

Project Number: 215219
Project Acronym: SOA4ALL

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D2.7.1 - Recommender System First
Prototype

Activity: Activity 1 - Fundamental & Integration activities

Work Package: WP2 - Service Deployment and Use

Due Date: M18

Submission Date: 11/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: CEFRIEL

Revision: 1.0

Authors: Guillermo Álvaro Rey
Dario Cerizza
Giovanni Di Matteo
Gianluca Ripa
Andrea Turati
Matteo Villa

iSOCO
CEFRIEL
TXT
CEFRIEL
CEFRIEL
TXT

Reviewers: Sven Abels
Nikolay Mehandjiev UNIMAN

TIE

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 2 of 42

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 10/06/2009 Document Initialized
Dario Cerizza, Gianluca Ripa,
Andrea Turati, Maurilio
Zuccalà

0.2 22/06/2009 Inclusion of feedbacks on TOC Dario Cerizza

0.3 30/06/2009 Contribution to Architecture Dario Cerizza, Andrea Turati

0.4 06/07/2009 Contribution on chapter 2 Guillermo Álvaro Rey

0.5 15/07/2009 Document restructured according to
prototype guidelines Andrea Turati

0.6 17/07/2009 Inclusion of “Software Description”
paragraph

Giovanni Di Matteo, Matteo
Villa

0.7 20/07/2009 Described the installation and
configuration of the RS Andrea Turati

0.8 31/07/2009
Revisioned Software description and
the whole paper in the annex.
Described introduction and conclusion

Andrea Turati

0.9 06/08/2009 Described the test Andrea Turati

0.10 07/08/2009 Described the Eclipse project Andrea Turati

0.20 13/08/2009 Integrated comments from reviewer
(Sven - TIE) Dario Cerizza

0.21 25/08/2009 Integrated comments from reviewer
(Nikolay – UniMan) Dario Cerizza

1.0 31/08/2009 Last fixes Dario Cerizza

1.0 11/09/2009 Final Editing Malena Donato

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 3 of 42

Table of Contents

VERSION HISTORY ___ 2

TABLE OF CONTENTS ___ 3

EXECUTIVE SUMMARY __ 8

1. INTRODUCTION __ 9

1.1 PURPOSE AND SCOPE __ 9

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 9

2. GENERAL OVERVIEW OF THE RECOMMENDER SYSTEM __________________ 10

2.1 RELATION WITH THE SOA4ALL ARCHITECTURE ______________________ 10

2.2 RELATION WITH THE USE CASES __________________________________ 12

3. INSTALLATION AND CONFIGURATION __________________________________ 13

4. SOFTWARE DESCRIPTION __ 16

4.1 SEQUENCE DIAGRAMS ___ 16

4.2 FIRST VERSION OF THE GUI_______________________________________ 20

4.3 PACKAGE DESCRIPTION __ 24

5. DESCRIPTION OF TESTS EXECUTION __________________________________ 26

ANNEX A. DESIGN OF THE RECOMMENDER SYSTEM IN SOA4ALL ___________ 28

1. THE RECOMMENDER SYSTEM IN SOA4ALL __________________________ 28

a. Approach adopted in SOA4All _______________________________________ 28

b. The RS in the Consumption Platform __________________________________ 29

c. Actions and RDF(s) for modelling User Behaviour ________________________ 29

d. RS API ___ 31

2. ARCHITECTURE ___ 32

a. RDF Adapter for Parsing User Actions _________________________________ 32

b. User Behaviour Correlation Analyzer __________________________________ 33

c. Recommender Core Engine ___ 35

3. CONCLUSIONS __ 36

ANNEX B. THE RDF(S) USED TO MODEL USER BEHAVIOUR _________________ 37

ANNEX C. AN EXAMPLE WITH SOME LOG ENTRIES ________________________ 40

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 4 of 42

List of Figures
Figure 1: Relation between Consumption Platform and the Recommender System in the

SOA4All Studio ...11

Figure 2: Types of communication in SOA4All ..11

Figure 3 - New user recommendation: sequence diagram ...17

Figure 4 - Profile-based recommendation: sequence diagram ..18

Figure 5 - Batch computation: sequence diagram ...19

Figure 6 - Service portlet with "Suggestion" section not enabled ..20

Figure 7 - Service portlet with "Suggestion" section enabled ..21

Figure 8 - Service portlet with suggested services table displayed21

Figure 9 - Selection of a suggested service ..22

Figure 10 - Recommendation area in CP main menu. ..23

Figure 11 - Recommended services by user profile ..24

Figure 12 Recommender System project content ...25

Figure 13: The Recommender System and the Consumption Platform29

Figure 14: The general architecture of the Recommender System32

Figure 15 - Data flow from SOA4All studio logs to Recommender System internal database
 ...33

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 5 of 42

List of Tables
Table 1: Actions and Parameters ...30

Table 2: Actions and Weights ...31

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 6 of 42

Glossary of Acronyms
Acronym Definition

Acronym Full Name

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

BPEL Business Process Execution Language

BPM Business Process Modeling; Business Process Management

C2C Consumer to Consumer

CMS Content Management System

CP Consumption Platform

D Deliverable

DSB Distributed Service Bus

EC European Commission

eCommerce Electronic Commerce

ESB Enterprise Service Bus

EU European Union

EXT GWT Extended GWT

FOAF Friend Of A Friend

FP Framework Program

FP7 The 7th Framework Program

GUI Graphical User Interface

GWT Google Web Toolkit

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

OWL Web Ontology Language

OWL-S Web Ontology Language for Services

PP Provisioning Platform

RDF Resource Description Framework

RS Recommender System

SA-REST Semantic Annotations for RESTful Services

SAWSDL Semantic Annotations for WSDL

SOA Service-Oriented Architecture

SOA4All Service-Oriented Architectures for All

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 7 of 42

SOAP Simple Object Access Protocol

SWS Semantic Web Service

T Task

WP Work Package

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 8 of 42

Executive summary
This document complements the release of the first Recommender System (RS) prototype.
This document accompanies the zip file that contains the first prototype of the Recommender
System, as the result of the activities performed in the scope of T2.7. The zip file contains the
source code, the installation and configuration facilities and the execution and testing
facilities.

The first version of RS aims to support SOA4All users by providing suggestions (a.k.a.
recommendations) about services that they may be interest in. The RS is based upon a
collaborative filtering technique that exploit the behaviour of SOA4All users in interacting with
the SOA4All studio and derive similarities among users. Thanks to this similarities, the RS is
able to recommend to a user those service that have been used by similar users.

