

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D3.1.3 Defining the Features of the

WSML-DL v2.0 Language
Activity N: Activity 2 - Core Research and Development

Work Package: WP3 - Service Annotation and Reasoning

Due Date: M12

Submission Date: 10/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Barry Bishop
Florian Fischer
Pascal Hitzler
Markus Krötzsch
Sebastian Rudolph
Yiorgos Trimponias
Gulay Unel UIBK (All)

Reviewers(s): Sudhir Agarwal
Nathalie Steinmetz UKARL

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 2 of 24

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 30.01.2009 Parts 1+2 Florian Fischer

0.2 02.02.2009 Complete draft Pascal Hitzler, Markus
Krötzsch, Sebastian Rudolph

0.3 04.02.2009 Editing and corrections Barry Bishop, Gulay Unel

1.0 05.03.2009 Incorporating reviewer comments Pascal Hitzler

Final 10.03.2009 Overall fortmat and quality revision Malena Donato

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 3 of 24

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 7

1.1 PURPOSE AND SCOPE __ 8

1.1.1 Audience ___ 8

1.1.2 Scope ___ 8

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 8

2. TECHNICAL DELIVERABLE REMARKS ___________________________________ 9

2.1 DELIVERABLE RELATION WITH THE ARCHITECTURE OF THE PROJECT ___ 9

2.2 DELIVERABLE RELATION WITH THE USE-CASES _____________________ 10

2.2.1 End-user Integrated Enterprise Service Delivery Platform ________________ 10

2.2.2 W21C BT Infrastructure __ 10

2.2.3 C2C Service eCommerce ___ 11

3. WSML-DL LANGUAGE DEFINITION _____________________________________ 12

3.1 MOTIVATION __ 12

3.2 APPROACH ___ 12

3.3 ELP IN A NUTSHELL __ 14

3.4 WSML-DL V2.0 SYNTAX DEFINITION ________________________________ 15

3.5 ALGORITHMISATION ___ 17

3.6 RELATION WITH OTHER WSML VARIANTS AND LANGUAGE LAYERING __ 18

3.7 FUTURE WORK __ 21

4. CONCLUSIONS __ 22

5. REFERENCES ___ 23

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 4 of 24

Table of Figures
Figure 1 SOA4All Semantic Service Bus ..10

Figure 2 WSML Language Layering ..19

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 5 of 24

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

HLDD High Level Design Document

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

LP Logic Programming

DL Description Logic

OWL Web Ontology Language

DLP Description Logic Program

BT British Telecom

C2C Consumer to Consumer

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 6 of 24

Executive summary
In order to automate tasks such as location and composition, Semantic Web Services must
be described in a well-defined formal language. The Web Services Modeling Language
(WSML) is based on the conceptual model of the Web Service Modeling Ontology (WSMO)
and as such can be used for modeling Web services, ontologies, and related aspects.

WSML is actually a family of several language variants, each of which is based upon a
different logical formalism. The family of languages is unified under one syntactic umbrella,
with a concrete syntax for modeling ontologies.

This deliverable, along with others, defines an updated version of the WSML language stack,
in order to bring it in line with the scalability requirements of reasoning in SOA4All and
realign it with new research results and others standards. Thus, this document describes
WSML-DL v2.0, a WSML language variant of the Description Logics paradigm featuring a
favorable trade-off between expressivity and scalability.

By capturing the semantics of the ELP knowledge representation formalism, the updated
WSML-DL variant greatly improves scalability and lends itself to evaluation using rule-based
reasoners.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 7 of 24

1. Introduction
SOA4All’s aim is to facilitate a Web where billions of parties are exposing and consuming
services via advanced Web technology. The outcome of the project will be a framework and
infrastructure “that integrates four complementary and revolutionary technical advances into
a coherent and domain independent service delivery platform”:

• Web principles and technology as the underlying infrastructure for the integration of
services at a worldwide scale.

• Web 2.0 as a means to structure human-machine cooperation in an efficient and
cost-effective manner.

• Semantic Web technology as a means to abstract from syntax to semantics as
required for meaningful service discovery.

• Context management as a way to process in a machine understandable way user
needs that facilitates the customization of existing services for the needs of users.

Thus, one basic technological building block is Semantic Web technology, which abstracts
from pure syntax to semantics. Ontologies are used as a semantic data model, by which
means services gain machine-understandable annotations. This information makes the
development of high quality techniques for automated selection, construction, etc. possible.
Furthermore, precise formal models allow for the expression of context-specific rules and
constraints, which can be taken into account during the inference process. The basic building
blocks for this are formal languages for describing resources in a clear and unambiguous
way.

The Web Service Modeling Language WSML [1] is such a formal language for the
specification of ontologies and different aspects of Web services, based on the conceptual
model of WSMO [2]. Several different WSML language variants exist, which are founded
upon different logical formalisms. The main formalisms exploited for this purpose are
Description Logics [3], Logic Programming [4], and First-Order Logic [5]. Furthermore, WSML
has been influenced by F-Logic [6] and frame-based representation systems.

