SON

Semantics

0zgom

s

Web Se

J

XaUoD 2

ces
SEVENTH FRAMEWORK
PROGRAMME

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All
Instrument: Integrated Project

Thematic Information and Communication
Priority: Technologies

D3.1.1 Defining the features of the WSML-
Quark language

Activity N: Activity 2 - Core Research and Development
Work Package: WP3 - Service Annotation and Reasoning
Due Date: M12
Submission Date: 10/09/2009
Start Date of Project: 01/03/2008
Duration of Project: 36 Months
Organisation Responsible of Deliverable: UIBK
Revision: 1.0

Author(s): Gulay Unel UIBK

Uwe Keller UIBK
Florian Fischer UIBK
Barry Bishop UIBK

Reviewers(s): Jacek Kopecky UIBK
Marin Dimitrov UIBK

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

ol i AW sop4A1 FP7 - 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language * i
Version History

Version Date Comments, Changes, Status Authors, _contributors,
reviewers

0.1 5/12/2008 | Initial outline Uwe Keller (UIBK)

0.2 30/01/2009 iilgs;r(;[%n?slzi(iaograft with %:I;)(/) Unel, Florian Fischer

0.3 02/02/2009 | Editing and minor corrections Barry Bishop (UIBK)

0.4 04/03/2009 | Corrections from reviewers Gulay Unel (UIBK)

0.5 05/03/2009 | Fixed errors in first 2 sections. Florian Fischer (UIBK)

1.0 06/03/2009 | Updates to section 3 Florian Fischer (UIBK)

Final 09/03/2009 | Overall format and quality revision Malena Donato (ATOS)

© SOAA4AIl consortium Page 2 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

Table of Contents

EXECUTIVE SUMMARY
1. INTRODUCTION

6
7
1.1 PURPOSE AND SCOPE 8
1.1.1 Audience 8
8
8
9

1.1.2 Scope
1.2 STRUCTURE OF THE DOCUMENT

2. TECHNICAL DELIVERABLE REMARKS
2.1 DELIVERABLE RELATION WITH THE ARCHITECTURE OF THE PROJECT___ 9

2.2 DELIVERABLE RELATION WITH THE USE-CASES 10
2.2.1 End-user Integrated Enterprise Service Delivery Platform 10
2.2.2 W21C BT Infrastructure 10
2.2.3 C2C Service eCommerce 11

3. WSML QUARK LANGUAGE DEFINITION 12

3.1 MOTIVATION 12

3.2 RELATED WORK AND BACKGROUND 14

3.3 WSML QUARK SYNTAX DEFINITION 14
3.3.1 WSML- Quark Syntax Basics 14
3.3.2 WSML-Quark Ontologies 15
3.3.3 WSML-Quark Goals 15
3.3.4 WSML-Quark Web Services 15
3.3.5 WSML-Quark Mediators 16
3.3.6 WSML-Quark Logical Expressions 16

3.4 ALGORITHMISATION 16

3.5 RELATION WITH OTHER WSML VARIANTS AND LANGUAGE LAYERING __ 17

3.6 CONCLUSIONS AND FUTURE WORK 19

4. REFERENCES 20

© SOAA4AIl consortium Page 3 of 21

" AW 5041 _FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language B

Table of Figures

Figure 1 SOA4AII Overall ArChITECTUIEuiiiiiiiiiiiieeeeeeeeeee ettt 9

Figure 2 WSML Language Layering

© SOAA4AIl consortium

Page 4 of 21

Al SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

y 4

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

HLDD High Level Design Document
WSML Web Service Modelling Language
WSMO Web Service Modelling Ontology
LP Logic Programming

DL Description Logic

© SOAA4AIl consortium

Page 5 of 21

T AT

Al SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language "

Executive summary

In order to automate tasks such as discovery and composition, Semantic Web Services must
be described in a well-defined formal language. The Web Services Modelling Language
(WSML) is based on the conceptual model of the Web Service Modelling Ontology (WSMO)
and as such can be used for modelling Web services, ontologies, and related aspects.

WSML is actually a family of several language variants, each of which is based upon a
different logical formalism. The family of languages are unified under one syntactic umbrella,
with a concrete syntax for modelling ontologies, web services, goals and mediators.

This deliverable, along with others, defines an updated version of the WSML language stack,
in order to bring it in line with the scalability requirements of reasoning in SOA4AIll and
realign it with new research results and other standards. Thus, this document describes
WSML-Quark, an ultra-lightweight WSML language variant serving as a common foundation
for more expressive variants. It covers limitations placed upon its high-level conceptual
syntax, as well as upon the expressivity of its logical expression syntax.

© SOAA4AIl consortium Page 6 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

1. Introduction

SOA4AIlI's aim is to facilitate a web where billions of parties are exposing and consuming
services via advanced Web technology. The outcome of the project will be a framework and
infrastructure “that integrates four complimentary and revolutionary technical advances into a
coherent and domain independent service delivery platform”:

* Web principles and technology as the underlying infrastructure for the integration of
services at a worldwide scale.