The body of this document follows the project guidelines for prototypes releases, thus it
reports on the description of the component and the installation and configuration activities.
Annex A provides an insight of the approach adopted, the architecture defined and the
integration performed to provide a recommender system in SOA4All.

For the final prototype, we aim to further extended the RS by considering not only the
similarities among users but also some similarities derivable from the semantic descriptions
of the services.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 9 of 42

1. Introduction
1.1 Purpose and Scope
This deliverable concerns the Recommender System (RS) integrated within the SOA4All
Consumption Platform. This system aims to improve the user experience by providing users
with suggestions about relevant services that may be of their interest. The RS analyzes user
behaviour in interacting with the platform and exploits user similarities to provide
recommendations.

M18 deadline is specifically focused in integrating a first version of the RS mainly based
upon aggregating user behaviour. By M30, we aim to further extend the RS leveraging over
the semantic descriptions of services and understanding how semantic relationships can
improve the recommendations.

The goal of this deliverable is to complement the Recommender System prototype. This
deliverable is included as part of the zip file, D271-P.zip, which contains the first software,
source code, installation and configuration facilities, execution and testing facilities. We refer
the reader to Annex A for details about the prototype architecture and design.

1.2 Structure of the document
First of all, in chapter 2 we introduce the RS by describing its role within the whole SOA4All
architecture and its interaction with the other components. In addition, it shows how it is used
by the scenarios defined in the use-cases. Then, chapter 3 describes how to install the RS
and how to configure it for the first execution. Finally, chapter 4 provides some details about
the software, describing how it is internally structured, illustrating the workflows that result in
the invocation of the RS and presenting some expected screenshots showing the way in
which the recommended items will be displayed. The document is followed by three annexes
which present advanced aspects. Annex A includes a concise explanation of both the design
and the internal architecture of the RS. In addition, it might be considered as a short paper
representing a starting point for future dissemination activities. Annex B and Annex C report
respectively the ontology schema used to model the actions of the users within the SOA4All
Studio (representing the log produced by the SOA4All Studio) and an instance of possible
user interactions (i.e. a possible log file).

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 10 of 42

2. General Overview of the Recommender System
The objective of this chapter is to illustrate the role of the Recommender System in SOA4All.
In particular, we describe the relation between the Recommender System and the other main
activities performed in the project, namely the overall architecture of SOA4All and the use
cases. Please, refer to Annex A for details about the design of the internal architecture of the
RS.

2.1 Relation with the SOA4All Architecture
Interacting with services in a service world as the one envisaged by SOA4All requires
implementing several mechanisms in order to enhance the user experience within the vast
number of services expected. In particular, enabling ways to help end-users interact with the
most suitable services for them is a challenge, for while it is obviously an advantage to have
many services to choose from, there is a need to enable methods to find the most
appropriate ones. Recommendations will be one of these mechanisms that will permit users
to be aware of items (i.e. services, specifically for SOA4All) that can be helpful for them,
given their past behaviour within the platform.

The Recommender System is the key component into providing useful recommendations for
users. These recommendations actually take place in the Consumption Platform, thus there
is a strong relation of the RS component with that platform, which will query the RS for
relevant recommendations.

It is worth noting that the recommendations will be useful not only for helping users to find
relevant services by itself, but also because the way these recommendations take place in
an active mode will be able to increase the user experience within the platform, hence
making them more bound to engage within SOA4All.

It is also important to point out that the relation of the RS with the Consumption Platform is
not only in one direction (the outcomes of the RS benefiting the platform) but in the opposite
direction as well, for the RS will need to know about the interactions of users within the
platform. Figure 1 depicts this two-way relationship, which is then detailed in Section 1.b:

• Consumption Platform � RS: The actions of the users within the Consumption
Platform are tracked. These logs track the user behaviour and are gathered thanks to
the Logging/Auditing service, which is part of the Management Services made
available by T2.4 Infrastructure Services. In turn, the RDF logs are stored through the
T2.4 Storage Services. Notice that apart from the general logs of actions, the
Feedback Framework (part of the T2.1 Provisioning Platform) will take care of RDF
information which is also relevant for the RS (reviews in the form of ratings and
comments).

• RS � Consumption Platform: The computations made by the RS are fed back into
the Consumption Platform, thanks to suitable calls to the RS API.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 11 of 42

SOA4All Studio

Recommender System (RS)

User

Behaviour

Logs

Recommendations

about

Services and Goals

Current user

Current service or goal

Consumption Platform

Recommender

Manager

Logging/Audit

Manager

Figure 1: Relation between Consumption Platform and the Recommender System in the
SOA4All Studio

Both the RS (T2.7) and the Consumption Platform (T2.2) are components of the SOA4All
Studio, and as such it is important to note that the type of communication that happens
between them can be achieved by direct Java calls, as depicted in Figure 2.

Figure 2: Types of communication in SOA4All

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 12 of 42

2.2 Relation with the Use Cases
The three use cases can highlight the role of the RS in different ways. While it is not a must
for any of them to have recommendations, we will see that they will be quite beneficial and
improve each of them.

End-user Integrated Enterprise Service Delivery Platform

The scenario depicted by WP7 implies users repeating similar tasks, who will be likely
encountering themselves dealing with similar problems, which will require similar solutions.
The RS will be able to understand what the most appropriate choices will be for a given user
in each moment, based on previous interactions of similar users who had the same
objectives.

The end-users of this use case will benefit from these recommendations, enhancing the
ease-of-use in their interaction with SOA4All technology.

W21C BT Infrastructure

End-users interacting with the enhanced Ribbit platform will benefit from recommendations
based on the interaction of previous users with the platform. The RS will be able to highlight
the most relevant services at a given time for users, based on previous interactions of similar
users.

For BT, the fact that users are able to discover interesting services, with the platform
suggesting them in an active manner, will be very important in order to engage users within
the platform, for they will be presented with interesting options that the users might not be
aware of.

C2C Service eCommerce

The RS is capable of automatically recognizing users’ interests by analyzing their behaviour
within the Consumption Platform, hence suggesting services that users with a similar profile
rated in a positive way.

Again, the fact that the RS acts in an active manner will imply that the experience of the
users will be improved, as it will be easy for them to get involved into the use of SOA4All
technology.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 13 of 42

3. Installation and Configuration
Recommender System prototype software is included in D2.7.1-P.zip file (where this
document is also included).

