SON

Semantics
0'zasm

1Xeuo!

Web Services
(@]
SEVENTH FRAMEWORK

PROGRAMME

Project Number: 215219
Project Acronym: SOAA4All
Project Title: Service Oriented Architectures for All
Instrument: Integrated Project
Thematic Information and Communication
Priority: Technologies

D3.4.3

MicroWSMO and hRESTS

Activity: Activity 2 — Core R&D Activities
Work Package: WP3 — Service Annotation and Reasoning
Due Date: M12
Submission Date: 10/3/2009
Start Date of Project: 01/03/2008
Duration of Project: 36 Months
Organisation Responsible for Deliverable: UIBK
Revision: 1.0
Jacek Kopecky UIBK
Author(s): Tomas Vitvar UIBK
Dieter Fensel UIBK
Reviewer(s): Maria Maleshkova ou
Barry Bishop UIBK

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU [Public

| X

’Oﬂ§ 3

“TAW SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS T
Version History

Version |Date Comments, Changes, Status Authors, Contributors,
Reviewers

0.9 3/2/2009 CMS WG draft All authors

1.0 9/3/2009 Final version after internal reviews |Jacek Kopecky (UIBK),
Maria Maleshkova (OU),
Barry Bishop (UIBK)

© SOAA4AIl consortium

Page 2 of 26

‘Oﬂg H
TAW SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS

xxxxxxxxx

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 6
2 INTRODUCTION 7
2.1 Alignment with SOA4AIl ArchitectureandUseCases 8
2.2 Structure of the deliverable 8
3 ExamPLE RESTFUL WEB SERVICE 9
3.1 Example Service as Hypertext 9
3.2 Turning Hypertext into Operations 11
3.3 HTML Description of the Example Service 11
4 HRESTS: HTML FOR RESTFuUL WEB SERVICES 13
4.1 Minimal Service Model 13
4.2 hRESTS MicroformatSyntax 14
43 hRESTSInRDFa. e 17
5 MICROWSMO: EXTENDING HRESTS WITH SEMANTIC ANNOTATIONS 20
6 PARSER IMPLEMENTATION 23
7 RELATED WORK AND CONCLUSIONS 24
© SOAA4AIl consortium Page 3 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

LIST OF FIGURES

2.1 MicroWSMO in hRESTS layercake 7
3.1 Structure of anexampleservice. o . 9
3.2 Detail of example serviceresources 10
3.3 Operations of the example service 11
4.1 Functional model of a RESTful Web service 13
4.2 Service description in multiple documents L. 17
5.1 Relative positioning of WSMO-Lite and MicroWSMO 20

© SOAA4AIl consortium Page 4 of 26

Al SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS A

GLOSSARY OF ACRONYMS

Acronym Definition

API Application Programming Interface

D Deliverable

EC European Commission

GRDDL Gleaning Resource Descriptions from Dialects of Languages
HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ID Identifier

JSON JavaScript Object Notation

OwWL Web Ontology Language

RDFS RDF Schema

RDF Resource Description Framework
REST Representational State Transfer
SAWSDL Semantic Annotations for WSDL and XML Schema
SWS Semantic Web Services

URI Uniform Resource Identifier

WADL Web Application Description Language
WSDL Web Services Description Language
WSMO Web Service Modeling Ontology
XHTML Extensible HyperText Markup Language
XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT XSL Transformations

© SOA4AIl consortium Page 5 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

1 EXECUTIVE SUMMARY

The Web 2.0 wave brings, among other aspects, the Programmable Web: increasing num-
bers of Web sites provide machine-oriented APls and Web services. However, most APIs
are only described with text in HTML documents. The lack of machine-readable API de-
scriptions affects the feasibility of semantic annotation and the application of Semantic Web
Service automation technologies. This deliverable describes MicroWSMO, a semantic an-
notation mechanism for RESTful Web services, based on a microformat called hRESTS
(HTML for RESTful Services) for machine-readable descriptions of Web APls, and backed
by a simple service model.

Since there is no generally accepted machine-processable description language for
RESTful Web services, the deliverable contains a definition of the hRESTS microformat
which serves as a rough equivalent to WSDL. hRESTS naturally ties into the WSMO-Lite
minimal RDF model from D3.4.2.

On top of hRESTS, this deliverable also defines the MicroWSMO microformat that adds
SAWSDL-like annotations to hRESTS service descriptions. In effect, this deliverable pro-
vides a parallel to the stack of WSDL and SAWSDL, only aimed at RESTful services.

On hRESTS and MicroWSMO, we can apply WSMO-Lite service semantics and thus
integrate RESTful services with WSDL-based ones. Most SOA4AIll components need not
even distinguish between service descriptions that are in WSDL/SAWSDL or in hREST-
S/MicroWSMO because both kinds are effectively WSMO-Lite.

© SOA4AIl consortium Page 6 of 26

Al SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS A

2 INTRODUCTION

The Web has gone through great changes since it became popular, evolving from an infras-
tructure for static content of pages consumed by individuals to a communication platform
where individuals, companies, and devices alike provide, consume and synthesize content
and services on a massive scale. The value of Web applications is no longer only in provid-
ing content to consumers but also in exposing functionality through increasing numbers of
public APIs designed for machine consumption. Both Web applications and APlIs follow the
Web architecture style called REST (Representational State Transfer [1]), and public APIs
on the Web are often called “RESTful Web services”.

Web application APls are generally described using plain, unstructured HTML docu-
mentation useful only to a human developer. Finding suitable services, composing them
(“mashing them up”), mediating between different data formats etc. are currently com-
pletely manual tasks. In order to provide tool support or even a degree of automation, we
need the API descriptions to be machine-readable.

