
Project Number: 215219
Project Acronym: SOA4All
Project Title: Service Oriented Architectures for All
Instrument: Integrated Project
Thematic
Priority:

Information and Communication
Technologies

D3.4.2
WSMO-Lite: Lightweight Semantic Descriptions for

Services on the Web

Activity: Activity 2 — Core R&D Activities
Work Package: WP3 — Service Annotation and Reasoning
Due Date: M12
Submission Date: 10/3/2009
Start Date of Project: 01/03/2008
Duration of Project: 36 Months
Organisation Responsible for Deliverable: UIBK
Revision:

Author(s):
Jacek Kopecký UIBK
Tomas Vitvar UIBK
Dieter Fensel UIBK

Reviewer(s):
Carlos Pedrinaci OU
Rafa Cabero ATOS
Jean-Pierre Lorre EBM

Project co-funded by the European Commission within the Seventh Framework Programme (2007–2013)

Dissemination Level
PU Public �

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

Version History
Version Date Comments, Changes, Status Authors, Contributors,

Reviewers
0.9 3/2/2009 CMS WG draft All authors
1.0 8/3/2009 Final version after internal reviews Jacek Kopecky (UIBK),

Carlos Pedrinaci (OU),
Rafa Cabero (ATOS),
Jean-Pierre Lorre (EBM)

c© SOA4All consortium Page 2 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 7

2 INTRODUCTION 8
2.1 Alignment with SOA4All Architecture and Use Cases 8
2.2 Structure of the deliverable . 9

3 SEMANTIC SERVICE STACK 10
3.1 Non-Semantic Level . 10
3.2 Semantic Level . 11

4 WSMO-LITE SERVICE ONTOLOGY 13

5 WSMO-LITE ANNOTATIONS FOR WSDL 15

6 MINIMAL RDF REPRESENTATION OF WSMO-LITE SERVICE DESCRIPTIONS 19

7 VIEWING WSMO-LITE AS WSML 22

8 RELATED WORK 23

9 CONCLUSIONS AND FUTURE WORK 24

c© SOA4All consortium Page 3 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

LIST OF FIGURES

3.1 Semantic Service Stack . 11

5.1 Illustration of WSMO-Lite Annotations . 15

6.1 Minimal Web Service Model with WSMO-Lite Annotations 19

c© SOA4All consortium Page 4 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

LIST OF TABLES

7.1 Mapping of WSMO-Lite into WSML . 22

c© SOA4All consortium Page 5 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

GLOSSARY OF ACRONYMS

Acronym Definition
CMS WG Conceptual Models for Services Working Group
DL Description Logics
D Deliverable
EC European Commission
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
LP Logic Programming
NFP Non-Functional Property
OWL Web Ontology Language
RDFS RDF Schema
RDF Resource Description Framework
RIF Rule Interchange Format
SAWSDL Semantic Annotations for WSDL and XML Schema
SEE Semantic Execution Environment
SOA Service-Oriented Architecture
SWS Semantic Web Services
WG Working Group
WP Work Package
WRL Web Rule Language
WS-BPEL Business Process Execution Language for Web Services
WS-CDL Web Services Choreography Description Language
WSDL Web Services Description Language
WSML Web Service Modeling Language
WSMO Web Service Modeling Ontology
WSMX Web Service Execution Environment
XML Extensible Markup Language

c© SOA4All consortium Page 6 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

1 EXECUTIVE SUMMARY

In this deliverable we define WSMO-Lite, a lightweight set of semantic service descriptions
in RDFS that can be used for annotations of various WSDL elements using the SAWSDL
annotation mechanism. We exploit the standard languages of W3C including RDF and
RDFS as well as various extensions of those languages such as OWL, WSML and RIF for
semantic service descriptions.

In particular, we distinguish four kinds of semantics of services:

• functional - what the service does;

• behavioral - how to interact with the service;

• information model - the meaning of the information exchanged with the service;

• nonfunctional - other properties.

We define RDFS classes for marking ontology elements that express functional, non-
functional and information model semantics; these models are attached to the service and
its message descriptions. To describe the behavioral semantics, we attach functional de-
scriptions to the service’s operations.

We also define a minimal RDF model for expressing the information present in WSMO-
Lite service description documents, which will be used in SOA4All service registry.

c© SOA4All consortium Page 7 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

2 INTRODUCTION

Existing service specifications allow one to describe service offerings so that a client can
make an up-front decision on whether and how to consume the service’s functionality. Most
of the specifications used today are expressed in WSDL. Their uptake will further enable
environments where thousands of services will have to be searched, integrated and medi-
ated, and where automation will be the key enabler of service provisioning to end-users. In
order to fulfill these challenges, existing service specifications need to be augmented with
semantic descriptions [16].

In 2007, the W3C finished its work on Semantic Annotations for WSDL and XML Schema
(SAWSDL [14]). SAWSDL defines simple extensions for WSDL and XML Schema used to
link WSDL components with arbitrary semantic descriptions. It thus provides the grounds
for a bottom-up approach to semantic service modeling: it supports the idea of adding
small increments (and complexity) on top of WSDL, allowing results from various existing
approaches to be adopted. As the basis for bottom-up modeling, SAWSDL is independent
of any particular semantic technology, i.e., it does not define any types, forms or languages
for semantic descriptions.