Requirements for a complete installation of the prototype are:

• Java JDK 1.5 or greater.

• MySQL Server 5.1 or greater. For installation instruction, see
http://dev.mysql.com/doc/refman/5.1/en/installing.html.

The prototype installation procedure is as follows:

• Unzip D2.7.1-P in a directory, hereafter referred as %RS_HOME%.

o %RS_HOME% contains this document and one Eclipse projects, named
Recommender System, which contains the Recommender System prototype.

• Set up the databases which will be used by the Recommender System to store
intermediate results, by loading the file containing SQL instructions into the DBMS
console. Actually, there are two internal databases: one is used by the batch process to
analyze the logs and assess the correlation values between users and services, while the
second one is used to make recommendations on-demand. To set up the databases,
open the MySQL Command Line Client and, after the insertion of username and
password, type the following instruction and then press the return key:

source %RS_HOME%/src/main/resources/config/RSDB.sql ;

This command creates two databases and their internal tables, as well as two users with
appropriate rights which will be used by the RS software to access to the database. It
assigns to the batch-time database and the on-line database respectively the names
UserHistory and CorrelationMatrix . Moreover, it creates only one user to use
both databases locally (i.e. on the localhost): the username is rs and the password is
rs4SOA4All . If you prefer to use other names for the databases or other
usernames/passwords (or you prefer to use a remote database), open the file and
change them before launching MySQL. Please, take note of any change you made
because it has to be aligned with the configuration file described below.

• The software can be imported in Eclipse for further development, analysis, debugging,
testing, etc. within this IDE. The procedure is as follows:

o Select in Eclipse the menu File/import…, General/Existing Projects into workspace.
Next.

o Check Select Root Directory, click on Browse and locate %RS_HOME%. Select
Recommender System project and accept. Finish.

Before starting to run the prototype, it has to be configured appropriately. The configuration
can be done by editing the rs-config.properties file included in the config directory.
Such file contains a list of parameters, each one represented in the form of a pair:
name=value .

Among others, there are two groups of parameters that refer to two different databases: it is
possible to easily identify them because their names begin with the name of the databases,
i.e. their names begin respectively with the terms UserHistory and CorrelationMatrix .

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 14 of 42

The parameters corresponding to the databases are1:

• database-name.driver, which refers to the driver that allows to access to the database

• database-name.protocol, which refers to the protocol used to interact with the driver

• database-name.ServerName, which refers to the address where the server is located
(if you have set up the databases with the standard SQL script file, it should be equal
to localhost)

• database-name.Port, which refers to the port number where the database can be
reached

• database-name.DatabaseName, which refers to the name of the database (if you
have set up the databases with the standard SQL script file, it should be equal to
either UserHistory or CorrelationMatrix)

• database-name.username, which refers to the username to be used to access to the
database (if you have set up the databases with the standard SQL script file, it should
be equal to rs)

• database-name.password, which refers to the password to be used to access to the
database (if you have set up the databases with the standard SQL script file, it should
be equal to rs4SOA4All)

An example of such parameters for the User History can be the following one, where a
MySQL database running on the local machine has been used.

UserHistory.driver=com.mysql.jdbc.Driver

UserHistory.protocol=jdbc:mysql:

UserHistory.ServerName=localhost

UserHistory.Port=3306

UserHistory.DatabaseName=UserHistory

UserHistory.username=rs

UserHistory.password=rs4SOA4All

Other parameters that need to be tuned are the ones representing the actions that are
logged by the system in which the RS will be deployed and that the RS has to analyze. As for
the databases’ parameters, they can be easily located because their names start with the
term Action .

The RS is able to recognize a predefined set of actions. For each of them, one parameter
has to be set: the URI of the action. This is needed because the RS has to be able to
internally recognize the different actions and calculate the strength of the relation between
users and services by applying the weights defined during configuration.

For example, concerning the action where a user tags a service (i.e. the action named
ItemTagging), their parameters can be set as follows:

1 In this list, database-name is just a placeholder that stands for the real names of the
databases. In this case, it can be replaced with both UserHistory and
CorrelationMatrix .

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 15 of 42

Action.ItemTagging=http://www.SOA4All.eu/ontologies/logging#
ItemTagging

In the RS configuration file, other parameters appear, but it is not necessary to change them
because they are used by internal processes of the RS to calculate intermediate results. For
example, for every action there is an additional parameter whose name ends with the term
weight : it represents the importance of the action in establishing a strong relation between
the user that did the action and the service that is the target of the action. For example, the
following line means that the ItemTagging action has an importance equals to 6:

Action.ItemTagging.Weight=6

Obviously, the importance of an action depends on the maximum and minimum values, so
the weight of an action has to be compared with the values of the other action weights in
order to understand its importance in establishing a relation between a user and a service.
Apart from that, a negative weight decreases the relation (i.e. whenever such action occurs,
it means that the user is not interested in the service), while a positive one increases it (i.e.
the user is interested in the service).

Starting from the action weights, the RS assesses the correlation values between users and
services, which represent the strength of their relations. To do this, it needs two additional
parameters storing respectively the minimum and the maximum values allowed for such
relations (i.e. allowed in the correlation matrix). The example below shows that a minimum
value of 1 and a maximum value of 10 have been set.

CorrelationValueMin=1

CorrelationValueMax=10

An additional parameter that can be tuned stores the average rating number that a user can
use to vote an item (e.g. a service). It is used internally by the RS. The example below sets
this parameter to 3.

Average.Rating=3

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 16 of 42

4. Software description
The Recommender System is totally integrated in the SOA4All Consumption Platform in a
transparent way: the final user of the platform will receive simple and intuitive indications
about potentially useful services, without having to deal with any configuration or data
request. The system will study in a silent fashion the user actions and interests, providing
him the most suitable suggestions in the most appropriate way.

4.1 Sequence diagrams
In this sub-section we report a couple of sequence diagrams useful to understand the
relationships existing between the consumption platform and the recommendation system.

For a better clarification of the diagrams, some squares () are displayed on the object
lifelines to introduce what kind of action the specified actor is performing.

The first scenario is probably the most common one: after a user logs into the SOA4All
consumption platform, he usually starts looking for some sort of services (specifying some
search keywords or selecting a particular class in the service taxonomy).

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 17 of 42

Figure 3 - New user recommendation: sequence diagram

The end user can select one of the services coming out from his research and begins to
interact with it, looking at its details, at its comments and tags and maybe testing it through
the CP interface or rating the service with a good mark.

