

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D5.1.1 State of the Art Report On Service
Description and Existing Discovery Techniques

Activity N: Activity 2- Research and Development Activities

Work Package: WP 5 – Service Location

Due Date: M6 and M12

Submission Date: 15/08/2008
Resubmission: 11/03/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: UIBK

Revision: 1.0

Author(s): Ioan Toma STI Innsbruck
Nathalie Steinmetz STI Innsbruck
Jean Pierre Lorre EBM

Reviewer(s): Maria Maleshkova UKARL
Marc Richardson BT

Project co -funded by the European Commission within the Sevent h Framework Programme (2007 -2013)

Dissemination Level

PU Public X

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 2 of 56

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 11 June
2008 First draft and table of contents

Ioan Toma (STI Innsbruck),
Nathalie Steinmetz (STI
Innsbruck)

0.2 16 June
2008 Added initial version of the introduction Ioan Toma (STI Innsbruck)

0.3 20 June
2008

Added Semantic Web services
approaches

Ioan Toma, Dumitru Roman
(STI Innsbruck), Holger
Lausen (seekda), Jacek
Kopecky (STI Innsbruck)

0.4 09 July
2008

Added initial content in Registries
section

Ioan Toma (STI Innsbruck),
Jean Pierre Lorre (ebm)

0.5 22 July
2008

Added section about WSDL Ioan Toma, Jacek Kopecky
(STI Innsbruck)

0.6 23 July
2008

Finished introduction and conclusions Ioan Toma (STI Innsbruck)

0.7 24 July
2008

Added section about SAWSDL Ioan Toma (STI Innsbruck)

0.8 26 July
2008

Added section about RESTful services Ioan Toma (STI Innsbruck)

0.9 28 July
2008

Added section about Logic based
discovery

Ioan Toma (STI Innsbruck)

0.10 1 August
2008

Added section about Portals, standard
search engines, crawling and outlook

Nathalie Steinmetz (STI
Innsbruck)

1.0 14 August
2008

Incorporate reviewers comments; Final
version

Ioan Toma (STI Innsbruck)

Final March 9th
2009

Overall formant and quality revision Malena Donato (ATOS)

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 3 of 56

Table of Contents

EXECUTIVE SUMMARY __ 6

1 INTRODUCTION __ 7

2 STATE OF THE ART ON SERVICE DESCRIPTION __________________________ 9

2.1 WSDL __ 9

2.1.1 Web Service Interface ___ 9

2.1.2 Web Service Endpoints, Bindings _______________________________ 10

2.1.3 WSDL Documents ___ 11

2.1.4 Note on the differences between WSDL 2.0 and WSDL 1.1 ___________ 11

2.2 RESTFUL WEB SERVICES ______________________________________ 12

2.2.1 REST principles ___ 12

2.2.2 RESTful service descriptions ___________________________________ 12

2.3 SEMANTIC SERVICES FRAMEWORKS ____________________________ 14

2.3.1 WSMO Approach __ 15

2.3.2 OWL-S __ 19

2.3.3 The SWSF approach ___ 23

2.3.4 IRI-III __ 26

2.3.5 SAWSDL __ 27

3 STATE OF THE ART ON SERVICE DISCOVERY ___________________________ 31

3.1 REGISTRIES ___ 31

3.1.1 The Registry/Repository concepts _______________________________ 31

3.1.2 The registry non competing standards ____________________________ 31

3.1.3 Today's registry/repository solutions ______________________________ 33

3.1.4 Dragon: an emerging Open Source Registry/Repository ______________ 34

3.2 PORTALS __ 37

3.3 STANDARD SEARCH ENGINES __________________________________ 39

3.4 LOGIC BASED APPROACHES ___________________________________ 39

3.4.1 WSMO discovery __ 40

3.4.2 DAML-S/OWL-S discovery approaches ___________________________ 41

4 STATE OF THE ART ON CRAWLING ______________________ ______________ 43

4.1 WEB CRAWLERS ___ 43

4.2 BASIC CRAWL STEPS ___ 44

4.3 CRAWLING STRATEGIES ______________________________________ 45

4.4 CRAWLER TYPES ___ 45

4.4.1 Broad Crawling __ 45

4.4.2 Focused Crawling __ 46

4.4.3 Continuous Crawling ___ 47

4.5 WEB SERVICE CRAWLING TECHNIQUES _________________________ 47

5 OUTLOOK OF SERVICE CRAWLING TECHNIQUES ____________ ____________ 50

5.1 CRAWLED SERVICE DATA _____________________________________ 50

5.2 OUTLOOK OF SERVICE CRAWLING TECHNIQUES _________________ 50

5.3 OUTLOOK OF SOA4ALL SERVICE DISCOVERY ____________________ 51

6 CONCLUSIONS __ 53

7 REFERENCES ___ 54

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 4 of 56

List of Figures
Figure 1 WSMO top level elements ... 16

Figure 2 OWL-S top level elements ... 20

Figure 3 Layered structure of SWSL-Rules ... 25

Figure 4 Dragon Architecture .. 35

Figure 5 Dragon federated registry .. 36

Figure 6 seekda Web Service Search Engine ... 39

Figure 7 WSMO Discovery model ... 40

Figure 1 Example Figure .. Error! Bookmark not defined.

 List of Listings
Listing 1 Illustrative example of a WSDL interface ... 13

Listing 2 Example of a WSDL binding and service .. 14

Listing 3 WADL Example ... 17

Listing 4 WSMO Ontology class .. 20

Listing 5 WSMO Web service class ... 21

Listing 6 WSMO Goal class ... 21

Listing 7 WSMO Mediator class... 22

Listing 8 SAWSDL annotation example ... 35

© SOA4All consortium Page 5 of 56

Glossary of Acronyms

Acronym Definition

D Deliverable

EC European Commission

WP Work Package

WSDL Web Services Description Language

UDDI Universal Description Discovery and Integration

WSMO Web Service Modeling Ontology

WSML Web Service Modeling Language

WSMX Web Service Modeling eXecution environment

SOA Service Oriented Architecture

SWS Semantic Web Services

SOAP Simple Object Access Protocol

WADL Web Application Description Language

JSON JavaScript Object Notion

OWL-S Web Ontology Language for Services

SWSF Semantic Web Services Framework

IRS-3 Internet Reasoning Service

SAWSDL Semantic Annotations for WSDL

QoS Quality of Service

SLA Service Level Agreement

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 6 of 56

Executive Summary

This deliverable analyzes existing approaches for service descriptions, service discovery and
service crawling. The aim is to provide an overview of existing service description
approaches, second to review existing techniques for service crawling and discovery that are
using the service description approaches reviewed in the first step. First an overview of the
state of the art on service description is provided. Three groups of service description
approaches are investigated, namely (1) WS-* standards for Web service description,
focusing on WSDL services, (2) RESTful Web services that are closely following Web
principles applied to service descriptions. A special interest is given to Web API
documentations and also to Web2.0 sources relevant for service descriptions such as
tagging, service characterizations and ratings in blogs and (3) Semantic Web services
approaches that are bringing Semantic Web technologies to annotated Web services.
Second, an overview of state of the art in service discovery is provided including analysis of
registry-based, portal-based and logic based approaches. Third, an analysis of existing
techniques for crawling of web resources, the emphasis being mostly on focus crawling
techniques is provided. Finally, an outlook for crawling techniques; containing initial ideas for
SOA4All crawling techniques as well as a short description of the service description data
already collected using the seekda crawling infrastructure is provided.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 7 of 56

1 Introduction

The current Web is changing from a static collection of web pages to a dynamic collection of
services. More and more applications are published and consumed each day on the Web as
services. This trend is visible not only on a large open scale platform such as the Web but
also in closed, business settings such as companies’ platforms. Big industrial players from IT
and communications are currently in the process of changing their infrastructure allowing
business partners to access their functionalities as services. The service-oriented
perspective promoted by Service Oriented Architectures (SOA) pushes the notion of service
as the central notion, abstracting from the underlying implementation and hardware.
However, the paradigm shift introduces a set of new challenges such as how to organize,
find, rank and select services in a scalable fashion given the continuously growing number of
services. Possible solutions for all these new challenges will strongly depend on one
important aspect, namely how services are modelled and described. In the context of this
deliverable we survey the most important approaches from the large landscape of service
description approaches.

Most services available today on the Web or in closed industrial settings are described using
WS-* standards1. Given this fact, we provide first on overview of the Web Services
Description Language (WSDL), the main WS-* standard for Web service description. In
WSDL services are described in terms of the messages, operations and ports. The
operations and messages are described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint. The design principles underling WSDL
are very much programming oriented being supportive in the context of developing
distributed internet applications. However as pointed out in [29], Web services are not
actually following Web principles, the usage of Web communication medium being the only
thing Web service have in common with the Web. WSDL based Web services are tightly
coupling the applications they integrate. The Web, on the other hand is based on opposite
principles, information being published in a persistent and widely accessible manner.
Recently, following closely the Web principles, REST architectural style is being applied in
the development and publishing of services, called RESTful services [43]. In this approach
services are viewed as resource and can be identified by their URLs. Service clients that
want to use these resources access a particular representation by transferring application
content using a small globally defined set of remote methods that describe the action to be
performed on the resource. Although the number of RESTful services is increasing, there are
currently no description languages for this kind of services. Current descriptions of RESTful
services are mainly provided as plain texts. Both WS-* based and RESTful services
descriptions are not formal descriptions that could be ‘automatically’ process by machines.
With the emergence of the Semantic Web [28] that promotes the vision of machine
processable description for Web resources, a new type of service descriptions that address
the problem of automation were proposed, namely Semantic Web services. Various
Semantic Web services approaches have been developed both in Europe and in USA. Their
overall goal is to provide comprehensive service modelling frameworks that will enable a
certain degree of automation for service related tasks such as discovery, composition,
selection, etc.

The growing number of services introduces a new set of challenges one of the most
important one being how to discover the most relevant services given a user request. This
overall task, known as service discovery, has been addressed in the past year in many

1 According to seekda.com the number of WSDL services available online on July 27,
2008 are 27.574

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 8 of 56

approaches. Registry based solutions (e.g. UDDI [41]), portals and service search engines
have been proposed mainly for WSDL descriptions. Logic-based approaches that employ
reasoning support to determine the degree of match between services and user requests
have been proposed mainly for Semantic Web services descriptions.

In this deliverable we analyze existing approaches for service descriptions, service discovery
and service crawling. The aim is to provide an overview of existing service description
approaches, second to review existing techniques for service crawling and discovery that are
using the service description approaches reviewed in the first step. The overall analysis
provided in this deliverable would serve as input for upcoming deliverables in WP5, namely
D5.2.1 “Service Crawling Techniques and Report on Available Information on The Current
Web” that aims to develop crawling techniques for service descriptions indentified in the
current deliverable and D5.3.1 “On the Creation of Rich Service Description and
Specification Of Reasoning Usage In Service Discovery” that uses will focus on providing
discovery techniques using the reasoning techniques developed in WP3. The new SOA4All
discovery techniques that will be developed in D5.3.1 will take into account the weak and
strong points of existing discovery techniques analyzed in the current deliverable.

The deliverable is organized as follows. Section 2 contains an analysis of state of the art
approaches on service description. Three groups of service description approaches are
investigated, namely (1) WS-* standards for Web service description, focusing on WSDL
services, (2) RESTful Web services that are closely following Web principles applied to
service descriptions. A special interest is given to Web API documentations and also to
Web2.0 sources relevant for service descriptions such as tagging, service characterizations
and ratings in blogs and (3) Semantic Web services approaches that are bringing Semantic
Web technologies to annotated Web services. Section 3 surveys the most significant
approaches for service discovery, including registry-based, portal-based and logic based
approaches. Section 4 contains an analysis of existing techniques for crawling of web
resources, the emphasis being mostly on focus crawling techniques. Section 5 provides an
outlook for crawling techniques; containing initial ideas for SOA4All crawling techniques as
well as a short description of the service description data already collected using the seekda
crawling infrastructure. Furthermore this section provides an outlook for the overall discovery
approach in SOA4All. Finally Section 6 concludes the deliverable.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 9 of 56

2 State of the art on service description

This section surveys existing approaches for service description. Section 2.1.1 provides an
overview of the standard language used to describe most of the available services on the
internet, namely Web Services Description Language (WSDL). Section 2.2 discusses service
descriptions in the context of RESTful services that are closely following Web principles.
Finally, Section 2.3 surveys the most relevant Semantic Web services frameworks for service
descriptions.

