

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D3.2.3 First Prototype Rule Reasoner for

WSML-Rule v2.0
Activity N: Activity 2 – Core R&D Activities

Work Package: WP3 - Service Annotation and Reasoning

Due Date: M18

Submission Date: 11/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Adrian Marte UIBK

Reviewers: Alex Simov UIBK

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 2 of 15

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 2009-08-10 First TOC Barry Norton (UIBK)

0.2 2009-08-24 First draft Adrian Marte (UIBK)

0.3 2009-08-24 Added comments Barry Norton (UIBK)

0.4 2009-08-25 Updated draft Adrian Marte (UIBK)

0.5 2009-08-28 Review changes applied Adrian Marte (UIBK)

0.5 2009-09-10 Final Editing Malena Donato (ATOS)

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 3 of 15

Table of Contents

EXECUTIVE SUMMARY __ 5

1. INTRODUCTION __ 6

1.1 PURPOSE AND SCOPE __ 6

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 6

2. REFLECTION ON THE SPECIFICATION ___________________________________ 7

3. INSTALLATION AND CONFIGURATION ___________________________________ 8

4. SOFTWARE DESCRIPTION __ 11

4.1 RIF DATA TYPES AND BUILT-IN PREDICATES ________________________ 11

5. CONCLUSIONS __ 13

6. REFERENCES ___ 14

7. APPENDIX __ 15

7.1 EXAMPLE ONTOLOGY __ 15

List of Figures
Figure 1: Reasoning example .. 9

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 4 of 15

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

WSML Web Service Modeling Language

RIF Rule Interchange Format

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 5 of 15

Executive summary
In order to automate tasks such as discovery and composition, Semantic Web Services must
be described in a well-defined formal language. The Web Services Modelling Language
(WSML) is based on the conceptual model of the Web Service Modelling Ontology (WSMO)
and as such can be used for modelling Web services, ontologies, and related aspects.

WSML is actually a family of several language variants, each of which is based upon a
different logical formalism. The family of languages are unified under one syntactic umbrella,
with a concrete syntax for modelling ontologies, web services, goals and mediators [1].

This deliverable, along with others, describes the first prototype reasoner for WSML-Flight
2.0 and WSML-Rule 2.0 with a focus on the required changes done to the underlying Datalog
reasoner IRIS. The WSML2Reasoner reasoning framework can be downloaded from the
project website1 (optionally already includes the IRIS libraries) and the Datalog reasoner IRIS
can be downloaded from the IRIS project website2.

The implementation presented in this deliverable yields the realization of the concepts and
specifications that were released with deliverable D3.2.1 Framework and APIs for integrated
reasoning support with respect to reasoning for WSML-Rule 2.0.

1 WSML2Reasoner, http://tools.sti-innsbruck.at/wsml2reasoner/ [24.08.2009]
2 IRIS Reasoner, http://www.iris-reasoner.org [27.07.2009]

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 6 of 15

1. Introduction
This report describes a first prototype of a rule reasoner for WSML-Flight 2.0 and WSML-
Rule 2.0. WSML-Flight 2.0 is the least expressive of the two LP-based WSML variants.
Compared to WSML-Core, it adds features such as meta modelling, constraints and non-
monotonic (stratified) negation. WSML-Flight is semantically equivalent to Datalog with
equality and integrity constraints. WSML-Rule 2.0 is an extension of WSML-Flight 2.0. It
adds features from Logic Programming, such as the use of function symbols, unsafe rules
and unstratified negation [3].

Reasoning for these two WSML variants is realized by converting a WSML ontology to the
corresponding Datalog program and then perform reasoning on this Datalog program using a
Datalog reasoner. Therefore, the Datalog reasoner has to cover the features required by
WSML-Flight 2.0 and WSML-Rule 2.0. In this deliverable, we focus on describing the
necessary changes done to the Datalog reasoner IRIS.

The implementation presented in this deliverable follows the concepts and specifications that
were released with deliverable D3.2.1 Framework and APIs for integrated reasoning support
with respect to reasoning for WSML-Rule 2.0.

1.1 Purpose and Scope
This document is intended as a documentation for the first prototype reasoner for WSML-
Flight 2.0 and WSML-Rule 2.0. In turn, its main audience are users who want to model Web
services and ontologies using WSML, as well as technical staff building tools (i.e. reasoners)
that use the WSML language.