In this case, when the user interacts with a specific service, the Consumption Platform
contacts the Recommender System to look if it can suggest some other services to the user,
by taking into account the current user and the specific service with which he is interacting.
Figure 3 shows a possible instance of the scenario described so far.

Another kind of recommendation is provided whenever a user logs-in (see Figure 4).

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 18 of 42

Figure 4 - Profile-based recommendation: sequence diagram

As soon as the user logs-into the Consumption Platform, this component contacts the
Recommender System to check whether any suggestion is available for the current user.
The RS loads it’s off-line computed data and returns back to the CP a list of potentially
interested services for the specified user, together with their degree of possible interest.

It should be underlined that these suggestions are not produced at the moment the RS is
queried, but they are the result of a batch cycling computation over the whole amount of
historical logs produced by the user.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 19 of 42

To better clarify the batch process, it could be useful to show a simple sequence diagram of
this phase too.

Figure 5 - Batch computation: sequence diagram

The logged users, interacting with the platform, automatically produce logs that are silently
stored in the SOA4All semantic space. Each periodic delta time (configurable in the RS) the
RS contacts the Semantic Space APIs to retrieve all the new logs produced by the users
actions in the platform since last batch computing. The logs are returned as RDF triples.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 20 of 42

The RDF Adapter, which analyses them, fetches these triples and, for each one of the logs,
creates an appropriate new entry in the RS internal relational database.

Now these data can be processed and computed by the User-Behaviour Correlation
Analyzer to discover new suggestions to be supplied to the Consumption Platform in real-
time. Such analyzer works by updating the internal correlation matrix that defines the
relations between users and items. To do this update, the analyzer goes through all the
actions performed by each user and apply the weights on the specific cells identified by the
user and the item.

4.2 First version of the GUI
As described before, the Recommender System will be integrated in the Consumption
Platform, so the Graphical User Interface has been studied to be totally encapsulated inside
the CP.

Depending on the kind of recommendation, suggested services will be shown in different
places of the platform. Suggestions based on the current service will be displayed in the
bottom area of the service details portlet, in an ad hoc section called “Suggestions”. If no
suggestions are present (this may happen if no one has never user this service), this area of
the portlet will be collapsed and not selectable, as shown in the following picture.

Figure 6 - Service portlet with "Suggestion" section not enabled

If suggestions are available, the “suggestion area” is activated and the user has the
possibility to expand it as he does for the other sections of the portlet.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 21 of 42

Figure 7 - Service portlet with "Suggestion" section enabled

In this area there is a textual HTML table displaying the suggested services names and the
percentage of potential interest the user can have about each of them.

Figure 8 - Service portlet with suggested services table displayed

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 22 of 42

Clicking on a service name in this table, a new portlet with all the service details will open in
the Consumption Platform desktop. Such in a way the user will be able to have more
information about the suggested service and interact with it.

Figure 9 - Selection of a suggested service

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 23 of 42

In the case the user is logged in and the RS had time to analyze his past history (this usually
occurs within 24 hours because batch time operations are performed during night-time), the
CP will show recommendations not bound to the current viewed service. In the main menu,
positioned on the left of the dashboard, there is a specific section to display suggested
services, called “Recommendations”. In case of new suggestions the title in the menu
changes colour, becoming red, to attract the visitor’s attention.

Figure 10 - Recommendation area in CP main menu.

“No suggestion” vs. “suggestions available” appearance

The user can expand the “Recommendations” section and, if suggestions are present, they
are displayed in a HTML table as for the previous example. In this case, services are
displayed with different shades of colour: the darker the colour, the more confidence the
recommendation has. Moving the mouse on a suggested service, a tool tip is displayed
showing the average rating of the specific service and its suggestion confidence, as it is
shown in the following figure.

As in the case above, a click on an item of the table will open the service portlet where all the
service information are displayed. In the main details section a brief explanation of the
reason of the suggestion and the related percentage degree are shown.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 24 of 42

Figure 11 - Recommended services by user profile

This area, displaying user profile-based recommendations, can be updated automatically
every time the RS concludes a batch computation cycle, providing new suggestions for the
current user, or every time the user logs in.

4.3 Package description
This section describes the Recommender System projects through some Eclipse IDE
snapshots.

As described in the installation section, D2.7.1-P.zip creates project directories after being
unzipped. Next picture shows the content of the project in the Eclipse Package Explorer.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 25 of 42

Figure 12 Recommender System project content

The project is organized as follows:

• src/test/java/ contains the class implementing the available test case. There are scripts
available in the scripts directory within the same purpose.

• src/main/java/ contains the source code of the classes that make use of the RS API.

• src/main/resources contains the configuration files. In particular, the file named
log4j.properties defines the level of the messages printed in the console during the
execution of the RS (for debug or general information). The subfolder named config
includes the files used to customize the behavior of the RS (e.g., they enumerate the
actions available in the logs as well as their weights, the parameter to access to the
databases, and so on).

• target/ is the folder where the compiler puts the output files.

• pom.xml contains the description of the project as well as the references to the library
used by the project.

Among the others, the pom.xml declares a special dependency towards the library named
RS-0.1.jar . In this library we put the core of the Recommender System developed by
CEFRIEL.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 26 of 42

5. Description of tests execution
In order to verify that the RS component has been correctly deployed, it is possible to run a
simple test included in the package.

The test consists of inserting sample data in the User-Service correlation matrix and running
the RS to get some recommendations. The data represent the connections between four
fake users and four services and they have been derived by simulating the behaviour of the
users within the SOA4All Studio.

The users that are present in the sample data are identified through their URIs, which are:

• mailto:user1@example.com

• mailto:user2@example.com

• mailto:user3@example.com

• mailto:user4@example.com

On the other side, the URIs of the four services included in the sample are:

• http://ws.acrosscommunications.com/ICQ.asmx

• http://www.arcwebservices.com/services/v2006/WirelessLocation

• http://www.infocountry.co.za/za/default/webservice/SMSService.asmx

• http://www.webservicex.com/sendsmsworld.asmx

To set up the environment for testing the RS, take the file named example_db_dump.sql
under the config directory and load it into MySQL with the following procedure:

• Open the MySQL Command Line Client and insert your username and password

• Type the following instruction (you have to replace %RS_HOME% with the absolute path to
the installation folder of the RS) and then press the return key:

source %RS_HOME%/src/main/resources/config/example_ db_dump.sql;

With the execution of the instruction above, you insert some data into the RS databases
(both UserHistory and CorrelationMatrix). So now you can run the RS run-time component to
get some recommendations. To do that, we created a special application that asks
recommendations to the run-time component of the RS.

