

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D3.1.4 Defining the features of the WSML-

Rule v2.0 language
Activity N: Activity 2 - Core Research and Development

Work Package: WP3 - Service Annotation and Reasoning

Due Date: M12

Submission Date: 20/02/2009

Start Date of Project: 01/03/2006

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Ioan Toma UIBK
Barry Bishop UIBK
Florian Fischer UIBK

Reviewers(s): Dumitru Roman
 Rafael Cabero ATOS

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public X

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 2 of 32

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2009-01-21 Initial TOC Barry Bishop

0.2 2009-01-28 Updated Section 3.3 and 3.4 Ioan Toma

0.3 2009-01-31 Updated Section 1, 2 and 3 based on
Florian’s input

Ioan Toma, Florian Fischer

0.4 2009-02-03 Updated Section 3.1.2, 3.1.3 and 3.2.3 Barry Bishop

0.5 2009-02-03 Updated Section 3.5 Florian Fischer

0.6 2009-02-04 Updates Section 3.1.1; Fix the
references

Ioan Toma

0.7 2009-02-04 Completed section 3 Barry Bishop

1.0 2009-02-23 Implement reviewers comments Ioan Toma

Final 2009-03-09 Overall format and quality review Malena Donato

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 3 of 32

Table of Contents

EXECUTIVE SUMMARY __ 5

1. INTRODUCTION __ 6

1.1 PURPOSE AND SCOPE __ 6

1.1.1 Audience ___ 6

1.1.2 Scope ___ 7

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

2. TECHNICAL DELIVERABLE REMARKS _____________________ ______________ 8

2.1 DELIVERABLE RELATION WITH THE ARCHITECTURE OF THE PROJECT ___ 8

2.2 DELIVERABLE RELATION WITH THE USE-CASES ______________________ 9

2.2.1 End-user Integrated Enterprise Service Delivery Platform _________________ 9

2.2.2 W21C BT Infrastructure ___ 9

2.2.3 C2C Service eCommerce __ 9

3. WSML-FLIGHT AND WSML-RULE LANGUAGE DEFINITION _____ ____________ 11

3.1 MOTIVATION __ 11

3.1.1 Rule languages ___ 11

3.1.2 The distinction between WSML-Flight and WSML-Rule __________________ 12

3.1.3 Required changes to WSML-Flight and WSML-Rule ____________________ 12

3.2 RIF AND WSML __ 12

3.2.1 The importance of RIF ___ 12

3.2.2 RIF proposals that are relevant to WSML _____________________________ 13

3.2.3 Mapping between WSML and RIF (RIF-Core and RIF-BLD) ______________ 16

3.2.4 Summary of what isn't supported in RIF that is in WSML _________________ 19

3.2.5 Summary of what is supported in RIF, but not in WSML (Flight, Rule) ______ 20

3.3 WSML-FLIGHT V2.0 SYNTAX _______________________________________ 20

3.3.1 Goals, Web services and Mediators in WSML-Flight v2.0 ________________ 20

3.3.2 WSML-Flight v2.0 Logical Expression Syntax _________________________ 21

3.3.3 Differences between WSML-Core and WSML-Flight ____________________ 23

3.3.4 Differences between WSML-Flight v1.0 and WSML-Flight v2.0 ____________ 23

3.4 WSML RULE V2.0 SYNTAX___ 23

3.4.1 Goals, Web services and Mediators in WSML-Rule v2.0 _________________ 24

3.4.2 WSML-Rule Logical Expression Syntax ______________________________ 24

3.4.3 Differences between WSML-Flight and WSML-Rule ____________________ 25

3.4.4 Differences between WSML-Rule v1.0 and WSML-Rule v2.0 _____________ 26

3.5 ALGORITHMISATION ___ 26

3.6 RELATION WITH OTHER WSML VARIANTS AND LANGUAGE LAYERING __ 27

3.7 CONCLUSIONS AND FUTURE WORK ________________________________ 30

4. REFERENCES ___ 31

List of Figures
Figure 1 SOA4All Semantic Service Bus ... 8

Figure 2 Conceptual Layering of Transformations ..27

Figure 3 WSML Language Layering ..28

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 4 of 32

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

HLDD High Level Design Document

WSML Web Service Modelling Language

WSMO Web Service Modelling Ontology

LP Logic Programming

DL Description Logic

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 5 of 32

Executive summary
In order to automate tasks such as location and composition, Semantic Web Services must
be described in a well-defined formal language. The Web Services Modelling Language
(WSML) is based on the conceptual model of the Web Service Modelling Ontology (WSMO)
and as such can be used for modelling Web services, ontologies, and related aspects.

WSML is actually a family of several language variants, each of which is based upon a
different logical formalism. The family of languages are unified under one syntactic umbrella,
with a concrete syntax for modelling ontologies, Web services, mediators and goals.

This deliverable, along with others, defines an updated version of the WSML language stack,
in order to bring it in line with the scalability requirements of reasoning in SOA4All and
realign it with new research results and other standards (i.e. W3C Rule Interchange Format -
RIF). Thus, this document describes WSML-Flight 2.0 and WSML-Rule 2.0, the Logic
Programming variants of the WSML language. It covers limitations placed upon its high-level
conceptual syntax, as well as upon the expressivity of its logical expression syntax.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 6 of 32

1. Introduction
SOA4All’s aim is to facilitate a web where billions of parties are exposing and consuming
services via advanced Web technology. The outcome of the project will be a framework and
infrastructure “that integrates four complimentary and revolutionary technical advances into a
coherent and domain independent service delivery platform”:

• Web principles and technology as the underlying infrastructure for the integration of
services at a worldwide scale.

• Web 2.0 as a means to structure human-machine cooperation in an efficient and
cost-effective manner.

• Semantic Web technology as a means to abstract from syntax to semantics as
required for meaningful service discovery.

• Context management as a way to process in a machine understandable way user
needs that facilitates the customization of existing services for the needs of users.

Thus, one basic technological building block is Semantic Web technology, which abstracts
from pure syntax to semantics. Ontologies are used as a semantic data model, by which
means services gain machine-understandable annotations. This information makes the
development of high quality techniques for automated selection, construction, etc. possible.
Furthermore, precise formal models allow for the expression of context-specific rules and
constraints, which can be taken into account during the inference process. The basic building
blocks for this are formal languages for describing resources in a clear and unambiguous
way.

The Web Service Modelling Language WSML [1] is such a formal language for the
specification of ontologies and different aspects of Web services, based on the conceptual
model of WSMO [2]. Several different WSML language variants exist, which are founded
upon different logical formalisms. The main formalisms exploited for this purpose are
Description Logics [3], Logic Programming [4], and First-Order Logic [5]. Furthermore, WSML
has been influenced by F-Logic [6] and frame-based representation systems.

This deliverable introduces a revised version of the WSML-Flight and WSML-Rule variants of
the WSML language family, in order to align them with the recent progress in W3C Rule
Interchange Format (RIF) [19] and as well with the updated version of WSML-Core variant.
This deliverable belongs to a set of conceptually related M12 deliverables, namely:

• D3.1.1 Defining the features of the WSML-Quark language
• D3.1.2 Defining the features of the WSML-Core v2.0 language
• D3.1.3 Defining the features of the WSML-DL v2.0 language
• D3.1.4 Defining the features of the WSML-Rule v2.0 language

These four deliverables form the foundation for a redefinition of WSML that brings it in line
with the tractability requirements of SOA4ALL, which envisions “billions of parties exposing
services”. Working with and reasoning over the vast datasets that are implied by this vision
poses a significant scalability challenge.