2.1 WSDL

The Web Services Description Language is an XML format for describing network services
as a set of endpoints operating on messages containing either document-oriented or
procedure-oriented information. WSDL describes Web services in two levels — an XML-
based reusable abstract interface and the concrete details regarding how and where this
interface can be accessed. All descriptions in WSDL are centered on the Web service and all
terminology follows the service's point of view, for example input messages are messages
coming into the service from the network and output messages are messages generated by
the service and sent to the network. The rest of this section provides an overview of the
WSDL language, describing various aspects of WSDL descriptions, based on WSDL version
2.0, namely about abstract Web service interfaces (Section 2.1.1), binding them to concrete
wire protocols and endpoints (Section 2.1.2) and finally about the overall organization of
WSDL documents (Section 2.1.3). Finally Section 2.1.4 details the relevant differences in the
older version, WSDL 1.1. The following subsections are common with sections available in
WP1 deliverables (D1.2.1 and D1.1.1).

2.1.1 Web Service Interface

On the abstract level, a Web service interface is described in terms of data schemas and
simple message exchanges. In particular, WSDL models interfaces as sets of related
operations, each consisting of one or more messages. For example an interface of a ticket
booking Web service can have operations for querying for a trip price and for the actual ticket
booking:

01 <interface name="BookTicketInterface">
02 <operation name="queryPrice" pattern="http://www.w3.org/ns/wsdl/in-out">
03 <input element="tns:TripSpecification"/>
04 <output element="tns:PriceQuote"/>
05 <outfault ref="tns:TripNotPossible"/>
06 </operation>
07 <operation name="bookTicket" pattern="http://www.w3.org/ns/wsdl/in-out">
08 <input element="tns:BookingRequest"/>
09 <output element="tns:Reservation"/>
10 <outfault ref="tns:CreditCardNotValid"/>
11 <outfault ref="tns:TripNotPossible"/>
12 </operation>
13 <fault name="TripNotPossible" element="tns:TripFailureDetail" />
14 <fault name="CreditCardNotValid" element="tns:CreditCardInvalidityDetail" />
15 </interface>

Listing 1 Illustrative example of a WSDL interface

In WSDL, an operation represents a simple exchange of messages that follows a specific
message exchange pattern (MEP). The simplest of MEPs, "In-Only", allows a single

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 10 of 56

application message to be sent to the service, and "Out-Only" symmetrically allows a single
message to be sent by the service to its client. Somewhat more useful is the "Robust-In-
Only" MEP, that also allows a single incoming application message but in case there is a
problem with it, the service may reply with a fault message. Perhaps the most common MEP
is "In-Out", which allows an incoming application message followed either by an outgoing
application message or an outgoing fault message. Finally, an interesting MEP commonly
used in messaging systems is "In-Optional-Out" where a single incoming application
message may (but need not) be followed either by a fault outgoing message or by a normal
outgoing message, which in turn may be followed by an incoming fault message (i.e. the
client may indicate to the service a problem with its reply).

Particular messages (incoming, outgoing) in an operation, reference XML Schema element
declarations to describe the content. Fault messages, however, reference faults defined on
the interface level (see above the <outfault> element), with the intention that semantically
equivalent faults can be shared by different operations. Additionally, there may be multiple
fault references for the same MEP fault message — in effect WSDL faults are typed and one
operation can declare that it can result in any number of alternative faults (apart from the
single success message).

2.1.2 Web Service Endpoints, Bindings

In order to communicate with a Web service described by an abstract interface, a client must
know how the XML messages are serialized on the network and where exactly they should
be sent. In WSDL, on-the-wire message serialization is described in a binding and then a
service construct enumerates a number of concrete endpoint addresses.

A binding generally follows the structure of an interface and specifies the necessary
serialization details. The WSDL specification contains two predefined binding specifications,
one for SOAP (over HTTP) and one for plain HTTP. These bindings specify how an abstract
XML message is embedded inside a SOAP message envelope or in an HTTP message, and
how the message exchange patterns are realized in SOAP or HTTP. Due to extensive use of
defaults, simple bindings only need to specify very few parameters, as in the example below.
A notable exception to defaulting in binding are faults, as in SOAP every fault must have a so
called fault code with two main options, Sender or Receiver, indicating who seems to have a
problem. There is no reasonable default possible for the fault code.

Bindings seldom need to contain details specific to a single actual physical service, therefore
in many cases they can be as reusable as interfaces, and equivalent services by different
providers only need to specify the different endpoints, sharing the interface and binding
descriptions.

The service construct in WSDL represents a single physical Web service that implements a
single interface. The Web service can be accessible at multiple endpoints, each potentially
with a different binding, for example one endpoint using an optimized messaging protocol
with no data encryption for the secure environment of an intranet and a second endpoint
using SOAP over HTTPS for access from the Internet.

01 <binding
02 name="SOAPTicketBooking"
03 interface="tns:BookTicketInterface"
04 type="http://www.w3.org/ns/wsdl/soap"
05 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/" >

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 11 of 56

06 <fault ref="TripNotPossible" wsoap:code="soap:Receiver"/>
07 <fault ref="CreditCardNotValid" wsoap:code="soap:Sender"/>
08 </binding>
09
10 <service
11 name="STI2TicketBooking"
12 interface="tns:BookTicketInterface">
13 <endpoint
14 name="normal"
15 binding="tns:SOAPTicketBooking"
16 address="http://sti2.example.org/tickets" />
17 </service>

Listing 2 Example of a WSDL binding and service

2.1.3 WSDL Documents

Apart from the interfaces, bindings and services described above, WSDL documents can
contain further elements, enclosed in the root <description> element.

In order to facilitate true reuse of interfaces or bindings, WSDL documents can be
modularized by using include and import mechanisms. When a WSDL document is parsed,
imports and includes are resolved so the resulting model is not aware that some pieces may
have come from different actual files.

As a container for data type information, WSDL documents have a section called <types>.
Actual schemas can either be embedded directly in this section or referred to using the
appropriate import statements. For example external XML Schema documents can be
imported by putting the <xs:import> element directly in the <types> section. By default,
WSDL uses XML Schema to describe data, but WSDL extensibility allows other data type
systems to be used instead.

Finally, every element in a WSDL document can be annotated with documentation elements
or it can contain extensibility elements or attributes.

2.1.4 Note on the differences between WSDL 2.0 and WSDL 1.1

This note details the differences between WSDL version 1.1 [11], a specification authored by
several companies and submitted to the W3C as the basis for standardization work, and
WSDL version 2, the resulting draft standard. While this document uses the cleaner version 2
of WSDL, actual deployment prefers WSDL 1.1 because WSDL 2 is not yet finished and
implemented. This note aims to limit any confusion stemming from the situation that some
readers may only be familiar with WSDL 1.1.

The first notable difference is that several constructs from WSDL 1.1 were renamed in WSDL
2. In particular, portType in WSDL 1.1 is known as interface in WSDL 2 and port in WSDL
1.1 (occurring within a service) is now known as endpoint. Also, the WSDL document root
element is called definitions in WSDL 1.1 and description in WSDL 2. Importantly, the
intention of all these renamed constructs is unchanged between the two WSDL versions.

A larger difference is that while WSDL 2 uses XML Schema element declarations to describe
messages, WSDL 1.1 had a special construct, message, that contained potentially several

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 12 of 56

parts, each referencing a single XML Schema element or type declaration. However, the use
of multiple parts in a single message is usually translatable to a single element containing a
sequence of elements (one for each part), making the different approaches in WSDL 1.1 and
in WSDL 2 equivalent for all practical purposes.

2.2 RESTful Web services

Following closely Web principles, the REST architectural style has been applied in the
development and publishing of services called RESTful services [43]. In this approach
services are viewed as resource and can be identified by their URLs. Service clients that
want to use these resources access a particular representation by transferring application
content using a small globally defined set of remote methods that describe the action to be
performed on the resource. In the rest of this section we survey briefly the REST principles in
Section 2.2.1 and RESTful service descriptions in Section 2.2.2

2.2.1 REST principles

Representation state transfer or shortly REST is an architectural style introduced by Roy
Fielding in his dissertation [32]. It refers to a collection of network architecture principles
which outline how resources are defined and addressed. According to [33] the REST
architectural style is based on four principles:

• Resource identification through URI. Resources are identified by URIs, which provide
a global addressing space for resource and service.

• Uniform interface. There is a uniform interface for or accessing resources, which
consists of URIs, methods, status codes, headers, and content distinguished by
MIME type. The methods used are compared with the database technology methods
create, read, update, delete operations(CRUD). They are: PUT, GET, POST, and
DELETE. PUT creates a new resource, which can be then deleted using DELETE.
GET retrieves the current state of a resource in some representation. POST transfers
a new state onto a resource.

• Self-descriptive messages. There is a decoupling between resources and their
representation. Resources content can be accessed in a variety of formats (e.g.,
HTML, XML, plain text, PDF, JPEG, etc.).

• Stateful interactions through hyperlinks. Every interaction with a resource is stateless,
i.e., request messages are self-contained. Stateful interactions are based on the
concept of explicit state transfer. Several techniques exist to exchange state, e.g.,
URI rewriting, cookies, and hidden form fields. State can be embedded in response
messages to point to valid future states of the interaction.

An interesting comparison of the architectural styles used in systems based on WS-* and
RESTful services is presented in [33]. The main characteristics of REST versus RPC which
translate in differences between RESTful services versus WS-* based services is that: (1)
commands are defined in simple terms: resources to be retrieved, stored / get, set—difficult
to do many joins and (2) Nouns are key aspects, REST being about exchanging resources
and concepts.

2.2.2 RESTful service descriptions

Nowadays the number of RESTful service available on the Web is increasing. Some of the
most popular resource-oriented services include: services that expose the Atom Publishing
Protocol, Amozon S3 (Simple Storage Service)2, Yahoo’s web service3, read only services
(e.g. search engines). A RESTful service can be defined as being a set of Web resources,

2 http://aws.amazon.com/s3
3 http://developer.yahoo.com

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 13 of 56

interlinked, being data-centric and machine oriented.

2.2.2.1 The Web Application Description Language (WADL)

Although the number of RESTful services is increasing, there are currently no standard
description languages for this kind of services. Most current descriptions of RESTful services
are mainly provided as plain texts. One timid description language, with a poor adaption so
far is the Web Application Description Language WADL. WADL [38] is an XML language
designed to provide a machine processable protocol description format for use with HTTP-
based Web applications, especially those using XML to communicate.

A WADL document is defined using the following elements:

� Application is a top level element that contains the overall description of the service. It
might contain grammars, resources, method, representation and fault elements.

� Grammars element acts as a container for definitions of any XML structures exchanged
during execution of the protocol described by the WADL document. Using the sub-
element include one or more structures can be included

� Resources element that acts as a container for the resources provided by the application

� Resource describes a single resource provided by the Web application. Each resource is
identified by an URI and the resources parent element. It can contain the following sub-
elements: path_variable that is used to parameterize the identifiers of the parent
resource, zero or more method elements and zero or more resource elements.

� Method element describes the input to and output from an HTTP protocol method that
may be applied to a resource. A method element might have two child elements: a
request element that describes the input to be included when applying an HTTP method
to a resource and a response element that describes the output that results from
performing an HTTP method on a resource. A request element might contain query
variable elements

� Representation element describes a representation of a resource’s state and can either
be declared globally as a child of the application element, embedded locally as a child of
a request or response element, or referenced externally.