* Web 2.0 as a means to structure human-machine cooperation in an efficient and
cost-effective manner.

e« Semantic Web technology as a means to abstract from syntax to semantics as
required for meaningful service discovery.

« Context management as a way to process in a machine understandable way user
needs that facilitates the customization of existing services for the needs of users.

Thus, one basic technological building block is Semantic Web technology, which abstracts
from pure syntax to semantics. Ontologies are used as a semantic data model, by which
means services gain machine-understandable annotations. This information makes the
development of high quality techniques for automated selection, construction, etc. possible.
Furthermore, precise formal models allow for the expression of context-specific rules and
constraints, which can be taken into account during the inference process. The basic building
blocks for this are formal languages for describing resources in a clear and unambiguous
way.

The Web Service Modelling Language WSML [22] is such a formal language for the
specification of ontologies and different aspects of Web services, based on the conceptual
model of WSMO [2]. Several different WSML language variants exist, which are based upon
different logical formalisms. The main formalisms exploited for this purpose are Description
Logics [3], Logic Programming [4], and First-Order Logic [5]. Furthermore, WSML has been
influenced by F-Logic [6] and frame-based representation systems.

This deliverable introduces a completely new WSML variant called WSML-Quark, an ultra-
lightweight language specifically designed for modelling classification systems only. As such
it has the lowest expressivity of all the WSML variants. It belongs to a set of conceptually
related M12 deliverables, namely:

« D3.1.1 Defining the features of the WSML-Quark language
* D3.1.2 Defining the features of the WSML-Core v2.0 language
e D3.1.3 Defining the features of the WSML-DL v2.0 language

e D3.1.4 Defining the features of the WSML-Rule v2.0 language

These four deliverables form the foundation for a redefinition of WSML that brings it in line
with the tractability requirements of SOA4ALL, which envisions “billions of parties exposing
services”. Working with and reasoning over the vast datasets that are implied by this vision
poses a significant scalability challenge.

A lot of current standards and knowledge representation formalisms for the Web feature very
high worst-case complexity results, ranging from EXPTime-complete to NEXPTIME-
complete. For example, such worst-case results apply to the OWL language family as well as
for WSML-DL, which is a notational variant of the Description Logic SHIQ(D) [7].

In general, tableaux-based methods for Description Logics behave very efficiently in regard
to TBox (schema) reasoning, however they do not scale very well when faced with a large
ABox (a large instance set) [8].

© SOAA4AIl consortium Page 7 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

In order to support tractable inference at a Web scale there have been proposals for more
lightweight representation formalisms such as the DL-Lite family of languages [9], EL++ [10],
as well as tractable fragments of OWL like DLP[11] OWL-Horst [12], or L2 [13]. Several of
these proposals are in the process of being adopted in the upcoming OWL 2 standard as so
called profiles [14]. This deliverable is thus part of an effort to align WSML with these
research and standardization efforts.

Section 3.4 describes a variety of reasoning technigques for WSML-Quark that all have sub-
polynomial query time.

1.1 Purpose and Scope

1.1.1 Audience

This document is intended as a reference of the features of the WSML language. In turn its
main audience are users who want to model Web services and ontologies using WSML, as
well as technical staff building tools (i.e. reasoners) that use the WSML language.

Inside the consortium, this mainly applies to partners involved in technical work packages
within Activity cluster A2 — “Core R&D Activities”. For outside parties beyond the consortium
it can serve as an introduction to WSML.

1.1.2 Scope

The main purpose of this deliverable is to present the features of the WSML-Quark language
variant.

We describe the modelling elements in WSML-Quark, restrictions imposed on the language,
and a motivation for them. Beyond the definition of the conceptual and the logical expression
syntax of the language itself we also outline the steps involved in a practical reasoner
implementation and explain the relation with the other language variants within the WSML
stack and their respective layering.

1.2 Structure of the document

The remainder of this deliverable is structured as follows: Section 2 clarifies the relationship
of this document and the WSML language described to the SOA4AIl project and other
deliverables. Section 3 defines the WSML-Quark language by describing the individual
language elements and pointing out the particular restrictions placed on them for this
language variant. It then proceeds to outline the algorithmization of WSML-Quark, and
clarifies the relationship of WSML-Quark to the other WSML language variants, and their
layering. Section 3 concludes with some ideas for future work relating to implementations of
reasoning algorithms and their re-use in other situations.

© SOAA4AIl consortium Page 8 of 21

son|, 4

Al SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language "

2. Technical deliverable remarks

2.1 Deliverable relation with the architecture of the project

The overall architecture of SOA4AIl can be structured into four distinct parts: SOA4AIll Studio,
Distributed Service Bus, SOA4All Platform Services, and Business Services (Web services).
An overview of SOA4All's overall architecture is depicted in Figure

1.
——
A
¢

(Sernantically Annmatsd J o

yooT T T ! pooTTTTTTTT T !
| ! SOA4AIl Studio | !