1.1 Purpose and Scope
1.1.1 Audience

This document is intended as a reference of the features of the WSML language. In turn its
main audience are users who want to model Web services and ontologies using WSML, as
well as technical staff building tools (i.e. reasoners) that use the WSML language.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 7 of 32

Inside the consortium, this mainly applies to partners involved in technical work packages
within Activity cluster A2 – “Core R&D Activities”. For outside parties beyond the consortium
it can serve as an introduction to WSML.

1.1.2 Scope

The main purpose of this deliverable is to present the features of the reworked Logic
Programming variants of the WSML family of languages, namely WSML-Flight and WSML-
Rule. We focus on describing the changes made in regard to the existing WSML-Flight and
WSML-Rule specification. These changes have been motivated by recent work in the
development of the Rule Interchange Format (RIF) and the need for alignment with the
updated version of the WSML-Core language specification.

We describe the modelling elements in WSML-Flight 2.0 and WSML-Rule 2.0, restrictions
imposed on the languages, and a motivation for them. Beyond the definition of the
conceptual and logical expression syntax of the languages, we also outline the steps
involved in a practical implementation and explain the relation with the other language
variants within the WSML stack and their respective layering.

1.2 Structure of the document
The remainder of this deliverable is structured as follows: Section 2 clarifies the relation of
this document and the WSML language in relation to the SOA4All project and other
deliverables. Section 3 defines the WSML-Flight 2.0 and WSML-Rule 2.0 languages by
describing the individual language elements and pointing out the particular restrictions placed
on them for each language variant. It then proceeds to outline the algorithmization of WSML-
Flight 2.0 and WSML-Rule 2.0 on rule-based reasoners. Finally, section 3.6 clarifies the
relation between these new versions of the two language variants and the other languages in
the WSML specification. Section 3.7 concludes this deliverable and points out the next steps
for future work.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 8 of 32

2. Technical deliverable remarks
2.1 Deliverable relation with the architecture of t he project
The work conducted towards a reworked WSML language stack in WP3 conceptually
belongs to the Base Layer of the SOA4All architecture (see Figure 1). In the SOA4All
architecture, different elements are distributed in three different layers according to their
functional dependencies on each other.

The Base Layer contains elements such as (1) formal languages and ontologies, (2)
Reasoner and (3) Semantic spaces as the publication and communication element of the
infrastructure.

The Web Enabled Service platform (the second layer), consists of (4) Service Ranking and
Selection, (5) Service Location, (6) Service Adaptation and Service, (7) Service Grounding,
(8) Service Delivery, (9) Service Monitoring and Management and (10) Service Context.

Finally, in the User Layer are components such as (11) Service Modelling, (12) Service
Provisioning and (13) Service Consumption.

The “Semantic Service Bus” ties all these components together and serves as infrastructural
backbone. In Figure 1 the Semantic Service Bus is indicated by the outer “envelope” around
the other components and shows the possibility of being connected to other buses as an
extension.

The changes to the WSML family have direct consequences for the reasoning components
to be developed in WP3, which directly process these formal languages.

Furthermore, any component from the second layer, which operates on (i) semantically
annotated Web Services or (ii) relies on an ontology for other reasons will make use of
WSML, at least indirectly. This most directly applies to WP5 for the purpose of service
location, discovery and ranking, as well as to WP6 for the purpose of service composition.

Figure 1 SOA4All Semantic Service Bus

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 9 of 32

2.2 Deliverable relation with the use-cases
This section clarifies the relation of the WSML language family with the ongoing use-case
activities in SOA4All and points out direct applications of WSML as they are apparent at the
time of the writing.

2.2.1 End-user Integrated Enterprise Service Delive ry Platform

As the End-user Integrated Enterprise Service Delivery Platform case study will fully use
service annotation and reasoning about such annotations, it will also make direct use of
WSML and the reasoner components associated with it. The End-user Integrated Enterprise
Service Delivery Platform use-case is specified as part of the SOA4All deliverables D7.1,
D7.2 and D7.3.

This use-case aims for an open, dynamic and lightweight service platform in place of
heavyweight existing solutions, which are hard to set up and maintain due their complexity.
An envisioned outcome (among several) from the end user’s perspective is a tool to
compose processes1 from services and reuse services in a visual tool without requiring an in-
depth technical background. Apart from the requirements that stem from service
composition an envisioned outcome of the use-case is to provide support for publishing,
finding and reusing existing processes. In order to find processes in repositories search
mechanisms based on semantic descriptions (and hence WSML descriptions) are required.

2.2.2 W21C BT Infrastructure

This use-case will create a semantically enhanced and expanded version of BT’s Web21c
platform [15], which will result in a framework for the delivery of service, both by BT itself and
third parties. This requires in-depth technical knowledge and the aim of the case study is to
simplify the process of discovering , integrating , using and sharing BTs capabilities on this
platform. Thus, in the BT W21C case study the focus is shifted slightly by using service
location technologies to discover capabilities within the BT Web21c infrastructure.

The specification of the W21C BT infrastructure use-case is provided as part of SOA4All
deliverables D8.1, D8.2 and D8.3

Reasoning with formal service semantics forms the basis for composition tools that will
enhance and aide the creation of more complex services. Furthermore, unambiguous
descriptions of services facilitate the selection of services for the end user. WSML will thus
be used directly in this work package.

2.2.3 C2C Service eCommerce

One of the focuses of this use-case in WP9 is to investigate the impact and sustainability of
future C2C eCommerce applications based on services and to enable eCommerce as a
common distribution channel for end-users by means of SOA4All. In this scenario, non-
technical end-users can make use of existing services and combine them to build
eCommerce applications in order to market and sell their own products. The C2C Service
eCommerce use-case is specified as part of the SOA4All deliverables D91, D92 and D9.3.

This use-case again entails several tasks that are based on annotation and (WSML)

1 In the loose sense of a “business process” composed from various subtasks (services) in
order to accomplish a specific goal.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 10 of 32

reasoning, among them easy composition of services, service location, ranking and
selection in the case of similar services. In this sense the scenario demonstrates almost all
parts of the SOA4ALL concept including service discovery, integration, etc. and as such
heavily relies on the formal languages work conducted in WP3.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 11 of 32

3. WSML-Flight and WSML-Rule Language Definition
This section contains the specification of the updated rule-based WSML languages, namely
WSML-Flight2.0 and WSML-Rule2.0. We start with a short motivation section in which we
point out why rule languages are important, especially in the context of a Web of pages and
services (Section 3.1.1), we describe the differences between WSML-Flight and WSML-Rule
(Section 3.1.2) and finally we motivate the need of updating WSML-Flight and WMSL-Rule
specification (Section 3.1.3). One of the most important requirements that has motivated the
update of the two rule-based languages namely the alignment with the Rule Interchange
Format (RIF) is discussed in Section 3.2. The updated specifications of the two languages
are provided in Section 3.3 for WSML-Flight v2.0 and Section 3.4 for WSML-Rule v2.0.
Details about how the updates in the languages do influence the reasoning algorithms are
discussed in Section 3.5. Finally, Section 3.6 describes the relation with the other languages
from the WSML family of languages and Section 3.7 concludes this section and identifies
possible future research and development directions.

3.1 Motivation
3.1.1 Rule languages

From expert systems to deductive databases, the theory and practice of automating
inference based on symbolic knowledge representations has had a rich history and continues
to be a key technology driver. Representing knowledge using rules is one of the most
important and widely used approaches for knowledge representation. Rule-languages and
rule-based systems have played seminal roles in the history of computer science and the
evolution of information technology.

