

Project Number: 215219
Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D3.2.5 Second Prototype Repository

Reasoner for WSML-Core v2.0
Activity N: Activity 2

Work Package: WP3

Due Date: 28/02/2010

Submission Date: 28/02/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible for Deliverable: UIBK

Revision: 1.1

Author(s): Daniel Winkler, UIBK
Barry Bishop, UIBK

Reviewer(s): Barry Norton

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 2 of 21

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 25/01/2010 First Draft Daniel Winkler

0.2 15/02/2010 Addition of minor items and proof
reading

Barry Bishop

1.0 24/02/2010 Corrections after peer review. Barry Bishop

1.1 28/02/2010 Format corrections Julia Wells (ATOS)

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 3 of 21

Table of Contents

EXECUTIVE SUMMARY __ 5

1. INTRODUCTION __ 6

1.1 PURPOSE AND SCOPE __ 6

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 7

2. REFLECTION ON THE SPECIFICATION ___________________________________ 8

3. INSTALLATION AND CONFIGURATION ___________________________________ 9

3.1 INSTALLATION ___ 9

3.2 CONFIGURATION ___ 9

3.3 REASONING EXAMPLE ___ 10

4. SOFTWARE DESCRIPTION __ 13

4.1 EQUALITY IN RULE HEADS __ 13

4.2 BUG IN EVALUATION ___ 14

4.3 STRATIFICATION __ 14

4.4 SEMI-NAIVE EVALUATION ___ 15

4.5 W3C XML SCHEMA DATATYPES____________________________________ 15

5. CONCLUSIONS __ 17

6. REFERENCES ___ 18

7. APPENDIX __ 19

7.1 NAIVE DATALOG EVALUATION _____________________________________ 19

7.2 SEMI-NAIVE DATALOG EVALUATION ________________________________ 19

7.3 IMPROVED SEMI-NAIVE DATALOG EVALUATION ______________________ 20

List of Listings
Listing 1: Reasoning Example

Listing 2: WSML-Core v2.0 example file (instance-equality.wsml)

Listing 3: Results to query specified in Listing 1

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 4 of 21

Glossary of Acronyms

Acronym Definition

D Deliverable

DL Description Logic

EC European Commission

WP Work Package

WSML Web Service Modelling Language

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 5 of 21

Executive summary

In order to automate tasks such as discovery and composition, Semantic Web Services must
be described in a well-defined formal language. The Web Services Modelling Language
(WSML) is based on the conceptual model of the Web Service Modelling Ontology [2]
(WSMO) and as such can be used for modelling all aspects of Web services and associated
ontologies. WSMO-Lite and MicroWSMO service descriptions include annotation
mechanisms for linking services, operations and message types with entities from ontologies
described using WSML.

WSML is actually a family of several language variants, each of which is based upon a
different logical formalism. The family of languages are unified under one syntactic umbrella,
with a concrete syntax for modelling ontologies, web services, etc, according to the WSMO
meta-model, which forms the basis of WSMO-Lite and MicroWSMO.

This deliverable, along with others, describes the second prototype repository reasoner for
WSML-Core v2.0, in particular improvements as well as bug fixes to the extensions for
instance equivalence [1]. The software development process for the reasoning components
has been more or less continuous over the last twelve months and many issues and bugs
have been discovered and dealt with. However, the main contribution described in this
deliverable concerns two algorithms that extend classical semi-naive evaluation for recursive
Datalog programs. These extensions are required when processing logical programs that
contain rules that infer the equivalence of two objects.

The WSML-Core v2.0 reasoning component of the WSML2Reasoner framework translates
ontologies that are described using WSML-Core to Datalog with specific extensions (one of
which is rue-head equality). The reasoner used for processing the Datalog representation is
IRIS [9], an open-source, Java implementation that is developed as part of the WSML
reasoning framework.