An “adaptation of semantic XHTML that makes it easier to publish, index, and extract
semi-structured information”, called microformats [6], is an approach for annotating mainly
human-oriented Web pages so that key information is machine-readable. On top of mi-
croformats, GRDDL [2] is a mechanism for extracting RDF information from Web pages,
particularly suitable for processing microformats. There are already microformats for con-
tact information, calendar events, ratings etc.

In this deliverable, we define a microformat called HTML for RESTful Services, in short
hRESTS, for machine-readable descriptions of Web APIls, backed by a simple service model
in RDF. As depicted in Figure 2.1, the hRESTS microformat captures machine-processable
service descriptions, building on the HTML service documentation aimed at developers. We
further define MicroWSMO, an extension of hRESTS that adds means for semantic Web
service automation. hRESTS can support other extensions as well, such as SA-REST [10],
intended for enabling tool support, especially faceted browsing and discovery of services
by client developers.

MicroWSMO] [SA-REST | - advanced tool support

e A

hRESTS microformat - machine-readable information

HTML - existing service descriptions

Figure 2.1: MicroWSMO in hRESTS layer cake

A recent W3C Recommendation called RDFa [7] specifies a mechanism for embedding
RDF data in HTML. RDFa shares some of its use cases with microformats, but with differ-
ent design principles: where microformats aim to be especially easy to use for Web content
authors, RDFa is better prepared for proliferation of data vocabularies. Because our mi-
croformats (hRRESTS and its extension MicroWSMO) are based on RDF models, we also
discuss how RDFa can be used in lieu of microformats to express the machine-processable
descriptions of RESTful services.

© SOA4AIl consortium Page 7 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

2.1 Alignment with SOA4All Architecture and Use Cases

MicroWSMO is the description language that will be used in SOA4All for semantic descrip-
tions of RESTful Web services. These descriptions will be stored in a service registry, rep-
resented in RDF according to the model defined WSMO-Lite and extended in Section 4.1,
and they will be used by the semantic automation components.

The use cases deal with Web services, both WSDL-based and RESTful. MicroWSMO
will be used by the use cases to describe the RESTful services, combined with the WSMO-
Lite service ontology.

2.2 Structure of the deliverable

The remainder of this deliverable is structured as follows: Section 3 introduces an example
service/API that we use for demonstrating hRESTS and MicroWSMO. Section 4 defines
hRESTS, our microformat for machine-readable service descriptions, and it also discusses
the use of RDFa in lieu of the microformat. Section 5 adds MicroWSMO, an extension of
hRESTS towards support for semantic automation. In Section 6, we describe an openly
available XSLT implementation of a parser for our microformats. Finally, in Section 7, we
conclude with a discussion of some related work and future plans.

© SOA4AIl consortium Page 8 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

3 EXAMPLE RESTFuL WEB SERVICE

Web APIs and RESTful Web services are hypermedia applications consisting of interlinked
resources (Web pages) that are oriented towards machine consumption. In their struc-
ture and behavior, RESTful Web services can be very much like common Web sites [8].
Both common Web sites and RESTful Web services use HTTP [5] as the communication
protocol. The orientation of RESTful Web services towards machine consumption mani-
fests mainly in the data formats: clients generally interact with RESTful services by sending
structured data (e.g. XML, JSON'), as opposed to the standard Web document markup
language, HTML, which is a human-oriented presentation language.

In this section, we introduce an example RESTful Web service. First, in Section 3.1 we
describe the service in terms of its hypertext structure. In Section 3.2 we show that we can
view the service as a set of operations, independent from its hypertext structure. Finally, in
Section 3.3, we show how our example service would typically be described.

3.1 Example Service as Hypertext

Figure 3.1 illustrates an example RESTful hotel booking service, with its resources and the
links among them. Together, all these resources form the hotel booking service; however,
the involved Web technologies actually work on the level of resources, so service is a virtual
term here and the figure shows it as a dashed box.

' Hotel booking service ! Legend:
1 available E—3 | information l 1

: service [T J : resource

| description - | ! @
| S !

| y ! similar

| payment ! resources
| v processing ! I
\ confirmation 1 —J
' my bookings |

| w hyperlink
! 1 or form

~ 7 —_—Th

Figure 3.1: Structure of an example service

The “service description” is a resource with a stable address and information about
the other resources that make up the service. It serves as the initial entry point for client
interaction. In a human-oriented Web application, this would be the homepage, such as
http://hotels.example.com/.

The existence of such a stable entry point lowers the coupling between the service and
its clients, and it enables the evolution of the service, such as adding or removing function-
ality. A client need only rely on the existence of the fixed entry point, and it can discover all
other functionality as it navigates the hypermedia. In contrast, in service-description-driven
distributed computing technologies, such as WSDL-based Web services, the client is often
programmed against a given service description before it uses the service, making it harder
to react dynamically to changes of the service.

JavaScript Object Notation, see http://www. json.org/

© SOA4AIl consortium Page 9 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

) _\7) ()
service pome, SeP 2 rates »| Rome hotel 1 details
description available \\ (still has rooms in Sep) |
: : (7
orm 1 Rome, May 1-4 | 1 rate Rome hotel 2 details
.Witht ~ New y. available > (available also in May) |
Inpu or I
fields é Ag 3-5 1 rate [5|
available »| NY hotel 1 details
- \ J
O
payment
processing
-

Figure 3.2: Detail of example service resources

The service description resource of our example service contains a form for searching
for available hotels, given the number of guests, the start and end dates and the location.
The search form serves as a parametrized hyperlink to search results resources that list the
available rates, as detailed in Figure 3.2; one resource per every unique combination of the
input data. The form prescribes how to create a URI that contains the input data; the URI
then identifies a resource that returns the list of available hotels and rates. As there is a
large number of possible search queries, there is also a large number of results resources,
and the client does not need to know that all these resources are likely handled by a single
software component on the server.

