

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D3.2.2 First Prototype Reasoner for

WSML-Core v2.0
Activity N: Activity 2 – Core R&D Activities

Work Package: WP3 - Service Annotation and Reasoning

Due Date: M18

Submission Date: 10/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Matthias Pressnig UIBK

Reviewers: Alex Simov UIBK

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 2 of 14

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2009-08-10 First TOC Barry Norton (UIBK)

0.2 2009-08-24 First draft Matthias Pressnig (UIBK)

0.3 2009-08-25 Updated draft Matthias Pressnig (UIBK)

0.4 2009-08-31 Review changes applied Matthias Pressnig (UIBK)

0.5 2009-09-10 Final Editing Malena Donato (ATOS)

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 3 of 14

Table of Contents

EXECUTIVE SUMMARY __ 5

1. INTRODUCTION __ 6

1.1 PURPOSE AND SCOPE __ 6

1.1.1 Audience ___ 6

1.1.2 Scope ___ 6

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 6

2. REFLECTION ON THE SPECIFICATION ___________________________________ 7

3. INSTALLATION AND CONFIGURATION ___________________________________ 8

4. SOFTWARE DESCRIPTION __ 11

4.1 EQUALITY IN RULE HEADS __ 11

5. CONCLUSIONS __ 13

6. REFERENCES ___ 14

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 4 of 14

Glossary of Acronyms

Acronym Definition

D Deliverable

DL Description Logic

EC European Commission

WP Work Package

WSML Web Service Modeling Language

RIF Rule Interchange Format

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 5 of 14

Executive summary

In order to automate tasks such as discovery and composition, Semantic Web Services must
be described in a well-defined formal language. The Web Services Modelling Language
(WSML) is based on the conceptual model of the Web Service Modelling Ontology (WSMO)
and as such can be used for modelling Web services, ontologies, and related aspects.

WSML is actually a family of several language variants, each of which is based upon a
different logical formalism. The family of languages are unified under one syntactic umbrella,
with a concrete syntax for modelling ontologies, web services, goals and mediators.

This deliverable, along with others, describes the first prototype reasoner for WSML-Core
2.0, in particular the new feature instance equivalence also know as equality in rule heads[1].

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 6 of 14

1. Introduction

The Web Service Modelling Language WSML[2] is such a formal language for the
specification of ontologies and different aspects of Web services, based on the conceptual
model of WSMO [3]. Several different WSML language variants exist, which are based upon
different logical formalisms. The main formalisms exploited for this purpose are Description
Logics [4], Logic Programming [5], and First-Order Logic [6]. Furthermore, WSML has been
influenced by F-Logic [7] and frame-based representation systems.

This deliverable discusses the implementation of the first prototype reasoner for WSML-core
2.0. The WSML-Core 2.0 language aims to provide a minimal but useful expressivity and is
inspired by minimal representation from project LarKC1. It belongs to a set of related
deliverables, which discuss the prototype implementation of several WSML 2.0 variants,
namely:

• D3.2.2. First Prototype Reasoner for WSML-Core v2.0

• D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

• D3.2.4 First Prototype Reasoner for WSML-DL v2.0

1.1 Purpose and Scope
1.1.1 Audience

This Document is intended to inform about the prototype reasoner for WSML-Core 2.0. In
turn, its main audience are users and developers who are intend to use the prototype.

1.1.2 Scope

Reasoning for WSML-Core 2.0 can be performed by transforming the WSML data to
adequate Datalog terms, which are reasoned by an underlying reasoning engine. This
engine and the transforming process have also to provide the features of the WSML-Core
2.0 implementation.

This deliverable has the objective to provide information about the features of the first
prototype reasoner for WSML-Core 2.0. In particular, it targets the changes for equality in
rule heads feature (or instance equivalence), which has been implemented in the Datalog
reasoner IRIS2 and the framework WSML2Reasoner3.

1.2 Structure of the document
The structure of this deliverable is formed as follows: Section 2 discusses the actual
implementation and its changes according to the Specification. In Section 3 there it is
described how to install and use the prototype reasoner for WSML-Core 2.0. The main
implementation of the prototype is described in Section 4. Section 5 concludes with a short
Summary of the deliverable.

1 LarKC – European Project http://www.larkc.eu/ [24.08.2009]
2 IRIS Reasoner http://www.iris-reasoner.org [27.07.2009]
3 WSML2Reasoner http://tools.sti-innsbruck.at/wsml2reasoner/ [24.08.2009]

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 7 of 14

2. Reflection on the Specification
The WSML-Core 2.0 was designed to provide minimal expressivity and thus improve
reasoning scalability. To provide instance equality the IRIS implementation and the
WSML2Reasoner had to be modified to perform new transformation and reasoning. Besides
of that it was not necessary to change something from the SOA4All Annex I - “Description of
Work”.