Rules are a convenient and intuitive way to add axiomatic information to knowledge-bases.
In comparison to other programming approaches, such as conventional programming and
scripting languages, rules are more easily understood. This makes it easier for both
programmers and non-programmers to specify, modify and merge rules. As a result,
increasing attention has been given to rule-based systems from both academia and industry.
Nowadays a large amount of commercial rule-based systems are available on the market.
SQL (relational databases), Prolog, Production rules (JESS2, CLIPS3, etc.) are some of rule-
based system categories that have been in growing commercial deployment in the last two
decades. Most of these systems are using Logic Programming as the underlying theory. In
particular the Datalog (Horn) subset of Logic Programming has proven to have many
practical applications (e.g. SQL, relation algebra) due to its computational tractability.

Recently there has been a rebirth of interest in rule-based languages, especially in the
context of the Semantic Web and Semantic Web services. In this context, several proposals
for rule languages have been developed including: RuleML4, WSML[1], SWRL5, and recently
as a standardization effort, the Rule Interchange Format (RIF)[19].

The WSML language(s), and in particular the rule-based variants WSML-Flight and WSML-
Rule, provide the means to specify aspects of ontologies and semantic Web services using
an expressive rule syntax. In this document the WSML-Flight and WSML-Rule languages are
aligned with the latest developments in rule-based languages, namely the RIF

2 http://herzberg.ca.sandia.gov/jess/
3 http://www.siliconvalleyone.com/clips.htm
4 http://www.ruleml.org
5 http://www.w3.org/Submission/SWRL/

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 12 of 32

standardization effort.

3.1.2 The distinction between WSML-Flight and WSML- Rule

Both WSML-Rule and WSML-Flight are rule-based languages with semantics based
ultimately on Datalog.

WSML-Flight is an extension of WSML-Core with such features as meta-modeling,
constraints, n-ary relations, cardinality constraints and non-monotonic negation. WSML-Flight
is based on a logic programming variant of F-Logic [6] and is semantically equivalent to
Datalog with inequality and (locally) stratified negation. WSML-Flight is both syntactically and
semantically completely layered on top of WSML-Core and allows variables in place of
concepts, instances and attribute identifiers.

WSML-Rule is an extension of WSML-Flight and captures several extensions such as the
use of function symbols (constructed terms), unsafe rules (i.e. variables that occur in the
head of a rule are not required to occur in the body of the rule), and does not require
stratification of negation.

Whereas WSML-Rule is the most flexible and expressive variant of the two, the unrestricted
use of function symbols means that it is not always decidable – the minimal model may be
infinite due to the recursive instantiation of increasingly more complex constructed ground
terms.

WSML-Flight, which does not allow the use of function symbols, is therefore a decidable
subset of WSML-Rule.

3.1.3 Required changes to WSML-Flight and WSML-Rule

The changes introduced to WSML-Flight and WSML-Rule with this deliverable are twofold.

Firstly, the languages must layer with each other and with the new WSML-Core v2.0 [23],
which introduces instance equivalence, otherwise known as ‘equality in rule heads’. This
change allows for the declaration that different instance identifiers (IRIs) refer to the same
object.

Secondly, both WSML-Flight and WSML-Rule should be as compatible as possible with the
emerging Rule Interchange Format (RIF) standards. The most extensive changes here relate
to the missing support for RIF built-in data-types, predicates and functions.

3.2 RIF and WSML
The Rule Interchange Format (RIF)[19] is a W3C working group that develops standards for
exchanging rules in the context of modern rule systems and the World Wide Web. Such
standards should capture today’s requirements to enable the sharing of information suited to
machine processing and also be extensible, so that they can be adapted to evolving rule
technology.

The working group has made significant progress towards a number of proposed standards
that address both the syntactic and semantic descriptions of rules. This includes a framework
for defining logic dialects, several concrete dialects, data-type definitions and built-in
predicates.

3.2.1 The importance of RIF

Due to the increasing importance of rule exchange, RIF is expected to become a common
standard for rule systems. Each system can be described by the RIF rule format(s) it is
capable of understanding, either by defining its own logic dialect or by publishing details of its
conformance with well-known or concrete dialects, e.g. the Basic Logic Dialect (RIF-BLD).

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 13 of 32

WSML-Rule and WSML-Flight are rule-based languages and as such the ability to
incorporate or interact with standard rule representations improves their utility. In many
scenarios it would be useful to be able to exchange axiomatic knowledge by either extracting
rules from a WSML ontology for processing by another system or to inject external rules in to
a WSML ontology.

The purpose of this analysis is to identify how WSML can be modified in order to make it
more compatible with RIF in terms of what can be syntactically and semantically defined
using the two languages.

3.2.2 RIF proposals that are relevant to WSML

The RIF working group provides several proposed standards that are relevant for WSML.
These are:

• Data type and Built-ins – RIF-DTB [24]
• Basic Logic Dialect – RIF-BLD [25]
• Core – RIF-Core [26] (a common subset of RIF-BLD, RIF-PRD and RIF-DTB)

What follows is an analysis of these three proposed standards for the purpose of identifying
what elements of RIF should be supported in WSML, such that we achieve the best
compatibility.

3.2.2.1 RIF-DTB

This section discusses possible alignment of WSML with the RIF-DTB variant in terms of
primitive data types, built-in functions and built-in predicates.

3.2.2.1.1 Datatypes

See: http://www.w3.org/2005/rules/wiki/DTB#Primitive_Datatypes

WSML supports all the basic XML schema data types and hence almost all the primitive RIF
data types. The exceptions are: rdf:XMLLiteral (which was introduced in the 1.0 specification,
although not yet implemented) and rdf:Text. These should be supported in WSML as follows.

rdf:XMLLiteral Represents any valid XML fragment as a single data value. Such a
data-type can be supported in WSML by enclosing in double quotes
and providing a new shorthand constructor, e.g. _xmlliteral(
“<SomeTag>Has this value</SomeTag>”

The enclosed string must have each occurrence of the double quote
escaped using the backslash character ‘\’, such that removing the
backslashes yields a string in the lexical space of rdf:XMLLiteral.

However, it might cause some significant overhead for any of the
WSML parsers to validate values for conformance with XML. It is
suggested that this validation be optional. A new shortcut constructor
is suggested:

_xmlLiteral("escaped XML content")

rdf:Text Internationalised string values that contain a tag indicating their
spoken language, e.g. "Padre de familia@es". Support in WSML can
be achieved using a new shortcut constructor:

_rdfText("Padre de familia", "es")

xs:yearMonthDuration Derived from xs:duration by restricting its lexical representation to

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 14 of 32

contain only the year and month components. New shortcut:

_yearMonthDuration(2009, 02)

xs:dayTimeDuration Derived from xs:duration by restricting its lexical representation to
contain only the days, hours, minutes and seconds components.
New shortcut:

_dayTimeDuration(1, 10, 31, 15.5)

3.2.2.1.2 Built-in functions and predicates

See: http://www.w3.org/2005/rules/wiki/DTB#List_of_RIF_Built-in_Predicates_and_Functions

All the RIF-DTB built-in predicates and functions relate to the manipulating and testing of the
standard data types. These built-ins are generally very useful and straightforward to
implement, hence the set of WSML built-ins should be extended to cover those RIF built-ins
not currently supported.

• WSML does not have the cast functions, that coerce a data-type value in to the
representation of another data-type.

• WSML does not have the RIF guard and negative guard predicates for data types.
WSML does have the wsml#member-of() predicate that can be used to achieve the
same thing, albeit with negation for negative guards, but this is a little clumsy and
requires the ontology designer to have an understanding of the WSML meta-model.