Reasoning for WSML-Flight 2.0 and WSML-Rule 2.0 can be achieved in the same way as for
WSML-Core 2.0 by performing the conversion steps that transform a WSML ontology to the
corresponding Datalog program. In order to support the added expressivity in WSML-Flight
2.0 and WSML-Rule 2.0 the underlying Datalog reasoner needs to provide support for the
required features. In particular, the Datalog reasoner needs to provide support for Rule
Interchange Format (RIF) built-in data types, predicates and functions [3] and for instance
equivalence (or in other words equality in rule heads) [2].

The main purpose of this deliverable is to present the first prototype of a rule reasoner for
WSML-Flight 2.0 and WSML-Rule 2.0. In this deliverable, we focus on describing the
changes made to the Datalog reasoner IRIS in order to support the new features introduced
in WSML-Flight 2.0 and WSML-Rule 2.0.

Reasoning is of interest to various components in the Web Enabled Service Platform layer
and more particularly for developers of components in work packages WP5 Service Location
and WP6 Service Construction, for which reasoning is basic infrastructure in the process of
service discovery and composition. Furthermore, all use-cases (WP7, WP8 and WP9) have
certain dependencies on the reasoning component.

1.2 Structure of the document
The remainder of this deliverable is structured as follows: Section 2 provides a reflection on
the original specification of this deliverable. The installation and configuration of the software
and an example execution for reasoning is described in section 3, whereas the software itself
is described in section 4. Finally, in section 5 a conclusion of the deliverable is given, which
also provides information on where to download the prototype reasoner.

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 7 of 15

2. Reflection on the Specification
The implementation of a prototype reasoner for the rule-based language variants WSML-
Flight 2.0 and WSML-Rule 2.0 has been realized without any changes from the original
specification. However, the comparison of the performance of the developed prototype
reasoner with the theoretical complexity results for the reasoning tasks for the language has
not been done yet.

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 8 of 15

3. Installation and Configuration
In order to install and configure the reasoning framework, a Java Virtual Machine (version >
1.5) is required. The WSML2Reasoner is provided as a Java implementation and can be
downloaded from the WSML2Reasoner website. The WSML2Reasoner software is licensed
under the GNU lesser GPL (LGPL). However, there are three release variants in accordance
with the license agreements for the bundled reasoning engine libraries:

• LGPL: This release includes all the LGPL libraries used by WSML2Reasoner,
including the IRIS and PELLET3 reasoning engines.

• GPL: In addition to the LGPL libraries and packages, this release includes the MINS
reasoning engine, which is licensed under the GNU GPL.

• Proprietary: This release version does not include any further libraries or reasoning
engines. However, it does include wrapper classes that allow the WSML2Reasoner
framework to use the KAON24 reasoning engine.

The package of the WSML2Reasoner framework consists of the following components:

• wsml2reasoner-src-x.x.x.zip: The source code of the reasoning framework.

• wsml2reasoner-javadoc-x.x.x.zip: The JavaDoc of the reasoning framework API.

• wsml2reasoner-x.x.x.jar:

• lib folder: The required and optional libraries.

In order to use the WSML2Reasoner framework both the wsml2reasoner-x.x.x.jar and the
libraries found in the lib folder have to be on the class path. Figure 1 shows an example
execution for reasoning on an ontology defined in the file specified in Appendix 1. The file
name “example.wsml” will be used to address this content. In the example components of
the WSMO4J object model are used, see the WSMO4J programmers guide for more
information5. For the sake of simplicity, exceptions are not handled in the example.

3 Pellet: The Open Source OWL Reasoner, http://clarkparsia.com/pellet/ [28.08.2009]
4 KAON2, http://kaon2.semanticweb.org/ [28.08.2009]
5 WSMO4J programmers guide, http://wsmo4j.sourceforge.net/doc/wsmo4j-prog-guide.pdf
[28.09.2009]

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 9 of 15

public class Example {

 public static void main(String[] args) throws IOException, ParserException,

 InvalidModelException, InconsistencyException {

 // Create a parser and parse the example.wsml file. For simplicity we do

 // not take care of exceptions at the moment.

 Parser parser = Factory.createParser(null);

 TopEntity[] identifiables = parser

 .parse(new FileReader("example.wsml"));

 // We can be sure here, that we only parse a single ontology.

 Ontology ontology = (Ontology) identifiables[0];

 // Create a query, that should bind x to both instances A and B.

 String query = "p(?x)";

 // Define the desired reasoner by setting the corresponding values in

 // the parameters. Here IRIS reasoner with well-founded semantics is

 // used.

 Map<String, Object> params = new HashMap<String, Object>();

 params.put(WSMLReasonerFactory.PARAM_BUILT_IN_REASONER,

 WSMLReasonerFactory.BuiltInReasoner.IRIS_WELL_FOUNDED);

 // Create the reasoner using the previously defined parameters and the

 // default reasoner factory.