The search results are modeled as separate resources (as opposed to, for instance, a
single data-handling resource that takes the inputs in a request message), because it sim-
plifies the reuse of the hotel search functionality in other services or in mashups (lightweight
compositions of Web applications), and it also supports caching of the results. With individ-
ual search results resources, creating the appropriate URI and retrieving the results (with
HTTP GET) is easier in most programming frameworks than POSTing the input data in a
structured data format to one Web resource, which would then reply with the list of available
hotels and rates.

Search results are presented as a list of concrete rates available at the hotels in the given
location, for the given dates and the number of guests, as also shown in Figure 3.2. Each
item of the list contains a link to further information about the hotel (e.g. the precise location,
star rating, guest reviews and other descriptions), and a form for booking the rate, which
takes as input the payment details (such as credit card information) and an identification
of the guest(s) who will stay in the room. The booking data is submitted (POSTed) to a
payment resource, which processes the booking and redirects the client to a confirmation
resource. The content of the confirmation can serve as a receipt.

The service description resource also contains a link to “my bookings”, a resource listing
the bookings of the current user (which requires authentication functionality). This resource
links to the confirmations of the bookings done by the authenticated user. With such a
resource available to them, client applications no longer need to store the information about
performed bookings locally.

The confirmation resources may further provide a way of canceling the reservation (not
shown in the picture, could be implemented with the HTTP DELETE method).

© SOAA4AIl consortium Page 10 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

S 3 » search(date, city)
' Hotel booking service . —>list of rates (and hotels)

» getHotelDetails(hotel)
—> detailed info about hotel

service |
description

- fates list

> reserve(rate, creditCard, guestinfo)
—> confirmation 1D

|“payment | .
processing ; listMyBookings()

— list of confirmation IDs

\

1
1
|
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
\

getConfirmationDetails(confirmationID)

e — confirmation details

Figure 3.3: Operations of the example service

3.2 Turning Hypertext into Operations

So far, our description of the example hotel reservation service has focused on the hyper-
media aspect: we described the resources and how they link to each other. Alternatively,
and in fact more commonly, we can also view the service as a set of operations available to
the clients — as an API.

The resources of the service (the nouns) form a hypermedia graph (shown in Fig. 3.1).
The interaction of a client with a RESTful service is a series of operations (the verbs or
actions) where the client sends a request to a resource and receives a response that may
link to further useful resources. Importantly, the links need not be only simple URIs, but they
can also be input forms that indicate the URI, the HTTP method, and the input data.

The graph nature of a hypermedia service guides the sequence of operation invocations,
but the meaning of a resource is independent of where it is linked from; the same link or
form, wherever it is placed, will always lead to the same action. Therefore, the operations
of a RESTful Web service can be considered independently from the graph structure of the
hypertext.

In Figure 3.3, we extract the operations present in our example service. The search form
in the homepage represents a search operation, the hotel information pages linked from the
search results can be viewed as an operation for retrieving hotel details, the reservation
form for any particular available rate becomes a reservation operation, and so on.

3.3 HTML Description of the Example Service

Web APIs, or indeed services of any kind, need to be described in some way, so that
potential clients can know how to interact with them. While Web applications are self-
describing to their human users, Web services are designed for machine consumption, and
someone has to tell the machine how to consume any particular service.

Public RESTful Web services are universally described in human-oriented documenta-
tion® using the general-purpose Web hypertext language HTML, which is the medium of
choice for dissemination of information about Web APIs, along with a vast majority of other
textual content.

2For instance, see flickr.com/services/api and docs.amazonwebservices.com/AmazonSimpleDB/
2007-11-07/DeveloperGuide

© SOAA4AIl consortium Page 11 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

<h1>ACME Hotels service API</h1>
<h2>Operation <code>getHotelDetails</code></h2>

<p> Invoked using the method GET at http://example.com/h/{id}

Parameters: <code>id</code> — the identifier of the particular hotel

Output value: hotel details in an
<code>ex:hotellnformation</code> document

</p>

© 0N O~ WN =

Listing 3.1: Example HTML service description

Typically, such documentation will list the available operations (calling them API calls,
methods, commands etc.), their URIs and parameters, the expected output and error con-
ditions and so on; it is, after all, intended as the documentation of a programmatic interface.

The following might be an excerpt of a typical operation description:

ACME Hotels service API
Operation getHotelDetails

Invoked using the method GET at http://example.com/h/{id}
Parameters: id - the identifier of the particular hotel
Output value: hotel details in an ex:hotelInformation document

In HTML, the description can be captured as shown in Listing 3.1. Such documentation
has all the details necessary for a human to be able to create a client program that can use
the service. In order to tease out these technical details, the textual documentation needs
to be amended in some way, such as with our hRESTS microformat, shown in the following
section.

In the hypertext of the example service, the service has five operations but only two
are directly accessible from the service description resource. All five operations can be de-
scribed in a single HTML document, however, the client may not know any concrete hotel
identifiers to invoke getHotelDetails(), or any confirmation ID to invoke getCofirmationDetails(). The
client may save hotel or confirmation identifiers and use them later to invoke these opera-
tions without going through availability searches or the list of “my bookings”; this behavior
is equivalent to how bookmarks work in a Web browser.

© SOAA4AIl consortium Page 12 of 26

Al SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS A

4 HRESTS: HTML FOR RESTFuL WEB SERVICES

We have seen that a RESTful Web service can be viewed as a hypertext graph of inter-
linked resources, or as a set of operations to be invoked by the client. While navigating the
hypertext graph is natural for the human users, programmatic clients deal rather with the
operations, even though they can use the links in the response messages.