� Fault element is similar to a representation element in structure but differs in that it
denotes an error condition.

Listing 3 contains the WADL description of Yahoo search APIs4

1 <?xml version="1.0"?>
2 <application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://research.sun.com/wadl wadl.xsd"
4 xmlns:tns="urn:yahoo:yn"
5 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
6 xmlns:yn="urn:yahoo:yn"
7 xmlns:ya="urn:yahoo:api"
8 xmlns="http://research.sun.com/wadl">
9 <grammars>
10 <include
11 href="NewsSearchResponse.xsd"/>
12 <include
13 href="http://api.search.yahoo.com/Api/V1/error.xsd"/>

4 http://developer.yahoo.net/.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 14 of 56

14 </grammars>
15
16 <resources base="http://api.search.yahoo.com/NewsSearchService/V1/">
17 <resource uri="newsSearch">
18 <method href="#search"/>
19 </resource>
20 </resources>
21
22 <method name="GET" id="search">
23 <request>
24 <query_variable name="appid" type="xsd:string" required="true"/>
25 <query_variable name="query" type="xsd:string" required="true"/>
26 <query_variable name="type" type="xsd:string"/>
27 <query_variable name="results" type="xsd:int"/>
28 <query_variable name="start" type="xsd:int"/>
29 <query_variable name="sort" type="xsd:string"/>
30 <query_variable name="language" type="xsd:string"/>
31 </request>
32 <response>
33 <representation mediaType="application/xml" element="yn:ResultSet"/>
34 <fault id="SearchError" status="400" mediaType="application/xml"
35 element="ya:Error"/>
36 </response>
37 </method>
38 </application>

Listing 3 WADL Example

2.2.2.2 Communication with RESTful services

The communication with a RESTful service can be done based on XML documents that are
received or returned by such services. There is a growing number of services that are
returning simple data structures (numbers, arrays, etc.) that are serialized using JSON.
JSON5 which stands for JavaScript Object Notion is a lightweight data-interchange format,
easy for humans to read and for machines to generate and read. The language is built on
two structures: (1) a collection of name/value pairs which corresponds in other languages to
an object, record, struct, hash table and (2) an ordered list of values, which in most
languages correspond to an array, list, vector or sequence.

2.3 Semantic Services frameworks

The research aim of making Web content more machine processable, also known as
Semantic Web [28], has been applied in the past years in the context of Web services usage
giving birth to a new research area know as Semantic Web services. Semantic Web services
augment existing service descriptions, usually described using WSDL, by providing formal,
machine processable representation of what a service can do (functionality), how other
services or clients can interact with a service in order to consume its functionality (behaviour)
and what conditions over the first two types of descriptions (non-functional properties).
Formal, machine processable descriptions of services will support the automation of tasks,
such as Web service discovery, composition and execution. In this context, this section gives
an overview of existing approaches to Semantic Web services, including WSMO approach
(Section 2.3.1), OWL-S (Section 2.3.2), the SWSF approach (Section 2.3.3) and IRS-III

5 http://www.json.org/

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 15 of 56

(Section 2.3.4).

2.3.1 WSMO Approach

The major initiative in the area of Semantic Web services initiated in Europe is the WSMO
initiative. In this section we provide a general overview of the WSMO approach including:
The Web Service Modelling Ontology (WSMO) – a conceptual model for Semantic Web
services, the Web Service Modelling Language (WSML) – a language providing a formal
syntax and semantics for WSMO, and the Web Service Modelling Execution Environment
(WSMX) – an execution environment for WSMO descriptions formalized in WSML.

2.3.1.1 The Web Service Modelling Ontology

WSMO [14] provides ontological specifications for the core elements of Semantic Web
services. In fact, Semantic Web services aim at an integrated technology for the next
generation of the Web by combining Semantic Web technologies and Web services, thereby
turning the Internet from an information repository for human consumption into a world-wide
system for distributed Web computing. Therefore, appropriate frameworks for Semantic Web
services need to integrate the basic Web design principles, those defined for the Semantic
Web, as well as design principles for distributed, service-orientated computing of the Web.
WSMO is, therefore, based on the following design principles:

� Web Compliance: WSMO inherits the concept of Universal Resource Identifier (URI)
for unique identification of resources as the essential design principle of the Word-
Wide Web. Moreover, WSMO adopts the concept of Namespaces for denoting
consistent information spaces, supports XML and other W3C Web technology
recommendations, as well as the decentralization of resources.

� Ontology Based: Ontologies are used as the data model throughout WSMO, meaning
that all resource descriptions as well as all data interchanged during service usage
are based on ontologies. Ontologies are a widely accepted state-of-the-art knowledge
representation, and have thus been identified as the central enabling technology for
the Semantic Web. The extensive usage of ontologies allows semantically enhanced
information processing as well as support for interoperability; WSMO also supports
the ontology languages defined for the Semantic Web.

� Strict Decoupling: Decoupling denotes that WSMO resources are defined in isolation,
meaning that each resource is specified independently without regard to possible
usage or interactions with other resources. This complies with the open and
distributed nature of the Web.

� Centrality of Mediation: As a complementary design principle to strict decoupling,
mediation addresses the handling of heterogeneities that naturally arise in open
environments. Heterogeneity can occur in terms of data, underlying ontology,
protocol, or process. WSMO recognizes the importance of mediation for the
successful deployment of Web services by making mediation a first class component
of the framework.

� Ontological Role Separation: Users, or more generally clients, exist in specific
contexts which will not be the same as for available Web services. For example, a
user may wish to book a holiday according to preferences for weather, culture, and
childcare, whereas Web services will typically cover airline travel and hotel
availability. The underlying epistemology of WSMO differentiates between the desires
of users or clients and available services.

� Description versus Implementation: WSMO differentiates between the descriptions of
Semantic Web services elements (description) and executable technologies
(implementation). While the former requires a concise and sound description
framework based on appropriate formalisms in order to provide a concise for
semantic descriptions, the latter is concerned with the support of existing and
emerging execution technologies for the Semantic Web and Web services. WSMO

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 16 of 56

aims at providing an appropriate ontological description model, and to be complaint
with existing and emerging technologies.

� Execution Semantics: In order to verify the WSMO specification, the formal execution
semantics of reference implementations like WSMX as well as other WSMO-enabled
systems provide the technical realization of WSMO. This principle serves as a means
to precisely define the functionality and behavior of the systems that are WSMO
compliant.

� Service versus Web service: A Web service is a computational entity which is able to
achieve a user goal by invocation. A service, in contrast, is the actual value provided
by this invocation ([19]). WSMO provides means to describe Web services that
provide access (searching, buying, etc.) to services. WSMO is designed as a means
to describe the former and not to replace the functionality of the latter.

The rest of this section briefly outlines the conceptual model of WSMO. The elements of the
WSMO ontology are defined in a meta-meta-model language based on the Meta Object
Facility (MOF) [13]. MOF defines an abstract language and framework for specifying,
constructing, and managing technology neutral meta-models. The four WSMO top-level
elements, namely Ontologies, Web service, Goals and Mediators are described below, a
MOF representation for each of these elements being provided as well.

Figure 1 WSMO top level elements

In order to allow complete item descriptions, every WSMO element is described by
annotations. These are based on the Dublin Core (DC) Metadata Set [12] for generic
information item descriptions.

Ontologies:
Ontologies provide the formal semantics for the terminology used within all other WSMO
components. Using MOF, we define an ontology as described in the listing below:

Class ontology
 hasAnnotation type annotation
 importsOntology type ontology
 usesMediator type ooMediator
 hasConcept type concept
 hasRelation type relation
 hasFunction type function
 hasInstance type instance

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 17 of 56

 hasAxiom type axiom

Listing 4 WSMO Ontology class

A set of annotations are available for characterizing ontologies; they usually include the DC
Metadata elements. Imported ontologies allow a modular approach for ontology design and
can be used as long as no conflicts need to be resolved between the ontologies. When
importing ontologies in realistic scenarios, some steps for aligning, merging, and
transforming imported ontologies in order to resolve ontology mismatches are needed. For
this reason ontology mediators are used (OO Mediators). Concepts constitute the basic
elements of the agreed terminology for some problem domain. Relations are used in order to
model interdependencies between several concepts (respectively instances of these
concepts); functions are special relations, with a unary range and a n-ary domain
(parameters inherited from relation), where the range value is functionally dependent on the
domain values, and instances are either defined explicitly or by a link to an instance store,
that is, an external storage of instances and their values

Web services:
WSMO provides service descriptions for describing services that are requested by service
requesters, provided by service providers, and agreed between service providers and
requesters. In the listing below, the common elements of these descriptions are presented.

Class webService
 hasAnnotation type annotation
 importsOntology type ontology
 usesMediator type {ooMediator, wwMediator}
 hasNonFunctionalProperties type nonFunctionalProperty
 hasCapability type capability multiplicity = singlevalued
 hasInterface type interface

Listing 5 WSMO Web service class

Within the service class the annotations and imported ontologies attributes play a role that is
similar to that found in the ontology class. Non-functional properties attribute was added,
being used mainly to describe quality of service properties. An extra type of mediator (WW
Mediator) is also included, in order to deal with protocol and process-related mismatches
between Web services.
The final two attributes define the two core WSMO notions for semantically describing Web
services: a capability which is a functional description of a Web Service, describing
constraints on the input and output of a service through the notions of preconditions,
assumptions, postconditions, and effects; and Web service interfaces which specify how the
service behaves in order to achieve its functionality. A service interface consists of a
choreography which describes the interface for the client-service interaction required for
service consumption, and an orchestration which describes how the functionality of a Web
Service is achieved by aggregating other Web services.

Goals:
A goal specifies the objectives that a client may have when consulting a Web Service,
describing aspects related to user desires with respect to the requested functionality and
behavior. Ontologies are used as the semantically defined terminology for goal specification.
Goals model the user view in the Web Service usage process and therefore are a separate
top level entity in WSMO.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 18 of 56

Class goal
 hasAnnotation type annotation
 importsOntology type ontology
 usesMediator type {ooMediator, wwMediator}
 hasNonFunctionalProperties type nonFunctionalProperty
 requestsCapability type capability multiplicity = singlevalued
 requestsInterface type interface

Listing 6 WSMO Goal class

As presented in listing above, the requested capability in the definition of a goal represents
the functionality of the services the user would like to have, and the requested interface
represents the interface of the service the user would like to have and interact with.

Mediators:
The concept of Mediation in WSMO addresses the handling of heterogeneities occurring
between elements that shall interoperate by resolving mismatches between different used
terminologies (data level), on communicative behavior between services (protocol level), and
on the business process level. A WSMO Mediator connects the WSMO elements in a
loosely-coupled manner, and provides mediation facilities for resolving mismatches that
might arise in the process of connecting different elements defined by WSMO. The
description elements of a WSMO Mediator are its source and target elements, and the
mediation service for resolving mismatches, as shown in the listing below.

Class mediator
 hasAnnotation type annotation
 importsOntology type ontology
 hasNonFunctionalProperties type nonFunctionalProperty
 hasSource type {ontology, goal, webService, mediator}
 hasTarget type {ontology, goal, webService, mediator}
 hasMediationService type {goal, webService, wwMediator}

Listing 7 WSMO Mediator class

WSMO defines different types of mediators for connecting the distinct WSMO elements: OO
Mediators connect and mediate heterogeneous ontologies, GG Mediators connect Goals,
WG Mediators link Web services to Goals, and WW Mediators connects interoperating Web
services resolving mismatches between them.