This deliverable introduces a revised version of the WSML-DL variant of the WSML language
family, in order to bring it up to date with recent research in both the Description Logic and
Logic Programming paradigm. It belongs to a set of conceptually related M12 deliverables,
namely:

• D3.1.1 Defining the features of the WSML-Quark language
• D3.1.2 Defining the features of the WSML-Core v2.0 language
• D3.1.3 Defining the features of the WSML-DL v2.0 language
• D3.1.4 Defining the features of the WSML-Rule v2.0 language

These four deliverables form the foundation for a redefinition of WSML that brings it in line
with the tractability requirements of SOA4ALL, which envisions “billions of parties exposing
services”. Working with and reasoning over the vast datasets that are implied by this vision
poses a significant scalability challenge.

A lot of current standards and knowledge representation formalisms for the Web feature very
high worst-case complexity results, ranging from EXPTime-complete to NEXPTIME-
complete. For example, such worst-case results apply to the OWL language family as well as
to the former version of WSML-DL, which is a notational variant of the Description Logic
SHIQ(D) [7].

In general, tableaux-based methods for Description Logics behave rather efficiently in regard
to TBox (schema) reasoning, however in general they do not scale very well when faced with

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 8 of 24

a large ABox (a large instance set) [8].

In order to support tractable inference at a Web-scale there have been proposals for more
lightweight representation formalisms such as the DL-Lite family of languages [9], EL++ [10],
as well as tractable fragments of OWL like DLP [11], OWL-Horst [12], or L2 [13]. Several of
these proposals are in the process of being adopted in the upcoming OWL 2 standard as so-
called profiles [14]. This deliverable is thus part of an effort to align WSML with these
research and standardization efforts.

1.1 Purpose and Scope
1.1.1 Audience

This document is intended as a reference of the features of the WSML language. In turn its
main audience are users who want to model Web services and ontologies using WSML, as
well as technical staff building tools (i.e. reasoners) that use the WSML language.

Inside the consortium, this mainly applies to partners involved in technical work packages
within Activity cluster A2 – “Core R&D Activities”. For outside parties beyond the consortium
it can serve as an introduction to WSML.

1.1.2 Scope

The main purpose of this deliverable is to present the features of the reworked WSML-DL
v2.0 language variant, particularly to describe the changes made in regard to the existing
WSML-DL language1.

We describe the modeling elements in WSML-DL v2.0, restrictions imposed on the language,
and a motivation for them. Beyond the definition of the conceptual and the logical expression
syntax of the language itself we also outline the steps involved in a practical implementation
and explain the relation with the other language variants within the WSML stack and their
respective layering.

1.2 Structure of the document
The remainder of this deliverable is structured as follows: Section 2 clarifies the relation of
WSML-DL v2.0 and the WSML language in relation to the SOA4All project and other
deliverables. Section 3 defines the WSML-DL v2.0 language by describing the individual
language elements and pointing out the particular restrictions placed on them for this
language variant. It then proceeds to outline the algorithmization of WSML-DL v2.0 on rule-
based reasoners. Finally, it clarifies the relation WSML-DL v2.0 and the other WSML
language variants and their layering. Section 4 concludes this deliverable and points out
some next steps for future work.

1 http://www.wsmo.org/wsml/wsml-syntax

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 9 of 24

2. Technical deliverable remarks
2.1 Deliverable relation with the architecture of the project
The work conducted towards a reworked WSML language stack in WP3 conceptually
belongs to the Base Layer of the SOA4All architecture (see Figure 1). In the SOA4All
architecture, different elements are distributed in three different layers according to their
functional dependencies on each other.

The Base Layer contains elements such as (1) formal languages and ontologies, (2)
reasoner and (3) semantic spaces as the publication and communication element of the
infrastructure.

The Web Enabled Service platform (the second layer), consists of (4) Service Ranking and
Selection, (5) Service Location, (6) Service Adaptation and Service, (7) Service Grounding,
(8) Service Delivery, (9) Service Monitoring and Management and (10) Service Context.

Finally, in the User Layer are components such as (11) Service Modeling, (12) Service
Provisioning and (13) Service Consumption.

The “Semantic Service Bus” ties all these components together and serves as the
infrastructural backbone. In Figure 1 the Semantic Service Bus is indicated by the outer
“envelope” around the other components and shows the possibility of being connected to
other buses as an extension.

The changes to the WSML family have direct consequences for the reasoning components
to be developed in WP3, which directly process descriptions created using these formal
languages.