In this section, we specify hRESTS, a microformat that can be used to structure exist-
ing RESTful Web service documentation so that key pieces of information are machine-
processable. This microformat serves as the basis for extensions that introduce additional
information (in the form of annotations), such as MicroWSMO (see Section 5) and SA-
REST [10].

We start in Section 4.1 by identifying the key pieces of technical information that are
present in the textual documentation, from which we form an RDF model for descriptions
of RESTful services. In Section 4.2, we define the syntax of the hRESTS microformat, and
Section 4.3 shows how hRESTS information can be marked up in HTML documentation
using RDFa in lieu of our microformat.

41 Minimal Service Model

The interaction of a client with a RESTful service such as the one in our example is a series
of operations where the client sends a request to a resource (using one of the HTTP meth-
ods GET, POST, PUT or DELETE), and receives a response that may link to further useful
resources. The emphasized words indicate the key concepts that the clients encounters:

e service is the service (a set of related resources) that the client deals with,

e operation is a single action that the client can perform on that service,

e resource determines the address (URI) where the operation is invoked,

e method captures the HTTP method for the operation,

e request and response are the messages sent as input and output of the operation,

e links, especially in the output messages, make up a run-time hypertext graph of related
resources.

This leads us to a service model shown in Figure 4.1. A Web service has a number of
operations, each with potential inputs and outputs, and a hypertext graph structure where

Web service ’—L‘
Operation 1 < input
address, method T output
I I
Operation 2 < Input
address, method T output
.| Hypertext
i input
Operation n " inpu
address, method T output

Figure 4.1: Functional model of a RESTful Web service

© SOAA4AIl consortium Page 13 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

the outputs of one operation may link to other operations. This model captures the require-
ments for what we need to represent in a machine-readable description. Unsurprisingly,
the model is very similar in its structure to WSDL [13], only instead of hypertext, WSDL
services use the terms “process” or “choreography” for the sequencing of operations. More
importantly, this model naturally builds on the minimal service model of WSMO-Lite [12].

An operation description specifies an address (a URI or a parametrized URI template’),
the HTTP method (GET, POST, PUT or DELETE), and the input and output?® data formats.
In principle, the output data format can be self-describing (self-description is a major part of
Web architecture), but the APl documentation should specify what the client can expect.

While at runtime the client interacts with concrete resources, the service description
may present a single operation that acts on many resources (e.g. getHotelDetails() which can
be invoked on any hotel details resource), therefore an operation specifies an address as a
URI template whose parameters are part of the input data.

Listing 4.1 shows an RDFS realization of this service model, together with the opera-
tion properties described above. Services, their operations, and messages can also have
human-readable names, which can be attached using the rdfs:1abel property. Note that
we reuse the WSMO-Lite minimal RDF service model vocabulary which captures the WSDL
components; from the point of view of this minimal model, hRESTS is roughly equivalent to
WSDL.

Once a machine-readable description of a Web service is available, it can be further
annotated with additional information, such as semantic descriptions (the functionality of
operations, the meaning of the input and output data), or nonfunctional properties (e.g., the
price of using the service, QoS guarantees, security and privacy policies). Such annotations
extend the utility of service descriptions.

4.2 hRESTS Microformat Syntax

The purpose of hRESTS is to provide a machine-readable representation of common Web
service and API descriptions. The preceding section shows our model for this machine-
readable information. Here, we proceed to define the syntax of a microformat that realizes
the model in the HTML service documentation.

Microformats take advantage of existing XHTML facilities such as the class and rel
attributes to mark up fragments of interest in a Web page, making the fragments easily
available for machine processing. For example, a calendar microformat marks up events
with their start and end time and with the event title, and a calendaring application can then
directly import data from what otherwise looks like a normal Web page. Further details on
how microformats work can be found at microformats.org.

The hRESTS microformat is made up of a number of HTML classes that correspond
directly to the various parts of our service model. To help illustrate the following detailed
definitions of the hRESTS classes and the structural constraints on hRESTS descriptions
defined at the end of this section, in Listing 4.2 we show hRESTS annotations of the sample
HTML service description shown in Listing 3.1.

In the following detailed definitions, we refer to RDF classes and properties from the
service model (Listing 4.1) using the prefixes ws1 and hr.

'URI templates are defined for instance in WSDL 2.0 HTTP Binding in [14] Section 6.8.1.1.
2While HTTP defines request and response messages, we call them input and output messages in hRESTS
for compatibility with WSMO-Lite and WSDL.

© SOAA4AIl consortium Page 14 of 26

‘Oﬂ; H
TAW SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS

@prefix hr: <http://www.wsmo.org/ns/hrests#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf —schema#> .
@prefix wsl: <http://www.wsmo.org/ns/wsmo—lite#> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

classes and properties of the WSMO—Lite minimal service model
wsl:Service a rdfs:Class .
wsl:hasOperation a rdf:Property ;
rdfs:domain wsl:Service ;
rdfs:range wsl:Operation .
wsl:Operation a rdfs:Class .
wsl:hasInputMessage a rdf:Property ;
rdfs:domain wsl:Operation ;
rdfs:range wsl:Message .
wsl:hasOutputMessage a rdf:Property ;
rdfs:domain wsl:Operation ;
rdfs:range wsl:Message .
wsl:Message a rdfs:Class .

0N O WN =

MND - 4 4 4 4 a4 3 A a
- O ©W 0O NO O H»WNM—= OO

hRESTS properties added to the above model
hr:hasAddress a rdf:Property ;

rdfs:domain wsl:Operation ;

rdfs:range hr:URITemplate .
hr:hasMethod a rdf:Property ;

rdfs:domain wsl:Operation ;

rdfs:range xsd:string .