2.3.1.2 The Web Service Modelling Language (WSML)

The Web Service Modeling Language [15] is a formal language for describing ontologies,
goals, Web services and mediators. WSML follows the WSMO conceptual model being
based on a set of well-known logical formalisms including: Description Logics [16], Logic
Programming [18], F-Logic [17] and First Order Logic. These formalisms are taken as
starting points for the development of a number of WSML language variants. WSML has a
set of five variants: WSML-Core, WSML-Flight, WSML-Rule, WSML-DL and WSML Full.
WSML-Core is based on the intersection of Description Logics and Logic Programming,
more precisely on Datalog programs. It has the least expressive power but provides a low
formal complexity and is decidable. By extending WSML-Core in the direction of Logic
Programming with default negation, cardinality constraints, n-ary relations with arbitrary
parameters and meta-modeling features a new language, WSML-Flight, is defined.
A further extension in the same direction with function symbols results in a new language
variation called WSML-Rule. WSML-Rule no longer requires safety of rules. The only

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 19 of 56

differences between WSML-Rule and WSML-Flight are in the logical expression syntax.
Extensions of WSML-Core extension to a full-fledged description logic resulted in WSMLDL.
WSML-Full is based on First Order Logic and acts as umbrella language, unifying all the
above varieties.

2.3.1.3 The Web Service Modelling Execution Environment (WSMX)

The Web Service Modeling Execution Environment (WSMX)6 is the reference implementation
for WSMO [14]. WSMX aims to provide a test bed for WSMO and as well to demonstrate the
viability of using Semantic Web Services as a means to achieve dynamic interoperation
between business partners. WSMX uses Semantic Web technologies to discover, mediate,
select and invoke Web services based on their formal descriptions. In short, WSMX
functionality could be summarized as performing discovery, mediation, selection and
invocation of Web services on receiving a user goal specified in WSML [15], the underlying
formal language of WSMO. The user goal is first matched against the formal descriptions of
Web services registered with WSMX. In case of success, one or more service descriptions
(ranked according to user preference) can be returned. The most appropriate service
selected by the user is further invoked and the result is given back to user. Prior the
invocation step, WSMX ensures that the data provided for the service invocation is in the
format that Web service expects. If necessary a data mediation process is performed to
assure the inter-operability between different entities. Presently, the WSMX architecture
relies on a set of loosely-coupled main components that provide functionality for each step of
Web service usage process: discovery, selection, mediation and invocation.

Being one of the major SWS approach, WSMO has been used in many European funded
projects as a solution to describe Semantic Web services. It provides a rich support to
describe various aspects of services. Having a framework that provides rich support could be
sometimes less beneficial if we consider the learning curve of developers that want to
annotate services and the tool support required. In some cases, a simpler, lighter support
would be more appropriate. In this context, SOA4All project will developed a lighter version
of WSMO, called WSMO-Lite that provides simple annotation support for services following
the same principles described previously in this section.

2.3.2 OWL-S

OWL-S (2004), part of the DAML program7, is an OWL-based Web Service Ontology; it aims
at providing building blocks for encoding rich semantic service descriptions, in a way that
builds naturally upon OWL. Very often the OWL-S ontology is referred to as a language for
describing services, thus reflecting the fact that it provides a vocabulary that can be used
together with the other aspects of the OWL to create service descriptions.
The OWL-S ontology mainly consists of three interrelated sub-ontologies, known as the
profile, process model, and grounding. The profile is used to express ‘what a service does,’
for purposes of advertising, constructing service requests, and matchmaking; the process
model describes ‘how it works, to enable invocation, enactment, composition, monitoring,
and recovery; and the grounding maps the constructs of the process model onto detailed
specifications of message formats, protocols, and so forth (normally expressed in WSDL).

OWL-S has been the first approach for an overall framework for describing Semantic Web

6 www.wsmo.org
7 http://www.daml.org/

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 20 of 56

Services, starting in 2001 and has as predecessor DAML-S8. OWL-S defines an ontology
system for describing Web Services, using OWL as the description language. The OWL-S
upper level ontology comprises four major elements: Service, Service Profile, Service
Model and Service Grounding which are illustrated in Figure 2.

� the Service concept serves as an organizational point of reference for declaring Web
Services; every service is declared by creating an instance of the Service concept

� the Service Profile holds information for ’service advertisement’ which is used for
Web Service Discovery. This is the name of the service, its provider and a natural
language description of the service, as well as a black-box description of the Service
(specifying the input, output, preconditions and effects (short: IOPE).

� the Service Model contains descriptive information on the functionality of a service
and its composition out of other services, described as a process. The model defines
three types of processes (atomic, simple, and composite processes), whereof each
construct is described by IOPEs, as in the Service Profile, with optional conditions
over these.

� the Service Grounding gives details of how to access the service, mapping from an
abstract to a concrete specification for service usage. Although not restricted to one
grounding technology, WSDL is favored for this.

Figure 2 OWL-S top level elements

Each instance of Service will present a ServiceProfile description, be describedBy a
ServiceModel description, and support a ServiceGrounding description. More details about
each OWL-S top level element are provided in the following subsections.

2.3.2.1 OWL-S Service Profiles

The Service Profile provides means to describe the services offered by the providers, and
the services needed by the requesters. No representation of services is imposed by the
Service Profile, but rather, using the OWL sub-classing it is possible to create specialized
representations of services that can be used as service profiles. However, for pragmatic
reasons, OWL-S provides one possible representation through the class Profile. A service,
defined through the OWL-S Profile, is modeled as a function of three basic types of
information:

� The Organization that Provides the Service: The contact information that refers to the
entity that provides the service (e.g., contact information may refer to the

8 http://www.daml.org/services

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 21 of 56

maintenance operator that is responsible for running the service, or to a customer
representative that may provide additional information about the service, etc.).

� The Function the Service Computes: The transformation produced by the service.
The functional description includes the inputs required by the service and the outputs
generated; the preconditions required by the service and the expected effects that
result from the execution of the service.

� A Host of Features that Specify Characteristics of the Service: The descriptions of
these features include the category of a given service (e.g., The category of the
service within the UNSPSC classification system), quality rating of the service (e.g.,
some services may be very good, reliable, and quick to respond; others may be
unreliable, sluggish, or even malevolent), and an unbounded list of service
parameters that can contain any type of information (the OWL-S Profile provides a
mechanism for representing such parameters).

The most essential type of information presented in the profile, that will play a key role during
the discovery of the service, is the specification of what functionality the service provides.
The OWL-S Profile emphasizes two aspects of the functionality of the service:

� The Information Transformation: Represented by inputs and outputs of the
service, and

� The State Change produced by the Execution of the Service: Represented by the
preconditions and effects of the service.

No schema to describe inputs/outputs/preconditions/effects (IOPE) instances is provided by
the OWL-S Profile. However, such a schema exists in the Process ontology. It is expected
that the IOPE’s published by the Profile are a subset of those published by the Process, thus
it is expected that the Process part of a description will create all the IOPE instances and the
Profile instance can simply point to these instances. The properties of the Profile class that
the OWL-S Profile ontology defines for pointing to IOPE’s are summarized as follows:

� hasParameter : Ranges over a Parameter instance of the Process ontology; it’s role

is solely making domain knowledge explicit.
� hasInput : Ranges over instances of Inputs as defined in the Process ontology.
� hasOutput : Ranges over instances of type Output, as defined in the Process

ontology.
� hasPrecondition : Specifies one of the preconditions of the service and ranges over

a Precondition instance defined according to the schema in the Process ontology.
� hasResult : Specifies one of the results of the service.

Result class in the Process ontology; it specifies under what conditions the outputs are
generated. This parameter also specifies what domain changes are produced during the
execution of the service.

2.3.2.2 OWL-S Service Models

As the OWL-S Profile describes only the overall function the service provides, a detailed
perspective on how to interact with the service is needed. This interaction can be viewed as
a process, and OWL-S defines the ServiceModel subclass in order to provide means to
define processes. The view that OWL-S takes on processes is that a process is not
necessary a program to be executed, but rather a specification of the ways a client may
interact with a service. A process can generate and return some new information based on
information it is given and the world state. Information production is described by the inputs
and outputs of the process. A process can as well produce a change in the world. This
transition is described by the preconditions and effects of the process.
Informally, any process can have any number of inputs, representing the information that is,
under some conditions, required for starting the process. Processes can have any number of
outputs, the information that the process provides to the requester. Inputs and outputs are

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 22 of 56

represented as sub-classes of a general class called Parameter; (every parameter has a
type, specified using a URI). There can be any number of preconditions, which must all hold
in order for a process to be successfully started. A process can have any number of effects.
Outputs and effects can depend on conditions that hold true of the world state at the time the
process is performed. Preconditions and effects are represented as logical formulas. OWL-S
treats such expressions as literals, either string literals or XML literals. The latter case is
used for languages whose standard encoding is in XML, such as SWRL [24] or RDF [26].
The former case is for other languages such as KIF [25] and PDDL [27]. Processes are
connected to their IOPEs using the following properties:

� hasParticipant which ranges over the Participant class.
� hasInput which ranges over the Input class.
� hasOutput which ranges over the Output class.
� hasLocal which ranges over the Local class.
� hasPrecondition which ranges over the Condition class.
� hasResult which ranges over the Result class.

A process involves at least two parties. One is the client, from whose point of view the
process is described, and another is the service that the client deals with. Both the client and
the service are referred to as participants; they are directly linked to a process using the
hasParticipant property. Inputs and outputs specify the data transformation produced by the
process; they are directly linked to a process using the hasInput and hasOutput properties.
Inputs specify the information that the process requires for its execution. Inputs may come
directly from the client or may come from previous steps of the same process. Outputs
specify the information that the process generates after its execution. The presence of a
precondition for a process means that the process cannot be performed successfully unless
the precondition is true; preconditions are directly linked to a process using the
hasPrecondition property. The execution of a process may result in changes of the state of
the world (effects), and the generation of information by the service (referred to as outputs).
Such coupled outputs and effects are not directly linked to a process, but through the term
result (i.e., through the hasResult property).
Although the above properties are common to all processes defined in
OWL-S, there can be three types of processes:

� Atomic Processes : Description of services that expects one (possibly complex)
message and returns one (possibly complex) message in response.

� Composite Processes : Processes that maintain some state; each message the
client sends advances it through the process.

� Simple Processes : processes used as elements of abstraction, that is, a simple
process may be used either to provide a view of (a specialized way of using) some
atomic process, or a simplified representation of some composite process (for
purposes of planning and reasoning).

Atomic processes are similar to the actions a service can perform by engaging it in a single-
step interaction; composite processes correspond to actions that require multi-step
interactions, and simple processes provide an abstraction mechanism to enable multiple
views of the same process. Atomic processes are directly invocable and do not consist of
any sub-processes; their execution is a single-step execution (as far as the service requester
is concerned), that is they take an input message, do something, and then return their output
message. On the other side, composite processes are decomposable into other (atomic,
simple, or composite) processes; their decomposition can be specified by using control
constructs. The control constructs supported in OWL-S include: sequence, split, split + join,
choice, any-order, if-then-else, iterate, repeat-while, repeat-until.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 23 of 56

2.3.3 The SWSF approach

Semantic Web Services Framework (SWSF) [20] is another approach for Semantic Web
Services, being proposed and promoted by Semantic Web Services Language Committee9
(SWSLC) of the Semantic Web Services Initiative10 (SWSI). It is based on two major
components: an ontology and the corresponding conceptual model by which Web services
can be described, called Semantic Web Services Ontology (SWSO) and a language used to
specify formal characterizations of Web services concepts and descriptions called Semantic
Web Services Language (SWSL). This section provides a general overview of the two core
components of SWSF approach for SWS namely: SWSO—Semantic Web Service Ontology
(Section 2.3.3.1) and SWSL—Semantic Web Service Language (Section 2.3.3.2).