In this deliverable, we describe the WSMO-Lite service ontology as the next evolution-
ary step after SAWSDL, filling the SAWSDL annotations with concrete semantic service
descriptions and thus embodying the semantic layer of the Semantic Service Stack. With
the ultimate goal to support real-world challenges in intelligent service integration, WSMO-
Lite addresses the following requirements:

• Identify the types and a simple vocabulary for semantic descriptions of services (a
service ontology) as well as languages used to define these descriptions.

• Define an annotation mechanism for WSDL using this service ontology.

• Provide the bridge between WSDL, SAWSDL and (existing) domain-specific ontolo-
gies such as classification schemas, domain ontology models, etc.

Even though we adopt the base Web service model from WSDL and SAWSDL, WSMO-Lite
is inspired in the WSMO ontology [12], however, only focusing on a subset of it using it to
define a gradual extension of SAWSDL.

2.1 Alignment with SOA4All Architecture and Use Cases

WSMO-Lite is the description language that will be used in SOA4All for semantic descrip-
tions of Web services. These descriptions will be stored in a service registry, represented
in RDF according to the model defined in Chapter 6, and used by the semantic automation
components.

The use cases deal with Web services, both WSDL-based and RESTful. WSMO-Lite will
be used by the use cases to describe the WSDL-based services. Additionally, the WSMO-
Lite service ontology from Chapter 4 and the minimal RDF representation from Chapter 6
are also used by MicroWSMO, the language for describing RESTful services.

In effect, WSMO-Lite will be used by all the use cases, whether directly, or through
MicroWSMO.

c© SOA4All consortium Page 8 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

2.2 Structure of the deliverable

The rest of this deliverable is structured as follows. In Chapter 3, we introduce the Semantic
Service Stack along with the state-of-the-art technologies for services and Semantic Web
languages used in the stack. In Chapter 4, we describe the WSMO-Lite Service Ontology
and summarize the resolution of the major points from its development, including details on
the relationship to WSMO and WSML. In Chapter 5, we describe the WSMO-Lite seman-
tic annotations for WSDL, and in Chapter 6 we define a minimal RDF representation for
WSMO-Lite service descriptions, which may be useful for service registries. In Chapter 7,
we show how we can map a WSDL document annotated with WSMO-Lite semantics into a
WSML description. Finally, Chapter 8 discusses related work, and Chapter 9 concludes the
deliverable and discusses some tasks left for the future.

c© SOA4All consortium Page 9 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

3 SEMANTIC SERVICE STACK

As depicted in Figure 3.1, there are two levels in the Semantic Service Stack, namely se-
mantic and non-semantic level. In addition, there are two types of stakeholders in the stack,
namely a service engineer (human being) and a client (software agent). The service engi-
neer uses Web services through the client, with particular tasks such as service discovery,
selection, mediation, composition and invocation. In order to facilitate some degree of au-
tomation in these tasks, services should describe their offers in a machine-readable form
using so called service contracts. The Semantic Service Stack adopts the following general
types of service contracts (adapted from [15]):

• Information Model defines the data model for input, output and fault messages, as
well as for the data relevant to the other aspects of the service description.

• Functional Descriptions define service functionality, that is, what a service can offer to
its clients when it is invoked.

• Nonfunctional Descriptions define any incidental details specific to a service provider
or to the service implementation or its running environment. An example nonfunctional
property is the price; the functionality of a service is generally not affected by the price,
even though the desirability may be. Nonfunctional properties also include Quality of
Service (QoS) aspects such as performance, reliability and so on.

• Behavioral Descriptions define external and internal behavior. The former is the de-
scription of a public choreography, the protocol that a client needs to follow when
consuming a service’s functionality1; and the latter is a description of a workflow, i.e.,
how the functionality of the service is aggregated out of other services.

• Technical Descriptions define messaging details, such as message serializations,
communication protocols, and physical service access points.

In the following sections, we show how the Semantic Service Stack represents the above
general description types for service contracts at the two different levels.

3.1 Non-Semantic Level

In regard to SOA technology developments today, the Semantic Service Stack represents
service contracts at the non-semantic level using the existing standards: WSDL, SAWSDL,
and related WS-* specifications. They all use XML as a common flexible data exchange
format. Service contracts are represented as follows:

• Information Model is represented using XML Schema.

• Functional Description is represented using a WSDL Interface and its operations.

• Nonfunctional Description is represented using various WS-* specifications (WS-Policy [23],
WS-Agreement [20], WS-Reliability [24], WS-Security [6], etc.).

1This view of choreography is adopted from WSMO, it is somewhat different from how choreography is
defined in WS-CDL [22].

c© SOA4All consortium Page 10 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

Schema Interface Operations Binding Service

Ontology Capability Classification Non-functional

modelReference loweringSchemaMapping

Ontology Capability Classification Non-functional

Messaging, Communication, ...

Non-semantic
Level

Semantic
Level

Domain-Specific
Service Ontology
RDFS, OWL, RIF,
WSML, ...

WSMO-Lite Service
Ontology
RDFS

SAWSDL
XML

WSDL, WS-*
XML

SOAP, HTTP, ...

Service Engineer Client

WS-*
elements

liftingSchemaMapping

Figure 3.1: Semantic Service Stack

• Behavioral Description is represented using the relevant WS-* specifications, such as
WS-BPEL [21] (for the workflow) and WS-CDL [22] (for the choreography).

• Technical Description is represented using WSDL Binding for message serializations
and underlying communication protocols, such as SOAP, HTTP; and using WSDL
Service for physical endpoint information.