1 1
: ! P @
| ' = | '
i ! o FL“ Prowsinning Platform Caonsumpticn Platiorm Analys s Platform % i !
i ! =9 & L @ |
: # ! g5 3 i !
i ! k] & \ ¥ 1
| i b2 8 ! |
\ | g Grapnical User Irterface Library SOB4AI API 3 \ |
1 . . | = 1 . - H
i Light-weight ! i Light-weight |
i Samantic | i Procasses anc |
! Web Services ¥ ! Mashups E

E— c

““““““““ ! ’n - o - o -_""--..___Q' rTTTTTTTTITITTT

: = Distribuied Service Bus Tonerng _ E

— Rl (Semantic Spaces + ESB) Platiorn >

1 o - 1

| "-___ _______.U-""/ i

o N SOALAI AR H

. i

1 1

i

Exacution Engine Reasoning Engine Service Ranking & Selection Discovery Eng ne

L8 8 8

Trirc-party Engine Third-party
Traditional Traditional
' RCSTiul Services SOA4All Platform Services WSDL Services

Figure 1 SOA4All Overall Architecture

At the very core of the architecture there is the SOA4AIl Distributed Service Bus, which
serves as infrastructure to tie other components together, and thus forms the central
integration platform. In addition the Deployment platform provides uniform support for the
management and deployment of all software composing the whole SOA4AIll service
computing environment. The Monitoring Platform collects monitoring data about the usage of
SOA4AIl platform services and traditional third-party services.

Built around the Distributed Service Bus as integration platform, there are at the top the
SOA4AIl Studio and at the bottom the SOA4AIl Platform services, which are the components
delivered by the various research and development work packages.

The SOAA4AIl Studio delivers the user front-ends that enable the creation, provisioning,
consumption and analysis of the platform services and various third party business services
that are published to SOA4AII.

Platform Services deliver the various functionalities needed for service discovery, ranking
and selection, composition and invocation. These components are exposed to the SOA4AIl
Distributed Service Bus as Web services and hence consumable as any other published

© SOAA4AIl consortium Page 9 of 21

Al SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language

service.

Business Services are the artefacts that are actually created and manipulated by means of
the SOA4AIl infrastructure. First of all, there are the (publicly) available Web services that are
exposed either as traditional RESTful services, or as traditional WSDL-based services.
These are invokable third-party business services that SOA4All seeks to fully enable in terms
of automation, composition and invocation. Additionally, to the top-left the figure depicts the
semantic annotations of the business services, facilitating so-called Semantic Web services.
The semantic descriptions are published in the service repository that is part of the
Distributed Service Bus, and used for reasoning with service capabilities (functionality) and
interfaces.

The conceptual work conducted towards a reworked WSML language stack in WP3 has
immediate consequences for the reasoning components to be developed in WP3, which
directly process these formal languages and are part of the Platform Services.

Furthermore, additional platform services, as i.e. the Service Ranking & Selection Engine or
the Discovery Engine, which (i) operate on semantically annotated Web Services, or (ii) rely
on an ontology for other reasons will make use of WSML, at least indirectly.

2.2 Deliverable relation with the use-cases

This section clarifies the relation of this deliverable, and the WSML language family in
general, with the use-case activities in SOA4AIl and points out direct applications of WSML
as they are apparent at the time of the writing.

2.2.1 End-user Integrated Enterprise Service Delivery Platform

As the End-user Integrated Enterprise Service Delivery Platform case study will fully use
service annotation and reasoning about such annotations, it will also make direct use of
WSML and the reasoner components associated with it.

This use-case aims for an open, dynamic and lightweight service platform in place of
heavyweight existing solutions, which are hard to set up and maintain due their complexity.
An envisioned outcome (among several) from the end user's perspective is a tool to
compose processes' from services and reuse services in a visual tool without requiring an in-
depth technical background. Apart from the requirements that stem from service
composition an envisioned outcome of the use-case is to provide support for publishing,
finding and reusing existing processes. In order to find processes in repositories search
mechanisms based on semantic descriptions (and hence WSML descriptions) are required.

2.2.2 W21C BT Infrastructure

This use-case will create a semantically enhanced and expanded version of BT's Web21c
platform [15], which will result in a framework for the delivery of service, both by BT itself and
third parties. This requires in-depth technical knowledge and the aim of the case study is to
simplify the process of discovering, integrating, using and sharing BTs capabilities on this

' In the loose sense of a “business process” composed from various subtasks (services) in
order to accomplish a specific goal.

© SOAA4AIl consortium Page 10 of 21

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language A

platform. Thus, in the BT W21C case study the focus is shifted slightly by using service
location technologies to discover capabilities within the BT Web21c infrastructure.

Reasoning with formal service semantics forms the basis for composition tools that will
enhance and aide the creation of more complex services. Furthermore, unambiguous
descriptions of services facilitate the selection of services for the end user. WSML will thus
be used directly in this work package.

2.2.3 C2C Service eCommerce

One of the focuses of this use-case in WP9 is to investigate the impact and sustainability of
future C2C eCommerce applications based on services and to enable eCommerce as a
common distribution channel for end-users by means of SOAJ4AIl. In this scenario, non-
technical end-users can make use of existing services and combine them to build
eCommerce applications in order to market and sell their own products.