2.3.3.1 The Semantic Web Services Ontology (SWSO)

SWSO presents a conceptual model for semantically describing Web services and an
axiomatization, formal characterization of this model given in one of the two variants of
SWSL: SWSL-FOL based on First-Order Logic or SWSL-Rules based on Logic
programming. The resulting ontologies are called: FLOWS—First-Order Logic Ontology for
Web Services, which relies on First-Order Logic semantics, and ROWS-Rule Ontology for
Web Services, which relies on Logic Programming semantics. Since both representations
share the same conceptual model we will focus our overview on FLOWS, the derivation of
ROWS from FLOWS being straightforward.
The development of FLOWS ontology was influenced by the OWL-S ontology and the
lessons learned from developing this ontology. Another fundamental aspect in the
development of FLOWS is the provision of a rich behavioral process model based on
Process Specification Language (PSL) [21]. FLOWS can be seen as an extension/refinement
of OWL-S ontology with a special focus on providing interoperability or semantics to existing
standards in Web services area (e.g., BPEL, WSDL, etc.) Although there are many
similarities between FLOWS and OWL-S ontologies, one important difference is the
expressiveness of the underling language. FLOWS is based on First-Order logic, which
means it has a richer, more expressive, support than OWL-S which is based on OWLDL, on
description logics formalisms.
Being based on First-Order Logic, FLOWS makes use of logic predicates and terms to model
the state of the world. Features from situation calculus, like the use of fluents, predicates,
and terms which vary over time, were introduced to model the change of the world. Invariant
predicates and terms are called in relations in SWSO.
The FLOWS ontology consists of three major components: Service Descriptors, Process
Model, and Grounding. The Service Descriptors are used to provide basic descriptive
information about the service. The Process Model is used to describe how the service works.
The Grounding is used to link the semantic, abstract descriptions of the service provided in
SWSO to detailed specifications of messages, protocols, and so forth used by Web services.
In the rest of this section we take a closer look at the elements that are part of the FLOWS
Service Descriptors, the FLOWS Process Model and the FLOWS Grounding.

Service Descriptors

9 http://www.daml.org/services/swsl/
10 http://www.swsi.org/

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 24 of 56

Service Descriptors are the components of FLOWS ontology which provide basic information
about a service. By basic information is meant nonfunctional meta-information and/or
provenance information. These kinds of descriptions are often used to support the
automation of service related tasks like service discovery. They include information like
name, textual description, version, etc, which are properties inherited from the OWL-S
Profile. A Service Descriptor may include the following individual properties: (1) Service
Name – this property refers to the name of the service and may be used as a unique
identifier; (2) Service Author – this property refers to the authors of the service which can be
people or organizations; (3) Service Contact Information – this property contains a pointer for
the agents or people requiring more information about the service; (4) Service Contributor –
this property refers to the entity responsible for updating the service description; (5) Service
Description – this property contains the textual description of the service; (6) Service URL –
this property contains the URL associated with the service; (7) Service
Identifier – this property contains an unambiguous reference to the service; (8) Service
Version –
this property contains an identifier to the specific version of the service; (9) Service Release
Date – this property contains the release date of the service; (10) Service Language—this
property specifies the language of the service; (11) Service Trust – this property described
the trustworthiness of the service; (12) Service Subject – this property refers to the topic of
the service; (13) Service Reliability – this property contains and entity used to indicate the
dependencies of the service; (14) Service Cost – this property contains the cost of invocation
for the service.

Process Model

The Process Model is that part of FLOWS ontology which offers the needed constructs to
describe the behavior of the service. The Process Model extends towards the Web services
requirements the generic ontology for processes provided by PSL approach, by adding two
fundamental elements: (1) the structured notion of atomic process as found in OWL-S and
(2) the infrastructure for specifying various forms of data flow. The core part of the PSL
extended by FLOWS is called PSL Outer Core and the resulting FLOWS sub-ontology is
called FLOWS Core. Based on these extensions FLOWS Process Model ontology can be
regarded as a combination of six ontology modules namely:

� FLOWS-Core: Introduces the basic notions of activities as activities composed of
atomic activities.

� Control Constraints: Axiomatize the basic constructs common to workflow- style
process models.

� Ordering Constraints: Support the specification of activities defined by sequencing
properties of atomic processes.

� Occurrence Constraints: Support the specification of nondeterministic activities within
services.

� State Constraints: Support the specification of activities which are triggered by states
that satisfy a given condition.

� Exception Constraints: Provides support for modeling exceptions.

As part of the FLOWS-Core some basic terms are defined:
� Service: A service is defined as an object which has associated a set of service

descriptors and an activity that specifies the process model of the service, activities
called service activities.

� Atomic Process: An atomic service is a PSL activity, that is, in general a sub-activity
of the activity associated with the service. Associated with each atomic process are
(multiple) input, output, precondition, and effects. The inputs and the outputs are the
inputs and outputs of the program which realizes the atomic process. The

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 25 of 56

preconditions are conditions that must be true in the word for the atomic process to
be executed. Finally, effects are the side effects of the execution of the atomic
process. All these are expressed as First-Order logic formulae.

� Message: A message is an object in FLOWS-Core ontology which has associated a
message type and a payload (body).

� Channel: A channel is an object in FLOWS-Core ontology which holds messages that
have been sent and may or may not have received.

2.3.3.2 The Semantic Web Services Language (SWSL)

SWSL is a language for describing, in a formal way, Web services concepts and descriptions
of individual services. SWSL comes in two variants which are based on two well-known
formalisms: First-Order Logic and Logic Programming. The two sub-languages are SWSL-
FOL and SWSL-Rules. The design of both languages was driven by compliance with Web
principles, like usage of URIs, integration with XML built-in types and XML-compatible
namespaces, and import mechanisms. Both languages are layered languages where every
layer includes a number of new concepts that enhance the modeling power of the language.
SWSL-Rules is a logic programming language which includes features from Courteous logic
programs [22], HiLog [23] and F-Logic [17], and can be seen as both specification and
implementation language. SWSL-Rules language provides support for service-related tasks
like discovery, contacting, policy specification, and so on. It is a layered-based languages as
shown in Figure 3.

Figure 3 Layered structure of SWSL-Rules

The core of the SWSL-Rules language is represented by pure Horn subset of SWSL-Rules.
This subset is extended by adding different features like (1) disjunction in the body and
conjunction and implication in the head – this extension is called monotonic Loyd-Topor (Mon
LT) [18], (2) negation in the rule body interpreted as nation as failure—this extension is called
NAF. Furthermore, the Mon LT can be extended by adding quantifiers and implication in the
rule body resulting in what is called nonmonotonic Loyd-Topor (Nonmon LT) extension.
Other envisioned extensions are towards: (1) Courteous rules (Courteous) whit two new
features: restricted classical negation and prioritized rules, (2) HiLog – enables meta-
programming, (3) Frames – add object oriented features like frame syntax, types, and
inheritance, (4) Reification—allows rules to be referred and grouped. Finally, equality can be
possible extension as well. SWSL-FOL is a First-Order logic which includes features from
HiLog and F-Logic. Some of the extensions provided for SWSL-Rules apply for SWSL-FOL

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 26 of 56

as well. The only restriction is that the initial languages should have monotonic semantics.
The resulting extensions depicted in Figure X are SWSL-FOL + Equality, SWSL-FOL +
HiLog, and SWSL-FOL + Frame.

2.3.4 IRI-III

IRS-III [10] is a framework and implemented platform which acts as a broker mediating
between the goals of a user or client, and available deployed Web services. The IRS uses
WSMO as its basic ontology and follows the WSMO design principles. The rest of this
section presents the principles which have influenced the IRS (Section 2.3.4.1), and IRS
extensions to WSMO (in Section 2.3.4.2). In the rest of the section the terms ‘IRS’ and ‘IRS-
III’ are used interchangeably.

2.3.4.1 Principles Underlying IRS-III

IRS-III is based on the following design principles:
� Supporting Capability Based Invocation: IRS-III enables clients (human users or

application programs) to invoke a Web service simply by specifying a concrete desired
capability. The IRS acts as a broker finding, composing, and invoking appropriate Web
services in order to fulfill the request.

� Ease of Use: IRS interfaces were designed so that much of the complexity surrounding
the creation of SWS-based applications are hidden. For example, the IRS-III browser
hides some of the complexity of underling ontology by bundling up related class
definitions into a single tabbed dialog window.

� One Click Publishing: A corollary of the above-design principle. There are many users
who have an existing system which they would like to be made available but have no
knowledge of the tools and processes involved in turning a stand alone program into a
Web service. Therefore, IRS was created so that it supported ‘one click’ publishing of
stand alone code written in a standard programming language (currently, we support
Java and Lisp) and of applications available through a standard Web browser.

� Agnostic to Service Implementation Platform: This principle is in part a consequent of the
one click publishing principle. Within the design of the IRS there is no strong assumption
about the underlying service implementation platform. However, it is accepted the current
dominance of the Web services stack of standards and consequently program
components which are published through the IRS also appear as standard Web services
with a SOAP-based end point.

� Connected to the External Environment: When manipulating Web services, whether
manually or automatically, one needs to be able to reason about their status. Often this
information needs to be computed on-the-fly in a fashion which integrates the results
smoothly with the internal reasoning. To support this we allow functions and relations to
be defined which make extra-logical calls to external systems – for example, invoking a
Web service. Although, this design principle has a negative effect on ability to make
statements about the formal correctness of resulting semantic descriptions, it is
necessary because our domain of discourse includes the status of Web services. For
example, a user may request to exchange currencies using ‘today’s best rate.’ If our
representation environment allows us to encode a current-rate relation which makes an
external call to an appropriate Web service or Website then this will not only make life
easier for the SWS developer, but also make the resulting descriptions more readable.

� Open: The aim is to make IRS-III as open as possible. The IRS-III clients are based on
Java APIs which are publicly accessible. More significantly, components of the IRS-III
server are Semantic Web services represented within the IRS-III framework. This feature
allows users to replace the main parts of the IRS broker with their own Web services to
suit their own particular needs.

� Inspectibility: In many parts of the life cycle of any software system, it is important that the
developers are able to understand the design and behavior of the software being

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 27 of 56

constructed. This is also true for SWS applications. This principle is concerned with
making the semantic descriptions accessible in a human readable form. The descriptions
could be within a plain text editor or within a purpose built browsing or editing
environment. The key is that the content and form are easily understandable by SWS
application builders.

2.3.4.2 Extension to WSMO

The IRS-III ontology is currently based on the WSMO conceptual model with a number
differences mainly derived from the fact that in IRS-III the aim is to support capability driven
Web service invocation. To achieve these goals, Web services are required to have input
and output roles. In addition to the semantic type the soap binding for input and output roles
is also stored. Consequently, a goal in IRS-III has the following extra slots has-input-role,
has-output-role, has-input-role-soap-binding, and has-outputrole-soap-binding.
Goals are linked to Web services via mediators. More specifically, the WG Mediators found
in the used-mediator slot of a Web service’s capability. If a mediator associated with a
capability has a goal as a source, then the associated Web service is considered to be linked
to the goal.
Web services which are linked to goals ‘inherit’ the goal’s input and output roles. This means
that input role definitions within a Web service are used to either add extra input roles or to
change an input role type.
When a goal is invoked the IRS broker creates a set of possible contender Web services
using the WG Mediators. A specific web service is then selected using an applicability
function within the assumption slot of the Web service’s associated capability. As mentioned
earlier the WG Mediators are used to transform between the goal and Web service input and
output types during invocation.
In WSMO the mediation service slot of a mediator may point to a goal that declaratively
describes the mapping. Goals in a mediation service context play a slightly different role in
IRS-III. Rather than describing a mapping, goals are considered to have associated Web
services and are therefore simply invoked.
IRS clients are assumed to be able to formulate their request as a goal instance. This means
that it is only required choreographies between the IRS and the deployed Web services. In
IRS-III choreography execution thus occurs from a client perspective [10], that is to say, to
carry out a Web service invocation, the IRS executes a web service client choreography
which sends the appropriate messages to the deployed Web service. In contrast, currently,
WSMO choreography describes all of the possible interactions that a Web service can have.