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 6 of 21

1. Introduction

The Web Service Modelling Language WSML is a formal language for the specification of
ontologies and different aspects of Web services, based on the conceptual model of
WSMO [2]. Several different WSML language variants exist, which are based upon different
logical formalisms. The main formalisms exploited for this purpose are Description
Logics [11], Logic Programming [5], and the intersection of these two families of logics,
namely ‘Description Logic Programs’ [10], which is the basic of WSML-Core. Furthermore,
WSML has been influenced by F-Logic [12] and frame-based representation systems.

This deliverable discusses the implementation of the second prototype repository reasoner
for WSML-core v2.0. The WSML-Core v2.0 language aims to provide a minimal but useful
expressivity and is inspired by minimal representation from project LarKC1 and DLP [10]. It
belongs to a set of related deliverables, which discuss the second prototype implementations
of several WSML 2.0 variants, namely:

• D3.2.5 Second Prototype Repository Reasoner for WSML-Core v2.0

• D3.2.6 Second Prototype Rule Reasoner for WSML Rule v2.0

• D3.2.7 Second Prototype for Description Logic Reasoner for WSML DL v2.0

1.1 Purpose and Scope
This document is a progress report on the software implementation for the second prototype
repository reasoner for WSML-Core v2.0. Its main audience are developers who wish to
integrate the WSML reasoning framework in to their components and others who want to
understand some of the issues regarding processing information represented using this
formalism.

The semantics of WSML allow the modelling of knowledge using these formal languages
with well-defined semantics. In the case of SOA4All, the reasoner is expected to be used for
semantic discovery and Web service composition.

Reasoning for WSML-Core v2.0 is performed by transforming the WSML representation to
an extended Datalog, which is then processed by a separate reasoning engine. This engine
and the transformation process must provide the necessary WSML-Core v2.0 semantics.
The default reasoner used by the WSML2Reasoner framework is IRIS, which has been
developed internally at UIBK to support several of the WSML variants.

The objective of this deliverable is to provide information about the features of the second
prototype repository reasoner for WSML-Core v2.0. In particular, it explains the changes
required for the instance equivalence feature, i.e. equality in rule heads, which was
implemented as part of the implementation work of the first prototype WSML-Core v2.0
version in the Datalog reasoner IRIS2 and the WSML2Reasoner3 reasoning framework. This
first version exhibited incorrect behaviour in certain circumstances and some unexpected
modifications were required to the reasoning algorithms.

1 LarKC – European Project http://www.larkc.eu/
2 IRIS Reasoner http://www.iris-reasoner.org
3 WSML2Reasoner http://www.wsml2reasoner.org/

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 7 of 21

1.2 Structure of the document
The structure of this deliverable is as follows: Section 2 discusses the actual implementation
and its changes according to the Specification. Section 3 describes how to install and use the
prototype reasoner for WSML-Core v2.0. The main implementation of the prototype as well
as the algorithms extending conventional semi-naive Datalog evaluation are described in
Section 4. Section 5 concludes with a short summary of the deliverable and references can
be found in Section 6.

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 8 of 21

2. Reflection on the Specification
The WSML-Core v2.0 language was designed to provide a level of expressivity that
intersects both rule-based languages and descriptions logics, i.e. broadly similar to DLP [10].
The result is a language that has minimal, but useful expressivity whose computational
requirements scale well in relation to the size of the knowledge base.

WSML-Quark [4] is a lightweight and intuitive language variant that enables the hierarchical
organization of concepts. It forms the most basic (and inexpressive) layer of the WSML
language variants hierarchy and is suited for simple classification systems.

For compatibility reasons, WSML-Core v2.0 includes instance equality, which allows the
inference that two distinct identifiers refer to the same real world object, e.g. that ‘FredJones’
and ‘Mr.F.Jones’ are one and the same thing. To accomplish this, the IRIS [9]
implementation and the WSML2Reasoner framework have been modified to add new
transformation and reasoning behaviour.

The updated implementation described in this report provides the API and behaviour to
accurately support the WSML-Core v2.0 language as specified in deliverable D3.1.2 Defining
the features of the WSML-Core v2.0 language. This implementation will also support
reasoning with WSML-Quark ontologies.