In addition, while SAWSDL does not fall into any of the service contract descriptions, it is
an essential part of the non-semantic level of the stack, providing the groundwork for the
semantic layer. SAWSDL defines a simple extension layer that allows WSDL components
to be annotated with semantics, using three extension attributes:

• modelReference for pointing to semantic concepts that describe a WSDL component,

• loweringSchemaMapping and liftingSchemaMapping for specifying the mappings be-
tween the XML data and the semantic information model.

3.2 Semantic Level

In the Semantic Service Stack, we represent service contracts at the semantic level using
the WSMO-Lite service ontology as follows (see Chapter 4 for a detailed description of
WSMO-Lite):

• Information Model is represented using a domain ontology, along with associated data
lifting and lowering transformations.

• Functional Descriptions are represented as capabilities and/or functionality classifica-
tions. A capability defines conditions which must hold in a state before a client can
invoke the service, and effects which hold in a state after the service invocation. Clas-
sifications define the service functionality using some classification ontology (i.e., a
hierarchy of categories).

• Nonfunctional Descriptions are represented using an ontology, semantically repre-
senting some policy or other nonfunctional properties.

c© SOA4All consortium Page 11 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

• Behavioral Descriptions are not represented explicitly in WSMO-Lite (see discussion
in Chapter 4).

• Technical Descriptions are not represented semantically in the service ontology, as
they are sufficiently covered by the non-semantic description in WSDL.

In order to create or reuse domain-specific service ontologies on top of the Semantic
Service Stack, a service engineer can use any W3C-compliant language with an RDF
syntax. This preserves the choice of language expressivity according to domain-specific
requirements. Such languages may include RDF Schema (RDFS), Web Ontology Lan-
guage (OWL [2]), Rule Interchange Format (RIF)2 or Web Service Modeling Language
(WSML [18]).

RDF The W3C has produced several language recommendations for representation and
exchange of knowledge on the Semantic Web. At the core, the Resource Description
Framework (RDF [10]) represents information in graph-based models with so called triples,
i.e. statements in the form 〈subject, predicate, object〉. The subjects and objects link the
triples into a graph. Thus, RDF can be used to represent the syntax of data using graph
models while it does not define any semantics for any of the subjects, predicates and ob-
jects. RDF provides various serializations including RDF/XML [9] and Notation 3 (N3).3

RDFS On top of RDF, RDF Schema (RDFS [11]) defines constructs that allow the expres-
sion of some semantics for the RDF model: RDFS allows the definition of classes describ-
ing the terminology of the domain of discourse, properties of those classes as well as class
and property hierarchies (i.e. subClassOf and subPropertyOf). Thus, RDFS provides the
minimal set of constructs that allow the specification of lightweight ontologies.

On top of RDFS: OWL, WSML, RIF Where the expressivity of RDFS is not sufficient
for modeling of the required knowledge, various specializations of RDFS can be used.
Such specializations are being developed both inside and outside of W3C along the lines
of knowledge representation paradigms of Description Logic (DL) and Logic Programming
(LP).

The Web Ontology Language (OWL) [2] provides a vocabulary along with a formal-
ism based on Description Logics. The Web Service Modeling Language (WSML) defines
several variants allowing for both paradigms of Description Logics (WSML-DL) and Logic
Programming (WSML-Flight, WSML-Rule). All WSML variants can be represented using
RDF syntax and they are layered on top of RDFS. While WSML-DL has a direct mapping
to OWL, WSML-Rule is the basis of the Web Rule Language (WRL)4 specification which
serves as an input for the W3C Rule Interchange Format Working Group (RIF WG). The
working group aims to produce a core rule language for the Semantic Web together with
extensions that allow rules to be translated between different rule languages.

2Work in progress at the Rule Interchange Format WG http://www.w3.org/2005/rules/
3http://www.w3.org/DesignIssues/Notation3.html
4http://www.w3.org/Submission/2005/08/

c© SOA4All consortium Page 12 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

4 WSMO-LITE SERVICE ONTOLOGY

Listing 4.1 shows the WSMO-Lite service ontology in RDFS, serialized in Notation 3. Below,
we explain the semantics of the WSMO-Lite elements:

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
5

6 wsl:Ontology a rdfs:Class;
7 rdfs:subClassOf owl:Ontology.
8 wsl:FunctionalClassificationRoot rdfs:subClassOf rdfs:Class.
9 wsl:NonFunctionalParameter a rdfs:Class.

10 wsl:Condition a rdfs:Class.
11 wsl:Effect a rdfs:Class.

Listing 4.1: WSMO-Lite Service Ontology

• wsl:Ontology (lines 6–7) defines a container for a collection of assertions about the
information model of a service. wsl:Ontology is a subclass of owl:Ontology limited to
such ontologies that may serve as information models. OWL ontology meta-data such
as comments, version control and inclusion of other ontologies, are also allowed on
wsl:Ontology.

• wsl:FunctionalClassificationRoot (line 8) marks a class that is a root of a classification
which also includes all the RDFS subclasses of the root class (the actual functional
categories). A classification (taxonomy) of service functionalities can be used for
functional description of a service.

• wsl:NonFunctionalParameter (line 9) specifies a placeholder for a concrete domain-
specific nonfunctional property.

• wsl:Condition and wsl:Effect (lines 10–12) together form a capability in a functional
service description. Both are expected to use a concrete logical language to describe
the logical expressions for conditions and effects. We illustrate this on an example in
Listing 5.1 (lines 26–42).

In the remainder of this chapter, we discuss some relevant issues related to WSMO-Lite
Service Ontology.