Furthermore, any component from the second layer, which operates on (i) semantically
annotated Web Services or (ii) relies on an ontology for other reasons will make use of
WSML, at least indirectly. This most directly applies to WP5 for the purpose of service
location, discovery and ranking, as well as to WP6 for the purpose of service composition.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 10 of 24

Figure 1 SOA4All Semantic Service Bus

2.2 Deliverable relation with the use-cases
This section clarifies the relation of the WSML language family with the use-case activities in
SOA4All and points out direct applications of WSML as they are apparent at the time of the
writing.

2.2.1 End-user Integrated Enterprise Service Delivery Platform

As the End-user Integrated Enterprise Service Delivery Platform case study will fully use
service annotation and reasoning about such annotations, it will also make direct use of
WSML and the reasoner components associated with it.

This use-case aims for an open, dynamic and lightweight service platform instead of
heavyweight existing solutions, which are hard to set up and maintain due to their
complexity. An envisioned outcome (among several) from the end user’s perspective is a tool
to compose processes2 from services and reuse services in a visual tool without requiring an
in-depth technical background. Apart from the requirements that stem from service
composition an envisioned outcome of the use-case is to provide support for publishing,
finding and reusing existing processes. In order to find processes in repositories search
mechanisms based on semantic descriptions (and hence WSML descriptions) are required.

2.2.2 W21C BT Infrastructure

This use-case will create a semantically enhanced and expanded version of BT’s Web21c

2 In the loose sense of a “business process” composed from various subtasks (services) in
order to accomplish a specific goal.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 11 of 24

platform [15], which will result in a framework for the delivery of service, both by BT itself and
third parties. This requires in-depth technical knowledge and the aim of the case study is to
simplify the process of discovering, integrating, using and sharing BTs capabilities on this
platform. Thus, in the BT W21C case study the focus is shifted slightly by using service
location technologies to discover capabilities within the BT Web21c infrastructure.

Reasoning with formal service semantics forms the basis for composition tools that will
enhance and aide the creation of more complex services. Furthermore, unambiguous
descriptions of services facilitate the selection of services for the end user. WSML will thus
be used directly in this work package.

2.2.3 C2C Service eCommerce

One of the focuses of this use-case in WP9 is to investigate the impact and sustainability of
future C2C eCommerce applications based on services and to enable eCommerce as a
common distribution channel for end users by means of SOA4All. In this scenario, non-
technical end users can make use of existing services and combine them to build
eCommerce applications in order to market and sell their own products.

This use-case again entails several tasks that are based on annotation and (WSML)
reasoning, among them easy composition of services, service location, ranking and
selection in the case of similar services. In this sense the scenario demonstrates almost all
parts of the SOA4ALL concept including service discovery, integration, etc. and as such
heavily relies on the formal languages work conducted in WP3.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 12 of 24

3. WSML-DL Language Definition
3.1 Motivation
Version 1.0 of WSML-DL3 was based on the SHIQ(D) Description Logic and thus was
essentially aligned with OWL 1.0 DL.4 Because of new developments in requirements on
ontology languages, and in particular because of the forthcoming revision of OWL – known
as OWL 2 [16] – a revision of WSML-DL is due.

We sketch here the main points in this revision of WSML-DL and direct the reader towards
the complete WSML language specification [22], where the syntax of all WSML variants is
laid out in detail and in relation to each other (see Section 4 of the indicated document).

The revision was to meet a number of criteria to ensure that it is up to date with state-of-the-
art developments in OWL and in ontology languages. They are as follows.

• Align it with OWL 2.

• Achieve higher efficiency of reasoning by using tractable fragments.

• Incorporate new results on the integration of OWL and rules.

• Make it implementable on a Datalog reasoner in order to be able to further integrate
tools for the different WSML variants.

These requirements have been met by the revision. In particular,

• WSML-DL v2.0 is a tractable language which encompasses – and is thus fully
compatible with – all three designated tractable fragments of OWL 2, namely OWL
EL, OWL RL, and OWL QL (see Section 3.2),

• it allows for the expression of certain types of rules which are not expressible in the
OWL 2 tractable fragments, but expressible in OWL 2 itself,

• it allows for the expression of Datalog rules which are not expressible in OWL 2 DL,

• it fully adheres to the open-world semantics and is thus fully compatible with the OWL
DL semantics, and

• it is implementable on a Datalog reasoner via a polynomial-time transformation into
Datalog.

An implementation of WSML-DL v2.0 is under way and progress towards the first prototype
will be reported in the M18 deliverable D3.2.4 “First Prototype Description Logic Reasoner for
WSML-DL v2.0”.

3.2 Approach
The definition of WSML-DL v2.0 is based on recent research developments that have been
communicated in [17]. In essence, WSML-DL v2.0 is a syntactic variant of the language ELP
[17], which is the most expressive polynomial-time language based on OWL currently known.
It is particularly suited for WSML since it incorporates rules into an OWL-style language, and
as such is in line with the conceptual build-up of the WSML layering that includes both OWL
and rule-like languages. It covers, or is closely related to, a number of well-known
formalisms, which we list in the following.