• Open the Eclipse project of the RS (this step is optional because you can use the
command line, if you prefer).

• Run the class Demo.java in the directory src/test/java .

The application shows you a menu where, besides the option to quit the program, you can
choose among three options:

1. Get recommendations given a user

2. Get recommendations given a service

3. Get recommendations given a user and a service

At this point, for example, after choosing option 1., you are asked to insert the URI of a user
to get a list of recommended services for that user. So, if you insert

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 27 of 42

mailto:user2@example.com you get the following result2:

1. [10.0] http://www.webservicex.com/sendsmsworld.asmx

2. [3.528894] http://www.infocountry.co.za/za/default/webservice/SMSService.asmx

If you got such results without any error, it means that the RS has been installed
successfully.

2 The values given between square brackets give an indication about the relevance of the
recommendations. Higher values denote stronger recommendations.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 28 of 42

Annex A. Design of the Recommender System in SOA4All

This annex describes the contribution of the activities performed for the development of the
Recommender System 3.

1. The Recommender System in SOA4All
The Recommender System (RS) in SOA4All aims to provide users with recommendations
about services (the recommended items) that could be of their interested. This functionality
acts as an additional feature to support users in discovering services that meet their needs.

This chapter describes the RS in SOA4All from a functional perspective, starting with the
approach adopted, its placement within the Consumption Platform, the API provided and the
necessary inputs it requires.

a. Approach adopted in SOA4All

There are two main and distinct approaches for recommendation: content-based and
collaborative filtering. Within the scope of SOA4All, we aim to exploit users’ similarities in
interacting with the SOA4All Studio to provide users with those services used by similar
users. This intention relies on collaborative-filtering techniques.

Given a user, a collaborative filtering recommender system suggests him the items that he
did not already seen while other similar users (i.e. users that saw more or less the same set
of items with similar preferences) appreciated a lot. This is the source of probably the main
positive effect of the collaborative filtering approach, which is the increasing of serendipity, in
the sense that such a system suggests completely different items with respect to the ones
the user has already seen in the past. This kind of behaviour is usually appreciated,
especially in domains where the user is more inclined to use an unseen item (e.g. music,
books, movies). However, this is not really the case for Web services, where usually a user
who is looking for a specific type of service does not take into account other services of a
quite different type. In addition, collaborative filtering approaches have the drawback of
requiring to gather and to analyze a considerable set of user’s interactions before being able
to infer the implicit similarities among users and to provide recommendations. This drawback
is also called as “cold start” problem.

On the other hand, content-based approaches reduce such drawback by analyzing the
content of the items in order to understand the similarities among items (i.e. services). Within
the scope of SOA4All, services will be semantically described, so that semantic relations can
be exploited to evaluate the similarities among them in order to provide users with
suggestions related to services that are semantically similar to the ones previously used.

For this reason, the RS in SOA4All will be initially based upon collaborative-filtering
techniques (by M18) and, in a following phase (by M30), a hybrid approach will be adopted
by considering semantic-based techniques over the semantic descriptions of services. This
will reduce the impact of the cold start problem of the pure collaborative approach.

The following sections describe the RS designed for M18 thus considering only the
collaborative filtering approach.

3 Since this part is not part of the official project template for prototype deliverable, we
decided to include this part as a annex.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 29 of 42

b. The RS in the Consumption Platform

According to the collaborative filtering approach, the RS has to analyze user behaviour in
interacting with the Consumption Platform. Such behaviour is tracked in specific logs
generated by the consumption platform and stored inside the Semantic Space.

In Figure 13 we report the relations between the RS and the Consumption Platform.

Recommender System (RS)

User
Behaviour

Logs

Semantic
Space

Recommendations about

Services and Goals

Current user

Current service or goal

Batch-Time

Run-Time

Figure 13: The Recommender System and the Consumption Platform

The SOA4All Studio logs generated by the platform are analyzed during batch-time by a
specific component inside the RS. After analyzing the user behaviour, the RS is able to
provide recommendations at run-time.

The run-time component receives some context information such as the user currently
logged in and the service currently inspected. Based on such information and on the
previously analysis, the RS provides recommendations about services to the user. The
recommendation manager acts as a client for the RS and bridges the requests inside the
Consumption Platform with the functionalities provided by the RS.

The following paragraph describes the considered actions performed by users and the next
paragraph reports on the API exposed at run-time to the Consumption Platform.

c. Actions and RDF(s) for modelling User Behaviour

User’s behaviour is tracked in specific logs stored inside the Semantic Space. Such
behaviour is represented as the chronological list of all the actions performed by each
specific user. The following table summarizes the actions and their relative parameters
analyzed by the RS in order to infer user similarities.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 30 of 42

Table 1: Actions and Parameters

Action Type Additional Parameters

LoginAction UserURI

LogoutAction

ItemSelection ItemURI

ItemTagging ItemURI, Tag

ItemEditing ItemURI

ItemCategorization ItemURI, Category

Review Rating, Text

ItemInvocation ItemURI

Since the logs are managed inside the Semantic Space, an RDF representation is needed.
Annex B reports the RDF(S) in N3 format used to model the RDF entries in the Semantic
Space, while Annex C contains some examples of entries defined for testing purposes.

The actions of the previous table are represented by specific concepts that inherit from the
generic Action concept. Each action performed by a user is also related to a LogEntry that
contains information about the datetime of the action and the session ID. To represent
datetimes, we reuse the Instant concept of the Time ontology4.

Consequent actions performed by the same users are bound together using the webapp
session ID. If the user perform a login action, all the actions within the same session will be
reconducted to such user. Anyway, to correlate actions of users among different webapp
sessions without requiring the user to login, the session ID can be used as a persistent
session ID by storing the webapp session ID in a persistent cookie on the user browser.

Since users can provide ratings and comments about services, the RDF(s) is also designed
to reuse the Revyu schema5. There is a specific action named ItemReview that links to the
Review concept of the Revyu schema.