 LPReasoner reasoner = DefaultWSMLReasonerFactory.getFactory()

 .createRuleReasoner(params);

 // Register the ontology.

 reasoner.registerOntology(ontology);

 // Create the logical expression factory.

 LogicalExpressionFactory factory = Factory

 .createLogicalExpressionFactory(null);

 // Transform the query in string form to a logical expression object.

 LogicalExpression expression = factory.createLogicalExpression(query,

 ontology);

 // Execute the query and do something with the result of the query.

 Set<Map<Variable, Term>> bindings = reasoner.executeQuery(expression);

 }

}

Figure 1: Reasoning example

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 10 of 15

Apart from its integrated use in the WSML2Reasoner framework the IRIS reasoner can also
be used as a standalone Datalog reasoner. IRIS is provided as a Java implementation. It is
available under the GNU lesser general public licence (LGPL) and can be downloaded
separately from the IRIS project website. The download package consists of the following
components:

• JavaDoc: The JavaDoc of the reasoner API is contained in the “build” folder.

• Source code: The source code of the IRIS reasoner is contained in the “build” folder.

• Optional libraries: Some optional libraries are contained in the “lib” folder

• User guide: A user guide describing the basic notions, the architecture and the usage
of the IRIS reasoner is contained in the “doc” folder.

• iris-x.xx.jar: The IRIS reasoner library (where x.xx stands for the version of the IRIS
reasoner). This library has to be on the class path in order to use the IRIS reasoning
engine.

• iris-parser-x.xx.jar: The parsers which parses Datalog programs in string or file form
into the representation required by the IRIS reasoner. Note that the iris-x.xx.jar file
has to be on the class path in order to parse a Datalog program.

• iris-app-x.xx.jar: Contains demos and performance stress tests.

IRIS does not need any configuration to be runnable, the predefined parameters allow for out
of the box reasoning. However, a dedicated configuration object can be used to configure the
reasoner. For instance, the configuration object allows to define which evaluation strategy to
use or how to deal with equality in rule heads.

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 11 of 15

4. Software Description
The implementation of the prototype reasoner for WSML-Flight 2.0 and WSML-Rule 2.0
follows the guidelines specified in D3.2.1 Framework and APIs for integrated reasoning
support. The reasoner uses the Java programming language and is integrated in the
reasoning framework WSML2Reasoner. The reasoner can be used with various underlying
Datalog reasoning engines. In order to fit into the existing reasoner framework, the reasoner
provides implementations for the following interfaces:

• DatalogBasedWSMLReasoner: An implementation of this interface takes care of
axiomatization, normalization and generation of Datalog rules of WSML expressions.
The Datalog rules are represented by a generic object model. These rules are then
passed on to an external reasoning engine represented by a concrete
implementation of a DatalogReasonerFacade.

• DatalogReasonerFacade: An implementation of this interface converts the generic
Datalog object model into the representation required by the underlying Datalog
reasoning engine. The prototype reasoner provides such facades for the following
Datalog reasoners: IRIS, Kaon2, Mins and XBS.

WSML-Flight 2.0, respectively WSML-Rule 2.0, differ from WSML-Flight 1.0, respectively
WSML-Rule 1.0, by supporting the new features inherited from WSML-Core 2.0. In particular,
WSML-Flight 2.0 and WSML-Rule 2.0 now support instance equivalence (or in other words
equality in rule heads), which allows the declaration that different instance identifiers (IRIs)
refer to the same object. Additionally, WSML-Flight 2.0 and WSML-Rule 2.0 have been
aligned with the emerging Rule Interchange Format (RIF) standards to support the missing
built-in data types, functions and predicates6 in order to provide better interoperability.

The Datalog reasoner IRIS, which is also written in the Java programming language, has
been modified in order to support the new features introduced and required by WSML-Flight
2.0 and WSML-Rule 2.0. This is particularly important, since both WSML-Flight 2.0 and
WSML-Rule 2.0 are translated to Datalog programs and therefore rely on the Datalog
reasoner to cover the required features. Note that instance equivalence is inherited from
WSML-Core 2.0, therefore, the corresponding changes done to the Datalog reasoner are
described in D3.2.2.

4.1 RIF data types and built-in predicates
The Rule Interchange Format (RIF) is a W3C working group7 that develops standards for
exchanging rules in the context of modern rule systems and the World Wide Web. RIF
enables the semantic and syntactic description of rule systems, which can be further used to
exchange axiomatic knowledge between other systems. RIF includes a framework for
defining logic dialects, several concrete dialects, data type definitions and built-in predicates.