1. Relation of WSMO-Lite to WSMO. WSMO-Lite has been created due to a need for a
lightweight service ontology which directly builds on the newest W3C standards and allows
bottom-up modeling of services. On the other hand, WSMO is an established framework
for Semantic Web Services representing a top-down model identifying semantics, useful in
a semantics-first environment. WSMO-Lite adapts the WSMO model and makes its seman-
tics lighter in the following major aspects:

• Beside Web services, WSMO also defines goals and mediators; these are currently
not present in WSMO-Lite which is geared towards only describing services through
ontologies.

c© SOA4All consortium Page 13 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

• Where WSMO expects the functional capabilities of services to be described us-
ing logical expressions as preconditions, assumptions, postconditions and effects,
WSMO-Lite only distinguishes between preconditions and effects (which may include
assumptions or postconditions, respectively). WSMO-Lite further specifies a coarser-
grained mechanism to describe functionality using functionality classifications (tax-
onomies), for which WSMO does not have direct support.

• Compared to WSMO Web service descriptions, WSMO-Lite only defines semantics
for the information model, functional and nonfunctional descriptions and only implicit
behavioral description (see below). If needed, an application can extend WSMO-Lite
with its own explicit behavioral descriptions, or it can adopt other existing technologies.

Chapter 7 shows a mapping from WSMO-Lite descriptions into WSML.

2. WSMO-Lite defines behavioral descriptions through functional annotations of op-
erations. While WSMO-Lite does not have a special construct for choreography descrip-
tions, the behavioral aspects are inferred from functional (capability) annotations of indi-
vidual service operations. Such annotations can be transformed into a WSMO choreogra-
phy [13], using the algorithm described in [19].

3. Dependency of WSMO-Lite on SAWSDL. As we already mentioned, WSMO-Lite has
been created to address the need for a concrete service ontology as the next evolution-
ary step after SAWSDL. For this reason it might seem that WSMO-Lite is also SAWSDL-
dependent. However, WSMO-Lite uses SAWSDL only as an annotation mechanism for
WSDL (see Chapter 5) while the WSMO-Lite service ontology can be used with any machine-
readable service descriptions in combination with an appropriate annotation mechanism.

4. Concrete semantics for conditions and effects. To work with conditions and effects,
it is necessary to define the environment in which these axioms are evaluated. Such an
environment depends on the particular logical language in which the axioms are expressed.
An application that uses a concrete language for expressing conditions and effects is also
responsible for defining how the conditions and effects are processed.

c© SOA4All consortium Page 14 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

5 WSMO-LITE ANNOTATIONS FOR WSDL

Section 3.2 mentions briefly how the WSMO-Lite ontology is used for the semantic descrip-
tions. In this chapter, we define the particular types of annotations supported by WSMO-
Lite. For this purpose we define two types of annotations, namely reference annotations
and transformation annotations. A reference annotation points from a WSDL component
(XML Schema element declaration or type definition, WSDL interface, operation, service)
to a WSMO-Lite semantic concept. SAWSDL represents this type of annotation using
modelReference extension attribute. A transformation annotation specifies a data trans-
formation called lifting from a component of XML schema to an element of ontology; and
a reverse transformation (from ontology to XML) called lowering. SAWSDL represents this
annotation using extension attributes loweringSchemaMapping and liftingSchemaMapping
respectively.1

Listing 5.1 shows an example ontology we use to illustrate annotations. It defines a
simple ontology for a telecommunication service (lines 9–24); the capability for a concrete
Video on Demand subscription service (lines 26–39) (the condition says that the customer
must have a network connection with some minimal bandwidth, the effect says that the
customer is subscribed to the service); a nonfunctional property describing the pricing (lines
44–48); and a simple functionality classification with three categories (lines 50–53). We also
define the wsml:AxiomLiteral data type (line 42) for WSML-Flight logical expressions so that
a client can correctly process them according to the WSML specification.

Figure 5.1: Illustration of WSMO-Lite Annotations

Figure 5.1 illustrates the positioning of WSMO-Lite annotations (marked A1. . . A5), which
are defined as follows:

Annotation A1: Ontological annotations of XML Schema. The schema used in WSDL
to describe messages, i.e., the element declarations and type definitions, can carry refer-
ence annotations linking to classes from the service information model ontology.

Annotation A2: Transformation annotations of XML Schema. To be able to communi-
cate with a service, the client needs to transform data between its semantic model and the

1The actual expression of concrete lifting or lowering transformations is out of scope of this deliverable.

c© SOA4All consortium Page 15 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

1 # namespaces and prefixes
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
4 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
5 @prefix ex: <http://example.org/onto#> .
6 @prefix xs: <http://www.w3.org/2001/XMLSchema#> .
7 @prefix wsml: <http://www.wsmo.org/wsml/wsml−syntax#> .
8

9 # ontology example
10 <> a wsl:Ontology.
11

12 ex:Customer a rdfs:Class .
13 ex:hasService a rdf:Property ;
14 rdfs:domain ex:Customer ;
15 rdfs:range ex:Service .
16 ex:Service a rdfs:Class .
17 ex:hasConnection a rdf:Property ;
18 rdfs:domain ex:Customer ;
19 rdfs:range ex:NetworkConnection .
20 ex:NetworkConnection a rdfs:Class .
21 ex:providesBandwidth a rdf:Property ;
22 rdfs:domain ex:NetworkConnection ;
23 rdfs:range xs:integer .
24 ex:VideoOnDemandService rdfs:subClassOf ex:Service .
25