During the setup phase, the RS has to be configured in order both to understand all these
actions and to be able to manage them with appropriate levels of importance. Therefore, a
weight is associated to each action. Higher positive weights are associated to actions giving
a clear evidence of the high appreciation of the item involved in the action, while lower
positive weights are associated to actions where the appreciation is not so evident or is
lower. On the other hand, the actions giving a clear evidence of the rejection of the item are
associated with negative weights. The values associated to weights are defined empirically
by assuming the implicit importance that a user may give to an item (service) in function of
the specific action performed. The following table reports an initial estimation of the weights

4 The Time ontology is described at http://www.w3.org/TR/owl-time
5 The specification of the Revyu schema are accessible at
http://danja.talis.com/xmlns/rev_2007-11-09/index.html

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 31 of 42

associated with some of the actions.

Table 2: Actions and Weights

Action

Approximate
Weight

(-10 min,
10 max)

Review and Rate High and Comment 10

Review and Rate High 8

Item Categorization 7

Item Tagging 6

Item Editing 5

Item Invocation 4

Item Selection 1

Review and Rate Low and comment -5

Review and Rate Low -10

d. RS API

At run-time, the RS provides the Consumption Platform with recommendations about
services that are related to the current user and/or the current service. The communication
between the CP and the RS is performed via Java API.

3 dedicated operations are provided by the RS for recommending services. The following
listing reports the three methods for getting recommendations about services.

public List<RecommendedItem> getServiceRecommendati onByUser
(URI userURI, int howMany);

public List<RecommendedItem> getServiceRecommendati onByService
(URI serviceURI, int howMany);

public List<RecommendedItem> getServiceRecommendati onByUserAndService
(URI userURI, URI serviceURI, int howMany);

The first method, getServiceRecommendationByUser, aims to suggest services to the user
(identified with his userURI). The implementation behind this operation exploits user
similarities to recommend those services used by similar users.

The second method, getServiceRecommendationByService, aims to recommend services
that are similar to the current service (identified with its serviceURI). This implementation
returns the other services inside the clusters of the current service. Such service clusters are
derived by aggregating the services used by similar users.

The third method, getServiceRecommendationByUserAndService, returns those services
that are relevant with regards to the current user and the current service. This is an hybrid
implementation of the previous two methods that intersect the clusters of similar users with

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 32 of 42

the services used by such users.

Each of the three methods returns a list of objects (i.e. the recommended items), whose
contents include only two fields: the URI of the recommended item and the value of
confidence (or strength) computed for the recommendation of the item.

2. Architecture
This section describes the general architecture of the RS in SOA4All and provides some
details about its main internal components. Figure 14 describes this architecture
emphasizing the role of the batch-time component that analyzes user behaviour and the run-
time component that provides recommendations to the Consumption Platform.

Recommender System (RS)

Semantic Space

Recommendations about
Services and Goals

Current user
Current service or goal

User-Behaviour
Correlation
Analyzer

(Batch-Time)

Service Consumption Platform

Users-Services
Matrix

User
Behaviour

Logs (RDF)

Recommender
Core Engine
(Run-Time)

RDF Adapter

Figure 14: The general architecture of the Recommender System

The user behaviour is represented as RDF log entries within the Semantic Space. The RDF
Adapter is in charge of getting log entries from the Semantic Space and extracting their
content that is passed to the User-Behaviour Correlation Analyzer.

Such analyzer analyzes the data and fill the matrix for correlating users with services.

During run-time, the Recommender Core Engine receives requests from the Consumption
Platform and, using the analyzed data, provides recommendations.

a. RDF Adapter for Parsing User Actions

The RDF Adapter is responsible for getting log data produced by the SOA4All Studio and
extracting information from them. The extracted information is temporarily inserted into an
internal structure named User History, which represents the history of all user actions done in
the past.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 33 of 42

In particular, the RDF Adapter is an internal component that converts RDF log instances into
specific property objects and then stores them in the Recommender System relational
database, following these rules:

• an RDF node is a record of a table;

• an RDF propertyType is the field name (i.e. the name of a column of a table);

• a literal value of an RDF triple is the value of a record field of the table.

Figure 15 - Data flow from SOA4All studio logs to Recommender System internal database

b. User Behaviour Correlation Analyzer

This component is responsible for estimating the strength of the relations between users and
services6, which means to fill in the matrix that expresses user interests for the services. In
other words, it examines the User History in order to produce the User-Service Matrix.

User-Service Correlation Analyzer considers every user separately. Firstly, it collects all
actions made by a specific user. Then, for each action, it gets the reference to the service
related to that action and updates the cell of the matrix that corresponds to the intersection
between the row of the user and the column of the service by adding the action weight.

Formally, the User-Service Correlation Analyzer runs the algorithm shown below, which is
described using a pseudo-code. R represents the User-Service Matrix, which at the
beginning is initialized with null values. R(u, s) represents the cell of the matrix R
corresponding to user u and service s. max(u) and min(u) are respectively the maximum and
minimum values in the relations between user u and all services, while MAX and MIN are
respectively the maximum and minimum value used to express the strength of any relations
between users and services in the matrix R. Given an action a, a.weight denotes the weight
of the action, a.timestamp denotes the instant at which the action occurred, a.user identifies
the user that performed the action and a.service identifies the service related to the action
(e.g. if a user rated a service, then the service related to that action is the one rated by the

6 Hereafter we only refer to services as the items that are recommended, but the all approach
can be applied similarly to goals as well. Since the recommendation of goals will be
implemented in the second version of this prototype, at this time we avoid citing goals for the
sake of readability.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 34 of 42

user). lastExecutionTimestamp stores the instant of the last execution of this algorithm.

for all user u do

 updatedStrengths � ∅
 minOrMaxChanged � false
 for all action a ∈ UserHistory such that a.user = u and a.timestamp >
lastExecutionTimestamp do
 s � a.service

 // Update the value of relation between u and s
 R(u, s) � R(u, s) + a.weight
 updatedStrengths � updatedStrengths ∪ { s}

 if R(u, s) > max(u) then
 max(u) = R(u, s)
 minOrMaxChanged � true
 end if
 if R(u, s) < min(u) then
 min(u) = R(u, s)
 minOrMaxChanged � true
 end if
 end for

 // Normalization of the values of the user’s relat ions
 if minOrMaxChanged then
 for all service s do
 if R(u, s) = NULL then

R(u, s) = [R(u, s) - min(u)] / [max(u) - min(u)] ⋅
(MAX - MIN) + MIN

 end if
 end for
 else
 for all service s ∈ updatedStrengths do
 if R(u, s) == NULL then

R(u, s) = [R(u, s) - min(u)] / [max(u) - min(u)] ⋅
(MAX - MIN) + MIN

 end if
 end for
 end if
end for

The first time this algorithm is executed, the User-Service Matrix contains only null values.
When the algorithm is executed, for each user it extracts from the User History all actions
that the algorithm has not yet taken into consideration. Then, every action implies to update
the value of a cell of the matrix: the weight of the action is summed to the value already
stored in that cell. Finally, a normalization step is executed to spread the values of a user
over a common numerical scale in order to make user profile (i.e. the rows of the matrix)
comparable. To do that, it is necessary to keep track of both the maximum and the minimum
values of the cells corresponding to the user (i.e. max(u) and min(u)) and compare them with
the maximum and minimum values allowed in the final matrix (i.e. MAX and MIN).