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 9 of 21

3. Installation and Configuration
3.1 Installation
In order to install and configure the reasoning framework, a Java Virtual Machine (version 1.5
or later) is required. The WSML2Reasoner binary distribution can be obtained from
sourceforge4 (or via the WSML2Reasoner homepage5).

The latest version of WSML2Reasoner (0.7.0) includes all the latest bundled software
including IRIS (version 0.6.0), WSMO4J (version 2.0.1 – a separate branch of the main
trunk) and Elly (version 0.1.0).

The WSML2Reasoner source code can be downloaded from the sourceforge subversion
repository6, which provides the features described in this deliverable.

The WSML2Reasoner software is licensed under the GNU Lesser GPL (LGPL). However,
there are three release variants in accordance with the license agreements for the bundled
reasoning engine libraries:

1. LGPL: This release includes all the LGPL libraries used by WSML2Reasoner,
including the IRIS and PELLET reasoning engines.

2. GPL: In addition to the LGPL libraries and packages, this release includes the MINS
reasoning engine, which is licensed under the GNU GPL.

3. Proprietary: This release version does not include any further libraries or reasoning
engines. However, it does include wrapper classes that allow the WSML2Reasoner
framework to use the KAON2 reasoning engine.

The package of the WSML2Reasoner framework consists of the following components:

1. wsml2reasoner-src-x.x.x.zip: The source code of the reasoning framework.

2. wsml2reasoner-javadoc-x.x.x.zip: The JavaDoc of the reasoning framework API.

3. wsml2reasoner-x.x.x.jar: The main executable.

4. lib folder: The required and optional libraries.

To use the WSML2Reasoner one has to use the binaries located in the WSML2Reasoner
Java archive file or compile the source and add the libraries found in the lib-folder to the
classpath.

3.2 Configuration
The WSML2Reasoner framework provides two ways to obtain a reasoner instance. The first
method to create a WSML-Core reasoner is by passing a WSML-Core ontology when calling
the createWSMLReasoner method of the DefaultWSMLReasonerFactory . This will
determine the according WSML variant of the specified ontology and create a predefined
WSML reasoner. However, one can also create a WSML-Core reasoner without specifying
an ontology by calling createCoreReasoner. Optionally, the underlying Datalog reasoner
type can also be specified using the Map<String, Object> params parameter.

4 https://sourceforge.net/projects/wsml2reasoner/files/
5 http://tools.sti-innsbruck.at/wsml2reasoner/download
6 svn co https://wsml2reasoner.svn.sourceforge.net/svnroot/wsml2reasoner wsml2reasoner

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 10 of 21

3.3 Reasoning Example
Listing 1 gives an example Java program that executes a query against a WSML-Core
ontology. The ontology is given in Listing 2 (filename ‘instance-equality.wsml ‘). For the
sake of simplicity exceptions are also not handled in the example.

As indicated by the filename, the example ontology shows the use of instance equality in a
rule head, as described in detail in Section 4.1.

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 11 of 21

public class Example {

 public static void main(String[] args) throws Exception {

 // Create a parser and parse the example ontlogy fi le. For simplicity we do

 // not take care of exceptions at the moment.

 Parser parser = Factory.createParser(null);

 TopEntity[] identifiables = parser

 .parse(loadFile("instance-equality.wsml"));

 // We can be sure here, that we only parse a single ontology.

 Ontology ontology = (Ontology) identifiables[0];

 // Create a query, that should bind x to both insta nces A and B.

 String query = "p(?x)";

 // Instantiate the desired reasoner using the defau lt reasoner factory.

 LPReasoner reasoner = DefaultWSMLReasonerFactory. getFactory()

 .createCoreReasoner(null);

 // Register the ontology.

 reasoner.registerOntology(ontology);

 // Create the logical expression factory.

 LogicalExpressionFactory factory = Factory

 .createLogicalExpressionFactory(null);

 // Transform the query in string form to a logical expression object.

 LogicalExpression expression = factory.createLogi calExpression(query,

 ontology);

 // Execute the query and assign the result to ‘bind ings’.