• WSML supports all the basic arithmetic functions, except modulus.
• WSML does not support some string functions: compare, concat, substring, upper-

case, etc. These should be implemented with names consistent with existing string
predicates: wsml#stringCompare, wsml#stringConcat, wsml#stringSubstring,
wsml#stringToUpper, wsml#stringToLower

• WSML does not support string predicates: contains, starts-with, ends-with (but does
support the others). These should be implemented with names: wsml#stringContains,
wsml#string, wsml#stringStartsWith, wsml#stringEndsWith

• WSML does not support functions on Dates, Time and Durations, i.e. those functions
for extracting elements from these complex data-types.

• Due to lack of support for rdf:XMLLiteral and rdf:text, the few functions and predicates
for these types are also not supported at present.

Summary of new built-in predicates and functions with mapping from RIF symbol to WSML
symbol:

WSML predicate/function RIF predicate/function Signature Return type
(functions)

wsml#to<Datatype>

e.g. wsml#toDouble

xs:<datatype>

xs:double

any

any

<datatype>

_double

wsml#isDatatype pred:isLiteralOfType any, IRI

wsml#isNotDatatype pred:isLiteralNotOfType any, IRI

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 15 of 32

wsml#hasDataType pred:hasDatatype any, IRI

wsml#numericModulus func:numeric-mod numeric,
numeric

numeric

wsml#stringCompare func:compare string, string string

wsml#stringConcat func:concat any, any string

wsml#stringJoin func:string-join<N> string x N string

wsml#stringSubstring func:substring1 string,
_integer

string

wsml#stringSubstring func:substring2 string,
_integer;
_integer

string

wsml#stringLength func:string-length string _integer

wsml#stringToUpper func:upper-case string string

wsml#stringToLower func:lower-case string string

wsml#stringUriEncode func:encode-for-uri string string

wsml#stringIriToUri func:iri-to-uri string string

wsml#stringEscapeHtmlUri func:escape-html-uri string string

wsml#stringSubstringBefore func:substring-before1 string, string string

wsml#stringSubstringBefore func:substring-before2 string, string,
string

string

wsml#stringSubStringAfter func:substring-after1 string, string string

wsml#stringSubStringAfter func:substring-after2 string, string,
string

string

wsml#stringReplace func:replace1 string, string,
string

string

wsml#stringReplace func:replace2 string, string,
string, string

string

wsml#stringContains pred:contains1 string, string

wsml#stringContains pred:contains2 string, string,
string

wsml#stringStartsWith pred:starts-with1 string, string

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 16 of 32

wsml#stringStartsWith pred:starts-with2 string, string,
string

wsml#stringEndsWith pred:ends-with1 string, string

wsml#stringEndsWith pred:ends-with2 string, string,
string

wsml#stringMatches pred:matches1 string, string

wsml#stringMatches pred:matches2 string, string,
string

wsml#yearPart func:year-from-dateTime

func:year-from-date

func:years-from-duration

datetime

date

duration

_integer

_integer

_integer

wsml#monthPart (as above, but with
month)

 _integer

wsml#dayPart (as above, but with day) _integer

wsml#hourPart (as above, but with hour) _integer

wsml#minutePart (as above, but with
minute)

 _integer

wsml#secondPart (as above, but with
second)

 _decimal

wsml#timezonePart (as above, but with time-
zone)

 _dayTimeDuration

wsml#textFromStringLang func:text-from-string-lang string, string _rdfText

wsml#textFromString func:text-from-string string _rdfText

wsml#stringFromText func:string-from-text _rdfText string

wsml#langFromText func:lang-from-text _rdftext string

wsml#textCompare func:text-compare _rdfText,
_rdfText

_integer

wsml#textLength func:text-length _rdfText _integer

3.2.3 Mapping between WSML and RIF (RIF-Core and RI F-BLD)

RIF-Core corresponds to the language of definite Horn rules without function symbols and
standard first-order semantics. It includes the data-types and built-ins of RIF-DTB and is a
strict subset of RIF-BLD. RIF-Core has a number of extensions to support objects and

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 17 of 32

frames as in F-Logic.

RIF-BLD extends RIF-Core with equality in rule conclusion and function symbols.

From this basic outline, it is clear that there should be a straightforward mapping from
WSML-Flight to RIF-Core and from WSML-Rule to RIF-BLD.

WSML-Flight and WSML-Rule are both rule languages. This section describes how elements
of WSML ontologies can be defined using RIF-BLD syntax.

3.2.3.1 Terms

Terms are syntactically identical in both WSML and RIF, except that the symbol to associate
a namespace with an identifier is ‘#’ in WSML and ‘:’ in RIF.

WSML and RIF support the XML schema data-types and use the same notation for literals.

Variables in both WSML and RIF are prefixed with a question mark, e.g. ?x

Constructed terms (function symbols) are only supported in WSML-Rule and RIF-BLD, not in
WSML-Flight and RIF-Core.

3.2.3.2 F-Logic Constructs

WSML is based on F-logic6 and this has a straightforward correspondence with the RIF F-
logic syntax, i.e. for sub-concept, instance and attribute definitions.

Essentially, the following are equivalent:

WSML RIF

memberOf #

subConceptOf ##

hasValue ->

Examples:

Meaning WSML RIF

b1 is a member of Book bks#b1 memberOf cpt#Book bks:b1#cpt:Book

Human is a sub-class of
Animal

cpt#Human subConceptOf
cpt#Animal

cpt:Human##cpt:Animal

wd1 has attribute ‘author’
with the value ‘rifwg’ and
the attribute ‘title’ with
value ‘LeRif’

bks#wd1[cpt#author hasValue
auth#rifwg, cpt#title hasValue
bks#LeRif]

bks:wd1[cpt:author->auth:rifwg
cpt:title->bks:LeRif]

b1 is a member of Book bks#b1 memberOf bks:b1#cpt:Book

6 http://www.cs.umbc.edu/771/papers/flogic.pdf

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 18 of 32

and has attribute ‘author’
with value ‘rifwg’

cpt#Book[cpt#author hasValue
auth#rifwg]

bks:b1[cpt:author->auth:rifwg]

3.2.3.3 Relations

Relations in WSML can be mapped directly to predicates in RIF, e.g. the WSML expression:

emt#loves(o1#Peter, ?x)

is equivalent to the RIF expression:

emt:loves(o1:Peter, ?x)

3.2.3.4 Attribute Properties

RIF does not support any special attribute properties corresponding to WSML transitive,
symmetric, inverseOf, subAttributeOf, reflexive. These properties are modifiers for attribute
declarations in the context of a concept, i.e. they are ‘local’ to the concept being declared.
Such attribute properties can be expressed in RIF syntax, but this can only be done
axiomatically and will apply globally to all attributes with the given name across all concepts.

The following is an example of how to declare an attribute ‘p’ to be globally transitive:

Meaning WSML RIF

Globally transitive
attribute ‘p’

?v1[p hasValue ?v2] impliedBy
?v1[p hasValue ?v3] and ?v3[p
hasValue ?v2]

?v1[p->?v2] :- And(?v1[p->?v3]
?v3[p ->?v2])

3.2.3.5 Logical Expressions (Axioms/Rules)

3.2.3.5.1 Quantifiers

Both WSML and RIF support the existential and universal quantifiers, ‘Exists’ and ‘Forall’ in
RIF syntax, ‘exists’ and ‘forall’ in WSML syntax.

Unless otherwise declared, all variables in WSML are implicitly universally quantified. This
contrasts with RIF, where all variables must be explicitly quantified.