[\SIN ST SR \C T\ T \C R\ I V]
© 00N O~ WN

a datatype for URI templates
hr:URITemplate a rdfs:Datatype .

w
o

Listing 4.1: hRESTS service model in RDFS/N3

The service class on block markup (e.g. <body>, <div>), as shown in the example
listing on line 1, indicates that the element describes a service APIl. An element with the
class service corresponds to an instance of wsl:Service. A service contains one or more
operations and may have a label (see below).

The operation class, also used on block markup (e.g. <div>), indicates that the element
contains a description of a single Web service operation, as shown in the listing on line 3.
An element with this class corresponds to an instance of wsl:0peration, attached to its
parent service with ws1:hasOperation. An operation description specifies the address and
the method used by the operation, and it may also contain description of the input and
output of the operation, and finally a label.

The address class is used on textual markup (e.g. <code>, shown on line 6) or on a
hyperlink (<a href>) and specifies the URI of the operation, or the URI template in case
any inputs are URI parameters. Its value is attached to the operation using hr :hasAddress.
On a textual element, the address value is in the content; on an abbreviation, the expanded
form (the title of the abbreviation) specifies the address; and on a hyperlink, the target of
the link specifies the address of the operation.

The method class on textual markup (e.g. , shown on line 5) specifies the HTTP
method used by the operation. Its value is attached to the appropriate operation using the
property hr:hasMethod.

Both the address and the method may also be specified on the level of the service,
in which case these values serve as defaults for operations that do not specify them. In

© SOAA4AIl consortium Page 15 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

1 <div class="service” id="svc”>
2 <hi1>ACME Hotels service API</h1>
3 <div class="operation” id="op1”>
4 <h2>0Operation <code class="label”>getHotelDetails</code></h2>
5 <p> Invoked using the GET
6 at <code class="address”>http://example.com/h/{id} </code>

7
8 Parameters:
9 <code>id</code> — the identifier of the particular hotel

10

11

12 Output value: hotel details in an

13 <code>ex:hotellnformation</code> document

14

15 </p>

16 </div></div>

Listing 4.2: Example hRESTS service description

absence of any explicit value for method, the default is GET. The RDF form of the service
model reflects the default values already applied, that is, an instance ws1:Service will never
have either hr:hasMethod or hr:hasAddress.

The input and output classes are used on block markup (e.g. <div> but also),
as shown on lines 7 and 11, to indicate the description of the input or output of an oper-
ation. Elements with these classes correspond to instances of wsl:Message, attached to
the parent operation with ws1:hasInputMessage and wsl:hasOutputMessage respectively.
While hRESTS does not provide for further machine-readable information about the inputs
and outputs, extensions such as MicroWSMO (cf. Section 5) and SA-REST [10] add more
properties here.

In principle, the output data format can be self-describing through the metadata the
client receives together with the operation response, but it is, in general, useful for API
descriptions to specify what the client can expect; hence our output class.

The label class is used on textual markup to specify human-readable labels for services
and operations, as shown on lines 2 and 4 in the example listing. The value is attached to
the appropriate service or operation using rdfs:label.

Additionally, elements with the classes service or operation can carry an id attribute,
which is combined with the URI of the HTML document to form the URI identifier of the
particular service or operation. This will allow other statements to directly refer to these
instances.

The definitions above imply a hierarchical use of the classes within the element structure
of the HTML documentation. The following is a complete list of structural constraints on the
hierarchy of elements marked up with hRESTS classes. It reflects the structure of our
service model, amended with the defaulting of the address and method properties:

1. No XHTML element has two or more hRESTS classes at the same time.

2. No element with the class service is a descendant® of an element with any hRESTS
class.

3. Either there is no element with the class service in the document, or every element
with the class operation is a descendant of an element with the class service.

3The term descendant is defined for XML/HTML elements in XPath [15].

© SOAA4AIl consortium Page 16 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

index.html
head

link rel=section
link rel=section
link rel=section
body

div class=service

op1.html

head
> link rel=start
body
div class=operation

Figure 4.2: Service description in multiple documents

4. No element with the class operation is a descendant of an element with an hRESTS
class other than service.

5. Every element with the class address, method or 1label is a descendant of an element
with either the class service or the class operation.

6. Every element with the class input or output is a descendant of an element with the
class operation.

7. No element with any of the classes address, method, input, output or label is a
descendant of an element with an hRESTS class other than service and operation.

A single HTML document can define multiple services; such a document will contain
multiple elements with the class service. Conversely, and this is a common occurrence,
multiple documents can together make up the description of a single service. Indeed, tex-
tual service documentation is often split into a number of interlinked pages that describe the
service as a whole, the individual operations, data types, error conditions, specific authen-
tication mechanisms etc. In such cases, the Web page describing an operation (or a group
of operations) will not contain any element with the class service because it is described
elsewhere. The documents that together make up the service description should contain
metadata links (either <1ink> elements in the <head> section, or <a href> elements in the
body) pointing to the first document in the set (rel="start" as defined by HTML [4]) and
to the documents that make up the set (rel="section") — such links can help a crawler to
find related pieces of the service description.

Such a situation is illustrated in Figure 4.2, which shows an overview page on the left
that talks about the service as a whole, and three pages on the right that describe one
operation each. The start and section relation links tie the pages together, which can be
interpreted in our RDF model as a description of a single service with three operations.

As a consequence, a Web page pointed to by a link with rel="start" should contain
only a single element with the class service so that the assignment of the operations to the
service is unambiguous.