 Set<Map<Variable, Term>> bindings = reasoner.exec uteQuery(expression);

 }

}

Listing 1: Reasoning Example

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 12 of 21

The example WSML-Core v2.0 ontology defined in Listing 2 (instance-equality.wsml)
can be used to show the instance equality feature. The Ontology defines two concepts with
two instances; one of them has an attribute.

Listing 3 gives the results for the query ‘?- p(?x) ’, which returns both instances since they
are set to be equal in the axiom ‘equalInHead ’.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-core"

namespace { _"http://simple#"

}

ontology simple

concept C1

concept C2

instance a memberOf C1

 name hasValue aName

instance b memberOf C2

axiom equalInHead definedBy

 a = b :- true.

 p(?x) :- ?x memberOf C2 and ?x[name hasValue aName].

Listing 2: WSML-Core v2.0 example file (instance-equality.wsml)

2 results to the query:

(1) - {?x=http://simple#b}

(2) - {?x=http://simple#a}

Listing 3: Results to query specified in Listing 1

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 13 of 21

4. Software Description
WSML-Quark [4] is a lightweight and intuitive language variant that enables the hierarchical
organization of concepts. It forms the most basic layer of the WSML language variants
hierarchy. WSML-Core is semantically layered upon WSML Quark, and has been updated
(version 2.0) to align with results of ongoing standardization efforts (e.g. OWL 2 RL) as well
as research results such as the L2 language, which has similar language features.

The WSML2Reasoner framework is a collection of reasoning components for reasoning with
all the WSML language variants. It includes many normalisation and axiomatisation
algorithms, along with components for translating between WSML and other established
formalisms, e.g. Datalog, Description Logics, OWL, etc.

The Datalog reasoner IRIS is included in this framework and is developed in conjunction with
the other components. Therefore, IRIS has also been modified in order to support the new
features introduced with the new versions of the WSML language variants[3]. In fact IRIS
now supports all the WSML variants (Quark, Core, Flight, Rule and even DL) as will be
reported in later deliverables.

The following sections describe some of the more important development activities.

4.1 Equality in rule heads
WSML-Core v2.0 introduces instance equivalence, also known as equality in rule heads. In
WSML this allows the declaration that different instance identifiers (IRIs) refer to the same
object. In Datalog equality in rule heads allows the declaration of equivalence between
constant terms, such as strings or integers. Equality in rule heads has been integrated into
the Datalog reasoner IRIS. Two approaches have been implemented to realize this feature, a
rewriting technique and integrated support for equivalence in rule heads:

• Rewriting: For a given Datalog program containing rules with equality in the head, this
technique creates new rules to provide support for equivalence in rule heads. Firstly,
all occurrences of equality in the head of a rule are replaced by a special predicate (in
the following examples denoted by equivalent). Then, new rules are created to
ensure the correct evaluation of rule head equality. Note that rule (1) and (2) are
unsafe rules, since the property “each variable in the rule head appears in a non-
negated, ordinary relation” is violated.

(1) equivalent(?X,?X) :- .
(2) equivalent(?X,?Y) :- ?X = ?Y
(3) equivalent(?X,?Y) :- equivalent(?Y,?X).
(4) equivalent(?X,?Y) :- equivalent(?X,?Z), equival ent(?Z,?Y).

These rules basically provide the semantics of ‘equivalence’, i.e. all objects are
equivalent to themselves (1), objects that are equal are equivalent (2), equivalence is
symmetric (3) and transitive (4).
The rewriting algorithm then creates new rules for each predicate occurring in the
program, this includes both intentional and extensional predicates. The number of
new rules depends on the arity of the predicates. For each predicate p this technique
creates n new rules, where n is the arity of p. Assume a predicate
hasName(?X,?Y,?Z) with arity 3. For this predicate the following three rules are
created:

(1) hasName(?U,?Y,?Z) :- hasName(?X,?Y,?Z), equival ent(?X,?U).

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 14 of 21

(2) hasName(?X,?U,?Z) :- hasName(?X,?Y,?Z), equival ent(?Y,?U).
(3) hasName(?X,?Y,?U) :- hasName(?X,?Y,?Z), equival ent(?Z,?U).