3.2.3.5.2 Connectives

‘:-‘ is used for logic programming implication in both WSML and RIF.

Conjunction and disjunction are supported in both WSML and RIF.

Classical implication (implies, impliedBy, equivalent) are supported in WSML in rule heads
and bodies (WSML-Rule only), but are not supported in RIF.

Negation as failure is supported in WSML, but not in RIF.

Equality is supported in both WSML and RIF using the ‘=’ symbol. Equality can be present in
rule bodies to test for equality or in rule heads to infer the equivalence of two objects.

Inequality is supported in WSML with the inequality symbol ‘!=’, but not directly in RIF.
However, inequality in RIF can be achieved using the built-in predicates ‘*-not-equal’,
although this is somewhat clumsy.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 19 of 32

3.2.3.5.3 Example

If an item is perishable and it is delivered to John more than 10 days after the scheduled
delivery date then the item will be rejected by him.

RIF-BLD:

Prefix(ppl http://example.com/people#)

Prefix(cpt http://example.com/concepts#)

Prefix(func http://www.w3.org/2007/rif-builtin-function#)

Prefix(pred http://www.w3.org/2007/rif-builtin-predicate#)

 Forall ?item ?deliverydate ?scheduledate ?diffduration ?diffdays (

 cpt:reject(ppl:John ?item) :-

 And(cpt:perishable(?item)

 cpt:delivered(?item ?deliverydate ppl:John)

 cpt:scheduled(?item ?scheduledate)

 ?diffduration = External(

 func:subtract-dateTimes(?deliverydate ?scheduledate))

 ?diffdays = External(

 func:days-from-duration(?diffduration))

 External(pred:numeric-greater-than(?diffdays 10)))

)

WSML:

cpt:reject(ppl:John ?item) :-

 cpt:perishable(?item) and

 cpt:delivered(?item, ?deliverydate, ppl#John) and

 cpt:scheduled(?item, ?scheduledate) and

 wsml#numericSubtract(?diffduration, ?deliverydate, ?scheduledate) and

 wsml#dayPart(?diffdays, ?diffduration)

 ?diffdays > 10.

3.2.4 Summary of what isn't supported in RIF that i s in WSML

This section indicates what WSML elements cannot be serialized to a RIF document. The
intention is to make it clear what would be lost in doing so.

• Negation

• Explicit inequality ‘!=’, but can be achieved with ‘*-not-equal’ predicates

• Classical implication (implies, impliedBy, equivalent)

• Local attribute modifiers (transitive, symmetric, inverseOf, subAttributeOf, reflexive)

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 20 of 32

3.2.5 Summary of what is supported in RIF, but not in WSML (Flight, Rule)

Function symbols are supported in RIF-BLD, but not in WSML-Flight. (Function symbols are
supported in WSML-Rule).

3.3 WSML-Flight v2.0 Syntax
WSML-Flight 2.0 is both syntactically and semantically completely layered on top of WSML-
Core 2.0. This means that every valid WSML-Core 2.0 specification is also a valid WSML-
Flight 2.0 specification. Furthermore, all consequences inferred from a WSML-Core 2.0
specification are also valid consequences of the same specification in WSML-Flight 2.0.
Finally, if a WSML-Flight 2.0 specification falls inside the WSML-Core 2.0 fragment then all
consequences with respect to the WSML-Flight 2.0 semantics also hold with respect to the
WSML-Core 2.0 semantics.

WSML-Flight 2.0 adds the following features to WSML-Core 2.0:

• N-ary relations with arbitrary parameters
• Constraining attribute definitions for the abstract domain
• Cardinality constraints
• (Locally Stratified) default negation in logical expressions (in the bodies of rules)
• Expressive logical expressions, namely, the full Datalog subset of F-Logic, extended

with inequality (in the body) and locally stratified negation
• Meta-modeling. WSML-Flight no longer requires a separation of vocabulary (wrt.

concepts, instances, relations)

Default negation means that the negation of a fact is true, unless the fact is known to be true.
Locally stratified negation means that the definition of a particular predicate does not
negatively depend on itself.

The rest of this section is organized as follows. Section 3.3.1 defines the restrictions on
goals, web services and mediators in WSML-Flight v2.0. Section 3.3.2 defines the
restrictions on logical expressions in WSML-Flight v2.0. Section 3.3.3 outlines the differences
between WSML-Core and WSML-Flight v2.0.

3.3.1 Goals, Web services and Mediators in WSML-Fli ght v2.0

3.3.1.1 Goals in WSML-Flight v2.0

Goals in WSML-Flight follow the common WSML syntax. The logical expressions in the
'assumptions', 'preconditions', 'effects' and 'postconditions' of a capability and 'definition' of a
non-functional property are limited to WSML-Flight logical expressions.

3.3.1.2 Web Services in WSML-Flight v2.0

Web Services in WSML-Flight v2.0 follow the common WSML syntax. The logical
expressions in the 'assumptions', 'preconditions', 'effects' and 'postconditions' of a capability
and 'definition' of a non-functional property are limited to WSML-Flight v2.0 logical
expressions.

3.3.1.3 Mediators in WSML-Flight v2.0

Mediators in WSML-Flight v2.0 follow the common WSML syntax.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 21 of 32

3.3.2 WSML-Flight v2.0 Logical Expression Syntax

WSML-Flight is a rule language based on the Datalog subset of F-Logic, extended with
locally stratified default negation, the inequality symbol '!=' and the unification operator '='.
Furthermore, WSML-Flight allows monotonic Lloyd-Topor [20] which means that we allow
classical implication and conjunction in the head of a rule and we allow disjunction in the
body of a rule.

The head and the body of a rule are separated using the Logic Programming implication
symbol ':-'. This additional symbol is required because negation-as-failure (naf) is not defined
for classical implication (implies , impliedBy). WSML-Flight allows classical implication in the
head of the rule. Consequently, every WSML-Core logical expression is a WSML-Flight rule
with an empty body.

The syntax for logical expressions of WSML Flight is the same as described in Section 2.8
with the restrictions described in the following. We define the notion of a WSML-Flight
vocabulary in Definition 1.

Definition 1 Any WSML vocabulary [1] is a WSML-Flight vocabulary.

Definition 2 defines the set of WSML-Flight terms TermFlight(V) for a given vocabulary V.

Definition 2. Given a vocabulary V, the set of terms TermFlight(V) in WSML-Flight is defined
as follows:

• Any f ∈VO is a term.
• Any v ∈ VV is a term
• If d ∈ VD and dv1, ..., dvn are in VDV ∪ VV, then d(dv1, ..., dvn) is a term.

As usual, the set of ground terms GroundTermFlight(V) is the maximal subset of TermFlight(V)
which does not contain variables.

Definition 3 Given a set of WSML-Flight terms TermFlight(V), an atomic formula in L(V) is
defined by:

• If r ∈ VR and t1, ..., tn are terms, then r(t1, ..., tn) is an atomic formula in L(V).
• If α, β ∈ TermFlight(V) then α = β, and α != β are atomic formulae in L(V).
• If α, β ∈ TermFlight(V) and γ ∈ Term(V) or γ is of the form { γ1,...,γn } with γ1,...,γn ∈

TermFlight(V), then:
o α subConceptOf γ is an atomic formula in L(V)
o α memberOf γ is an atomic formula in L(V)
o α[β ofType γ] is an atomic formula in L(V)
o α[β impliesType γ] is an atomic formula in L(V)
o α[β hasValue γ] is an atomic formula in L(V)

A ground atomic formula is an atomic formula with no variables.