26 # capability description example
27 ex:VideoOnDemandSubscriptionPrecondition a wsl:Condition ;
28 rdf:value ”””
29 ?customer[ex#hasConnection hasValue ?connection]
30 memberOf ex#Customer and
31 ?connection[ex#providesBandwidth hasValue ?y]
32 memberOf ex#NetworkConnection and
33 ?y > 1000
34 ”””ˆˆwsml:AxiomLiteral .
35 ex:VideoOnDemandSubscriptionEffect a wsl:Effect ;
36 rdf:value ”””
37 ?customer[ex#hasService hasValue ?service]
38 memberOf ex#Customer and
39 ?service memberOf VideoOnDemandSubscription
40 ”””ˆˆwsml:AxiomLiteral .
41

42 # definition of the axiom for WSML language
43 wsml:AxiomLiteral a rdfs:Datatype .
44

45 # nonfunctional property example
46 ex:PriceSpecification rdfs:subClassOf wsl:NonFunctionalParameter .
47 ex:VideoOnDemandPrice a ex:PriceSpecification ;
48 ex:pricePerChange ”30”ˆˆex:euroAmount ;
49 ex:installationPrice ”49”ˆˆex:euroAmount .
50

51 # classification example
52 ex:SubscriptionService a wsl:FunctionalClassificationRoot .
53 ex:VideoSubscriptionService rdfs:subClassOf ex:SubscriptionService .
54 ex:NewsSubscriptionService rdfs:subClassOf ex:SubscriptionService .

Listing 5.1: Example of domain-specific service ontology

c© SOA4All consortium Page 16 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

service-specific XML message structures. The schema may contain transformation anno-
tations (lifting or lowering) which specify the appropriate mappings.

Listing 5.2 shows an example of annotations A1 and A2 (the content of the lowering
transformation is omitted for brevity).

1 <xs:element name=”NetworkConnection” type=”NetworkConnectionType”
2 sawsdl:modelReference=”http://example.org/onto#NetworkConnection”
3 sawsdl:loweringSchemaMapping=”http://example.org/NetCn.xslt”/>

Listing 5.2: Example of annotations A1 and A2

Annotation A3: Functional annotations of WSDL Interface and Service. Functional
descriptions (both capabilities and categories) apply both to concrete web services and to
the reusable and abstract interfaces. A reference annotation points from a service or an
interface to its appropriate functional description. Listing 5.3 shows an example of multiple
A3 annotations.

1 <wsdl:interface name=”NetworkSubscription”
2 sawsdl:modelReference=”http://example.org/onto#VideoSubscriptionService
3 http://example.org/onto#VideoOnDemandSubscriptionPrecondition
4 http://example.org/onto#VideoOnDemandSubscriptionEffect” >
5 <wsdl:operation name=”CheckNetworkConnection” ... />
6 </wsdl:interface>

Listing 5.3: Example of annotations A3

Please note that a WSDL interface may be shared by multiple services, therefore the
functional description of the interface should be general. A concrete functional description
attached to the service then refines the functional description of the interface. Additionally,
aggregate interfaces or services (i.e., those that combine multiple potentially independent
functionalities) may be annotated with multiple functional descriptions.

Annotation A4: Functional annotations of WSDL Interface operations. Functional de-
scriptions (both capabilities and categories) apply also to interface operations, to indicate
their particular functionalities. A reference annotation points from an operation to its appro-
priate functional description.

Functional annotation of interface operations can be used for services whose function-
ality has different, separate sub-parts. For example, a network subscription service may
offer operations for subscription to a bundle, cancellation of a subscription, or price inquiry.
A client will generally only want to use one or two of these operations, not all three. Ser-
vice invocation will therefore need to select only the operations applicable to the current
goal, and invoke them in the correct order, which is also partially implied by the functional
operation annotations.

Please note that annotations A3 and A4 apply to both types of functional descriptions,
i.e., a capability or a category from some functional classification. It is even possible to
combine capabilities and classification together. However, WSMO-Lite does not define
any formal relationship between capabilities and classifications on the same component,

c© SOA4All consortium Page 17 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

or between annotations A3 on a service or its interface, and A4 on the operations of that
interface.

Annotation A5: Nonfunctional annotations of WSDL Service. Nonfunctional descrip-
tions apply to a concrete instance of a Web service, that is, a WSDL Service. A reference
annotation can point from a service component to a nonfunctional property. Listing 5.4
shows an example of annotation A5, attaching pricing information to a Web service (line 3).

1 <wsdl:service name=”ExampleCommLtd”
2 interface=”NetworkSubscription”
3 sawsdl:modelReference=”http://example.org/onto#VideoOnDemandPrice”>
4 <wsdl:endpoint ... />
5 </wsdl:service>

Listing 5.4: Example of annotation A5

Please note that nonfunctional descriptions are always specific to a concrete service,
therefore nonfunctional properties should not be expressed on a WSDL interface or on in-
terface operations. In case nonfunctional properties need to be specified on the operations
of a service (for example, different operations may have different invocation micropayment
prices), WSDL binding operation components (which mirror the operations of some inter-
face) may be used to capture these properties.

c© SOA4All consortium Page 18 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

6 MINIMAL RDF REPRESENTATION OF WSMO-LITE SERVICE DE-
SCRIPTIONS

In this chapter, we define a minimal representation of the semantic information present in
WSMO-Lite descriptions that is sufficient for all semantic automation beside Web service in-
vocation. Such a representation can serve as the basis of an efficient index of the semantic
descriptions of available services in a service description registry.

