructs in the SOA4All Composer.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 37 of 45

Name Meaning Symbol

Activity

An activity is a unit of work, the
job to be performed. It can be
either concrete (service) or
abstract (goal).

Start Starts a process flow

End Ends a process flow

Connection
Connections define the
execution arrangement of
activities.

Table 1 Visual Representation of the Language Elements as Defined in D6.3.1

5.2 Composer Architecture
The SOA4All Composer will exhibit a Rich Internet Application (RIA) architecture consisting
of server-side core business logic integrated in the SOA4All Studio and a light-weight client-
side user interface.

The choice of GWT as underlying framework gives a number of implementation choices. The
custom GWT-RPC mechanism makes it very easy to transfer data between the client and the
server sides through out-of-the-box object serialization into opaque JavaScript Object
Notation (JSON) [JSON] objects. While this approach is straightforward, it ties both sides
together and the server-side is difficult to access outside the context of the respective GWT
client. In the context of SOA4All, which promises integration of services at a world-wide scale
in a Web 2.0 manner this approach appears unfit.

The alternative option is to design the server-side in a REST-ful manner, exposing
functionalities as resources [RoyFielding]. The benefits are numerous:

• Uniform interface – HTTP methods (GET, POST, PUT, DELETE)

• Named resources - the system is comprised of resources which are named using a
URL

• Interconnected resource representations - the representations of the resources are
interconnected using URLs, thus allowing a client to progress from one state to
another

• Open data-exchange format (JSON)

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 38 of 45

• Accessible through different client implementations

The drawback in respect to GWT-RPC is that the process of converting from and to the data-
exchange format JSON (also known as marshaling and unmarshaling) on the client and
server side is not automatic, thereby incurring a greater one-time implementation effort.

The project is planning to support both approaches by abstracting protocol considerations
from business logic as much as possible. It will start with the less laborious approach of
GWT-RPC as a proof-of-concept and will open the interfaces as development progresses.

Figure 12 High-level SOA4All Composer Architecture with emphasis on the
client-server communication

RIA applications typically involve rather complex client-side logic required by the desktop-like
look & feel. Moving some functionality to clients also makes the application more scalable.
This fact suggests a careful design of the client-side logic and the application of useful
design patterns for modularity reasons.

The SOA4All Composer client-side will include an adapted Model-View-Controller (MVC)
architectural pattern, which takes into consideration the asynchronous nature of the
application. The controller communicates with the server as required – e.g., to synchronize
the client-side model, call an external service or to fetch data. The external services in the
context of the SOA4All Composer are the ones developed in Task 2.4. Furthermore, the
server-side logic implements or dispatches all critical functionality such as storage,
authentication etc. The client side is always considered untrustworthy; therefore some
elements are kept server-side only.

Figure 13 gives a high-level overview of the proposed architecture. For clarity the different
communication approaches have been unified.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 39 of 45

Figure 13 High-level SOA4All Composer Architecture

A detailed UML design of the intended technical specification of the SOA4All Composer
Client is given in Figure 14. The emphasis is on the separation on concerns in order to allow
for component change with minimal effort. The architecture is open for extension as
requirements may change during the course of the project.

The View consists of the SOA4All Composer widgets presented above, glued together but
each of them serving a different purpose. The most important widget is the modeling canvas,
which visualizes the modeled service composition. Widgets capture user interactions and
dispatch them to the controller for proper handling.

The Controller contains the client-side logic and translates the user events into model
changes or invokes a remote service interface. The controller is also responsible for
submitting the client-model to be persisted on the server-side.

The Model represents the service composition, which a user defines through the provided
modeling tools with help from context-aware wizards, recommendations, ratings etc. The
model is unaware of the existence of the controller thus decoupling logic from data.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 40 of 45

The best way to understand the components relationships is through examples. Let’s
consider two common cases - the user adds a new activity and the user saves a process
model. In terms of events they translate to:

Add new activity:

• Modeling canvas widget registers a drag & drop event, captures its context such as
coordinates, element dropped etc

• Canvas passes the information to the controller

• Controller interprets the information and updates the model (it can potentially trigger
other functions such as recommendation on the basis of context)

• Model updates the view and the element is visualized on screen

Save service composition:

• View registers a save event through a button click

• Controller converts the current model in the respective wire-format (JSON) and sends
it to the server side

• Response from the server comes asynchronously and is presented to the user – e.g
service composition stored successfully

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 41 of 45

Figure 14 Simplified UML Design of the SOA4All Composer Client-side

5.3 Composer Server-side Interfaces and Data-formats
There are a number of functionalities, which are better delegated to the server side of the
SOA4All Composer. They include persistence and retrieval of service compositions,
communication with other SOA4All components – search, recommendation etc.