This use-case again entails several tasks that are based on annotation and (WSML)
reasoning, among them easy composition of services, service location, ranking and
selection in the case of similar services. In this, sense the scenario demonstrates almost all
parts of the SOA4ALL concept including service discovery, integration, etc. and as such
heavily relies on the formal languages work conducted in WP3.

© SOAA4AIl consortium Page 11 of 21

Al SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language

3. WSML Quark Language Definition

In this section, we define WSML Quark. We start with discussing the motivation for
introducing such a lightweight language. Then we outline the related work in Section 3.2,
define the syntax of WSML Quark in Section 3.3, explain the reasoning algorithms in Section
3.4, discuss the relation with other WSML variants and language layering in Section 3.5, and
finally provide the conclusions and future work in Section 3.6.

3.1 Motivation

WSML-Quark embodies the most lightweight representation language in the WSML-family of
languages. WSML-Quark is specifically designed to meet the representational needs of very
lightweight knowledge-based systems typically considered in the context of the Web 2.0:
applications which focus on the sharing of a large number of resources (such as documents,
images, media files etc.) based on lightweight annotation with controlled vocabularies. As
such WSML-Quark can be considered as a bridging technology between informal,
unstructured metadata, which is usually the result of community-driven social process, i.e.
so-called tagging, and more formal and rigours knowledge representation systems. These
applications do not demand fully-fledged, expressive knowledge representation languages
that are able to represent very detailed semantic interdependencies between the various
concepts that are relevant to the problem domain. Instead, these applications are typically
based on simple knowledge organization systems (SKOS) as described in [18]. Such simple
knowledge organization systems essentially allow (a) the definition of concepts that can be
used for classifying resources into groups (by means of a community-based tagging process)
and (b) the organisation of these concepts into generalization / specialization structures [18].
At the same time, such applications are data-intensive, i.e. they deal with very large numbers
of resources that are shared and hence retrievable within a community.

WSML-Quark strives for optimal support of these applications by maximally restricting the full
WSML language to a minimal core of modelling primitives that (a) cover the expressive
needs of these data-intensive applications and (b) allow for extremely scalable reasoning. All
other WSML language variants extend WSML-Quark syntactically and semantically. Adding
expressiveness allows support of applications with more advanced representational needs,
but comes at the cost of more limited scalability. We further want to point out that a dedicated
WSML-Quark inference system can be reused as a special-purpose subsystem in an
inference engine for the more expressive WSML language variants to implement reasoning
with a specific part of an ontology, the concept hierarchy, in the most efficient way possible.

A concept represents a meaningful unit of thought in a certain problem domain [18]. It can be
used to organize items with similar features into classes. A particularly important class of
resources to be considered in applications of WSML are Web services.

A concept is described by a unique identifier (IRl) and various types of meta-information
(such as labels to be used in applications, a natural language specification, author
information, version and so forth). A default set of description elements for concepts is
defined in [18]. The WSML annotation mechanism can be used to integrate meta-data for
concepts into semantic descriptions to be processed by applications. A particularly relevant
example for such a meta-data systems is SKOS [18].

Concepts (or tags) in controlled vocabularies can be organized into hierarchical structures,
so-called taxonomies, where concepts can specialize or generalize other concepts in a
vocabulary. For two concepts C, D we can declare that C is a sub-concept of D, meaning
that C specializes D. Semantically, the specialization relation is considered to be transitive,
i.e. if C specializes D and D specializes E then it holds as well that C specializes E.

© SOAA4AIl consortium Page 12 of 21

Al SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language

Specialization between concepts is expressed by the subConcept O relation. This roughly
allows the same modelling as skos: br oader and skos: narrower in SKOS.

Sometimes, concepts cannot be organized into purely tree-like structures (such as
taxonomies) in a natural way — the concept specialization / generalization relation over
concepts may form a directed, acyclic graph (DAG) and some concepts might be connected
by more than one specialization / generalization path. Tree-like structures are considered the
most important special cases and implementations are free to implement special-purpose
inference algorithms that take advantage of tree structures.

We do not consider the classification of resources as part of the WSML-Quark language, but
leave this aspect to applications that use WSML-Quark. Consequently, we do not include any
language primitives to define instances and relate them to concepts in WSML-Quark.

WSML-Quark therefore focuses on the key inference service required for any of the Web 2.0
applications mentioned in the beginning: terminological reasoning in simple knowledge
organization systems. Applications can check if some concept specializes another one
(within large taxonomic structures) or retrieve all sub- or super-concepts of a given concept.
Using this key inference service, applications can subsequently retrieve all relevant instances
for given concepts in a straightforward way using standard data management techniques or
systems.

The rationale for leaving instance classifications out of the WSML-Quark language is as
follows: It has been pointed out in [20] that when translating large existing taxonomies in
different real-world domains (such as eClass [28] or UNSPSC[29]) to ontologies expressed in
standard ontology languages such as OWL, the interaction between instance-level
classification of instances (i.e. assigning a resource as a member of a specific concept) and
the standard semantics of concept specialization relations can easily give undesired
conseqguences to applications.