4.3 hRESTS in RDFa

Alternatively to using our microformat to capture the service model structure in the HTML
documentation of RESTful Web services, we can also employ RDFa [7] and directly use the
RDF service model. RDFa specifies a collection of XML attributes for expressing RDF data
in any markup language, and especially in HTML.

Since our service description data is ultimately processed as RDF, RDFa is directly
applicable. In our case, the difference between the use of a microformat or RDFa boils
down to several considerations:

© SOAA4AIl consortium Page 17 of 26

‘Oﬂ; H
TAW SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS

1 <div typeof="wsl:Service” about="#svc”

2 xmins:hr="http://www.wsmo.org/ns/hrests#”

3 xmins:wsl="http://www.wsmo.org/ns/wsmo—lite#”

4 xmins:rdfs="http://www.w3.0rg/2000/01/rdf —schema#”>

5 <h1>ACME Hotels service APl</h1>

6 <div rel="wsl:hasOperation”>
7 <h2>Operation <code property="rdfs:label”>getHotelDetails</code></h2>
8 <p> Invoked using the GET

9 at <code property="hr:hasAddress” datatype="hr:URITemplate”
10 >http://example.com/h/{id} </code>

11
12 Parameters:
13 <code>id</code> — the identifier of the particular hotel
14

15
16 Output value: hotel details in an
17 <code>ex:hotellnformation</code> document
18
19 </p>

20 </div></div>

Listing 4.3: Example hRESTS description expressed using RDFa

¢ the microformat syntax is simpler and more compact than RDFa;

e HTML marked up with our microformat remains valid HTML, whereas RDFa currently
only validates against the newest schemas;

e RDFa represents the full concept URIs and thus facilitates the coexistence of multiple
data vocabularies in a single document, where microformats may run into naming
conflicts;

e processing microformats requires vocabulary-specific parsers (such as our XSLT trans-
formation described in Section 6), while parsing the RDF data from RDFa is indepen-
dent from any actual data vocabularies.

Listing 4.3 shows the same description as Listing 4.2, using RDFa instead of our micro-
format. Apart from the differences in attribute names, the listing shows two bigger differ-
ences:

Lines 6, 11 and 15 show that in order to make the rdf:type of the instances explicit,
RDFa requires explicit statements. Similarly, line 9 shows that the datatype of a literal
needs to be specified explicitly. However, if we can rely on RDFS inference to fill in the
property range classes, the type statements on lines 6, 11 and 15 can be omitted, resulting
in shortening these lines to the following form:

<div rel="wsl:hasOperation” resource="#op1”>

Finally, lines 2—4 show that RDFa requires the appropriate namespace declarations in
order to be able to form the full URIs of all the terms of our vocabulary.

Since RDFa has only been published as a W3C Recommendation very recently, it is
difficult to judge whether it will be accepted as an alternative to microformats, where it
would be appropriate. The use of GRDDL [2] can alleviate the problem of vocabulary-
specific parsers for microformats, reducing the need for RDFa. On the other hand, tool
support can lower the importance of microformats’ simpler syntax, making the future-proof
RDFa format more acceptable.

© SOAA4AIl consortium Page 18 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

Processors consuming hRESTS descriptions should support both forms (the microfor-
mat and RDFa). After translation into RDF, the resulting data shows no significant differ-
ences.

© SOAA4AIl consortium Page 19 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

5 MICROWSMOQO: EXTENDING HRESTS WITH SEMANTIC ANNOTA-
TIONS

The hRESTS microformat structures the HTML documentation of RESTful Web services
so they are amenable to machine processing. The microformat identifies key pieces of in-
formation that are already present in the documentation, effectively creating an analogue
of WSDL, which is used by messaging (non-RESTful) Web services. hRESTS forms the
basis for further extensions, where service descriptions are annotated with added informa-
tion to facilitate further processing. In this section, we present MicroWSMO, an extension
of hRESTS that adds semantic annotations.

Because the hRESTS view of services (Section 4.1) is so similar to that of WSDL, we
can adopt SAWSDL [9] properties to add semantic annotations. SAWSDL is an extension
of WSDL that specifies how to annotate service descriptions with semantic information. It
defines the following three XML attributes, along with RDF properties with the same names:

e modelReference is used on any component in the service model to point to appropri-
ate semantic concepts’ identified by URIs,

e liftingSchemaMapping and loweringSchemaMapping are used to associate messages
with appropriate transformations, also identified by URIs, between the underlying tech-
nical format such as XML and a semantic knowledge representation format such as
RDF.

Figure 5.1 illustrates the relation of MicroWSMO to SAWSDL, along with their position-
ing among the various service description specifications. MicroWSMO is a SAWSDL-like
layer on top of hRESTS. WSMO-Lite [12] specifies an ontology for the content of SAWSDL
annotations in WSDL; MicroWSMO annotations in hRESTS also point to instances of the
WSMO-Lite ontology, since it captures service semantics independently of the underlying
Web service technology (WSDL/SOAP or REST/HTTP). In effect, MicroWSMO is on a layer
below WSMO-Lite, even though both use the acronym “WSMQ” in their names.

WSMO-Lite Service
Semantics Ontology
%otations pointto\

N N
[SAWSDL layer of semantic [MicroWSMO

annotations
J J
extends extends
A A v
machine-processable
[WSDL service description layer [hRESTS

Figure 5.1: Relative positioning of WSMO-Lite and MicroWSMO

The WSMO-Lite ontology captures four aspects of service semantics: information model
(a domain ontology) represents data, especially in input and output messages; functional

TSAWSDL [9] speaks about semantic concepts in general, which is not to be confused with the use of the
term “concept” in WSMO to denote what is called “class” in OWL; a model reference can point to any element
of a semantic description.