The server-side will be open for alternative uses and reuse by exposing its functionality in a
client- and platform-independent manner. Since the Web is the compelling example for
interoperability and ease of use the project will employ the web principles on the SOA4All
Composer server-side. Functionality will be exposed as addressable resources in a REST-ful
manner and interfaces will follow the HTTP convention:

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 42 of 45

• GET - to obtain the current state of a resource. GET is idempotent and has no side
effects

• POST - to update a resource state. The payload of a POST request carries the
required update information

• PUT - to create a new resource if not existing. Since some servers and browsers may
not support PUT requests, we will provide an alternative POST-based implementation
in which the URI specifies that the request should be interpreted as PUT. E.g.,
http://SOA4All.com/studio/composer/processID/put

• DELETE - to remove an existing resource. Since some servers and browsers may not
support DELETE requests, we will provide an alternative POST-based
implementation in which the URI specifies that the request should be interpreted as
DELETE. E.g. http://SOA4All.com/studio/composer/processID/delete

The resources that will be exposed by the server are naturally the service compositions and
their related elements such as individual activities, connections, ratings, comments etc. A
proposed addressing structure is the following:

URI GET POST PUT DELETE

/composer/processID Retrieve full
process
representation

Update
process state

Create
new
process

Remove
process

/composer/processID/comments Get all
comments for
process

Post new
comment

Add first
comment

Remove
comments

/composer/processID/rating Get process
rating

Update
process
rating

Add first
rating

Remove
rating

/composer/processID/{other} Get element
representation

Update
element

Add
element

Remove
element

/composer/processID/activity/ID Get activity
representation

Update
activity

Add
activity

Remove
activity

/composer/processID/connection/ID Get
connection
representation

Update
connection

Add
connectio
n

Remove
connection

/composer/{wp2.4service} Get data Update data Create
data

Remove
data

Table 9 Proposed Addressing Structure of the Process Composer Server

The interface can change to reflect requirements changes but it gives an impression of how
the SOA4All Composer server-side is open for unintended uses and extensions. External
services provided by Task 2.4 components will be accessible as well.

The data-exchange format is intended to be JSON. The JSON process representations

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 43 of 45

submitted to the server-side will be transformed to an extended XPDL format according to
D6.3.1 and will be persisted in the Semantic Spaces storage.

This document will not present an exhaustive specification but rather a simplified draft for
proof-of-concept purposes. The service composition representation, which is the pivotal point
of the application, will be represented in the following way:

var activity = [
 {
 “id”: “Identifier”,
 “name” : “Activity name”,
 “type” : “Activity type”,
 “outgoing” : [“connectionA_ID”, “connectionB_ID” /*..*/]
 “incoming” : [“connectionC_ID”, /*..*/]
 /* other attributes */

}
];

var connection = [
 {
 “id”: “Identifier”,
 “name” : “Optional connection name”,
 “type” : “Connection type”, /* e,g OR, AND */
 “from” : activityA_ID,
 “to” : activityB_ID,
 /* other attributes */

}
];

var process = [
 {
 “id”: “Identifier”,
 “name” : “Process name”,
 “rating” : “Process rating”,
 “comments” : [“comment1”, “comment2”, /*..*/],
 “activities” : [
 /* activities in JSON form listed here, see above*/
]
 “connections” : [
 /* connections in JSON form listed here, see above*/
],
 /* other attributes */
 }
];

This design of the Composer’s server-side leaves room for unintended use by allowing
different clients store and retrieve process models via its open interfaces. This approach is in
the spirit of the openness of the SOA4All project and encourages reuse and sharing.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 44 of 45

6. Conclusions and Next Steps
This deliverable clarifies the requirements, defines the functional specification and provides a
detailed technical specification for Task 2.6 “SOA4All Process Editor”.

The document takes into account the results from the analysis of the current state-of-the-art
in the process modeling area and identifies its relationships to the SOA4All Studio and the
SOA4All infrastructure as a whole. This deliverable will be used as a guideline base by the
2.6 team when implementing the SOA4All Composer in the next implementation phase of the
task.

Next steps involve close collaboration with Task 2.4 for aligning the requirements for UI
components and functionalities to be delivered by 2.4 as well as other WP2 components. Of
very significant importance is Task 6.3, which will define the light-weight modeling language
for describing service compositions in an executable manner. Findings and results of Task
6.3 will be iteratively included in the SOA4All Composer in order to offer the complete
functionality and expressive power of the language at any stage of the project progress.

As specified in the “Description of Work”, the first version of the prototype will be delivered in
M24 as the output of D2.6.2. The next delivery iteration is planned for M30 as the outcome of
D2.6.3.

 SOA4All –FP7 – 215219 – D2.6.1 Specification of the SOA4All Process Editor

© SOA4All consortium Page 45 of 45

References

1. Fischer, G, Giaccardi, E, Ye, Y, Sutcliffe, A. & Mehandjiev, N. 2004, 'Meta-design: a
manifesto for end-user development.', Communications of ACM, vol. 47(9), pp. 33-37.

2. N. Mehandjiev and L. Bottaci. User-enhanceability for organizational information
systems through visual programming. In P.Constantopoulos et al Composers,
Advanced Information Systems Engineering, LNCS No 1080, pages 432-456.
Springer-Verlag, 1996, ISBN 978-3-540-61292-

3. J. Johnson, Ed. 2000 GUI Bloopers: Don'ts and Do's for Software Developers and
Web Designers. Morgan Kaufmann Publishers Inc.

4. [MVC] http://java.sun.com/blueprints/patterns/MVC.html

5. [RoyFielding] http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

6. [OReilly] http://radar.oreilly.com/archives/2005/10/web-20-compact-definition.html

7. [Oryx] http://bpt.hpi.uni-potsdam.de/Oryx

8. [Appian] http://www.appian.com/product/anywhere.jsp

9. [Soyatec] http://www.soyatec.com/ebpmn/features.html

10. [EclipseBPEL] http://www.eclipse.org/bpel/

11. [OracleBPEL] http://www.oracle.com/technology/bpel

12. [SAPNetweaver]
http://www.sap.com/platform/netweaver/components/sapnetweaverbpm/index.epx

13. [GWT] http://code.google.com/webtoolkit/

14. [ExtGWT] http://extjs.com/products/gxt/

15. [JSON] http://www.json.org/