The main reason is the semantic interaction between instances that are classified as
instances of certain concepts and the predefined transitive and reflexive semantics of sub-
concept relations. The hierarchical structures in many real world taxonomies are weaker than
sub-concept relations, i.e. for the intended applications of taxonomies concept specialization
is not necessarily reflexive and in particular does not automatically cause instance sets for
sub-concepts to be propagated to instance sets of super-concepts. By leaving the instance
classification outside of WSML-Quark, applications have full freedom over how to propagate
instance sets across the taxonomy. Similarly, [18] considers specialization / generalization
relations in over controlled vocabularies that are more general than the sub-concept relations
in typical ontology languages; here again, hierarchical relations focus on the terminological
level and have no side effects at the instance level.

Similarly, SKOS limits this interaction as well. It does not cover the modelling of different
types of hierarchical relation: for example, instance-class and part-whole relationships.
Technically every SKOS concept is an instance of skos: concept , which is an OWL class. As
such SKOS concepts are in OWL terms always individuals, which are connected by a special
skos: br oader relation which is not transitive in order to achieve the desired behaviour. So
at a fundamental level, SKOS also limits itself to basically one kind of reasoning over
hierarchies of related individuals, whereas WSML-Quark limits itself to reasoning over
hierarchies of related concepts (classes in OWL's terms). Both leave extensions open in
order to allow a degree of flexibility for specific application scenarios.

Note that in all WSML variants extending WSML-Quark, instance definitions are possible and
have the standard semantic interaction with the sub-concept hierarchies.

© SOAA4AIl consortium Page 13 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

3.2 Related Work and Background

As mentioned in the previous section, WSML-Quark supports applications based on simple
knowledge organization systems that perform classification of entities into groups by defining
concepts and generating generalization / specification structures over these concepts.

One of the most prominent examples of such systems is SKOS[18], an upcoming W3C
standard.

Simple Knowledge Organisation Systems (SKOS) is a family of formal languages
designed for representation of structured controlled vocabulary such as thesauri,
classification schemes, taxonomies, subject-heading systems etc. The SKOS vocabulary is
built upon RDF and RDFS and can be used to express the content and structure of a
concept scheme as an RDF graph. The main objective of this representation is to enable
easy publication of structured controlled vocabularies for the Semantic Web.

A usable mapping between WSML-Quark to SKOS, for the sake of basic interoperability, can
trivially be established in the same way as i.e. for RDFS. SKOS does not define
skos: broader as transitive, but neither as intransitive. So just as it is legitimate to re-
interprete rdf s: subd assOf as skos: broader and RDFS classes as SKOS concepts, the
same correspondence can be established between WSML-Quark concepts and their
corresponding SKOS counterpart. Since the hierarchical relation holding between WSML-
Quark concepts also denotes that each concept is a sub-concept of itself (it is reflexive), this
also means that the resulting SKOS concept is bound to be broader than itself.

Apart from the systems designed exclusively for knowledge organization, reasoning on the
organization of concepts can be performed on any available knowledge base that supports
class and sub/super class relationship definitions. In addition, the WSML-Quark language
can be used to model many real-world domains (such as eClass[28] or UNSPSC[29]).

3.3 WSML Quark Syntax Definition

WSML documents can be explicitly identified as being described using WSML-Quark by
using the following WSML variant identifier:

http://www.wsmo.org/wsml/wsml-syntax/wsml-quark

3.3.1 WSML- Quark Syntax Basics

WSML-Quark inherits the basics of the WSML syntax specified in Section 2.1 of [21]. In
this section we describe restrictions that WSML-Quark puts on the syntax basics.

WSML-Quark inherits the namespace mechanism of WSML.

WSML-Quark restricts the use of identifiers. The vocabulary of WSML-Quark consists
only of concept identifiers and annotation identifiers. All other terms (i.e. datatype
values or attribute identifiers) cannot be used in WSML-Quark.

Definition. A WSML-Quark vocabulary V has the following restrictions:

« V¢ and Vany are the sets of concept identifiers and annotation identifiers. These sets
are all subsets of the set of IRIs and are pairwise disjoint
« The set of identifiers Vp is partitioned into V¢ and Vann

© SOAA4AIl consortium Page 14 of 21

Al SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language

The second property means that the sets of datatype wrappers Vp, datatype values Vpy,
relation indentifiers Vg, instance identifiers V,, anonymous identifiers V,, object
constructors Vo, function symbols Ve and variable identifiers Vy, are all empty and
therefore can not be used in a WSML-Quark ontology.

3.3.2 WSML-Quark Ontologies

In this section we explain the restrictions on the WSML ontology modelling elements
imposed by WSML-Quark. The restrictions posed on the conceptual syntax for ontologies are
necessary because of the focus on representing concept hierarchies only.

3.3.2.1 Concepts

WSML-Quark allows the definition of concepts by means of an identifier, their super-
concepts and annotation properties. It does not allow for the specification of attributes (and
consequently disallows the specification of attribute features reflexive, transitive,
symmetric, inverseOf and subAttributeOf, range restrictions and range constraints, and
cardinality constraints).