3 http://www.wsmo.org/2004/d16/d16.7/v0.1/20040719/
4 http://www.w3.org/TR/owl-features/

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 13 of 24

Datalog

Datalog is essentially the Horn fragment of first-order logic restricted to formulae without
function symbols, but is usually endowed with a Herbrand semantics. It is a prominent and
very well known language, which has been studied extensively. Since Datalog can be
understood as a fragment of first-order logic, it can be read under first-order semantics,
which is compatible with the Herbrand perspective in that it retains all the positive
consequences which can be drawn under the Herbrand semantics. ELP contains Datalog but
semantically reads it as DL-safe rules [18], and this reading again is compatible with the
Herbrand perspective in the same sense.

DLP

Description Logic Programs (DLP) [11] can be roughly described as the logical fragment
formed by the naïve intersection of Description Logics and Logic Programming. The practical
use of DLP is actually twofold: First of all. it is a tractable formalism that captures many of the
ontologies found on the Web, and secondly it can serve as a basic interoperability layer
between Description Logic and Logic Programming based formalisms. ELP contains DLP.

OWL 2 RL

The OWL 2 RL profile [14], which is part of the forthcoming OWL 2 standard, can be
considered to be roughly based on DLP.

OWL 2 RL [14] is a fragment that is customized to support reasoning with rule-based
engines. It is a profile that is intended to form a proper extension of RDFS while still being
computationally tractable. As such, it realizes a weakened form of the OWL 2 Full semantics
and is very similar in spirit to DLP and OWL-Horst [12]. OWL 2 RL semantics is provided as
a partial axiomatization in the form of additional entailment rules directly on the RDF
serialization of OWL 2, in a similar fashion as for OWL-Horst. ELP contains OWL 2 RL.

OWL 2 QL

OWL 2 QL [14] is based on DL-Lite [9], which is actually not a single language fragment but
rather a family of languages with several slight variations, and tailored for reasoning over
large instance sets combined with a relatively inexpressive TBox. More specifically, many
important reasoning tasks can be performed in logarithmic space with respect to the size of
the ABox. The variant picked up in OWL 2 is DL-LiteR and supports property inclusion
axioms. Other variants instead support (inverse) functionality on object properties. A notable
feature goes hand in hand with DL-Lite's complexity results: Since query answering over
knowledge bases has polytime data complexity and since it is possible to separate TBox and
ABox reasoning for the evaluation of a query, it is possible to delegate the ABox reasoning to
a standard SQL database engine. Moreover, increasing the expressiveness of the DL-Lite
languages also increases space complexity to at least NLogSpace. Some languages from
the DL-Lite family, and thus also OWL 2 QL, are the maximally expressive Description Logics
having the feature of being able to use database engines (along with all the optimizations
employed in them) for query evaluation, and thus also support very efficient query answering
for large instance sets. As such OWL 2 QL is optimized for data complexity. ELP contains
OWL 2 QL.

OWL 2 EL

OWL 2 EL [14], which is based on the Description Logic EL++ [10], is a fragment that is
tractable in regard to several key inference tasks such as consistency checking, subsumption
checking, instance checking or classification – they can be decided in polynomial time. On
the other hand it is still expressive enough to adequately model many real world problems.
The most prominent constructs from OWL 2 that are disallowed in OWL 2 EL are disjunction,
negation, enumerations of multiple elements, inverse and irreflexive object properties,

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 14 of 24

functional object properties, symmetric and asymmetric object properties as well as several
constructs involving universal quantification. ELP contains OWL 2 EL.

EL++ Rules

EL++ Rules [19] is a rules-extension of OWL 2 EL that is of polynomial time complexity and
still contained in OWL 2 DL. The main expressive extension comes from allowing Datalog-
like rules under the restriction that the pattern of variables occurring in rule bodies must be
tree-shaped (in a sense which will be explained later). Furthermore, EL++ class expressions
can be used in place of predicates in the Datalog rules. ELP contains EL++ Rules.

3.3 ELP in a Nutshell
The essential ELP language features are the following, which we state in an intuitive and
somewhat simplified manner. A formal and thorough treatment of all language features can
be found in [17].

OWL 2 EL

ELP contains all the expressive features of OWL 2 EL [14], also known as the description
logic EL++ that essentially features conjunction, existential quantification, nominals and role
chains.

Role Conjunctions

ELP allows the expression of conjunctions of roles – these can be used in place of normal
roles. (Some global restrictions on their use apply.)

Tree-shaped EL++ Rules

ELP allows the expression of Datalog-like rules with the following features.

• EL++ complex class expressions and role expressions are used in the place of
atomic predicates.

• The pattern of variables occurring in a rule body is tree-shaped. To check for tree-
shapedness, intuitively speaking, the body variables are understood as vertices in a
graph, and there is an edge between two variables if they are connected by a role in
the rule body. If the resulting graph is actually a tree, then it qualifies for an ELP rule
body.