In the calculation of relation values the action weights are summed, so a value will be very
high for the users that performed many actions related to the corresponding service, while a
value will be very low for users that performed few actions related to the corresponding

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 35 of 42

service. Since the users perform different numbers of actions, the values contained in the
matrix will vary on different scales. To allow comparison between any users (irrespective of
the number of actions they performed), it is necessary to shift the values of every user to a
common scale (normalization step).

After the normalization of all values, the values in all the rows of the matrix can be used to
make recommendations. However, if the algorithm is executed once more (for example,
because the User-Service Matrix needs to be updated taking into account new actions
performed by the users within the portal), the action weights cannot be simply summed to the
value included in the cells because the value has been normalized while the weights have
not.

For this reason, a slightly different version of the User-Service Matrix is maintained as well,
where the values contained in it are computed by the algorithm described above with the
exception that the normalization step is skipped (we named such matrix Un-Normalized
User-Service Matrix).

c. Recommender Core Engine

Recommender is responsible for making recommendations. Our implementation is based on
Taste7, an extensible framework that implements many recommendation algorithms available
in literature.

As explained before, there are three kinds of recommendations that the RS can return (see
paragraph 1.d). They are all based on the well-known concepts involved in the collaborative
filtering approach. Indeed, as a first step, the RS compares the rows of the user-service
matrix – representing the users’ profiles – in order to calculate the similarity between users.
The most similar users to the given one form the user’s neighbourhood. At run-time, such
information is exploited to make recommendation.

The first kind of recommendation provided by the RS is represented by the method named
getServiceRecommendationByUser, which takes the reference to a user as input. That is,
given a specific user, the profiles of his neighbours are taken into account jointly in order to
identify the most appreciated services (i.e. the matrix cells containing the highest values).
From that set of services, the ones that the given user has not yet seen are recommended.

Another type of recommendation is the one implemented in the method named
getRecommendationsByService, i.e. given a service the RS suggests other services that the
users tend to use in a similar way as the given one. In particular, given the input service, the

RS identifies the users that used it and collects all the other services used by them. Then, for
each collected service, the RS considers its relations with the users and compares them with
the relations that the input service has with the same users. The more such relations are
similar, the more the service is recommendable. This recommendation confidence about a
generic service x is computed with the following formula, which uses the same notation
introduced in the previous paragraph and where s represents the service given as input.

 ∑u : R(u,x)≠NULL (MAX – MIN - | R(u,s) – R(u,x) |)

L(s,x) = -- ⋅ 100

 ∑u : R(u,x)≠NULL (MAX – MIN)

At the end, the services with the highest recommendation confidence are recommended.

7 http://taste.sourceforge.net

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 36 of 42

The last kind of recommendation provided by the RS is implemented by the method named
getRecommendationsByUserAndService, which takes a service and a user as input. Firstly,
it considers the neighbours of the given user and collects all the services they used except
the ones already used by the given user. For each of the collected service, it evaluates how
much the service has been used by the identified users similarly as the given service, by
computing the following formula where ū represents the given user and sim is a function that
returns a value representing the similarity between two users.

 ∑u : R(u,x)≠NULL | sim(ū,u) ⋅ (MAX – MIN - | R(u,s) – R(u,x) |) |

L(ū,s,x) = -- ⋅ 100

 ∑u : R(u,x)≠NULL | sim(ū,u) ⋅ (MAX – MIN) |

The services with the highest values are then recommended.

3. Conclusions
So far, we developed a recommender system based on the collaborative filtering theory.
Currently, the component provides three methods that retrieve recommendations about
services. So, one of the future works is to adjust the system in order to recommend goals as
well. The methods that will be provided to get goal recommendations will be similar to the
ones already implemented for service recommendations. The following listing reports such
three methods.

Public List<RecommendedItem> getGoalRecommendationB yUser(URI userURI, int
howMany);

public List<RecommendedItem > getGoalRecommendationByGoal(URI goalURI, int
howMany);

public List<RecommendedItem> getGoalRecommendationB yUserAndgoal(URI
userURI, URI goalURI, int howMany);

However, the main contribution we are going to design in the next months is to study a new
method that exploits semantic description of services and goals to recommend them based
on the semantic similarity of their contents (i.e., a semantic content-based approach), instead
of the similarity in their usage (which is produced by the collaborative filtering approach).
Then, we will investigate how to combine the two approaches in order to improve the quality
of recommendations.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 37 of 42

Annex B. The RDF(S) used to model user behaviour

@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix time: <http://www.w3.org/2006/time>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syn tax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema #>.
@prefix rev: <http://www.purl.org/stuff/rev#>.
@prefix s: <http://www.SOA4All.eu/log#>.
@prefix vs: <http://www.w3.org/2003/06/sw-vocab-s tatus/ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

s:LogEntry
 rdfs:comment "LogEntry is the single line of a usu al log file";
 a rdfs:Class;
 s:hasDateTime time:Instant;
 s:fromIP rdfs:Literal;
 s:hasPersistentSessionID rdfs:Literal;
 s:hasAction s:Action.

s:Action
 rdfs:comment "Action is a generic class that is su bclassed in the
various types of actions";
 a rdfs:Class.