Further, WSML-Quark does not allow cycles in concept hierarchies, i.e. that for two different
concept identifiers C, D it holds that both C is a sub-concept of D and D is a sub-concept of
C. This restriction stems from the intention of capturing concept hierarchies.

Please note, that we do not require the concept hierarchy to form a tree or forest, in other
words to represent a taxonomy or a collection of taxonomies over the same concepts
However, these two cases are considered as important special cases, and implementations
are encouraged to take advantage of the specific interconnection structure to improve the
scalability of inference over concept structures of this specific form even further.

Further, we encourage the use of SKOS vocabulary [18] in annotations of a given concept,
e.g. to define multi-lingual labels and preferred labels for concepts. This enables SKOS
aware tools to interpret certain meta-data elements about concepts in an ontology, for
instance when rendering an ontology in some ontology editor.

3.3.2.2 Instances

WSML-Quark does not allow for the specification of instances
3.3.2.3 Relations

WSML-Quark does not allow for the specification of relations.
3.3.2.4 Relation Instances

WSML-Quark does not allow the specification of relation instances, as the use of relations is
disallowed.

3.3.2.5 Axioms

WSML-Quark does not impose restrictions on the specification of axioms, apart from the fact
that WSML-Quark only allows the use of a restricted form of the WSML logical expression
syntax. These restrictions are specified below.

3.3.3 WSML-Quark Goals

Goals in WSML-Quark restrict the common WSML syntax: 'assumptions’, 'preconditions’,
‘effects’, 'postconditions’ and ‘shared variables’ parts of a capability can not be used and
definitions of non-functional properties are limited to WSML-Quark logical expressions.

3.3.4 WSML-Quark Web Services

Web services in WSML-Quark restrict the common WSML syntax: ‘'assumptions’,

© SOAA4AIl consortium Page 15 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

'‘preconditions’, 'effects’, 'postconditions' and ‘shared variables’ parts of a capability can not
be used and the definition non-functional properties are limited to WSML-Quark logical
expressions.

3.3.5 WSML-Quark Mediators
Mediators in WSML-Quark follow the common WSML syntax.
3.3.6 WSML-Quark Logical Expressions

WSML-Quark allows only a restricted form of logical expressions. The restrictions reflect the
fact that WSML-Quark ontologies are intended to capture concept hierarchies only.

Let V be a WSML-Quark vocabulary. Let further y O V¢, I be either an identifier in V¢ or a list
of identifiers in Ve,

Definition: The set of atomic formulae in L(V) is defined as follows:

y subConceptOf I is an atomic formula in L(V)

Definition: The set of WSML-Quark formulae is defined as follows:

Any atomic formula is a formula in L(V).

If Fy,...F, are atomic formulae in L(V), then F; and ... and F, is a formula in L(V).

3.4 Algorithmisation

Reasoning on hierarchical structures that use sub/super concept relationships based on the
standard semantics comprises 1) checking if one concept is a sub-concept of another or 2)
finding all the sub/super-concepts of a given concept. Hence, reasoning can be reduced to
the graph reachability problem. Knowledge organization systems for Semantic Web data
involve large graphs and require fast answering of reachability queries. In this section, we
present an analysis of the algorithms proposed for solving the graph reachability problem.

Given a graph G=(V, E) where V is the set of vertices, E is the set of edges and |V| =n, |E| =
m, there are two naive approaches for answering reachability queries. One is to use the
shortest path algorithm with O(m) query time. Another naive approach to this problem is to
precompute the reachability between every pair of vertices of a graph, so that reachability
queries over this graph can be answered in constant time and requires O(n?) space. As can
be seen from their time or space requirements these approaches are impractical for large
graphs and in turn for Semantic Web data. Efficient solutions of this problem on large sparse
graphs involve reachability labeling methods. Several approaches have been proposed to
encode graph reachability information using labeling schemes [22][23][24][25][26]. A labeling
scheme assigns labels to vertices of the graph and answers a reachability query over two
vertices by comparing the labels of the vertices. Interval-based labeling is used for tree
structures that can answer reachability queries in constant time. However, the time
complexity of this method is O(m) for graphs. Cohen et al [23] proposed a 2-hop labeling
scheme which uses O(nmY?) storage and O(m?) time. Indexing (labeling) time for this
method is O(n*) which then reduced to O(n®) by the HOPI algorithm proposed by Schenkel
et. Al [24][25]. The last method is called dual labeling by Wang et al. [26] which is based on
representing a graph with two components: a spanning tree and a set of t non-tree edges.
For sparse, tree-like graphs, it is assumed that t<<n. The two components together contain
the complete information needed to answer a reachability query over the original graph. The
dual labeling method integrates interval-based labeling, which encode reachability in the
spanning tree and non-tree labeling to complete the reachability information of the graph.
This method consists of two schemes Dual-l1 and Dual-1l. The Dual-l scheme has constant
query time, whereas it is O(log t) for Dual-Il. Both schemes have O(n + t°) space complexity,
however Dual-1l uses less space in practice. Table 1 summarizes the complexity results for

© SOAA4AIl consortium Page 16 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

the methods mentioned in this section.