This may create a large number of additional rules. Furthermore, it is required, that
unsafe rules are created. However, an advantage of this approach is, that the
resulting program can be evaluated using any Datalog reasoner that supports unsafe
rules, regardless of whether the reasoner explicitly supports equivalence in rule
heads or not. This brings support for equality in rule heads with reasoners which do
not support it.

• Integration: Due to the disadvantages of the approach described above (the
requirement for the Datalog reasoner to support unsafe rules and rule/complexity
explosion), an alternative method for supporting equivalence in rule heads has been
integrated into IRIS by modifying the way rules are evaluated.
During evaluation of a Datalog program the reasoner keeps track of all the terms
between which equivalence has been inferred. These equivalencies are maintained in
a special data structure that keeps track of every equivalence class (set of objects
that are equivalent to each other). During rule evaluation, which basically consists of
executing natural joins over the predicates found in rule bodies, instances considered
to be equal to 1) objects that are physically the same (in memory), 2) objects that are
semantically equal according to the definitions of [7] and objects that are equal to
objects that are in the same equivalence class. When evaluating rules, this equality is
taken into account by the reasoner in order to compute the correct minimal model of
the Datalog program. For instance, when using a view p(?X,'a') over a relation,
the evaluation returns all tuples (x,y) where x is some term and y is any term
equivalent to 'a' (note that 'a' is equivalent to itself).

4.2 Bug in Evaluation
The integrated evaluation strategy had a bug related to direct evaluation of Datalog rules. As
example consider the following rule base

a = b :- true.
test() :- a = b.

for which IRIS did not infer test() . The reason was that the updated evaluation strategy
had not been considered when evaluating equality of two non-variable terms. Due to
optimizations, the dedicated equality built-ins are used to determine equality of concrete
terms. This has however the result that two string terms, say 'a' and 'b' are not equal
when using the built-in equality that checks for string equality.

The bug fix is straight-forward, the strategy for evaluating equality was changed to consider
the internally maintained equivalence classes data structure if the built-in equality check fails
to infer equality of two terms.

4.3 Stratification
Stratified negation semantics are applied to a rule-set to maintain monotonic behaviour in the
presence of default negation. The principle requires that the rules can be grouped in to
strata, where for any rule, the positive literals of the rule body have a dependency only on
rules in the same or lower strata and the negative literals have a dependency only on rules in
lower strata.

However, the ability for a rule to infer the equivalence of to objects means that it has the

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 15 of 21

ability to affect the outcome of any other rule and hence any rule with equality in the head
must exist in the lowest stratum, i.e. either it must have no direct or indirect dependency on a
negative literal or else the negative literal cannot exist in the head of any other rule. If this is
not the case, then the stratified negation semantics cannot be applied.

The stratification algorithms in IRIS have been updated accordingly.

4.4 Semi-naive Evaluation
A more serious problem arises when rule head equality interferes with the evaluation
technique "semi-naive evaluation", which is the default forward-chaining evaluation
technique. Semi-naïve evaluation reduces the number tuples considered during joins by
attempting to avoid generating the same inferences in the same way. As such it is an
improvement on "naive evaluation" which simply evaluates each rule over the entire contents
of the relations associated with the rule body predicates. Appendix 7.1 and 7.2 list formal
algorithms for naive and semi-naive evaluation, respectively.

The advantage, and thus problem of semi-naive evaluation is that tuples that were already
tested for joining, are no more considered in following iterations. Considering ground
statements p(a,b) and q(c,d) and a rule

r(x,z) :- p(x,y), q(y,z).

semi-naive evaluation iterates the contents of the relation for p, but does not find anything
that joins (and so does not fire the rule). If at some later point in the evaluation b = c is
inferred, then the ∆Pi 's do not contain these already considered tuples, thus p(a,b) and
q(c,d) are not joined to infer r(a,d) . This problem does not occur if IRIS uses naive
evaluation, since this strategy considers all tuples in every iteration.