2.3.5 SAWSDL

SAWSDL [30] proposes a mechanism to augment the Web service functional descriptions,
as represented by WSDL with semantics. More specifically SAWSDL proposes a set of
extension attributes for the Web Services Description Language and XML Schema definition
language that allows description of semantics aspects of services. SAWSDL is a W3C
recommendation since August 2007. It has been produced by the SAWSDL consortium,
which includes some of the SOA4All partners (i.e. STI Innsbruck, OU, IBM). SAWSDL work
was motivated by the need of creating a common agreed specification given the growing
number of Semantic Web services approaches (e.g. WSDL-S, WSMO, OWL-S), some of
these approaches following a top-down approach to described services (WSMO, OWL-S)
some others following a bottom-up approach (WSDL-S). The approach followed by SAWSDL
was the bottom-up approach with significant influence from WSDL-S [31]. In this section we
briefly present the principles SAWSDL is based on (in Section 2.3.5.1), and we shortly
describe the extensibility elements used and the annotations that can be created (in Section

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 28 of 56

2.3.5.2).

2.3.5.1 Aims and Principles

Starting from the assumption that a semantic model of the Web service already exists,
SAWSDL describes a mechanism to link this semantic model with the syntactical functional
description captured by WSDL. Using the extensibility elements of WSDL, a set of
annotations can be created to semantically describe the inputs, outputs and the operation of
a Web service. By this the semantic model is kept outside WSDL, making the approach
agnostic to any ontology representation language.

The advantage of such an approach is that it is an incremental approach, building on top of
an already existing standard and taking advantage the already existing expertise and tool
support. In addition the user can develop in WSDL in a compatible manner both the semantic
and operational level aspects of Web services.

SAWSDL work is guided by a set of principles, the most important of them being listed
below:

• Build on existing Web services’ standards. Standards represent a key point in
creating integration solutions, and as a consequence, WSDL-S promotes an upwardly
compatible mechanism for adding semantics to Web services.

• Annotations should be agnostic to the semantics representation language. Different
Web service providers could use different ways of representing the semantic
descriptions of their services and furthermore, the same Web service provider can
choose more than one representation form in order to enable its discovery by multiple
engines. Consequently, WSDL-S does not prescribe what semantic representation
language should be used and allows the association of multiple annotations written in
different semantic representation languages.

• Support annotation of XML Schema data type. As XML Schema is an important data
definition format and it is desirable to reuse the existing interfaces described in XML,
SAWSDL supports the annotation of XML Schemas. These annotations are used for
adding semantics to the inputs and outputs of the annotated Web service. In addition,
an important aspect to be considered is the creation of mappings between the XML
Schema complex types and the corresponding ontological concepts. As SAWSDL
does not prescribe an ontology language, the mapping techniques would be directly
dependent of the semantic representation language chosen.

In the next subsection we present in more details the extensibility elements of WSDL and
how they can be used in annotating the inputs, outputs and operations of Web services.

2.3.5.2 Semantic Annotations

SAWSDL introduces the following terminology:

• Semantic Model: A semantic model is a set of machine-interpretable representations
used to model an area of knowledge or some part of the world, including software.
Examples of such models are ontologies that embody some community agreement, logic-
based representations, etc.

• Concept: A concept is an element of a semantic model. This specification makes no
assumptions about the nature of concepts, except that they must be identifiable by URIs.
A concept can for example be a classifier in some language, a predicate logic relation,
the value of the property of an ontology instance, some object instance or set of related
instances, an axiom, etc.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 29 of 56

• Semantic Annotation: A semantic annotation in a document is additional information
that identifies or defines a concept in a semantic model in order to describe part of that
document. In SAWSDL, semantic annotations are XML attributes added to a WSDL or
associated XML Schema document, at the XML element they describe. Semantic
annotations are of two kinds: explicit identifiers of concepts, or identifiers of mappings
from WSDL to concepts or vice versa.

• Semantics: Semantics refers to sets of concepts identified by annotations.

SAWSDL proposes two basic semantic annotation constructs to be used in annotating the
interfaces, operations, faults in WSDL and simple types, complex types, elements and
attributes in XSD:

• modelReference: extension attribute that denotes a one-to-one mapping between
XML or WSDL elements and concepts in some semantic model;

• schemaMapping: two extension attributes lifingSchemaMapping and
loweringSchemaMapping that can be added to XSD elements or complex types to
associate them with semantic data (used for one-to-many and many-to-one
mappings); schemaMapping attributes are used in the post-discovery issues of using
a web services.

Each of these elements can be used to create annotations. Listing 8 presents a SAWSDL
annotation example for a purchase order interface borrowed from [30].

wsdl:description
 targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"
 xmlns="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"
 xmlns:wsdl="http://www.w3.org/ns/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

 <wsdl:types>
 <xs:schema targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"
 elementFormDefault="qualified">
 <xs:element name="OrderRequest"
 sawsdl:modelReference="http://www.w3.org/2002/ws/sa wsdl/spec/ontology/
purchaseorder#OrderRequest"
 sawsdl:loweringSchemaMapping="http://www. w3.org/2002/ws/sawsdl/spec/mapping/
RDFOnt2Request.xml" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="customerNo" type="xs:integer" />
 <xs:element name="orderItem" type="item" minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="item">
 <xs:all>
 <xs:element name="UPC" type="xs:string" />
 </xs:all>
 <xs:attribute name="quantity" type="xs:integer" />
 </xs:complexType>
 <xs:element name="OrderResponse" type="confirmation" />
 <xs:simpleType name="confirmation"

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 30 of 56

 sawsdl:mode lReference="http://www.w3.org/2002/ws/sawsdl/spec/o ntology/
purchaseorder#OrderConfirmation" >
 <xs:restriction base="xs:string">
 <xs:enumeration value="Confirmed" />
 <xs:enumeration value="Pending" />
 <xs:enumeration value="Rejected" />
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>
 </wsdl:types>

 <wsdl:interface name="Order"
 sawsdl:modelReference="http://example.org/categorization/products/electronics">
 <wsdl:operation name="order" pattern="http://www.w3.org/ns/wsdl/in-out"
 sawsdl:modelReference="http://www.w3.org/2002/ws/sa wsdl/spec/ontology/
purchaseorder#RequestPurchaseOrder" >
 <wsdl:input element="OrderRequest" />
 <wsdl:output element="OrderResponse" />
 </wsdl:operation>
 </wsdl:interface>
</wsdl:description>

Listing 8 SAWSDL annotation example

The annotations in this example appear as modelReference and loweringSchemaMapping
attributes on schema and WSDL elements. Each modelReference shown above identifies
the concept in a semantic model that describes the element to which it is attached. For
instance, the OrderRequest element is described by the "OrderRequest" concept in the
ontology whose URI is "http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder." A
loweringSchemaMapping is also attached to the OrderRequest element to point to a
mapping, in this case an XML document, which shows how the elements within the
OrderRequest can be mapped from semantic data in the model.

To annotate WSDL documents the modelReference attributes is used. The following WSDL
elements can be annotated using the modelReference attribute: interfaces, operations,
faults. A modelReference on a WSDL interface, operation or fault element provides a
reference to a concept or concepts in a semantic model that describe the Interface,
Operation or Fault.

The modelReference attribute can also be used to annotate entities of XML Schema,
including simple types, complex types, elements and attributes. Furthermore XML Schema
entities can be annotated using the extensions attributes liftingSchemaMapping and
loweringSchemaMapping For concrete example on these annotations we refer the reader to
[30].

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 31 of 56

3 State of the art on service discovery

This section discussed the state of the art on service discovery. The surveyed approaches
are grouped to a certain extent according to the service descriptions on which they operate.
We start first by summarizing existing efforts to provide registry based approaches, such as
UDDI, that are mainly used in conjunction with WSDL service descriptions. Such approaches
as detailed in Section 3.1 have been successful in closed, industrial settings but as motivated
in Section 3.2 they have failed in open, public domains. Main reasons for failure in open
environments are mainly the dynamicity of the environments and not so intuitive and easy to
use interfaces. Portal based approaches for search of WSDL services are described in
Section 3.2. Finally, logic based approaches for discovery developed in the context of
Semantic Web services projects are described in Section 3.4.

3.1 Registries

3.1.1 The Registry/Repository concepts

A registry/repository service provides a foundation for a SOA governance program. It sits at
the intersection of design, development, discovery, staging, provisioning, and management
of services. A registry service is also an important component in a SOA runtime infrastructure
because it provides a central point of reference for information about the services, enabling
information exchange among all the products used to implement a managed services
network.

SOA governance is “the ability to organize, enforce and re-configure service interactions in
an SOA11”. Linked to this definition, we can identify two main phases in an SOA governance
called design time and runtime. Ability to organize appends at design time with the
registry/repository concepts. Ability to enforce and reconfigure appends at runtime with the
service platform interface between the service runtime layer and the registry/repository layer.

3.1.2 The registry non competing standards

The industry has defined two non competing standard registry specifications, namely UDDI
and ebXML. Both specifications are being developed and standardized at the Organization
for the Advancement of Structured Information Standards (OASIS). Both specifications
define standards for a general-purpose registry service.

3.1.2.1 UDDI [8]

Universal Description, Discovery and Integration (UDDI) is a platform-independent, XML-
based registry for businesses worldwide to list themselves on the Internet. UDDI is an open
industry initiative, sponsored by OASIS, enabling businesses to publish service listings and
discover each other and define how the services or software applications interact over the
Internet. A UDDI business registration consists of three components:

• White Pages — address, contact, and known identifiers;

• Yellow Pages — industrial categorizations based on standard taxonomies;

• Green Pages — technical information about services exposed by the business.

UDDI was originally proposed as a core Web service standard. It is designed to be
interrogated by SOAP messages and to provide access to Web Services Description
Language documents describing the protocol bindings and message formats required to
interact with the web services listed in its directory.

11 Michael Wheaton – Sun

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 32 of 56

UDDI was written in August, 2000, at a time when the authors had a vision of a world in
which consumers of Web Services would be linked up with providers through a public or
private dynamic brokerage system. In this vision, anyone needing a service such as credit
card authentication, would go to their service broker and select one supporting the desired
SOAP or other service interface and meeting other criteria. In such a world, the publicly
operated UDDI node or broker would be critical for everyone. For the consumer, public or
open brokers would only return services listed for public discovery by others, while for a
service producer, getting a good placement, by relying on metadata of authoritative index
categories, in the brokerage would be critical for effective placement.

The UDDI was integrated into the Web Services Interoperability (WS-I) standard as a central
pillar of web services infrastructure. The UDDI specifications supported a publicly accessible
Universal Business Registry in which a naming system was built around the UDDI-driven
service broker. IBM, Microsoft and SAP announced they were closing their public UDDI
nodes in January 2006 [2].

Some assert that the most common place that a UDDI system can be found is inside a
company where it is used to dynamically bind client systems to implementations. They would
say that much of the search metadata permitted in UDDI is not used for this relatively simple
role. However, the core of the trade infrastructure under UDDI, when deployed in the
Universal Business Registries (now being disabled), has made all the information available to
any client application, regardless of heterogeneous computing domains.

3.1.2.2 ebXML [9]

An ebXML Registry is "an information system that securely manages any content type and
the standardized metadata that describes it. It provides a set of services that enable sharing
of content and metadata between organizational entities in a federated environment. An
ebXML Registry may be deployed within an application server, a web server or some other
service container. The registry may be available to clients as a public, semi-public or private
web site. The ebXML Registry thus provides a stable store where submitted information is
made persistent. Such information is used to facilitate business to business relationships and
transactions."

In this context, submitted content for an ebXML Registry includes, but is not limited to: XML
schema and documents, process descriptions, ebXML Core Components, context
descriptions, UML models, information about organizations, and software components.

The ebXML Registry Information Model (RIM) specification defines the types of metadata
and content that can be stored in an ebXML Registry. The companion document ebXML
Registry Services and Protocols (RS) defines the services provided by an ebXML Registry
and the protocols used by clients of the registry to interact with these services.