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 8 of 14

3. Installation and Configuration
In order to install and configure the reasoning framework, a Java Virtual Machine (version >
1.5) is required. The WSML2Reasoner package with provides the new features can be
downloaded on the WSML2Reasoner website4.

The WSML2Reasoner software is licensed under the GNU lesser GPL (LGPL). However,
there are three release variants in accordance with the license agreements for the bundled
reasoning engine libraries:

• LGPL: This release includes all the LGPL libraries used by WSML2Reasoner,
including the IRIS and PELLET reasoning engines.

• GPL: In addition to the LGPL libraries and packages, this release includes the MINS
reasoning engine, which is licensed under the GNU GPL.

• Proprietary: This release version does not include any further libraries or reasoning
engines. However, it does include wrapper classes that allow the WSML2Reasoner
framework to use the KAON2 reasoning engine.

The package of the WSML2Reasoner framework consists of the following components:

• wsml2reasoner-src-x.x.x.zip: The source code of the reasoning framework.

• wsml2reasoner-javadoc-x.x.x.zip: The JavaDoc of the reasoning framework API.

• wsml2reasoner-x.x.x.jar:

• lib folder: The required and optional libraries.

To use the WSML2Reasoner you have to use the binaries located in the wsml2reasoner jar
file or compile the source and add the libraries found in the lib-folder to the classpath.

The following example shows a main class, which loads an ontology and does reasoning
with the IRIS datalog reasoner5:

4 WSML2Reasoner downloads: http://tools.sti-innsbruck.at/wsml2reasoner/download [24.08.2009]
5 WSMO4J Programmers guide: http://wsmo4j.sourceforge.net/doc/wsmo4j-prog-guide.pdf
[31.08.2009]

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 9 of 14

public class Example {

 public static void main(String[] args) throws IOException, ParserException,

 InvalidModelException, InconsistencyException {

 // Create a parser and parse the example.wsml file. For simplicity we do

 // not take care of exceptions at the moment.

 Parser parser = Factory.createParser(null);

 TopEntity[] identifiables = parser

 .parse(new FileReader("example.wsml"));

 // We can be sure here, that we only parse a single ontology.

 Ontology ontology = (Ontology) identifiables[0];

 // Create a query, that should bind x to both instances A and B.

 String query = "p(?x)";

 // Define the desired reasoner by setting the corresponding values in

 // the parameters. Here IRIS reasoner with well-founded semantics is

 // used.

 Map<String, Object> params = new HashMap<String, Object>();

 params.put(WSMLReasonerFactory.PARAM_BUILT_IN_REASONER,

 WSMLReasonerFactory.BuiltInReasoner.IRIS_WELL_FOUNDED);

 // Create the reasoner using the previously defined parameters and the

 // default reasoner factory.

 LPReasoner reasoner = DefaultWSMLReasonerFactory.getFactory()

 .createRuleReasoner(params);

 // Register the ontology.

 reasoner.registerOntology(ontology);

 // Create the logical expression factory.

 LogicalExpressionFactory factory = Factory

 .createLogicalExpressionFactory(null);

 // Transform the query in string form to a logical expression object.

 LogicalExpression expression = factory.createLogicalExpression(query,

 ontology);

 // Execute the query and do something with the result of the query.

 Set<Map<Variable, Term>> bindings = reasoner.executeQuery(expression);

 }

}

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 10 of 14

This example wsml file (example.wsml) can be used to show the instance equality feature.

An ontology defines two concepts with two instances; one of them has an attribute:

The query “p(?x)” returns both instances since they are set equal in the axiom:

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-core"

namespace { _"http://simple#"

}

ontology simple

concept C1

concept C2

instance a memberOf C1

 name hasValue aName

instance b memberOf C2

axiom equalInHead definedBy

 a = b :- true.

 p(?x) :- ?x memberOf C2 and ?x[name hasValue aName].

2 results to the query:

(1) - {?x=http://simple#b}

(2) - {?x=http://simple#a}

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 11 of 14

4. Software Description
WSML-Quark[11] is a lightweight and intuitive language variant that enables the hierarchical
organization of concepts. It forms the most basic layer of the WSML language variants
hierarchy. WSML-Core 2.0 is an extension of WSML-Core and is layered upon WSML
Quark. It has been updated to align results of ongoing standardization efforts (e.g. OWL 2
RL) as well as research results such as the L2 language, which has similar language
features.

The Datalog reasoner IRIS has been modified in order to support the new features
introduced and required by the new versions of the language variants. This is particularly
important, since various WSML variants are translated to Datalog programs and therefore
rely on the Datalog reasoner to cover the required features.

4.1 Equality in rule heads
WSML-Core 2.0 introduces instance equivalence, otherwise known as equality in rule heads.
In WSML, this allows the declaration that different instance identifiers (IRIs) refer to the same
object. In Datalog, equality in rule heads allows the declaration of equivalence between
constant terms, such as strings or integers. Equality in rule heads has been integrated into
the Datalog reasoner IRIS. Two approaches have been implemented to realize this feature, a
rewriting technique and integrated support for equivalence in rule heads:

• Rewriting: For a given Datalog program containing rules with equality in the head,

this technique creates new rules to provide support for equivalence in rule heads.