• The head of the rule, which must be a role name or a class expression, must refer to
the root of the tree. In the case of a role name, the root must refer to the first
parameter of the role (when expressed as a binary relation).

The tree-shapedness of rules bodies is required in order to guarantee decidability of the
language. Its origin lies in the fact that in description logics similar patterns occur when
translating complex class descriptions to first-order predicate logic.

Non-tree-shaped EL++ Rules with DL-safe variables

ELP allows a rule body to be non-tree-shaped, but in this case it must consist of several tree-
shaped parts which are connected only by shared, so-called safe variables. Cycles, even
such involving safe variables, must not occur. Safe variables are semantically interpreted in
the sense that they can only be instantiated by instances that explicitly occur in the
knowledge base. As such, they are a generalisation of DL-safe rules as mentioned above

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 15 of 24

(and also below).

DL-safe Datalog Rules

ELP allows for the expression of any Datalog rule, but the rule is interpreted as a DL-safe
rule, i.e. all variables occurring in the rule body are semantically interpreted in the sense that
they can only be instantiated by instances which explicitly occur in the knowledge base.

Safe Range Restrictions

ELP allows for the expression of range restrictions in the sense known from OWL. Some
global restrictions on their use apply, though.

3.4 WSML-DL v2.0 Syntax Definition
In this section the WSML-DL v2.0 logical expression syntax is given. It is a syntactic variant
of ELP. Further details can be found in the WSML v2.0 syntax specification [22].

Definition 3.1. A WSML-Core vocabulary V follows the following restrictions:

• VC, VD, VR, VI and VANN are the sets of concept, datatype, relation, instance and
annotation identifiers. These sets are all subsets of the set of IRIs and are pairwise
disjoint.

• The set of attribute names is equivalent to VR
• The set of relation identifiers VR is split into two disjoint sets, VRA and VRC, which

correspond to relations with an abstract and relations with a concrete range,
respectively.

• We assume that VRA contains the two identifiers topObjectProperty (i.e. the relation
which relates any two things) and bottomObjectProperty (i.e. the relation is empty),
and that VRC contains the two identifiers topDataProperty and bottomDataProperty
(which are the corresponding notions relating to datatypes).

The arguments of a datatype wrapper in WSML-Core can only be strings, integers or
decimals. No other arguments, also not variables, are allowed for such data terms.

Definition 3.2. Any WSML-Core vocabulary V is a WSML-DL vocabulary.

Let V be a WSML-Core vocabulary and let VV be a set of variable identifiers. We use the
convention that the names of such variables always begin with a question mark, e.g. ?x∈VV.
Let VS be a set disjoint from VV that we call the set of safe variables. We will adhere to the
convention that the names of such variables always begin with an exclamation mark, e.g.
!x∈VS.

Now, let γ∈VC, let Γ be either an identifier in VC or a list of identifiers in VC, let ∆ be either an
identifier in VD or a list of identifiers in VD, let χ∈VI, x∈VV, φ∈VI∪VV∪VS, let ψ be either an
identifier in VI∪VV∪VS or a list of identifiers in VI, let p,q∈VRA, s,t ∈ VRC, and let Val be
either a data value or a list of data values.

Definition 3.3. The set of atomic formulae, also called molecules in L(V) is defined as
follows:

• φ memberOf Γ is an atomic formula in L(V)
• γ subConceptOf Γ is an atomic formula in L(V)
• {χ}(x) is an atomic formula in L(V)

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 16 of 24

• γ[s ofType ∆] is an atomic formula in L(V)
• γ[s impliesType ∆] is an atomic formula in L(V)
• γ[p impliesType Γ] is an atomic formula in L(V)
• φ[p hasValue ψ] is an atomic formula in L(V)
• φ[s hasValue Val] is an atomic formula in L(V)
• If α and β ∈ VI then α = β is an atomic formula in L(V)

Let ψ,φ be arbitrary WSML variables. We call molecules of the form φ memberOf Γ or {χ}(x)
a-molecules, and molecules of the forms ψ [p hasValue φ] b-molecules, respectively. If F is
such an a-molecule or b-molecule, then we sometimes write it as F<φ>, F<x>, respectively
F<ψ,φ> to indicate the (safe or non-safe) variables occurring in it. In some cases, it is
allowed to use instance identifiers in the place of variables, and we will explicitly point them
out.

Definition 3.4. We define the set of relation descriptions in L(V). We denote each relation
description G also in the form G<ψ,φ>, where ψ,φ∈VV∪VS, and we call <ψ,φ> the
distinguished variable pair of G.

• Any b-molecule G<ψ,φ> is a relation description in L(V).
• If G<ψ,φ> and H<ψ,φ> are relation descriptions in L(V), then G and H is a relation

description in L(V) with distinguished variable pair <ψ,φ>.