According to the RIM specification, an ebXML Registry is capable of storing any type of
electronic content such as XML documents, text documents, images, sound and video.
Instances of such content are referred to as a RepositorytItems. RepositorytItems are stored
in a content repository provided by the ebXML Registry. In addition to the RepositoryItems,
an ebXML Registry is also capable of storing standardized metadata that may be used to
further describe RepositoryItems. Instances of such metadata are referred to as a
RegistryObjects, or one of its sub-types. RegistryObjects are stored in the registry provided
by the ebXML Registry."

Although a few industry groups have endorsed ebXML Registry, the vendor community has
essentially ignored this standard.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 33 of 56

3.1.3 Today's registry/repository solutions

3.1.3.1 Vendors registries

Almost all biggest IT solution vendors propose Registry/Repository solution as standalone
software of as part of biggest enterprise applications (like Application Server). Here is a list of
the principal vendor’s solutions:

UDDI based registries:

− IBM: UDDI Registry part of WebSphere Application Server12

− Microsoft: Microsoft enterprise UDDI services13

− SAP: Registry part of NetWeaver14

− HP/Systinet, BEA, Oracle and Tibco: Systinet Registry

− Software AG and Fujitsu: Centrasite15

− SOA Software: Workbench

ebXML based registries:

− SUN: Sun Registry Repository16

UDDI and ebXML based registries:

− WebMethods/Infravio: X-Registry17

Non standard based registries:

− IBM: WSRR18

As you can see in this vendor/product list, UDDI standard is the most supported registry
standard. So, a minimal UDDI compliance (protocol support) is a mandatory capability of
today's registries. It allows integration with a lot of already deployed registry solutions. But
UDDI compliance is not sufficient to qualify a registry as a business-level application.

3.1.3.2 Open source registries

Besides these vendor products some open source solutions try to grow on:

− Apache: jUDDI (UDDI implementation)19
− University of Hong Kong: freebXML20 (ebXML implementation)
− OW2: Dragon Governance Platform
− WSO2: WSO2 Registry21

12 http://www-306.ibm.com/software/webservers/appserv/was/
13 uddi.microsoft.com/
14 http://www.sap.com/platform/netweaver/index.epx
15 http://www.infoq.com/zones/centrasite/overview
16 http://www.sun.com/products/soa/registry/index.html
17 http://www1.webmethods.com/PDF/datasheets/Infravio_X-Registry_Datasheet.pdf
18 http://www-306.ibm.com/software/integration/wsrr/
19 http://ws.apache.org/juddi/
20 freexml.org

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 34 of 56

− Mule: Mule Galaxy

3.1.4 Dragon: an emerging Open Source Registry/Repo sitory

Dragon is the open-source distributed semantic registry developed by EBM WebSourcing in
the context of the OW2 consortium.

3.1.4.1 Dragon main functionalities

The Dragon SOA project provides a full set of functionalities that targets large scale SOA:

At design time: a registry/repository:
� That allows to store information about services, SLA contracts, and others meta-data

such as semantic properties.

� It allows service lookup and discovery based on meta-data as well as service life-
cycle management.

� It provides impact analysis functionalities facilitating service and processes updates.
This impact analysis is based on dependency management between services,
artefacts etc.

� It validates service artefacts during registration by enforcing registration policy (such
as WS Basic Profile conformance etc.).

At run time: a Service Platform interface (such as JBI interface with PEtALS22) for:

� Policies enforcement of QoS attributes.
� SLA enforcement with a special emphasis on consumer/provider contracts.
� Dynamic composition and routing.
� Management of service versions.
� Monitoring of SOA indicators (QoS, service usage/reuse, development time).

21 http://wso2.org/projects/registry
22 PEtALS is an open source Enterprise Service Bus : http://petals.objectweb.org/

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 35 of 56

3.1.4.2 Dragon architecture overview

Figure 4 Dragon Architecture

Dragon SOA Governance Platform is composed of two main components:

Dragon registry/repository :

Provides classical registry/repository functionalities provided by UDDI based registry but also
includes some enhanced governance functionalities like:

− Repository allows storing metadata about services that include all information necessary
for governance processes: WSDL, SLA policies, composition models, transformation and
mapping sheets, semantics, etc.

− Registry allows service lookup and discovery based on different flavours: UDDI v3
compliant API cataloguing, policy and ontology based semantic search.

− Registry provides management interfaces to customize services cataloging, validation
policies and other tasks.

− A life-cycle manager allows to manage life-cycle of services, policies, SLA contracts and
other meta-data about services.

− Dependency management and versioning provides impact analysis and migration helpers
for services updates and replacements.

Dragon Service Platform Interface :

It is the communication layer between Service Runtime Plaform (PEtALS Service Platform)
and Dragon registry/repository:

−−−− Security, QoS, SLA enforcement: allows to take into account necessary policies
enforcement: specified in SLA contract, enterprise wide policies. The example of the JBI
approach allows to set up a pluggable strategy for governance based on a set of
pluggable policy enforcement service engines: it may be seen as an intermediate layer
between the consumer and the target service enforcing policies such as access control,
security and availability

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 36 of 56

−−−− Monitoring probes: probes (such as JBI “Probes”) in conjunction with monitoring GUI
allow controlling service availability, life-cycle, QoS, usage.

−−−− Import/Deployment APIs: on one hand, it allows to import deployment environment
information like deployed services and deployment environments (Petals nodes and
components). On the other hand, it allows deploying new services, enforced policies.

Dragon distributed registry

In the scope of the SOA4All project, Dragon Governance Platform will be extended in order
to provide a highly distributed registry that could be connected to the distributed technical
registry of the PEtALS service platform. The technical registry simply manipulates technical
information (endpoints, interfaces, WSDL descriptions...) used for the routing of messages
between ESB managed services. By connecting to this technical registry, Dragon registry
shall provide a high level vision of the managed services.

Figure 5 Dragon federated registry

Dragon distributed registry will propose federated queries, selective replication and cross
registry reference between registry objects.

3.1.4.3 Dragon Data Model

Dragon data model is based on CBDI-SAE Meta Model for SOA23.

CBDI Meta Model Overview

This data model is divided into nine packages described below:

− Service package : defines the notion of service, as an idea. It defines classification,
visibility, and relationship of the services.

− Business modeling package : provides a way to model Business Domain, related
services, policies and processes.

23 http://www.cbdiforum.com/public/meta_model_v2.php

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 37 of 56

− Specification package : provides a way to model service specification including
operations, dependencies, versions (linked to WSDL Port Types)

− Implementation package : defines the notion of Deployable Artefacts, packaged as
Automation Units that support a particular Service, Application or Use Case. (linked to SU
and SA)

− Deployment and Runtime package : defines a way to model service Endpoints running
on specified Execution Environments. (linked to WSDL Bindings and Port)

− Solution modeling package : provides a way to model Use Cases that supported by
Processes.

− Organization package : provides a way to model Organizations, their members related to
their jobs.

− Technology package : provides a way to define Execution Environment where
Automation Units can be deployed.

− Policy package : provides a way to model Policies applicable to Organization or Service
Domain and Business Domain.

This data model has been chosen as a reference for the Dragon data model because of its
exhaustive coverage of the main aspect of SOA Governance. Moreover, UDDI data model
can be mapped to this data model allowing implementing UDDI APIs on top of it.

3.2 Portals

Within this section we will provide an overview of public portals that are dedicated to Web
services. Such specialized portals gather public Web services either by using focused
crawlers or by relying on manual registration. They mainly offer a search functionality via a
Web interface, some offer as well a browsing functionality.

In the following we shortly describe the main public service portals amongst those that do not
actively crawl the Web but rely instead on manual registration of the services by the service
providers or portal users:

− RemoteMethods - The RemotheMethod24 Web services directory supports finding
and comparing Web services from various providers. The portal that is operated by
InfoGenius, Inc. puts actually quite some emphasis on advertisement: besides
banners service providers can pay to increase their ranking within the listings.

− StrikeIron - StrikeIron25 is a marketplace of commercial services. It supports the
commercialization of Web services and tries to simplify the publishing, finding and
subscribing to Web Services by a broader audience of both service providers and
users.

− Wsoogle - Wsoogle26 is the successor of Woogle27. Wsoogle claims to operate its
own crawler to automatically keep the repository up-to-date. They obtain similar
operations by comparing operation input and output names with each other. Based
upon this data the Web site provides 15 different categories of services that can be
browsed. Their categorization technology is based on the Woogle technology [40].

24 http://www.remotemethods.com/
25 http://www.strikeiron.com/
26 http://wsoogle.com/directory.do
27 http://data.cs.washington.edu/webService/

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 38 of 56

− Xmethods – Xmethods28 is probably the oldest reference for publicly available Web
services. They only provide a simple, long list of Web services and for each Web
service a details page with some basic information on the service.

− ProgrammableWeb – ProgrammableWeb is a community-driven service directory. Its
listing does not mainly contain WSDL service descriptions but also RESTful services
and mashups, i.e. composition of services. They do thus have, as compared to the
other portals looked at so far, a broader view on the description of a Web service.

Based upon the findings in [38] and [39] we can say that the results are not highly promising.
The number of available services for the portals we looked at ranges between 80
(ProgrammableWeb) and 638 (StrikeIron). Nevertheless, due to their specialization, the
portals are a convenient way to actually find Web services. For more details on the analysis
of Web service discovery in such public portals we refer to [38] and [39].

All the previous Web service portals require either the service providers or portal users to
manually register services. In the following we describe the so far only Web service portal
and search engine that actively crawls the Web for services, the seekda29 Web Service
Search Engine. The seekda engine contains at the moment of writing this (July 2008) more
than 27.000 service descriptions, services not meaning WSDL descriptions but specific
seekda services as will be described in Section 5 of this deliverable. These services are
provided by more than 7.000 providers.

The seekda portal offers different means for searching for services. Besides a classical
keyword search and an advanced search that allows to search using multiple criteria, seekda
offers some non-standard Web service search functionalities: portal users can look for
services (1) browsing using a tag cloud, (2) browsing service providers by country, (3)
browsing for the most used web services, and (4) browsing through recently found Web
services. Services can be bookmarked for a later re-use or visit and they can be invoked
directly from the portal (live web service tester).

28 http://www.xmethods.com/ve2/index.po
29 http://seekda.com/

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 39 of 56

Figure 6 seekda Web Service Search Engine

Although portal users are also encouraged to manually add service descriptions to the
registry in case their service is not yet in the index, this is not the usual way. The seekda
crawlers are continuously crawling the Web for service descriptions and for related
information to these services (as will be explained in Section 4.5). The seekda Web 2.0
portal furthermore encourages users to build a community and to actively take part by e.g.
describing the services, tagging them, evaluating them, etc.

3.3 Standard Search Engines

Another approach to Web service discovery is the usage of universal search engines such as
Google, Yahoo, Alexa or MSN. As they cover with their crawling engines huge parts of the
accessible Web one would expect that they do not only have a high coverage of normal Web
pages but also of publicly available Web services. Actually, as results from [38], the number
of services that we can find using standard search engines exceeds by far those that we can
find using the vertical Web portals, as described in Section 3.2. The biggest disadvantage of
searching Web services in standard search engines is though the fact that there is no way to
restrict the search to Web service descriptions. One can search for URLs that contain the
keyword “wsdl” or for the filetype “asmx”, what fits for services published using Microsoft
.NET, but it is not sure whether the results do really resolve to WSDL documents. [39] states
that concerning such a search executed in the search engine Alexa30, only 12% of the
resulting URLs actually resolved to WSDL documents. If one assumes similar results for
Google and any other universal search engines, the number of valid discovered service
descriptions stays bigger than the one for the services discovered on the vertical portals. But
the results stay underneath the results obtained by a specialized Web service engine that
uses focused crawling techniques, like seekda.

3.4 Logic based approaches

Having described some of the most relevant approaches for service discovery that are

30 http://www.alexa.com/

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 40 of 56

registry or portal based, as presented in the previous sections, we turn our attention to logic
based approaches for discovery. By logic based approaches we understand those discovery
approaches that are using descriptions of services and requests formalized using languages
based on logical formalisms (Description Logics, First Order Logic, Logic programming) and
furthermore employ a reasoner to determine the degree of match between services and
requests. In this section we provide a short overview of a set of discovery approaches based
on some of the service description languages presented in Section 2.