© SOA4AIl consortium Page 20 of 26

‘Oﬂ; H
TAW SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS

1 <div class="service” id="svc”>
2 <hi1>ACME Hotels service API</h1>
3 <p>This service is a
4
5 hotel reservation service.
6 </p>
7 <div class="operation” id="op1”>
8 <h2>Operation <code class="label”>getHotelDetails</code></h2>
9 <p> Invoked using the GET
10 at <code class="address”>http://example.com/h/{id} </code>

11
12 Parameters:
13
14 <code>id</code> — the identifier of the particular hotel
15 (lowering)
16

17
18 Output value: hotel details in an
19 <code>ex:hotellnformation</code> document
20
21 </p>

22 </div></div>

Listing 5.1: Example MicroWSMO semantic description

semantics specifies what the service does, by means of functionality classification or through
preconditions and effects; behavioral semantics defines the sequencing of operation invo-
cations when invoking the service; and nonfunctional descriptions represent service policies
or other details specific to the implementation or running environment of a service.

To annotate a service description with the appropriate semantics, a model reference on
a service can point to a description of the service’s functional and nonfunctional semantics;
a model reference on an operation points to the operation’s part of the behavioral semantics
description; and a model reference on a message points to the message’s counterpart(s)
in the service’s information semantics ontology, complemented as appropriate by a pointer
to a lifting or lowering schema mapping. See [12] for further details of the semantic service
model.

SAWSDL annotations are URIs that identify semantic concepts and data transforma-
tions. Such URIs can be added to the HTML documentation of RESTful services in the
form of hypertext links. HTML [4] defines a mechanism for specifying the relation repre-
sented by link, embodied in the rel attribute; along with class, this attribute is also used to
express microformats. In accordance with SAWSDL, we introduce the following three new
types of link relations:

e model indicates that the link is a model reference,
e lifting and lowering denote links to the respective data transformations.

Listing 5.1 illustrates the use of these link relations on semantic annotations added to
the hRESTS description from Listing 4.2. In the following detailed definitions, we refer to
the SAWSDL RDF properties using the prefix sawsd1?.

The model link relation, on a hyperlink present within an hRESTS service, operation,
input or output block, specifies a model reference (sawsdl:modelReference) from the
respective component to its semantic description, as defined by WSMO-Lite.

2The prefix sawsdl refers to the namespace http://www.w3.org/ns/sawsdl\#

© SOAA4AIl consortium Page 21 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

Listing 5.1 shows the use of the model link relation on lines 4 and 13. Line 4 specifies
that the service does hotel reservations (the URI identifies a category in some classification
of services), whereas line 13 defines the input of the operation to be an instance of the
class Hotel, which is a part of the data ontology of this service.

The 1lifting and lowering link relations, on hyperlinks present within an hRESTS
input or output block (corresponding to the properties sawsdl:1liftingSchemaMapping
and sawsdl:loweringSchemaMapping), specify the respective data transformations that map
between the knowledge representation format of the client and the syntax of the wire mes-
sages of the service.

Listing 5.1 shows a link to a lowering transformation on line 15. The transformation
would presumably map a given instance of the class Hotel into the ID that the service ex-
pects as a URI parameter. The description of concrete data lifting and lowering technologies
is out of scope of this deliverable; it will be specified in more detail elsewhere as part of our
future work.

Listing 5.1 shows the microformat syntax of MicroWSMO. In RDFa, the rel attribute
would contain a namespace-qualified full name of the given SAWSDL property. For in-
stance, line 4 would become:

<a rel="sawsdl:modelReference”
href="http://example.com/ecommerce/hotelReservation”>

MicroWSMO and hRESTS, together with the WSMO-Lite ontology for service seman-
tics, support automation of the use of RESTful Web services. Such automation has been
researched under the name Semantic Web Services (SWS, [11]), where the aim is to use
semantic technologies to help with the following tasks: discovery matches known Web ser-
vices against a user goal and returns the services that can satisfy that goal; ranking orders
the discovered services based on user requirements and preferences so the best service
can be selected; composition puts together multiple services when no single service can
fulfill the whole goal; invocation then communicates with a particular service to execute its
functionality; and mediation resolves any arising heterogeneities.

© SOA4AIl consortium Page 22 of 26

‘Oﬂ; H
TAW SOA4AIll — FP7-215219 — D3.4.3 MicroWSMO and hRESTS

6 PARSER IMPLEMENTATION

In this section, we briefly describe an openly available XSLT stylesheet! that parses HTML
documents with hRESTS and MicroWSMO microformat mark-up to produce the RDF form
of the service description data.

In accordance with GRDDL, an XHTML document that contains hRESTS (and Mi-
croWSMO) data can point to this stylesheet in its header metadata:

<head profile="http://www.w3.0rg/2003/g/data—view” >

<link rel="transformation”
href="http://cms—wg.sti2.org/TR/d12/v0.1/20081202/xslt/hrests.xslt” />

... further metadata, especially page title ...
</head>

This header enables Web crawlers to extract the RDF form of the service description
data, even if the crawlers are not specifically aware of the hRESTS and MicroWSMO micro-
formats.

The MicroWSMO description from Listing 5.1 is embedded in an XHTML document?
that contains also the GRDDL transformation pointer. Listing 6.1 shows the GRDDL RDF
view of the document.

1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .

2 @prefix rdfs: <http://www.w3.0rg/2000/01/rdf —schema#> .

3 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .

4 @prefix wsl: <http://www.wsmo.org/ns/wsmo—lite#> .

5 @prefix ex: <http://cms—wg.sti2.0org/TR/d12/v0.1/20081202/xslt/example.xhtml#> .
6

7 exisvc a wsl:Service ;

8 rdfs:isDefinedBy <http://cms—wg.sti2.org/TR/d12/v0.1/20081202/xslt/example.xhtml> ;
9 rdfs:label "ACME Hotels” ;

10 sawsdl:modelReference <http://example.com/ecommerce/hotelReservation> ;

11 wsl:hasOperation ex:op1 .