Based on a comparison of graph reachability algorithms we can conclude that choosing the
best algorithm for a particular application depends on the properties of the graph structures
used. In addition, the trade off between time and space complexities should also be
considered. Dual-l method can be used in applications supporting large semantic datasets
for fast query answering. It is also possible to design algorithms tailored for the specific
properties of each graph structure.

Query Time Index Time Index Size
Shortest Path O(m) 0 0
Transitive Closure o(1) on®) on?)
Interval o(n) o(n) on?)
2-Hop o(m'?) o(n% o(nm*?)
HOPI O(m*?) o(n’) O(nm™?)
Dual-I o(1) O(n+m+t°) O(n+t?)
Dual-II O(log 1) O(n+m+t°) O(n+t?)

Table 1: Complexity comparison

3.5 Relation with other WSML Variants and Language Layering

As mentioned earlier, WSML actually consists of distinctly different language variants,
identified for their particular properties in terms of modelling and performance of reasoning
tasks. They differ in expressiveness as well as in their underlying logical formalism. This
allows users of the language to decide on (i) the level of expressivity and thus also on (ii) the
associated complexity, as well as (iii) the style of modelling which they want to use, on a
case by case basis — depending on the requirements of a specific application.

The relation between the different WSML variants is depicted in Figure 2. As can be seen,
WSML-Quark and WSML-Core 2.0 form a common, lightweight, yet increasingly expressive
foundation for extensions towards the paradigms of both Description Logic (in the form of
WSML-DL 2.0) and Logic Programming (in the form of WSML-Flight 2.0 and WSML-Rule
2.0). Consequently, WSML-DL 2.0 and WSML-Flight/Rule 2.0 are both layered on WSML-
Core 2.0, which defines a common subset. WSML-Core v2.0 is in turn layered upon WSML-
Quark.

© SOAA4AIl consortium Page 17 of 21

50A; _7;,

Al SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

WSMI-Full 21

AR

// \\

WVWSKML-OL 2.0 NSML-Rule 2.0
‘\ | WSk _-Flight 2.0
T = 4

~

WySML-Care 2.0

WahML-Ouark

Figure 2 WSML Language Layering

WSML-Quark is a very lightweight and intuitive language variant that allows for the simple
organization of concepts in to a hierarchical classification system. WSML-Quark can be used
as a very efficient stepping stone towards more formal and complex WSML language
variants.

WSML-Core 2.0 inherits many features from the first version of WSML-Core, which was
based on DLP [11] - formed by the intersection of the Description Logic SHIQ and Horn
Logic. It has been adjusted to align results of ongoing standardization efforts, most notably
OWL 2 RL [14], as well research results such as the L2 language [13], which has similar
language features, albeit specified directly at the level of RDF. Furthermore, WSML-Core 2.0
forms the common subset between the DL and LP based variants of WSML.

WSML-DL 2.0 is the Description Logic variant of WSML, based on ELP [16], which is based
on the tractable DL EL++ [10], and also covers OWL 2 RL, OWL 2 EL and OWL 2 QL, while
at the same time retaining polynomial combined complexity.

WSML-Flight 2.0 is the least expressive of the two LP-based variants. Compared with
WSML-Core, it adds features such as meta-modeling, constraints, and non-monotonic
(stratified) negation. WSML-Flight is semantically equivalent to Datalog with equality

and integrity constraints.

© SOAA4AIl consortium Page 18 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

WSML-Rule 2.0 extends WSML-Flight 2.0 with further features from Logic Programming,
namely the use of function symbols, unsafe rules, and unstratified negation. Due to the
intended tractability goals, WSML-Rule 2.0 relies on the Well-Founded Semantics [17] in
place of the more general Stable Model Semantics for the purpose of query answering.

WSML-Full 2.0 finally reconciles the DL and LP variants of WSML in a more expressive
superset. While the specification of WSML-Full is still open at this stage, the use of hybrid
MKNF knowledge bases forms a possible option. [18] defines the well-founded semantics for
this approach, which still preserves tractable data complexity.

3.6 Conclusions and Future Work

In this document we presented WSML-Quark which is a representation language designed to
meet the needs of lightweight knowledge-based systems. The typical constructs used in such
systems are concepts and the sub/super-concept relationships between them. Reasoning is
typically based on representing the hierarchical structure of concepts as a graph and
performing traversal and answering reachability queries on it.

As future work, we plan to investigate reasoning techniques based on the properties of
graphs representing hierarchical structures. We plan to propose methods for a reasoner
component that uses different (and possibly hybrid) reasoning strategies that are dependent
on the input graph and time/space requirements. We believe that building such an optimized
reasoner component can support reasoning on Semantic Web data organization schemes
even better than the proposed algorithms.