Definition 4. Given a WSML-Flight vocabulary V, the set of formulae in L(V) is recursively
defined as follows:

• We define the set of admissible head formulae Head(V) as follows:
o Any atomic formula α which does not contain the inequality symbol (!=) is in

Head(V).
o Let α,β ∈ Head(V), then α and β is in Head(V).
o Given two formulae α, β such that α, β do not contain { implies , impliedBy ,

equivalent }, the following formulae are in Head(V):

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 22 of 32

� α implies β, if β ∈ Head(V) and α ∈ Head(V) or α ∈ Body(V)
� α impliedBy β, if α ∈ Head(V) and β ∈ Head(V) or β ∈ Body(V)
� α equivalent β if α ∈ Head(V) or α ∈ Body(V) and β ∈ Head(V) or β

∈ Body(V)
• Any variable-free admissible head formula in Head(V) is a formula in L(V).
• We define the set of admissible body formulae Body(V) as follows:

o Any atomic formula α is in Body(V)
o For any atomic formula α, naf α is in Body(V).
o For α,β ∈ Body(V), α and β is in Body(V).
o For α,β ∈ Body(V), α or β is in Body(V).

• Given a head-formula β ∈ Head(V) and a body-formula α ∈ Body(V), β :- α is a
formula. Here we call α the body and β the head of the formula. The formula is
admissible if (1) α is an admissible body formula, (2) β is an admissible head formula,
and (3) the safety condition holds.

• Any formula of the form !- α with α ∈ Body(V) is an admissible formula and is called a
constraint.

• The Logic Programming implication symbol !- is not absolutely needed. If it is missing,
a formula is in Head.

As with the general WSML logical expression syntax, <-, -> and <-> can be seen as
synonyms of the keywords implies , impliedBy and equivalent , respectively.

In order to check the safety condition for a WSML-Flight rule, the following transformations
should be applied until no transformation rule is applicable:

• Rules of the form A1 and ... and An :- B are split into n different rules:
o A1 :- B
o ...
o An :- B

• Rules of the form A1 equivalent A2 :- B are split into 2 rules:
o A1 implies A2 :- B
o A1 impliedBy A2 :- B

• Rules of the form A1 impliedBy A2 :- B are transformed to:
o A1 :- A2 and B

• Rules of the form A1 implies A2 :- B are transformed to:
o A2 :- A1 and B

• Rules of the form A :- B1 and (F or G) and B2 are split into two different rules:
o A :- B1 and F and B2
o A :- B1 and G and B2

• Rules of the form A :- B1 and naf (F and G) and B2 are split into two different rules:
o A :- B1 and naf F and B2
o A :- B1 and naf G and B2

• Rules of the form A :- B1 and naf (F or G) and B2 are transformed to:
o A :- B1 and naf F and naf G and B2

• Rules of the form A :- B1 and naf naf F and B2 are transformed to:
o A :- B1 and F and B2

Application of these transformation rules yields a set of WSML-Flight rules with only one
atomic formula in the head and a conjunction of literals in the body.

The safety condition holds for a WSML-Flight rule if every variable which occurs in the rule
occurs in a positive body literal which does not correspond to a built-in predicate. For
example, the following rules are not safe and thus not allowed in WSML-Flight:

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 23 of 32

p(?x) :- q(?y).
a[b hasValue ?x] :- ?x > 25.
?x[gender hasValue male] :- naf ?x[gender hasValue female].

We require each WSML-Flight knowledge base to be locally stratified. For more details on
local stratification please refer to [21]. The following are examples of WSML-Flight logical
expressions (note that variables are implicitly universally quantified):

No human can be both male and female:

!- ?x[gender hasValue {?y, ?z}] memberOf Human and ?y = Male and ?z =
Female.

The brother of a parent is an uncle:

 ?x[uncle hasValue ?z] impliedBy ?x[parent hasValue ?y] and ?y[brother
hasValue ?z].

Do not trust strangers:

 ?x[distrust hasValue ?y] :- naf ?x[knows hasValue ?y] and ?x memberOf
Human and ?y memberOf Human.

3.3.3 Differences between WSML-Core and WSML-Flight

The features added by WSML-Flight compared with WSML-Core are the following: Allows n-
ary relations with arbitrary parameters, constraining attribute definitions for the abstract
domain, cardinality constraints, (locally stratified) default negation in logical expressions,
(in)equality in the logical language (in the body of the rule), Full-fledged rule language (based
on the Datalog subset of F-Logic).

3.3.4 Differences between WSML-Flight v1.0 and WSML -Flight v2.0

The features added by WSML-Flight v2.0, that are not available in WSML-Flight v1.0 are
those introduced for alignment with WSML-Core v2.0. More precisely WSML-Flight v2.0
introduces instance equivalence, otherwise known as ‘equality in rule heads’. This change
allows for the declaration that different instance identifiers (IRIs) refer to the same object.

Secondly, WSML-Flight v2.0 is aligned with the emerging Rule Interchange Format (RIF)
standards. The most extensive changes here relate to the missing support for RIF built-in
data-types, predicates and functions.

3.4 WSML Rule v2.0 Syntax
WSML-Rule is an extension of WSML-Flight in the direction of Logic Programming. WSML-
Rule no longer requires safety of rules and allows the use of function symbols. The only
differences between WSML-Rule and WSML-Flight are in the logical expression syntax.

WSML-Rule is both syntactically and semantically layered on top of WSML-Flight and thus
each valid WSML-Flight specification is a valid WSML-Rule specification. Because the only
differences between WSML-Flight and WSML-Rule are in the logical expression syntax, we
do not explain the conceptual syntax for WSML-Rule.

The rest of this section is organized as follows. Section 3.4.1 defines the restrictions on
goals, web services and mediators in WSML-Rule v2.0. Section 3.4.2 defines the restrictions
on logical expressions in WSML-Rule v2.0. Section 3.4.3 outlines the differences between
WSML-Core and WSML-Flight v2.0.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 24 of 32

3.4.1 Goals, Web services and Mediators in WSML-Rul e v2.0

3.4.1.1 Goals in WSML-Rule v2.0

Goals in WSML-Rule follow the common WSML syntax. The logical expressions in the
'assumptions', 'preconditions', 'effects' and 'postconditions' of a capability and 'definition' of a
non-functional property are limited to WSML-Rule logical expressions.

3.4.1.2 Web Services in WSML-Rule v2.0

Web Services in WSML-Rule v2.0 follow the common WSML syntax. The logical expressions
in the 'assumptions', 'preconditions', 'effects' and 'postconditions' of a capability and
'definition' of a non-functional property are limited to WSML-Flight v2.0 logical expressions.

3.4.1.3 Mediators in WSML-Flight v2.0

Mediators in WSML-Flight v2.0 follow the common WSML syntax.

3.4.2 WSML-Rule Logical Expression Syntax

WSML-Rule is a simple extension of WSML-Flight. WSML-Rule allows the unrestricted use
of function symbols and no longer requires the safety condition, i.e., variables which occur in
the head are not required to occur in the body of the rule.

The syntax for logical expressions of WSML Rule is the same as described in Section 2.8 with
the restrictions which are described in the following: we define the notion of a WSML-Rule
vocabulary in Definition 5.

Definition 5 Any WSML vocabulary (see [22]) is a WSML-Rule vocabulary.

Definition 6 defines the set of terms Term(V) for a given vocabulary V.

Definition 6. Any WSML term (see Definition 2.2) is a WSML Rule term.

As usual, the set of ground terms GroundTerm(V) is the maximal subset of Term(V) which
does not contain variables.