Definition 3.5. We define the set of concept descriptions in L(V). We denote each concept
description F also in the form F<φ>, where φ∈VV, and we call φ the distinguished variable of
F.

• Any a-molecule F<φ> is a concept description in L(V).
• true, false are concept descriptions in L(V). We adopt the notational convention that

true = true<φ> and false = false<φ> for any φ.
• If F1<φ> and F2<φ> are concept descriptions in L(V) and G<ψ,φ> and H<ψ,!χ> are

relation descriptions in L(V), then
o F1 and F2 is a concept description in L(V) with distinguished variable φ,
o exists φ (G and F1) is a concept description in L(V) with distinguished variable

ψ,
o exists !χ (ψ [H hasValue !χ]) is a concept description in L(V) with

distinguished variable ψ,
o φ[G hasValue φ] is a concept description in L(V) with distinguished variable

φ.

Definition 3.6. Let F,F1,…,Fn, be WSML-DL concept descriptions, γ∈VC and p∈VRA, let
G,H,G1,…,Gn-1 be relation descriptions and let φ,φ1,…, φn∈VV be distinct. Furthermore, let
f1,…,fk be a-molecules and g1,…,gm be b-molecules and let χ1, ,…, χk,ψ1,ς1,…,
ψm,ςm∈VI∪VS. The set of WSML-DL formulae in L(V) is defined as follows:

• Any atomic formula which does not contain a WSML variable is a formula in L(V).
• F<φ1> implies F1<φ1> is a formula in L(V).
• F<φ1> impliedBy F1<φ1> is a formula in L(V).
• F<φ1> equivalent F1<φ1> is a formula in L(V).
• F1<φ1> and G1<φ1,φ2> and F2<φ2> and … and Fn-1<φn-1> and Gn-1<φn-1,φn> and

Fn<φn> and f1<χ1> and … and fk<χk> and g1<ψ1,ς1> and … and gm<ψm,ςm> implies
F<φ1> is a formula in L(V). If Fi = true or if Gi = topObjectRole, it can be omitted.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 17 of 24

• F<φ1> impliedBy F1<φ1> and G1<φ1,φ2> and F2<φ2> and … and Fn-1<φn-1> and Gn-

1<φn-1,φn> and Fn<φn> and f1<χ1> and … and fk<χk> and g1<ψ1,ς1> and … and
gm<ψm,ςm> is a formula in L(V). If Fi = true or if Gi = topObjectRole, it can be omitted.

• F1<φ1> and G1<φ1,φ2> and F2<φ2> and … and Fn-1<φn-1> and Gn-1<φn-1,φn> and
Fn<φn> and f1<χ1> and … and fk<χk> and g1<ψ1,ς1> and … and gm<ψm,ςm>
implies G<φ1, φn> is a formula in L(V). If Fi = true or if Gi = topObjectRole, it can be
omitted.

• G<φ1, φn> impliedBy F1<φ1> and G1<φ1,φ2> and F2<φ2> and … and Fn-1<φn-1> and
Gn-1<φn-1,φn> and Fn<φn> and f1<χ1> and … and fk<χk> and g1<ψ1,ς1> and … and
gm<ψm,ςm> is a formula in L(V). If Fi = true or if Gi = topObjectRole, it can be omitted.

• φ1 memberOf γ impliedBy φ[p hasValue φ1] is a formula in L(V).
• φ[p hasValue φ1] implies φ1 memberOf γ is a formula in L(V).

Furthermore, the following global restrictions must be satisfied.

• Relation descriptions which are not b-molecules must not contain non-simple relation
names. Thereby, a relation name is called non-simple if it occurs on the right-hand
side of implies (respectively, on the left-hand side of impliedBy) while on the
corresponding left-hand side (respectively, right-hand side) there (1) occurs more
than one relation description or (2) there occurs a non-simple relation. Simplicity of
relations is a technical notion borrowed from description logics – this global restriction
is needed to ensure decidability of the language.

• Concept descriptions occurring in the same formula must not share variables unless
they are distinguished or safe. Furthermore, cycles must not occur, which means that
it is not allowed that a variable (safe or not) is reachable from another variable (safe
or not) via two distinguished paths along relation descriptions. For determining cycles,
topObjectRole is ignored.

• If there is a formula φ[p hasValue φ1] implies φ1 memberOf γ (respectively, φ1
memberOf γ impliedBy φ[p hasValue φ1]) and at the same time a formula A
implies φ2[p hasValue φ3] (respectively, φ2[p hasValue φ3] impliedBy A), then φ3
memberOf γ must occur in A.

The differences between WSML-DL v1.0 and WSML-DL v2.0 are substantial, since they
reflect the change from the description logic SHIQ(D) to the ELP language. Essentially, most
complex description logic features which lead to high computational complexity are now
removed.