© SOAA4AIl consortium Page 19 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

4. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

D. Roman, H. Lausen, and U. Keller, “Web Service Modeling Ontology (WSMO),”
WSMO Working Draft, 2004. Available at http://www.wsmo.org/TR/d2/v1.3/

F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider,
“The Description Logic Handbook,” 2007.

J.W. Lloyd, Foundations of logic programming, Springer-Verlag New York, Inc.
New York, NY, USA, 1987.

M. Fitting, First-Order Logic and Automated Theorem Proving, Springer, 1996.

M. Kifer and G. Lausen, “F-logic: a higher-order language for reasoning about
objects, inheritance, and scheme,” Proceedings of the 1989 ACM SIGMOD
international conference on Management of data, 1989, pp. 134-146.

I. Horrocks, U. Sattler, and S. Tobies, “Practical reasoning for very expressive
description logics,” Logic Journal of IGPL, vol. 8, 2000, pp. 239-263.

U. Hustadt, B. Motik, and U. Sattler, “Data Complexity of Reasoning in Very
Expressive Description Logics.”

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, “DL-Lite:
Tractable Description Logics for Ontologies,” Proceedings of the National
Conference on Artificial Intelligence, Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2005, p. 602.

F. Baader, S. Brandt, and C. Lutz, “Pushing the EL Envelope”, International Joint
Conference on Artificial Intelligence, Lawrence Erlbaum Associates Ltd, 2005, p.
364.

B. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description Logic Programs:
Combining Logic Programs with Description Logic”.

H.J. ter Horst, “Combining RDF and Part of OWL with Rules: Semantics,
Decidability, Complexity”, Proc. of ISWC, Springer, 2005, pp. 6-10.

F. Fischer, U. Keller, A. Kiryakov, Z. Huang, V. Momtchev, E. Simperl, D. Fensel,
and R. Dumitru, “D1.1.3 Initial Knowledge Representation Formalism”, LarKC
Deliverable, 2004.

B. Motik, C. Bernardo, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, “OWL 2 Web
Ontology Language: Profiles,” W3C Working Draft, Dec. 2008.

British Telecom, “Web21C SDK.” http://web21c.bt.com/

M. Krétzsch, S. Rudolph, and P. Hitzler, “ELP: Tractable rules for OWL 2,”
Proceedings of the 7th International Semantic Web Conference (ISWC2008),
Springer, 2008.

A. Van Gelder, K.A. Ross, and J.S. Schlipf, “The well-founded semantics for
general logic programs,” Journal of the ACM (JACM), vol. 38, 1991, pp. 619-649.

M. Knorr, J.J. Alferes, and P. Hitzler, “A Coherent Well-founded Model for Hybrid
MKNF Knowledge Bases,” ECAI 2008: Proceedings, 18th European Conference
on Artificial Intelligence, July 21-25, 2008, Patras, Greece: Including Prestigious
Applications of Intelligent, IOS Press, 2008, p. 99.

A. Miles and S. Bechhofer, “SKOS Simple Knowledge Organization System
Reference”, World Wide Web Consortium, Working Draft WD-skos-reference-
20080829, 2008. Available at: http://www.w3.0rg/TR/2008/WD-skos-reference-

© SOAA4AIl consortium Page 20 of 21

SOA; ; _7;

AW SOA4AIl -FP7 — 215219 — D3.1.2 Defining the Features of the WSML-Core v2.0 Language " #eilii™

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

20080829/

K. Watanabe, “Introduction of Dublin Core metadata”, Journal of Information
Processing and Management, 43, 2001.

M. Hepp, “Products and Services Ontologies: A Methodology for Deriving OWL
Ontologies from Industrial Categorization Standards”, in: Int'l Journal on Semantic
Web & Information Systems (IJSWIS), Vol. 2, No. 1, pp. 72-99, January-March
2006.

J. de Bruijn, Editor, “WSML Language Reference, Deliverable D16.1v1.0”, WSML
Final Draft 2008-08-08, Available at
http://www.wsmo.org/TR/d16/d16.1/v1.0/20080808/.

R. Agrawal, A. Borgida, and H. V. Jagadish, “Efficient management of transitive
relationships in large data and knowledge bases”, In SIGMOD, pages 253-262,
1989.

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick, “Reachability and
distance queries via 2-hop labels”, In Proceedings of the 13th annual ACM-SIAM
Symposium on Discrete algorithms, pages 937-946, 2002.

R. Schenkel, A. Theobald, and G. Weikum, “HOPI: An efficient connection index
for complex XML document collections”, In EDBT, 2004.

R. Schenkel, A. Theobald, and G.Weikum, “Efficient creation and incremental
maintenance of the HOPI index for complex XML document collections”, In ICDE,
2005.

Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu, “Dual labeling:
Answering graph reachability queries in constant time”, In ICDE '06: Proceedings
of the 22nd International Conference on Data Engineering (ICDE’06), page 75,
2006.

International Standard for the Classification and Description of Products and
Services, “eClass”, http://www.eclass-online.com/

The United Nations Standard Products and Services Code (UNSPSC),
http://www.unspsc.org/

© SOAA4AIl consortium Page 21 of 21