#Here the list of some of the Actions (to be comple ted)

s:LoginAction # This action is very important becau se it lets the RS to
correlate different sessions of the same users
 rdfs:subClassOf s:Action;
 s:loggedInUser foaf:Person.

s:LogoutAction
 rdfs:subClassOf s:Action.

s:Item
 rdfs:comment "Item is the generic item managed by SOA4All Studio (a
Service)";
 a rdfs:Class.

s:Service
 rdfs:subClassOf s:Item.

s:Goal # available in the future version
 rdfs:subClassOf s:Item.

s:ItemSelection
 rdfs:subClassOf s:Action;
 s:selectedItem s:Item.

s:ItemBookmarking
 rdfs:subClassOf s:Action;
 s:bookmarkedItem s:Item.

s:ItemTagging
 rdfs:subClassOf s:Action;

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 38 of 42

 s:taggedItem s:Item;
 s:tag rdfs:Literal.

s:ItemEditing
 rdfs:subClassOf s:Action;
 s:editedItem s:Item.

s:ItemCategorization
 rdfs:subClassOf s:Action;
 s:categorizedItem s:Item:
 s:category rdfs:Literal.

s:ItemInvocation
 rdfs:subClassOf s:Action;
 s:invokedItem s:Item.

########################
##################
Binding with the Revyu schema (from
http://danja.talis.com/xmlns/rev_2007-11-09/index.h tml)
s:ItemReview
 rdfs:subClassOf s:Action;
 s:hasReview rev:Review.

The hasReview property can be applied to s:Item
rev:hasReview
 rdfs:domain s:Item.

########################
###############
Import of the Revyu schema (from http://danja.tal is.com/xmlns/rev_2007-
11-09/index.html)

rev:Review a rdfs:Class;
 rdfs:comment "A review of an artistic work";
 rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
 rdfs:label "Review";
 vs:moreinfo "core term";
 vs:term_status "stable".

rev:hasReview a rdf:Property;
 rdfs:comment "Used to associate a work of art with a a review";
 rdfs:domain rdfs:Resource;
 rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
 rdfs:label "hasReview";
 rdfs:range rev:Review;
 vs:moreinfo "core term";
 vs:term_status "stable".

rev:rating a rdf:Property;
 rdfs:comment "A numeric value";
 rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
 rdfs:label "rating";
 vs:moreinfo "core term";
 vs:term_status "stable".

rev:reviewer a rdf:Property;
 rdfs:comment "The person that has written the revi ew";
 rdfs:domain <http://www.purl.org/stuff/rev#Review> ;

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 39 of 42

 rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
 rdfs:label "reviewer";
 rdfs:range foaf:Person;
 vs:moreinfo "core term";
 vs:term_status "stable".

rev:text a rdf:Property;
 rdfs:comment "The text of the review";
 rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
 rdfs:label "text";
 vs:moreinfo "core term";
 vs:term_status "stable".

rev:type a rdf:Property;
 rdfs:comment "The type of media of a work under re view";
 rdfs:isDefinedBy <http://www.purl.org/stuff/rev>;
 rdfs:label "type";
 vs:moreinfo "core term";
 vs:term_status "stable".

Import of the Time Ontology schema (from http://w ww.w3.org/TR/owl-time)

time:Instant
 a rdfs:Class.

time:inXSDDateTime
 rdfs:domain time:Instant;

 rdfs:range xsd:dateTime.

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 40 of 42

Annex C. An example with some log entries

@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix time: <http://www.w3.org/2006/time>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syn tax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema #>.
@prefix rev: <http://www.purl.org/stuff/rev#>.
@prefix s: <http://www.SOA4All.eu/log#>.
@prefix vs: <http://www.w3.org/2003/06/sw-vocab-s tatus/ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <http://www.SOA4All.eu/log/entry#>.

############
:logEntry001
 a s:LogEntry;
 s:hasDateTime :logEntry001_Instant;
 s:fromIP "127.0.0.1";
 s:hasPersistentSessionID "qwerty12345";
 s:hasAction :logEntry001_Action.

:logEntry001_Instant
 a time:Instant;
 time:inXSDDateTime "2009-06-30T10:30:00+01:00".

:logEntry001_Action
 a s:LoginAction;
 s:loggedInUser :user001.

:user001
 a foaf:Person;
 foaf:name "John Doe".

############
:logEntry002
 a s:LogEntry;
 s:hasDateTime :logEntry002_Instant;
 s:fromIP "127.0.0.1";
 s:hasPersistentSessionID "qwerty12345";
 s:hasAction :logEntry002_Action.

:logEntry002_Instant
 a time:Instant;
 time:inXSDDateTime "2009-06-30T15:48:00+01:00".

:logEntry002_Action
 a s:LogoutAction.

:user001 # This may be avoided if already present
 a foaf:Person;
 foaf:name "John Doe".

############
:logEntry003
 a s:LogEntry;
 s:hasDateTime :logEntry003_Instant;
 s:fromIP "127.0.0.1";

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 41 of 42

 s:hasPersistentSessionID "qwerty12345";
 s:hasAction :logEntry003_Action.

:logEntry003_Instant
 a time:Instant;
 time:inXSDDateTime "2009-06-30T10:32:00+01:00".

:logEntry003_Action
 a s:ItemSelection;
 s:selectedItem <http://SOA4All.eu/service/DummySer vice001>.

############
:logEntry004
 a s:LogEntry;
 s:hasDateTime :logEntry004_Instant;
 s:fromIP "127.0.0.1";
 s:hasPersistentSessionID "qwerty12345";
 s:hasAction :logEntry004_Action.

:logEntry004_Instant
 a time:Instant;
 time:inXSDDateTime "2009-06-30T10:33:00+01:00".

:logEntry004_Action
 a s:ItemTagging;
 s:taggedItem <http://SOA4All.eu/service/DummyServi ce001>;
 s:tag "Free SMS".

############
:logEntry005
 a s:LogEntry;
 s:hasDateTime :logEntry005_Instant;
 s:fromIP "127.0.0.1";
 s:hasPersistentSessionID "qwerty12345";
 s:hasAction :logEntry005_Action.

:logEntry005_Instant
 a time:Instant;
 time:inXSDDateTime "2009-06-30T10:34:12+01:00".

<http://SOA4All.eu/service/DummyService001>
 rev:hasReview logEntry005_Action.

:logEntry005_Action
 a s:ItemReview
 s:hasReview :rev001

(This would be in the Feedback Framework)
<http://SOA4All.eu/service/DummyService001>
 rev:hasReview :rev001.

:rev001
 a rev:Review
 rev:minRating 0; # min and max ratings are fixed i n SOA4All. We can
avoid these 2 lines from the log files. Anywway, th ey could be useful in
case we wish to publish the triples somewhere.
 rev:maxRating 5;
 rev:rating 4;

 FP7215219 D2.7.1 - Recommender System First Prototype

© SOA4All consortium Page 42 of 42

 rev:text "Nice useful Service";