One workaround is thus to use the naive evaluation strategy as fallback evaluation for the
case that a new tuple in the equality relation is computed, i.e., ∆EQUAL is not empty. This has
the effect that the evaluation benefits from the advantages of semi-naive evaluation, but for
the case of a computed equivalence the algorithm swaps to a naive evaluation to re-compute
using already considered tuples. An even simpler approach would be to always use naive
evaluation for the lowest stratum of rules whenever any rule has equality in the head. (As
mentioned above, all rules with equality in the head must exist in the lowest stratum.)

A more sophisticated approach is to make use of the ∆EQUAL relation directly. The idea is to
compute relations by means of the semi-naïve evaluation and use ∆EQUAL for a post-
processing step to handle possibly generated equalities. Thus, when joining the predicates
p(x,y) and q(y,z) , the equality relation is used in between the join of p and q. Naively,
this results in a rewriting of the join to p(x,eq1), EQUAL(eq1, eq2), q(eq2,z). The
EQUAL relation clearly needs to be defined as reflexive, symmetric and transitive in order to
capture all necessary joins.

The rewriting of the rule is correct, but inefficient from an implementation point of view, thus
Appendix 7.3 defines a formal approach on how to compute the minimal model of a Datalog
program in a more efficient manner. The improvement ignores the implicitly defined equality
given by equality to itself (such that the relation is not reflexive) and use the equality relation
solely to capture equalities that are implied by the semantics of the Datalog Program.

4.5 W3C XML Schema Datatypes
Even though [1] does not mention built-in datatypes, the WSML specification [6] does and
thus the underlying reasoner needs updates in order to be compliant to the current working
draft (version 1.1 part 2) of the W3C XML Schema Definition Language (XSD) [7].

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 16 of 21

For reasons of backward compatibility the changes in the definition required the following
updates to the original implementation based on XML Schema Definition Language version 1
part 2:

• Implementation of built-in datatypes yearMonthDuration and dayTimeDuration

• Various updates to Date/time Datatypes

• The rdf:text literal was renamed to rdf:PlainLiteral [8]

These changes are in addition to the new datatypes specified in [13].

The remaining issue is related to the notions of “equality” and “identity” for datatypes, the
definition of float and double data values serves as example for the distinction: “The
(numeric) equality of values is now distinguished from the identity of the values themselves;
this allows float and double to treat positive and negative zero as distinct values, but
nevertheless to treat them as equal for purposes of bounds checking. This allows a better
alignment with the expectations of users working with IEEE floating-point binary
numbers” [7].

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 17 of 21

5. Conclusions
The introduction of support for rule-head equality in IRIS brought some unexpected
computational issues. This deliverable has discussed several bugs that have arisen while
implementing this extension. The main focus, however, is the evaluation strategy that is used
for evaluating Datalog programs that make use of rule-head equality. Semi-naïve evaluation,
which results in notable evaluation speed-up for most Datalog programs, does not behave
correctly and extensions to this evaluation strategy have been devised. The easier and more
intuitive solution is to use naïve evaluation whenever rule-head equality occurs. The more
complex approach, which needs to be evaluated for performance, utilizes the idea of semi-
naïve evaluation and enhances it by post-processing to retain correctness.

Further improvements for support for XML Schema datatypes have been implemented.

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 18 of 21

6. References
[1] Unel, G., Keller, U., Fischer, F. and Bishop, B., SOA4All deliverable “D3.1.2 Defining

the Features of the WSML-Core v2.0 Language”, 2009.

[2] Roman, D., Lausen, H. and Keller, U., “Web Service Modeling Ontology (WSMO)”
WSMO Working Draft, 2004.

[3] Pressnig, M., SOA4All deliverable “D3.2.2 First Prototype Reasoner for WSML-Core
v2.0”, 2009.

[4] Unel, G., Keller, U., Fischer, F. and Bishop, B., SOA4All deliverable “D3.1.1 Defining
the Features of the WSML-Quark Language”, 2009.

[5] Ullman, J. D., "Principles of Database and Knowledge-Base Systems”, vol. I.
Chapter 3 (Logic as a Data Model), 1988.

[6] The WSML Working Group. "D16.1v1.0 WSML Language Reference”, 2008.