3.5 Algorithmisation
Reasoning in ELP – and thus in WSML-DL v2.0 – can be realised by compiling ELP
knowledge bases into Datalog. The compilation is possible with polynomial time-dependency
on the size of the knowledge base. Full details of the algorithmisation can be found in [17]. A
brief and non-rigorous description of these steps follows:

1. Re-write ELP knowledge-base to normal form, i.e. transcribe description logic
constructors to rules, e.g. DL intersection becomes LP conjunction. The generated
rule-base is equisatisfiable, the size of which is polynomial in the size of the input
rule-base.

2. Re-write rules to remove conjunction in rule-heads, i.e. create one new rule for each
head literal.

3. Re-write rules to have no more than 3 variables, i.e. "reduce the forest structure of
rule bodies" as per Theorem 16 from [17].

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 18 of 24

4. Ground all safe variables with all known instance names.

5. Remove range restrictions by replacing each occurrence with a rule that infers an
instance’s membership of a special ‘Range’ predicate.

6. Renormalize again as per step 1.

7. Complete the generation of a Datalog rule-set by adding special symbols and rules
for roles, concepts and individuals.

3.6 Relation with other WSML Variants and Language Layering
As mentioned earlier, WSML actually consists of distinctly different language variants,
identified for their particular properties in terms of modeling and performance of reasoning
tasks. They differ in expressiveness as well as in their underlying logical formalism. This
allows users of the language to decide on (i) the level of expressivity and thus also on (ii) the
associated complexity, as well as (iii) the style of modeling which they want to use, on a case
by case basis – depending on the requirements of a specific application.

The relation between the different WSML variants is depicted in Figure 2. As can be seen,
WSML-Quark and WSML-Core 2.0 form a common, lightweight, yet increasingly expressive
foundation for extensions towards the paradigms of both Description Logic (in the form of
WSML-DL v2.0) and Logic Programming (in the form of WSML-Flight 2.0 and WSML-Rule
2.0). Consequently, WSML-DL v2.0 and WSML-Flight/Rule 2.0 are both layered on WSML-
Core 2.0, which defines a common subset. WSML-Core v2.0 is in turn layered upon WSML-
Quark.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 19 of 24

Figure 2 WSML Language Layering

WSML-Quark is a very lightweight and intuitive language variant that allows for the simple
organization of concepts in to a hierarchical classification system. WSML-Quark can be used
as a very efficient stepping stone towards more formal and complex WSML language
variants.

WSML-Core 2.0 inherits many features from the first version of WSML-Core, which was
based on DLP [11] - formed by the intersection of the Description Logic SHIQ and Horn
Logic. It has been adjusted to align results of ongoing standardization efforts, most notably
OWL 2 RL [14], as well research results such as the L2 language [13], which has similar
language features, albeit specified directly at the level of RDF. Furthermore, WSML-Core 2.0
forms the common subset between the DL and LP based variants of WSML.

WSML-DL v2.0 is the Description Logic variant of WSML, based on ELP [17], which is based
on the tractable DL EL++ [10], and covers OWL 2 RL, OWL 2 EL and OWL 2 QL, while at the
same time retaining polynomial combined complexity.

WSML-Flight 2.0 is the least expressive of the two LP-based variants. Compared with
WSML-Core, it adds features such as meta-modeling, constraints, and non-monotonic
(stratified) negation. WSML-Flight is semantically equivalent to Datalog with equality
and integrity constraints.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 20 of 24

WSML-Rule 2.0 extends WSML-Flight 2.0 with further features from Logic Programming,
namely the use of function symbols, unsafe rules, and unstratified negation. Due to the
intended tractability goals, WSML-Rule 2.0 relies on the Well-Founded Semantics [20] in
place of the more general Stable Model Semantics for the purpose of query answering.

WSML-Full 2.0 finally reconciles the DL and LP variants of WSML in a more expressive
superset. While the specification of WSML-Full is still open at this stage, the use of hybrid
MKNF knowledge bases forms a possible option. [21] defines the well-founded semantics for
this approach, which still preserves tractable data complexity.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 21 of 24

3.7 Future Work
Foremost is the realisation of a prototype implementation of WSML-DL v2.0. This is ongoing
work and that will be reported in the M18 deliverable D3.2.4 “First Prototype Description
Logic Reasoner for WSML-DLv2.0”.

Further future work will focus on application of WSML-DL in SOA4All use cases, and
possibly – if the need arises – on further tool support for such applications.

On the more foundational side, the implementation of a WSML-DL v2.0 reasoner will be
achieved with the first implementation of a standalone ELP reasoner, which will necessarily
include:

1. A software component for representing ELP knowledge-bases

2. A software component for translating from ELP to Datalog representations

3. A Datalog reasoner – IRIS enhanced with instance equivalence (equality in rule
heads)

Further on, when WP3 will start to consider methods for defining WSML-Full 2.0, (D3.2.8 -
Month 36), consideration will be given to implementing the algorithmisation of hybrid ELP
following [21].