12 ex:opl a wsl:Operation;

13 rdfs:label “getHotelDetails” ;

14 hr:hasMethod "GET” ;

15 hr:hasAddress http://example.com/h/{id}"""hr:URITemplate ;

16 wsl:hasInputMessage [

17 a wsl:Message ;

18 sawsdl:modelReference <http://example.com/data/onto.owl#Hotel> ;

19 sawsdl:loweringSchemaMapping <http://example.com/data/hotel.xspargl>
20 1

\V]
—

wsl:hasOutputMessage [a wsl:Message] .

Listing 6.1: RDF data extracted from Listing 4.2

Most of the listing is self-explanatory (for readers familiar with the N3 RDF syntax®).
Note that our XSLT stylesheet adds an rdfs:isDefinedBy property (line 8) to the service
with a pointer back to the HTML documentation that defines it; and also note the [1 syntax
for blank nodes on lines 16 and 21.

"http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xs1t/hrests.xslt
*http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xs1t/example . xhtml
*http://www.w3.org/DesignIssues/Notation3.html

© SOA4AIl consortium Page 23 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

7 RELATED WORK AND CONCLUSIONS

The Programmable Web needs machine-readable descriptions of the available Web ser-
vices. With such descriptions, search engines can gather better information about existing
services, and developers can easier use these services. Tools enabled by the existence of
such descriptions can support the developer in using the Web APIs and mashing them up
with others. With semantic annotations, the Web services and APIs can even be discovered
and used automatically in Semantic Web Services systems.

There are several existing formats for machine-readable description of Web APIs, e.g.
WADL [3] and even WSDL 2.0 [13], both amenable to SAWSDL annotations. Probably due
to the perceived complexity of these XML formats, they do not seem to be gaining traction
with API providers; service descriptions remain mostly in unstructured text. Therefore we
propose hRESTS and MicroWSMO as a more accessible approach.

In this deliverable, we have defined a model of RESTful Web services and used that
model to create the hRESTS microformat, which can make the critical parts of existing Web
API documentation machine-readable. We have further defined MicroWSMO, an extension
that builds on top of hARESTS to add semantic annotations, with direct support for lightweight
semantics from WSMO-Lite.

As shown in this deliverable, MicroWSMO allows HTML service documentation to be
annotated with service semantics in the same way that WSDL is annotated with SAWSDL.
Thus we can treat RESTful services as first-class peers of WSDL-based services, and we
can provide the same level of semantic automation.

To foster a wider adoption of hRESTS, we intend to follow the microformats.org pro-
cess and to build community consensus on machine-readable descriptions of Web APlIs.
Similar steps may subsequently be planned for MicroWSMO.

© SOA4AIl consortium Page 24 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

ACKNOWLEDGEMENTS

The authors would like to thank to all the members of the Conceptual Models for Services
working group’ for their advice and input to this document.

"http://cms-wg.sti2.org/operation/members/

© SOA4AIl consortium Page 25 of 26

rau SOA4AIl - FP7-215219 — D3.4.3 MicroWSMO and hRESTS R

REFERENCES

[1] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000. Chair: Richard N.
Taylor.

[2] Gleaning Resource Descriptions from Dialects of Languages (GRDDL). Recommen-
dation, W3C, September 2007. Available at http://www.w3.org/TR/grddl/.

[3] Marc J. Hadley. Web Application Description Language (WADL). Technical report, Sun
Microsystems, November 2006. Available at https://wadl.dev.java.net/.

[4] HTML 4.01 Specification. Recommendation, W3C, 1999. Available at http://www.
w3.org/TR/html1401.

[5] Hypertext Transfer Protocol — HTTP/1.1. Draft Internet Standard, IETF, June 1999.
Available at http://rfc.net/rfc2616.html.

[6] R. Khare and T. Celik. Microformats: a pragmatic path to the semantic web (Poster).
Proceedings of the 15th international conference on World Wide Web, pages 865-866,
2006.

[7] RDFa in XHTML: Syntax and Processing. Recommendation, W3C, October 2008.
Available at http://www.w3.org/TR/rdfa-syntax/.

[8] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media, May
2007.

[9] Semantic Annotations for WSDL and XML Schema. Recommendation, W3C, August
2007. Available at http://www.w3.org/TR/sawsdl/.

[10] Amit P. Sheth, Karthik Gomadam, and Jon Lathem. SA-REST: Semantically Interop-
erable and Easier-to-Use Services and Mashups. IEEE Internet Computing, 11(6):91—
94, 2007.

[11] R. Studer, S. Grimm, and A. Abecker. Semantic Web Services: Concepts, Technolo-
gies, and Applications. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2007.

[12] Tomas Vitvar, Jacek Kopecky, and Dieter Fensel. WSMO-Lite: Lightweight Seman-
tic Descriptions for Services on the Web. CMS WG Working Draft, February 2009.
Available at http://cms-wg.sti2.org/TR/d11/.

[13] Web Services Description Language (WSDL) Version 2.0. Recommendation, W3C,
June 2007. Available at http://www.w3.org/TR/wsd120/.

[14] Web Services Description Language (WSDL) Version 2.0: Adjuncts. Recommenda-
tion, W3C, June 2007. Available at http://www.w3.org/TR/wsd120-adjuncts/.

[15] XML Path Language (XPath) Version 1.0. Recommendation, W3C, November 1999.
Available at http://www.w3.org/TR/xpath.

© SOA4AIl consortium Page 26 of 26