[7] Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C. M., Thompson, H. S.
“W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes”, W3C
Working Draft, 3 December 2009.

[8] Bao, J., Hawke, S., Motik, B., Patel-Schneider, P. F., Polleres, A., "rdf:PlainLiteral: A
Datatype for RDF Plain Literals”, W3C Recommendation, 27 October 2009.

[9] The IRIS Datalog reasoner website: http://www.iris-reasoner.org/

[10] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. 2003. Description logic
programs: combining logic programs with description logic. In Proceedings of the
12th international Conference on World Wide Web (Budapest, Hungary, May 20 -
24, 2003). WWW '03. ACM, New York, NY, 48-57. DOI=
http://doi.acm.org/10.1145/775152.775160

[11] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P.F.
(Eds.), The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[12] Kifer, M., Lausen, G., and Wu, J. 1995. Logical foundations of object-oriented and
frame-based languages. J. ACM 42, 4 (Jul. 1995).

[13] Toma, I., Bishop, B., Fischer, F, SOA4All deliverable “D3.1.4 Defining the features
of the WSML-Rule v2.0 language”, 2009.

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 19 of 21

7. Appendix
7.1 Naive Datalog Evaluation
Algorithm 1 [5]: Evaluation of Datalog Equations.

INPUT: A collection of datalog rules with EDB predicates r1, ..., rk and IDB predicates
p1, ..., pm . Also, a list of relations R1, ..., Rk to serve as values of the EDB
predicates.

OUTPUT: The last fixed point solution to the datalog equations obtained from these rules.

METHOD: Begin by setting up the equations for the rules. These equations have variables
P1, ..., Pm corresponding to the IDB predicates, and the equation for Pi is Pi =
EVAL(pi, R1, ..., Rk, P1, ..., Pm) . We then initialize each Pi 's. When no more
tuples can be added to any IDB relation, we have our desired output. The details are given in
the following program:

for i := 1 to m do

 Pi := Ø;

repeat

 for i := 1 to m do

 Qi := Pi; /* save old values of Pi's */

 for i := 1 to m do

 Pi := EVAL(pi, R1, ..., Rk, Q1, ..., Qm);

until Pi = Qi for all i, 1 <= i <= m;

output Pi's

The expression EVAL-RULE(r, R1, ..., Rn) computes for a rule r from the relations
R1, ..., Rn a relation R(X1, ..., Xn) with all and only the tuple (a1, ..., am)
such that, when we substitute aj for Xj , 1 <= j <= m , all the sub-goals S1, ..., Sn are
made true.

EVAL is defined as the union of EVAL-RULE(...) for each of the rules r for a predicate pi ,
projected onto the variables of the head.

7.2 Semi-Naive Datalog Evaluation
Algorithm 2 [5]: Semi-Naive Evaluation of Datalog Equations.

INPUT: A collection of rectified datalog rules with EDB predicates r1, ..., rk and IDB
predicates p1, ..., pm . Also, a list of relations R1, ..., Rk to serve as values of the
EDB predicates.

OUTPUT: The last fixed point solution to the datalog equations obtained from these rules.

METHOD: We use EVAL once to get the computation of relations started, and then use
EVAL-INCR repeatedly on incremental IDB relations. The computation is shown in the
following program, where for each IDB predicate pi , there is an associated relation Pi that
holds all the tuples, and there is an incremental relation ∆Pi that holds only the tuples added
on the previous round.

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 20 of 21

for i := 1 to m do begin

 ∆Pi := EVAL(pi, R1, ..., Rk, Ø, ..., Ø);

 Pi := ∆Pi;

end;

repeat

 for i := 1 to m do

 ∆Qi := ∆Pi; /* save old ∆P's */

 for i := 1 to m do begin

 ∆Pi := EVAL-INCR(pi, R1, ..., Rk, P1, ..., Pm, ∆Q1, ..., ∆Qm);

 ∆Pi := ∆Pi - Pi; /* remove "new" tuples that appeared befor e */

 end;

 for i := 1 to m do

 Pi := Pi ∪ ∆Pi; /* save old ∆P's */

until ∆Pi = Ø for all i;

output Pi's

The incremental relation EVAL-RULE-INCR for rule r is the union of the n relations

EVAL-RULE(r, R1, ..., Ri-1, ∆Ri, Ri+1, ..., Rn)

for 1 <= i <= n . Like with EVAL, the expression EVAL-INCR is defined as the union over
all rules r for a predicate pi .