Definition 7. Given a set of WSML-Rule terms TermRule(V), an atomic formula in L(V) is
defined by:

• If r ∈ VR and t1, ..., tn are terms, then r(t1, ..., tn) is an atomic formula in L(V).
• If α, β ∈ TermRule(V) then α = β, and α != β are atomic formulae in L(V).
• If α, β ∈ TermRule(V) and γ ∈ Term(V) or γ is of the form { γ1,...,γn } with γ1,...,γn ∈

TermRule(V), then:
o α subConceptOf γ is an atomic formula in L(V)
o α memberOf γ is an atomic formula in L(V)
o α[β ofType γ] is an atomic formula in L(V)
o α[β impliesType γ] is an atomic formula in L(V)
o α[β hasValue γ] is an atomic formula in L(V)

A ground atomic formula is an atomic formula with no variables.

Definition 8. Given a WSML-Rule vocabulary V, the set of formulae in L(V) is recursively
defined as follows:

• We define the set of admissible head formulae Head(V) as follows:
o Any atomic formula α which does not contain the inequality symbol (!=)is in

Head(V).
o Let α,β ∈ Head(V), then α and β is in Head(V).

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 25 of 32

o Given two formulae α, β such that α, β do not contain { implies , impliedBy ,
equivalent, }, the following formulae are in Head(V):

� α implies β, if β ∈ Head(V) and α ∈ Head(V) or α ∈ Body(V)
� α impliedBy β, if α ∈ Head(V) and β ∈ Head(V) or β ∈ Body(V)
� α equivalent β if α ∈ Head(V) or α ∈ Body(V) and β ∈ Head(V) or β

∈ Body(V)

• Any admissible head formula in Head(V) is a formula in L(V).
• We define the set of admissible body formulae Body(V) as follows:

o Any atomic formula α is in Body(V)
o For α ∈ Body(V), naf α is in Body(V).
o For α,β ∈ Body(V), α and β is in Body(V).
o For α,β ∈ Body(V), α or β is in Body(V).
o For α,β ∈ Body(V), α implies β is in Body(V).
o For α,β ∈ Body(V), α impliedBy β is in Body(V).
o For α,β ∈ Body(V), α equivalent β is in Body(V).
o For variables ?x1,...,?xn and α ∈ Body(V), forall ?x1,...,?xn (α) is in Body(V).
o For variables ?x1,...,?xn and α ∈ Body(V), exists ?x1,...,?xn (α) is in Body(V).

• Given a head-formula β ∈ Head(V) and a body-formula α ∈ Body(V), β :- α is a
formula. Here we call α the body and β the head of the formula. The formula is
admissible if (1) α is an admissible body formula, (2) β is an admissible head formula.

• Any formula of the form !- α with α ∈ Body(V) is an admissible formula and is called a
constraint.

• The Logic Programming implication symbol !- is not absolutely needed. If it is missing,
a formula is in Head.

As with the general WSML logical expression syntax, <-, -> and <-> can be seen as
synonyms of the keywords implies , impliedBy and equivalent , respectively.

The following are examples of WSML-Rule logical expressions:

Both the father and the mother are parents:

?x[parent hasValue ?y] :- ?x[father hasValue ?y] or ?x[mother hasValue ?y].

Every person has a father:

?x[father hasValue f(?x)] :- ?x memberOf Person.

There may only be one distance between two locations, and the distance between locations
A and B is the same as the distance between B and A:

!- distance(?location1,?location2,?distance1) and
 distance(?location1,?location2,?distance2) and ?distance1 != distance2.

distance(?B,?A,?distance) :-

distance(?A,?B,?distance).

3.4.3 Differences between WSML-Flight and WSML-Rule

WSML-Rule allows unsafe rules and the use of function symbols (constructed terms) in
logical expressions.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 26 of 32

Furthermore, due to the meta-modeling of WSML constructs (classes, objects and
attributes), unlimited use of WSML-Rule logical expressions can lead to Datalog
representations containing unstratified rules, i.e. a rule set that contain recursive
dependencies through negation. The semantics applied to negation in this context is that of
the Well-founded semantics [17].

3.4.4 Differences between WSML-Rule v1.0 and WSML-R ule v2.0

The features added by WSML-Rule v2.0, that are not available in WSML-Rule v1.0 are those
introduced for alignment with WSML-Core v2.0. More precisely WSML-Rule v2.0 introduces
instance equivalence, otherwise known as ‘equality in rule heads’. This change allows for the
declaration that different instance identifiers (IRIs) refer to the same object.

Secondly, WSML-Rule v2.0 is aligned with the emerging Rule Interchange Format (RIF)
standards. The most extensive changes here relate to the missing support for RIF built-in
data-types, predicates and functions.

3.5 Algorithmisation
Reasoning for the rule based WSML variants in principle can be achieved in just the same
way as for WSML-Core 2.0 and involves the same conversion steps that syntactically
transform a WSML ontology to the corresponding Datalog program. The fundamental
difference is that due to the added expressivity in WSML-Flight 2.0, and beyond that in
WSML-Rule 2.0, the underlying Datalog engine has to cover more features.

The conversion can still be expressed as a series of transformation steps in a pipeline, which
can roughly be divided into (i) Axiomatization, (ii) Normalization, and (iii) Datalog rules
generation, as described in D3.2.1.

The overall reasoning process is presented in Figure 2. It requires as input the ontology on
which the reasoning is performed as well as the specification of the reasoning task. The
reasoning task results are provided as outputs. The overall communication is realized
through the WSML Reasoner API. The API provides the means to register data / ontologies,
to query and to retrieve the reasoning results. The algorithmization contains a set of
transformation/normalization steps performed in a pipeline manner. It includes the
transformation of the conceptual syntax to logical expressions and further on into generalized
clauses / rules. The generalized clauses/ rules are provided as input for external reasoning
tools, or native reasoning tools accessible via an adapter interface.

Additional features that need to be mapped to corresponding elements in the Datalog
program come in the form of function symbols, (default) negation, LP implication, and
integrity constraints. However, these features do not fundamentally complicate the
translation.

However, meta-modelling features are introduced in WSML-Flight 2.0, which no longer
requires a separation of the vocabularies of concepts, instances and relations. This meta-
modelling requires special consideration and these features can be realized by an indirect
mapping to Datalog through meta-level predicates for WSML language constructs. This
means, for example, that concept membership of an instance (denoted via memberOf) is not
directly translated to a unary predicate, but rather to a special binary “memberOf” predicate.

For example,

instance Mary memberOf Human

would not be translated to Human(Mary), but rather to member-of(Mary, Human). This
extra level of indirection allows an entity to be treated as a concept and an instance at the

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 27 of 32

same time.

In order to capture the intended semantics of these meta-level predicates (e.g. transitivity of
subConceptOf) a set of associated (meta-level) axioms is required.

Figure 2 Conceptual Layering of Transformations

3.6 Relation with other WSML Variants and Language Layering
As mentioned earlier, WSML actually consists of distinctly different language variants,
identified for their particular properties in terms of modelling and performance of reasoning
tasks. They differ in expressiveness as well as in their underlying logical formalism. This
allows users of the language to decide on (i) the level of expressivity and thus also on (ii) the
associated complexity, as well as (iii) the style of modelling which they want to use, on a
case by case basis – depending on the requirements of a specific application.