First, all occurrences of equality in the head of a rule are replaced by a special

predicate (in the following examples denoted by equivalent). Then, new rules are

created to ensure the correct evaluation of rule head equality. Note that rule (1) and

(2) are unsafe rules, since the property "each variable in the rule head appears in a

non-negated, ordinary relation" is violated:

(1) equivalent(?X, ?X) :- .

(2) equivalent(?X, ?Y) :- ?X = ?Y

(3) equivalent(?X, ?Y) :- equivalent(?Y, ?X).

(4) equivalent(?X, ?Y) :- equivalent(?X, ?Z), equivalent(?Z, ?Y).

The rewriting algorithm then creates new rules for each predicate occurring in the

program, this includes predicates in rules and the predicates of facts. The number of

new rules depends on the arity of the predicates. For each predicate p this technique

creates n new rules, where n is the arity of p. Assume a predicate hasName(?X, ?Y,

?Z) with arity 3. For this predicate the following three rules are created:

(1) hasName(?U, ?Y, ?Z) :- hasName(?X, ?Y, ?Z), equivalent(?X, ?U).

(2) hasName(?X, ?U, ?Z) :- hasName(?X, ?Y, ?Z), equivalent(?Y, ?U).

(3) hasName(?X, ?Y, ?U) :- hasName(?X, ?Y, ?Z), equivalent(?Z, ?U).

Obviously, this may create an extraordinary amount of additional rules. Furthermore,

it is required, that unsafe rules are created. However, an advantage of this approach

is, that the resulting program can be evaluated using any Datalog reasoner that

supports unsafe rules, regardless of whether the reasoner explicitly supports

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 12 of 14

equivalence in rule heads or not. This brings support for equality in rule heads for

reasoners which do not support it.

• Integration: Due to the disadvantages of the approach described above, the support

for equivalence in rule heads has been integrated into IRIS by modifying the way

rules are evaluated. During evaluation of a Datalog program the reasoner keeps track

of all the terms that have been identified as being equivalent according to the rules

with equality in the head of a rule. When evaluating rules, the reasoner also takes

into account the equivalence relations that have been established. For instance,

when using a view p(?X, 'a') over a relation, the evaluation returns all tuples (x, y)

where x is some term and y is any term equivalent to 'a' (note that 'a' is equivalent to

itself).

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 13 of 14

5. Conclusions
This deliverable accompanies the fist prototype reasoner for WSML-Core 2.0, which provides
the instance equivalence.

The software prototype can be downloaded from http://tools.sti-
innsbruck.at/wsml2reasoner/download and uses the IRIS reasoner6 and the WSMO4J
Framework7 to perform the reasoning.

6 IRIS Reasoner http://www.iris-reasoner.org/ [31.08.2009]
7 WSMO4J Framework http://wsmo4j.sourceforge.net/ [31.08.2009]

 SOA4All –FP7 215219 D3.2.2 First Prototype Reasoner for WSML-Core v2.0

© SOA4All consortium Page 14 of 14

6. References
[1] G. Unel, U. Keller, F. Fischer and B. Bishop: “D3.1.2 Defining the Features of the

WSML-Core v2.0 Language”, 2009.

[2] J. de Bruijn, “WSML Language Reference, Deliverable D16.1v1.0,” WSML Final Draft

2008-08-08, 2005.

[3] D. Roman, H. Lausen and U. Keller, “Web Service Modeling Ontology (WSMO)”
WSMO Working Draft, 2004.

[4] F. Baader et al., “The Description Logic Handbook,” 2007.

[5] J.W. Lloyd, Foundations of logic programming, Springer-Verlag New York, Inc. New

York, NY, USA, 1987.

[6] M. Fitting, First-Order Logic and Automated Theorem Proving, Springer, 1996.

[7] M. Kifer and G. Lausen, “F-logic: a higher-order language for reasoning about
objects, inheritance, and scheme,” Proceedings of the 1989 ACM SIGMOD
international conference on Management of data, 1989, pp. 134-146.

[8] T. Vitvar et al., “WSMO-Lite Annotations for Web Services,” The Semantic Web:
Research and Applications, 2008, pp. 674-689; http://dx.doi.org/10.1007/978-3-540-
68234-9_49.

[9] J. Farrell and H. Lausen, “Semantic Annotations for WSDL and XML Schema,” W3C
Proposed Recommendation, vol. 5, 2007.

[10] J. de Bruijn et al., “The Web Service Modeling Language WSML,” WSML Final Draft
D, vol. 16, 2005.

[11] G. Unel, U. Keller, F. Fisher and B. Bishop, “Defining the features of the WSML-
Quark language.”, 2009.