7.3 Improved Semi-Naive Datalog Evaluation
Algorithm 3: Improved Semi-Naive Evaluation of Datalog Equations.

INPUT: A collection of rectified datalog rules that may assert rule-head equality with EDB
predicates r1, ..., rk and IDB predicates p1, ..., pm . Also, a list of relations R1,
..., Rk to serve as values of the EDB predicates.

OUTPUT: The last fixed point solution to the datalog equations obtained from these rules.

METHOD: We use EVAL once to get the computation of relations started, and then use
EVAL-INCR followed by the defined function EVAL-EQUAL repeatedly on incremental IDB
relations. The computation is shown in the following program, where for each IDB predicate
pi , there is an associated relation Pi that holds all the tuples, and there is an incremental
relation ∆Pi that holds only the tuples added on the previous round. Additionally, the relation
∆EQUAL holds all asserted instance equalities in a symmetric and transitive manner. The
relation EQUAL could be initialized as a reflexive set over all instances; this is however
avoided as self-equality is implicitly captured by the EVAL and EVAL-INCR operations.

SOA4All – FP7 – 215219 – D3.2.5 Second Prototype Reasoner for WSML-Core v2.0

© SOA4All Consortium Page 21 of 21

for i := 1 to m do begin

 ∆Pi := EVAL(pi, R1,..., Rk, Ø,..., Ø);

 Pi := ∆Pi;

end;

EQUAL := Ø; /* initialize without reflexive stateme nts */

repeat

 for i := 1 to m do

 ∆Qi := ∆Pi; /* save old ∆P's */

 EQUAL := EQUAL + ∆EQUAL;

 ∆EQUAL := EVAL-INCR(peq, R1,..., Rk, P1,..., Pm, ∆Q1,..., ∆Qm,

 EQUAL);

 ∆EQUAL := truncate(∆EQUAL); /* remove reflexive statements */

 /* EQUAL and peq are excluded in the following fr om Pi and pi */

 for i := 1 to m do begin

 ∆Pi := EVAL-INCR(pi, R1,..., Rk, P1,..., Pm, ∆Q1,..., ∆Qm);

 ∆Pi := ∆Pi + EVAL-EQUAL(pi, R1,..., Rk, P1,..., Pm,

 ∆Q1,..., ∆Qm, EQUAL);

 ∆Pi := ∆Pi - Pi; /* remove "new" tuples that appeared befor e */

 end;

 for i := 1 to m do

 Pi := Pi + ∆Pi; /* save old ∆P's */

until ∆Pi = Ø for all i and ∆EQUAL = Ø;

output Pi's and EQUAL

The algorithm makes use of the already defined EVAL-INCR to compute new tuples in the
EQUAL relation. This is done by using the equality predicate peq and the equality relation
EQUAL. Note that the resulting relation ∆EQUAL is truncated in the subsequent step, i.e. all
reflexive statements, e.g. EQUAL(a,a) , are removed from the relation as they are handled
implicitly by EVAL-INCR expression. The iteration over all predicates and resulting relations
excludes the EQUAL relation and peq predicate, they are handled explicitly in the
preceding step.

The algorithm applies a post-processing of every relation by the expression EVAL-EQUAL,
which is based on an extended version of EVAL-RULE-INCR that does not join relations
directly, rather via an intermediate EQUAL relation. This has the effect, that joins contingent
upon instance equality, which were not considered in the semi-naive evaluation, are handled
by the algorithm. Additionally, this approach is an improvement to naive evaluation, since the
join of two relations is reduced from a full join to a join of those facts that have equal
instances in the Datalog program.

The algorithm terminates for the case that all ∆Pi and additionally ∆EQUAL are empty.
∆EQUAL is thus only needed to decide the termination condition of the algorithm.