The model of our minimal RDF representation is illustrated in Figure 6.1. It only captures
terms for the Web service, its operations, and their input, output and fault messages (faults
are not shown in the figure for brevity). All these terms are necessary because WSMO-Lite
uses them to represent service semantics:

• Service: functional semantics are expressed with A3 annotations on the Web service
or on its interface; the distinction between a WSDL service and its interface is irrele-
vant when considering the functional and nonfunctional semantics of a Web service.
Nonfunctional semantics are captured with A5 annotations on a WSDL service.

• Operations: behavioral semantics are described through A4 annotations of service
operations.

• Messages: the service’s information model is referenced through A1 annotations on
XML Schema components; for the purpose of semantic automation, all these annota-
tions can be folded together for each message that uses those schema components.
Lifting and lowering transformations are also attached to those XML Schema com-
ponents and can be folded onto the appropriate operation messages (including fault
messages).

This minimal service model is expressed in RDF using terms defined in Listing 6.1.
The RDF vocabulary includes three classes (Service, Operation and Message) and five
properties (hasOperation, hasInputMessage, hasInputFault, hasOutputMessage, hasOut-
putFault). Further, the listing includes the three RDF properties defined by SAWSDL, which
are used to express the WSMO-Lite annotations in this minimal RDF representation.

The listing also defines an additional property usesOntology that is employed for identify-
ing ontologies that may be relevant when reasoning about the semantics of a given service.
This is particularly necessary because SAWSDL allows the definitions of the semantic con-
cepts used by the annotations to be included in the WSDL document, for instance, a service

Web service

(A3,A5)

.

.

.

Operation 1

Operation 2

Operation N

output

input

output

input

output

input

(A4)

(A4)

(A4)

(A1,A2)

(A1,A2)

(A1,A2)

(A1,A2)

(A1,A2)

(A1,A2)

Figure 6.1: Minimal Web Service Model with WSMO-Lite Annotations

c© SOA4All consortium Page 19 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

1 # namespace declarations
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
5 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
6

7 # service model classes and properties
8 wsl:Service a rdfs:Class .
9 wsl:hasOperation a rdf:Property ;

10 rdfs:domain wsl:Service ;
11 rdfs:range wsl:Operation .
12 wsl:Operation a rdfs:Class .
13 wsl:hasInputMessage a rdf:Property ;
14 rdfs:domain wsl:Operation ;
15 rdfs:range wsl:Message .
16 wsl:hasOutputMessage a rdf:Property ;
17 rdfs:domain wsl:Operation ;
18 rdfs:range wsl:Message .
19 wsl:hasInputFault a rdf:Property ;
20 rdfs:domain wsl:Operation ;
21 rdfs:range wsl:Message .
22 wsl:hasOutputFault a rdf:Property ;
23 rdfs:domain wsl:Operation ;
24 rdfs:range wsl:Message .
25 wsl:Message a rdfs:Class .
26

27 # SAWSDL properties (included here for completeness)
28 sawsdl:modelReference a rdf:Property .
29 sawsdl:liftingSchemaMapping a rdf:Property .
30 sawsdl:loweringSchemaMapping a rdf:Property .
31

32 # property for identifying potentially relevant ontologies
33 wsl:usesOntology a rdfs:Property ;
34 rdfs:domain wsl:Service ;
35 rdfs:subPropertyOf rdfs:seeAlso .

Listing 6.1: Service Model, captured in Notation 3

1 @prefix ex: <http://example.com/svc.wsdl#>
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
5 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
6

7 ex:ExampleCommLtd a wsl:Service ;
8 rdfs:isDefinedBy <http://example.org/svc.wsdl> ;
9 sawsdl:modelReference <http://example.org/onto#VideoOnDemandPrice> ;

10 sawsdl:modelReference <http://example.org/onto#VideoSubscriptionService> ;
11 sawsdl:modelReference <http://example.org/onto#VideoOnDemandSubscriptionPrecondition> ;
12 sawsdl:modelReference <http://example.org/onto#VideoOnDemandSubscriptionEffect> ;
13 wsl:hasOperation ex:CheckNetworkConnection .
14

15 ex:CheckNetworkConnection a wsl:Operation ;
16 wsl:hasInputMessage ex:CheckNetworkConnectionRequest .
17

18 ex:CheckNetworkConnectionRequest a wsl:Message ;
19 sawsdl:modelReference <http://example.org/onto#NetworkConnection> ;
20 sawsdl:loweringSchemaMapping <http://example.org/NetCn.xslt> .

Listing 6.2: Example service data in the minimal RDF representation

c© SOA4All consortium Page 20 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

may specify its precondition and effect in WSML and include their definitions in the XML
syntax of WSML in an extension element on the WSDL description root element. Commonly,
ontology element URIs are resolvable to their defining ontologies, but this is unlikely to be
the case for ontologies embedded in WSDL descriptions. Therefore, any ontology frag-
ment embedded in a WSMO-Lite document will be referenced from the service in our RDF
representation with the usesOntology property, so that they can be included in reasoning.

Finally, automating Web service invocation needs access to the original WSDL doc-
ument, in particular the endpoint and binding information. This information is deliberately
omitted in our minimal RDF WSMO-Lite representation; instead, the service in the RDF rep-
resentation points to the original WSDL document using the RDFS property isDefinedBy [11].