Both WSML-Flight 2.0 and WSML-Rule 2.0 are translated to Datalog programs in order to
perform reasoning. Consequently, the Datalog reasoner IRIS has been updated to support a
variety of RIF built-in data types, predicates and functions that have been identified as being
relevant for WSML [2]. For the built-in data types, predicates and functions, IRIS provides
new constructors respectively predicate names to "instantiate" them.

6 RIF Datatypes and Built-Ins, http://www.w3.org/2005/rules/wiki/DTB [28.08.2009]
7 RIF working group, http://www.w3.org/2005/rules/wiki/RIF_Working_Group [28.08.2009]

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 12 of 15

The new supported data types are:

• rdf:text: An internationalized text consisting of a string value and a language tag
indicating its spoken language, e.g. "Family Guy@en" denoting an English text,
"Padre de familia@es" denoting a Spanish text.

• rdf:XMLLiteral: Represents any valid XML fragment, e.g. "<tag>text</tag>".

• xs:yearMonthDuration: Derived from xs:duration by restricting its values to contain
only the year and month components.

• xs:dayTimeDuration: Derived from xs:duration by restricting its values to contain only
the day, hours, minute, seconds components.

The new supported built-in functions and predicates are:

• Data type conversion functions: Various functions to convert from one data type to
another.

• Data type guarding predicates: Predicates to check if a specified term is of the
specified data type or not.

• String functions: Various predicates representing functions to manipulate strings,
such as functions to compare or concatenate strings.

• String predicates: Various predicates to check if a specified strings fulfills a specified
requirement, such as to check if a string ends with a given string or to check if a given
string contains a given string.

• Date, time and duration functions: Various functions to extract elements from the
complex data types date, time and duration.

The WSML 2.0 reasoning framework WSML2Reasoner, particularly the corresponding IRIS
facade, has been updated to support the new RIF features described above. The
transformation from Datalog programs to the IRIS object model has been aligned to the new
required features provided by this specific Datalog reasoner. Particularly, the
WSML2Reasoner correctly instantiates the new components representing the RIF data
types, predicates and functions. For example, the WSML function wsml#stringCompare is
mapped to the RIF function func:compare by creating the corresponding element in the
IRIS object model. Note that the conversion from WSML to Datalog programs has not been
effected.

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 13 of 15

5. Conclusions
In this deliverable, we presented a first prototype implementation of a reasoner for the rule-
based WSML language variants WSML-Flight 2.0 and WSML-Rule 2.0. The prototype
reasoner is able to use various underlying Datalog reasoning engines, such as IRIS, Kaon2
or XBS. Due to added expressivity in WSML-Core 2.0, WSML-Flight 2.0 and WSML-Rule 2.0
the underlying Datalog reasoner needs to support additional features, particularly, instance
equivalence (or in other words equality in rule heads) and the RIF built-in data types,
predicates and functions. Therefore, the Datalog reasoner IRIS has been updated in order to
support the mentioned features.

The prototype reasoner is ready for use and can be downloaded from the WSML2Reasoner
project website. The Datalog reasoner IRIS can be downloaded separately from the IRIS
project website. For both projects, there are also nightly-builds available for download.

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 14 of 15

6. References
[1] B. Bishop, F. Fischer, P. Hitzler, M. Krötzsch, S. Rudolph, Y. Trimponias, G. Unel:
Defining the features of the WSML-DL v2.0 language, SOA4ALL deliverable D3.1.3.

[2] F. Fischer, B. Bishop: Defining the features of the WSML-Core v2.0 language, SOA4ALL
deliverable D3.1.2.

[3] F. Fischer: Defining the features of the WSML-Rule v2.0 language, SOA4ALL deliverable
D3.1.4.

 SOA4All –FP7215219 D3.2.3 First Prototype Reasoner for WSML-Rule v2.0

© SOA4All consortium Page 15 of 15

7. Appendix
7.1 Example Ontology
wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-full"

namespace { _"http://www.example.org/example#",

 wsml _"http://www.wsmo.org/wsml/wsml-syntax#" }

ontology exampleOntology

 concept C1

 concept C2

 instance A memberOf C1

 name hasValue _string("Gordon Freeman")

 instance B memberOf C2

 nomen hasValue _string("Gordon Freeman")

 axiom exampleAxiom definedBy

?x = ?y :- ?x[name hasValue ?name]

and ?y[nomen hasValue ?nomen]

and wsml#stringEquals(?name, ?nomen).

 p(?x) :- ?x memberOf C2.