The relation between the different WSML variants is depicted in Figure 3. As can be seen,
WSML-Quark and WSML-Core 2.0 form a common, lightweight, yet increasingly expressive
foundation for extensions towards the paradigms of both Description Logic (in the form of
WSML-DL 2.0) and Logic Programming (in the form of WSML-Flight 2.0 and WSML-Rule
2.0). Consequently, WSML-DL 2.0 and WSML-Flight/Rule 2.0 are both layered on WSML-
Core 2.0, which defines a common subset. WSML-Core v2.0 is in turn layered upon WSML-
Quark.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 28 of 32

Figure 3 WSML Language Layering

WSML-Quark is a very lightweight and intuitive language variant that allows for the simple
organization of concepts in to a hierarchical classification system. WSML-Quark can be used
as a very efficient stepping stone towards more formal and complex WSML language
variants.

WSML-Core 2.0 inherits many features from the first version of WSML-Core, which was
based on DLP [11] - formed by the intersection of the Description Logic SHIQ and Horn
Logic. It has been adjusted to align results of ongoing standardization efforts, most notably
OWL 2 RL [14], as well research results such as the L2 language [13], which has similar
language features, albeit specified directly at the level of RDF. Furthermore, WSML-Core 2.0
forms the common subset between the DL and LP based variants of WSML.

WSML-DL 2.0
WSML-DL 2.0 is the Description Logic variant of WSML, based on ELP [16], which is based
on the tractable DL EL++ [10], and covers OWL 2 RL, OWL 2 EL and OWL 2 QL, while at the
same time retaining polynomial combined complexity.

WSML-Flight 2.0 is the least expressive of the two LP-based variants. Compared with
WSML-Core, it adds features such as meta-modeling, constraints, and non-monotonic
(stratified) negation. WSML-Flight is semantically equivalent to Datalog with equality
and integrity constraints.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 29 of 32

WSML-Rule 2.0 extends WSML-Flight 2.0 with further features from Logic Programming,
namely the use of function symbols, unsafe rules, and unstratified negation. Due to the
intended tractability goals, WSML-Rule 2.0 relies on the Well-Founded Semantics [17] in
place of the more general Stable Model Semantics for the purpose of query answering.

WSML-Full 2.0 finally reconciles the DL and LP variants of WSML in a more expressive
superset. While the specification of WSML-Full is still open at this stage, the use of hybrid
MKNF knowledge bases forms a possible option. [18] defines the well-founded semantics for
this approach, which still preserves tractable data complexity.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 30 of 32

3.7 Conclusions and Future Work
The new versions of WSML-Flight and WSML-Rule as described in this document contain
modifications that maintain the consistency of both syntactic and semantic layering of the
entire WSML family. Further, increased support for the emerging RIF standards has been
improved with the introduction of many missing built-in predicates and functions.

The first prototype implementations of WSML-Flight 2.0 and WSML-Rule 2.0 reasoners will
be developed in SOA4All and reported in deliverable: D3.2.3 First Prototype Rule Repository
Reasoner for WSML-Rule v2.0 (Month 18).

Later implementations will address scalability issues and it is planned to re-use software
components developed in European project LarKC to achieve scalability using a combination
of parallel, distributed and approximate reasoning algorithms.

It may be desirable at some stage to define new RIF dialects that completely capture the
semantics of WSML-Flight and WSML-Rule. The essential difference of such new dialects
would be the inclusion of non-monotonic negation.

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 31 of 32

4. References
[1] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and D.

Fensel, “The Web Service Modeling Language WSML,” WSML Final Draft D16.1, 2005.

[2] D. Roman, H. Lausen, and U. Keller, “Web Service Modeling Ontology (WSMO),” WSMO
Working Draft, 2004.

[3] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, “The
Description Logic Handbook,” 2007.

[4] J.W. Lloyd, Foundations of logic programming, Springer-Verlag New York, Inc. New York,
NY, USA, 1987.

[5] M. Fitting, First-Order Logic and Automated Theorem Proving, Springer, 1996.

[6] M. Kifer and G. Lausen, “F-logic: a higher-order language for reasoning about objects,
inheritance, and scheme,” Proceedings of the 1989 ACM SIGMOD international
conference on Management of data, 1989, pp. 134-146.

[7] I. Horrocks, U. Sattler, and S. Tobies, “Practical reasoning for very expressive description
logics,” Logic Journal of IGPL, vol. 8, 2000, pp. 239-263.

[8] U. Hustadt, B. Motik, and U. Sattler, “Data Complexity of Reasoning in Very Expressive
Description Logics.”

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, “DL-Lite:
Tractable Description Logics for Ontologies,” PROCEEDINGS OF THE NATIONAL
CONFERENCE ON ARTIFICIAL INTELLIGENCE, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2005, p. 602.

[10] F. Baader, S. Brandt, and C. Lutz, “Pushing the EL Envelope,” INTERNATIONAL
JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, LAWRENCE ERLBAUM
ASSOCIATES LTD, 2005, p. 364.

[11] B. GROSOF, I. HORROCKS, R. VOLZ, and S. DECKER, “Description Logic Programs:
Combining Logic Programs with Description Logic.”

[12] H.J. ter Horst, “Combining RDF and Part of OWL with Rules: Semantics, Decidability,
Complexity,” Proc. of ISWC, Springer, 2005, pp. 6-10.

[13] F. Fischer, U. Keller, A. Kiryakov, Z. Huang, V. Momtchev, E. Simperl, D. Fensel, and
R. Dumitru, “D1.1.3 Initial Knowledge Representation Formalism,” LarKC Deliverable,
2004.

[14] B. Motik, C. Bernardo, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, “OWL 2 Web
Ontology Language: Profiles,” W3C Working Draft, Dec. 2008.

[15] “Web21C SDK.”

[16] M. Krötzsch, S. Rudolph, and P. Hitzler, “ELP: Tractable rules for OWL 2,” Proceedings
of the 7th International Semantic Web Conference (ISWC2008), Springer, 2008.

[17] A. Van Gelder, K.A. Ross, and J.S. Schlipf, “The well-founded semantics for general
logic programs,” Journal of the ACM (JACM), vol. 38, 1991, pp. 619-649.

[18] M. Knorr, J.J. Alferes, and P. Hitzler, “A Coherent Well-founded Model for Hybrid MKNF
Knowledge Bases,” ECAI 2008: Proceedings, 18th European Conference on Artificial
Intelligence, July 21-25, 2008, Patras, Greece: Including Prestigious Applications of
Intelligent, IOS Press, 2008, p. 99.

[19] Rule Interchange Format (RIF) Working Group,

SOA4All –FP7 – 215219 – D3.1.2 Defining the Features of the WSML-Core v2.0 Language

© SOA4All consortium Page 32 of 32

http://www.w3.org/2005/rules/wiki/RIF_Working_Group

[20] John W. Lloyd and Rodney W. Topor. Making prolog more expressive. Journal of Logic
Programming, 1(3):225{240, 1984

[21] J. de Bruijn (Ed). WSML Abstract Syntax. WSML Working Draft D16.3v0.3, 2008.
Available from http://www.wsmo.org/TR/d16.3/v0.3/.

[22] The Web Service Modeling Language WSML, WSML v1.0, WSML deliverable D16.1,
2009.

[23] Florian Fischer (Ed). Defining the features of the WSML-Core v2.0 language, SOA4All
deliverable D3.1.2.

[24] Rule Interchange Format Data Type and Built-ins (RIF-DTB) -
http://www.w3.org/2005/rules/wiki/DTB

[25] Rule Interchange Format Basic Logic Dialect (RIF-BLD) -
http://www.w3.org/2005/rules/wiki/BLD

[26] Rule Interchange Format Core (RIF-Core) - http://www.w3.org/2005/rules/wiki/Core