Listing 6.2 shows what the RDF representation of the WSDL data included in the exam-
ples in Listings 5.2, 5.3 and 5.4.

c© SOA4All consortium Page 21 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

7 VIEWING WSMO-LITE AS WSML

In this chapter, we show how a WSMO-Lite description (or more precisely, a WSDL descrip-
tion with SAWSDL annotations pointing to WSMO-Lite-compliant semantics) can be viewed
as a WSML [18] description.

Table 7.1 shows the five kinds of annotations of WSMO-Lite and their WSML coun-
terparts. Information model annotations of the messages (A1) translate into choreography
state signature when a choreography is generated from functional annotations of operations
(A4), as described in [19]. Lifting and lowering annotations (A2) are out of scope of WSMO,
they are treated as grounding details. Precondition and effect annotations A3 become pre-
conditions and effects of a WSMO capability description (which has no assumptions or
postconditions). Functionality categorization annotations A3 must be represented as non-
functional property of the capability of the Web service in WSMO since there is no native
support for functionality categories in WSMO. And finally, nonfunctional annotations A5 are
represented as nonfunctional properties of the Web service in WSMO, under the general
WSMO-Lite NFP name wsl#nonFunctionalParameter1

This mapping can be used to load WSMO-Lite descriptions into WSML tooling, such as
WSMX, for reuse of components such as service discovery and ranking. However, WSMO
does not support the coarse-grained service functionality classifications used by WSMO-
Lite, therefore, existing WSMX components (at the time of this writing) will not be able to
use the functionality classifications, which are represented as capability NFPs in the WSML
form.

WSMO-Lite annotation WSML counterpart
generated for every WSDL ser-
vice

webservice svcID // generated service identifier
nonFunctionalProperty

wsml#endpointDescription hasValue wsdl-service-uri
A1 Information model annotations can be reflected in a chore-

ography state signature, see mapping of A4.
A2 Lifting/lowering annotations are out of scope for WSMO.
A3: condition P, effect E webservice svcID

capability capID // generated capability identifier
precondition P
effect E

A3: functionality category C Becomes a nonfunctional property:
webservice svcID

capability capID
nonFunctionalProperty

wsl#functionalityCategory hasValue C
A4: operation capabilities Service choreography, see mapping algorithm in [19].
A5: nonfunctional parameter N webservice svcID

nonFunctionalProperty
wsl#nonFunctionalParameter hasValue N

Table 7.1: Mapping of WSMO-Lite into WSML

1Nonfunctional properties are represented in WSMO with a tuple (property name, value), whereas in WSMO-
Lite they are ontology individuals. Therefore we introduce the property name wsl#nonFunctionalParameter for
WSMO-Lite NFPs in WSML.

c© SOA4All consortium Page 22 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

8 RELATED WORK

The major stream of related work is in the frameworks for Semantic Web Services (SWS),
including WSMO [12], Semantic Markup for Web Services (OWL-S [17]) and Web Service
Semantics (WSDL-S [1]).

WSMO is a top-down conceptual model for SWS that defines four top-level components:
ontologies, mediators, goals and web services. As we already mentioned, WSMO was the
major input for WSMO-Lite.

On the other hand, OWL-S was the first major ontology for SWS defining three inter-
linked ontologies: Service Profile (for the functional and nonfunctional descriptions), Service
Model (for the behavioral descriptions), and Service Grounding (for physical Web service
access). There are also recent works on OWL-S grounding that uses SAWSDL [7, 5]. In
comparison with that work, WSMO-Lite takes the additional step of simplifying the annota-
tions into a lightweight ontology.

WSDL-S was created in the METEOR-S1 project as a specification of how WSDL can
be annotated with semantic information. WSDL-S itself does not provide a concrete model
for SWS, instead it makes the assumption that the concrete model will be expressible as
annotations in WSDL and XML Schema documents. The core parts of WSDL-S were taken
as the basis for SAWSDL; WSDL-S also included WSDL extensions for attaching precondi-
tions, effects and categories; however, they were out of scope for SAWSDL as they can be
moved to ontologies and attached through model references, as we do in WSMO-Lite.

In addition, there is a major orthogonal work to WSMO-Lite called hRESTS and Mi-
croWSMO (CMS WG deliverable D12, also [3]), aiming to enrich the informal descriptions
of RESTful services, usually available in HTML, with microformat or RDFa [8] annotations.
Effectively, hRESTS forms an analogue of WSDL for RESTful services, and MicroWSMO is
analogous to SAWSDL. The WSMO-Lite service semantics ontology is directly applicable
in MicroWSMO and hRESTS annotations.

1http://lsdis.cs.uga.edu/projects/meteor-s/

c© SOA4All consortium Page 23 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

9 CONCLUSIONS AND FUTURE WORK

In this deliverable, we describe the latest results from the development of WSMO-Lite, a
minimal lightweight ontology for Semantic Web Services, building on the newest W3C stan-
dards. WSMO-Lite fills in SAWSDL annotations, and thus enables the Semantic Service
Stack, open for various customizations according to domain-specific requirements, lan-
guages of required expressivity and domain-specific ontologies. WSMO-Lite supports the
idea of incremental enhancements of SAWSDL as Amit Sheth points out in [4]: “Rather than
look for a clear winner among various SWS approaches, I believe that in the post-SAWSDL
context, significant contributions by each of the major approaches will likely influence how
we incrementally enhance SAWSDL. Incrementally adding features (and hence complexity)
when it makes sense, by borrowing from approaches offered by various researchers, will
raise the chance that SAWSDL can present itself as the primary option for using semantics
for real-world and industry-strength challenges involving Web services.”