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 22 of 24

4. Conclusions
This deliverable reported on the redefinition of WSML-DL which is based on the ELP
language, and is thus a modern redesign based on state-of-the-art developments in tractable
ontology languages and the integration of OWL and rules. It

• modernises WSML-DL in keeping with the spirit of the previous WSML-DL 1.0,

• aligns WSML-DL with the new OWL 2,

• covers all tractable profiles of OWL 2,

• is of polynomial-time complexity,

• incorporates new results on the integration of OWL and rules, and

• is implementable on top of a Datalog reasoner.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 23 of 24

5. References
[1] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and D.

Fensel, “The Web Service Modeling Language WSML,” WSML Final Draft D, vol. 16,
2005.

[2] D. Roman, H. Lausen, and U. Keller, “Web Service Modeling Ontology (WSMO),” WSMO
Working Draft, 2004.

[3] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, “The
Description Logic Handbook,” Cambridge University Press, 2nd edition, 2007.

[4] J.W. Lloyd, "Foundations of logic programming," Springer, 1987.

[5] M. Fitting, "First-Order Logic and Automated Theorem Proving," Springer, 1996.

[6] M. Kifer and G. Lausen, “F-logic: a higher-order language for reasoning about objects,
inheritance, and scheme,” In: Proceedings of the 1989 ACM SIGMOD international
conference on Management of data, 1989, pp. 134-146.

[7] I. Horrocks, U. Sattler, and S. Tobies, “Practical reasoning for very expressive description
logics,” Logic Journal of the IGPL, vol. 8, 2000, pp. 239-263.

[8] U. Hustadt, B. Motik, and U. Sattler, “Data Complexity of Reasoning in Very Expressive
Description Logics,” In: L. Kaelbling and A. Saffiotti (eds.), IJCAI-05, Proceedings of the
19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,
2005. Professional Book Center 2005, pp. 466-371.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, “DL-Lite:
Tractable Description Logics for Ontologies,” In: Proceedings of the National
Converence on Artificial Intelligence, AAAI Press, 2005, p. 602.

[10] F. Baader, S. Brandt, and C. Lutz, “Pushing the EL Envelope,” In: Proceedings of the
International Joint Conference on Artificial Intelligence 2005, Lawrence Erlbaum
Associates Ltd., 2005, p. 364.

[11] B. GROSOF, I. HORROCKS, R. VOLZ, and S. DECKER, “Description Logic Programs:
Combining Logic Programs with Description Logic,” In: Proceedings of the Twelfth
International World Wide Web Conference, WWW2003, Budapest, Hungary, 20-24 May
2003. ACM, 2003, pp. 48-57.

[12] H.J. ter Horst, “Combining RDF and Part of OWL with Rules: Semantics, Decidability,
Complexity,” Proc. of ISWC, Springer, 2005, pp. 6-10.

[13] F. Fischer, U. Keller, A. Kiryakov, Z. Huang, V. Momtchev, E. Simperl, D. Fensel, and R.
Dumitru, “D1.1.3 Initial Knowledge Representation Formalism,” LarKC Deliverable,
2004.

[14] B. Motik, C. Bernardo, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, “OWL 2 Web
Ontology Language: Profiles,” W3C Working Draft, Dec. 2008.

[15] “Web21C SDK.” http://web21c.bt.com/

[16] B. Motik et al., "OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax," W3C Working Draft 02 December 2008.
http://www.w3.org/TR/2008/WD-owl2-syntax-20081202/

[17] M. Krötzsch, S. Rudolph, and P. Hitzler, “ELP: Tractable rules for OWL 2,” Proceedings
of the 7th International Semantic Web Conference (ISWC2008), Springer, 2008.

[18] B. Motik, U. Sattler, and R. Studer, "Query Answering for OWL-DL with rules," Journal of
Web Semantics 3(1):41-60, 2005.

SOA4All –FP7 – 215219 – D3.1.3 Defining the Features of the WSML-DL v2.0 Language

© SOA4All consortium Page 24 of 24

[19] M. Krötzsch, S. Rudolph, and P. Hitzler, "Description Logic Rules," In: M.Ghallab et al.,
Proceedings of the 18th European Conference on Artificial Intelligence, ECAI2008,
Patras, Greece, July 2008. IOS Press, 2008, pp. 80-84.

[20] A. Van Gelder, K.A. Ross, and J.S. Schlipf, “The well-founded semantics for general
logic programs,” Journal of the ACM (JACM), vol. 38, 1991, pp. 619-649.

[21] M. Knorr, J.J. Alferes, and P. Hitzler, “A Coherent Well-founded Model for Hybrid MKNF
Knowledge Bases,” In: M.Ghallab et al., Proceedings of the 18th European Conference
on Artificial Intelligence, ECAI2008, Patras, Greece, July 2008. IOS Press, 2008, pp.
99.

[22] WSML Language specification v1.0, http://www.wsmo.org/TR/d16/d16.1/