In our future work we plan to work on validation of WSMO-Lite annotations and on imple-
menting SWS automation with WSMO-Lite descriptions. We also plan to support service
mashups with the WSMO-Lite ontology. In addition, we plan to integrate the WSMO-Lite
ontology with the results of the semantic business processes research.

c© SOA4All consortium Page 24 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

ACKNOWLEDGEMENTS

The authors would like to thank to all the members of the Conceptual Models for Services
working group1 for their advice and input to this document.

1http://cms-wg.sti2.org/operation/members/

c© SOA4All consortium Page 25 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

REFERENCES

[1] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas
Schmidt, Amit Sheth, and Kunal Verma. Web Service Semantics – WSDL-S, avail-
able at http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/. Technical report,
LSDIS Lab, 2005.

[2] Ian Horrocks. OWL: A Description Logic Based Ontology Language. In Proc. of the
21st International Conference on Logic Programming, pages 1–4. Springer Verlag,
2005.

[3] Jacek Kopecký, Karthik Gomadam, and Tomas Vitvar. hRESTS: an HTML Microformat
for Describing RESTful Web Services. In Proceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence (WI-08), Sydney, Australia, 2008. To
appear.

[4] David Martin and John Domingue. Semantic web services: Past, present and possible
futures (systems trends and controversies). IEEE Intelligent Systems, 22(6), 2007.

[5] David Martin, Massimo Paolucci, and Matthias Wagner. Bringing Semantic Annota-
tions to Web Services: OWL-S from the SAWSDL Perspective. In Karl Aberer, Key-
Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Gol-
beck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux, editors, The Semantic Web, volume 4825 of LNCS, pages 340–352.
Springer, 2007.

[6] Anthony Nadalin, Chris Kaler, Phillip Hallam-Baker, and Ronald Monzillo. Web
Services Security: SOAP Message Security 1.0 (WS-Security 2004). OASIS
Standard, March 2004. Available at http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0.pdf.

[7] Massimo Paolucci, Matthias Wagner, and David Martin. Grounding OWL-S in
SAWSDL. In Bernd J. Krämer, Kwei-Jay Lin, and Priya Narasimhan, editors, ICSOC,
volume 4749 of LNCS, pages 416–421. Springer, 2007.

[8] RDFa in XHTML: Syntax and Processing. Recommendation, W3C, October 2008.
Available at http://www.w3.org/TR/rdfa-syntax/.

[9] RDF/XML Syntax Specification (Revised). Recommendation, W3C, February 2004.
Available at http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

[10] Resource Description Framework (RDF): Concepts and Abstract Syntax. Recommen-
dation, W3C, February 2004. Available at http://www.w3.org/TR/rdf-concepts/.

[11] RDF Vocabulary Description Language 1.0: RDF Schema. Recommendation, W3C,
February 2004. Available at http://www.w3.org/TR/rdf-schema/.

[12] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Ruben Lara, Michael Stoll-
berg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. Web Service
Modeling Ontology. Applied Ontology, 1(1):77–106, 2005.

[13] Dumitru Roman, James Scicluna, Dieter Fensel, Axel Polleres, and Jos de Bruijn.
Ontology-based Choreography of WSMO Services. Wsmo d14 final draft v0.3, DERI,
2006. Available at: http://www.wsmo.org/TR/d14/v0.3/.

c© SOA4All consortium Page 26 of 27

SOA4All – FP7–215219 – D3.4.2 WSMO-Lite

[14] Semantic Annotations for WSDL and XML Schema. Recommendation, W3C, August
2007. Available at http://www.w3.org/TR/sawsdl/.

[15] Amit P. Sheth. Semantic Web Process Lifecycle: Role of Semantics in Annotation,
Discovery, Composition and Orchestration. Invited Talk, Workshop on E-Services
and the Semantic Web, at WWW 2003. Available at http://lsdis.cs.uga.edu/lib/
presentations/WWW2003-ESSW-invitedTalk-Sheth.pdf.

[16] R. Studer, S. Grimm, and A. Abecker. Semantic Web Services: Concepts, Technolo-
gies, and Applications. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2007.

[17] The OWL Services Coalition. OWL-S 1.1 Release. Available at http://www.daml.org/
services/owl-s/1.1/, November 2004.

[18] Ioan Toma and Nathalie Steinmetz (eds.). The Web Service Modeling Language
WSML. Available at http://www.wsmo.org/TR/d16/d16.1/v0.3/, 2008.

[19] Tomas Vitvar, Jacek Kopecký, Jana Viskova, and Dieter Fensel. WSMO-Lite Annota-
tions for Web Services. In Proceedings of 5th European Semantic Web Conference
(ESWC), 2008.

[20] Web Services Agreement Specification (WS-Agreement). Proposed Recommenda-
tion, Global Grid Forum, September 2005. Available at http://www.ggf.org/Public Com-
ment Docs/Documents/Oct-2005/WS-AgreementSpecificationDraft050920.pdf.

[21] Web Services Business Process Execution Language Version 2.0. OASIS Standard,
April 2007. Available at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html.

[22] Web Services Choreography Description Language Version 1.0. Working
Draft, W3C, December 2004. Available at http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041217/.

[23] Web Services Policy 1.5 – Framework. Recommendation, W3C, September 2007.
Available at http://www.w3.org/TR/ws-policy/.

[24] WS-Reliability 1.1. OASIS Standard, 2004. Available at http://docs.oasis-open.
org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf.

c© SOA4All consortium Page 27 of 27