3.4.1 WSMO discovery

The conceptual model of WSMO Discovery is provided in [34]. WSMO Discovery provides a
complete framework for discovery that includes three major steps: Goal Discovery, Web
Service Discovery and Service Discovery. Before we provide more details about each step of
the WSMO Discovery approach let us introduce one important distinction that was introduced
in WSMO in the context of discovery, namely the distinction between a Web service and a
service. A service, as in [37], is defined as being a provision of value in some domain (not
necessary monetary value). A Web service on the other hand is defined as a computational
entity accessible over the Internet (using Web service Standards and Protocols).

Given these definitions we have the following relation between the notions:

� Service corresponds to a concrete execution of a Web service (with given input values)

� Web service provides a set of services to its client; one service for each possible input
binding

 Figure 7 WSMO Discovery model

The overall WSMO Discovery model is illustrated in Figure 7. The first step, Goal Discovery
is about discovering abstract goal descriptions (goals described in WSML) given the input
provided by the user (e.g. keywords, logical expressions, both) that represents his/her
concrete goal description. The second step, Web Service Discovery is about how to find
abstract web service descriptions (Web Services described in WSML) given the previous
found abstract goal. The last step, Service Discovery is about finding real services whose
abstract descriptions where discovered in the previous step. Within Web Service Discovery
step three principle approaches are considered: Syntactical approaches, Lightweight
semantic approaches and Heavyweight semantic approaches. Syntactical approaches
include: keyword-based search, natural language processing techniques, controlled

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 41 of 56

vocabularies. Lightweight semantic approaches include: ontologies, Action-Object-Modelling,
Coarse-grained semantic description of a service. Heavyweight semantic approaches imply
that service capability is described in detail and states are taken into account.

A special attention in WSMO is given to the relation between discovery and mediation. This
relation is more than natural when we think about the heterogeneity of the environment with
different users and services using different terminologies. In order to make communication
possible between different parties mediation is required. WSMO proposes a discovery
mechanism in strong mediation support.

In the matchmaking process, WSMO Discovery distinguishes between four types of
matchmaking:

1. Exact Match: In this case of matching, the service whose description matches the
request description is able to deliver all relevant objects and in the same time no
irrelevant objects will be delivered by the services.

2. Plug-in Match: In this case of matching, the service, whose description matches
the request description is able to deliver all relevant objects but might deliver
objects which are considered as irrelevant for the goal, too.

3. Subsumption Match: In this case of matching, the service whose description
matches the request description is able to deliver only relevant objects but not
necessary all of them.

4. Intersection Match: In this case of matching, the service, whose description
matches the request description, is able to deliver some relevant objects, but
might deliver objects which are considered as irrelevant for the goal, too.

The discovery approaches described above are implemented as part of the Web Service
Modelling Execution Environment (WSMX). WSMX contains a set of discovery components
including a component that uses syntactic matching (keyword-based discovery), a discovery
component that uses lightweight semantic descriptions (lightweight DL-based discovery), a
QoS discovery component, etc. The WSML datasets used by these components are
registered with WSMX repositories. Such descriptions and repositories were/are developed
in the context of various projects.

3.4.2 DAML-S/OWL-S discovery approaches

Many approaches for discovery and matchmaking using DAML-S/OWL-S were proposed
[35], [36]. In [35] a DAML-S semantic matching between advertisements and request is
proposed. The matching algorithm is based on subsumption reasoning in DAML+OIL. A
service profile and a request are considered to match when all the outputs of the request
goal are matched against all, or a subset of service output, and as well all the inputs of the
service are matched against all, or a subset of request goal. In [36], they distinguished
between different degrees of matching:

1. Exact Match: In this case the outputs, respectively the inputs being matched are
exactly the same.

2. Plug-in Match: In this case the output of the service subsumes the output of the
request.

3. Subsumes Match: In this case the output of the request subsumes the output of
the service

4. Fail: No matching services were found for the request goal.

In [34] a different approach for discovery using DAML-S is proposed. Compared with the
previous approach all the entities of service profile are used, namely: inputs, outputs (like in

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 42 of 56

the previous approach) and as well preconditions and effects. They have implemented a
prototype based on RACER31. Different degrees of matching are consider as well:

1. Exact Match: In this case the advertisement A and the request R are equivalent
concepts.

2. Plug-in Match: In this case the request R is a sub-concept of advertisement A.

3. Subsumes Match: In this case the request R is a super-concept of advertisement
A.

4. Intersection Match: In this case the intersection of request R and advertisement
A is satisfiable.

5. Disjoint Match: None of the matches presented above.

The strength of the match is decreasing from the Exact Match to Disjoint Match. By using a
Description Logic reasoning procedure to detect possible matching, this approach inherits
the time consuming operation of classifying the profiles in profile hierarchy.

31 http://www.sts.tu-hamburg.de/~r.f.moller/racer

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 43 of 56

4 State of the art on crawling

Common approaches in Service discovery mostly focus on restricted sets of services. These
can be on the one side Semantic Web Service descriptions that describe the functionalities
of the services in a rather complex and complete way. They come along with discovery
methods that need themselves complex reasoning methods in the background. On the other
side we have both public and private registries, as described in Section 3 of this deliverable,
that provide access to restricted sets of services. Most of these registries work over services
that are manually registered by the providers of the services. Another approach, which is
followed by the public Web service search engine of seekda, deals with services on a very
large scale, i.e., on Web scale. They actively crawl the Web for service descriptions and do
thus collect public Web services from all over the world, not anticipating that people always
register their services with them.

In this latter approach Web service discovery is reduced to a special information retrieval (IR)
problem. The crawled Web services and related documents are indexed, i.e. their contained
keywords are represented in an inverted index. A query to the search engine consists of one
or more keywords that are then matched by the engine against the collected documents.
What it returns is a (ranked) list of results. That is the process of an IR system represented
by the process of a classical search engine.

In the following this chapter will provide an introduction into the topic of Web crawling in
general (Sections 4.1, 4.2, 4.3 and 4.4), with a focus on special techniques for crawling for
Web services (Section 4.5).

4.1 Web Crawlers

The big success of search engines today is in part due to innovative and effective solutions
for web crawling. Search engines actually make the most widespread use of Web crawlers
when they collect pages on the Web to build their indexes. A web crawler, also called robot
or spider, is a software program that starts with a set of URIs, fetches the documents (e.g.
HTML pages, service descriptions, images, audio files, etc.) available at those URIs, extract
the URIs from the documents fetched in the previous step and start over the process
previously described. The crawler automatically downloads Web pages and follows links in
the pages, this way moving from one Web page to another. This gives us already a hint on
how we can modify this classical crawler behavior to focus a crawl on Web service
descriptions. We can, e.g., decide whether we want to follow the links from a specific page or
not, depending on various criteria, as, e.g., what top level domain this page belongs to, how
many links the page contains (it could be a so-called “link farm”), etc. We will investigate
such issues more deeply in the coming section on focused crawling.

Now crawling the Web and downloading Web pages sounds rather easy. However, one big
issue is the fact that the Web is not static, but quite the contrary, i.e. very dynamic. There are
billions of documents available on the Web and crawling all data and furthermore maintaining
a good ‘freshness’ of the data becomes almost impossible. The Web changes rapidly, new
pages are added, existing pages are modified and old pages are deleted. To always keep
the crawled data up to date we would need to continuously crawl the Web, revisiting all
pages we have once crawled. We could do so by over and over again repeating the same
crawl and building “snapshots” of the Web or of the part of the Web we are visiting. Whether
we need to do this depends a lot on the intention of our crawl. Do we want to archive part of
the Web, do we want to crawl one specific part in-depth or do we want to get an idea of how
many links lead to a specific document type? [5] describes such possible intentions and
corresponding crawling strategies, thereby proposing an adaptive revisiting strategy that is
meant to be used for repeated crawls. We will describe two major crawling strategies,
incremental and snapshot, in Section 4.3.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 44 of 56

In general we can say that different crawling strategies are used for different types of
crawlers. Crawler types are thus related to the different intentions they pursue when crawling
the Web. The main crawl types are:

− broad or universal crawling: large crawls with a high bandwidth usage where the crawler
fetches a large number of Web sites and goes as well into a high depth on each crawled
site.

− focused or topical crawling: a number of criteria are defined that limit the scope of a
crawl; the crawler fetches similar pages topic-wise, e.g.

− continuous crawling: the crawler continuously visits all URLs in its frontier, i.e. the frontier
cannot grow fast and the crawl should be scoped.

Usually crawlers do implement a set of policies that address the issues raised by the different
crawling strategies, as e.g. how to handle the dynamics of the Web, etc. [1]. In general we
can say that different policies are used for different types of crawlers:

− a selection policy that states which page to download,
− a re-visiting policy that states when to check that a page has changes,
− a politeness policy that states how to avoid overloading websites and
− a parallelization policy that states how to parallelize the crawling functionality.

A list with open source and proprietary web crawler implementations is available at [1].

In the following, Section 4.2 will describe in more detail the basic crawl steps and Section 4.4
will give an overview of the above mentioned crawler types. Section 4.5 will provide an
insight into specific crawling techniques for Web services.

4.2 Basic Crawl Steps

What a crawler basically does is executing different specific steps in a sequential way. The
crawler starts by taking a set of seed pages, i.e. the URLs which it starts with. It uses the
URLs to build its frontier, i.e. the list of unvisited URLs of the crawler. In the scope of one
crawl this frontier is dynamic as it is extended by the URLs extracted from already visited
pages. The edge of a frontier will be limited by the number of URLs found in all downloaded
documents (and by politeness restrictions that are followed for different servers). If a frontier
is not set any limit and if the crawler disposes over unlimited hardware resources, it may
grow indefinitely. This can be avoided by limiting the growth of the frontier, either by, e.g.,
restricting the number of pages the crawler may download from a domain, or by restricting
the number of overall visited websites, what would at the same time limit the scope of the
crawl.

Whatever frontier strategy is chosen, the crawler proceeds in the same way with the URLs it
gets from the frontier. So once a URL is taken from the frontier it traverses the following
steps:

− the crawler checks whether this page is intended to be fetched, i.e. whether there are
no rules or policies that exclude this URL

− the document the URL points to is fetched
− the crawler extracts links from the downloaded document
− based on given rules the crawler decides whether it wants to permanently store the

downloaded documents
− feed the extracted links to the frontier

These steps are executed for all URLs that are crawled by the Web crawler. As it would (a)
absolutely minimize the speed of a crawl and (b) be a wastage of resources, a crawler does
not proceed the URLs one by one. Although a crawler has only one frontier, the frontier has
multiple queues. Queues can be built based on different schemes: e.g. one queue per host.
Additionally it is often possible to rank the queues within the frontier which makes then that

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 45 of 56

certain queues are served earlier by the frontier than others.

A very important issue is as well the ranking of the URLs in the queues. When a crawl is set
up, it must be decided what URLs get what priorities and get thus removed either early or
late from a queue to be processed further.

4.3 Crawling Strategies

When a Web crawl is being designed, this always happens with a specific intention. Often
this intention is revealed by the originator of a crawl. Big search engine operators as Google,
Yahoo or MSN have other intentions than, e.g., national institutions that want to archive one
whole country's Web (as it was done, e.g., by the Nordic Web Archive32) or news providers
that just crawl the Web for news on one specific topic. So depending on the purpose of a
crawl, different crawling strategies may be followed. Two major strategies, as described in [5]
are incremental and snapshot crawling.

In a snapshot strategy the crawler visits a URL only once. If the same URL is discovered
again it is considered as duplicate and discarded. Using this strategy the frontier is extended
continuously with only new URLs and a crawl can spread quite fast. Using this strategy the
crawl operator can take a snapshot of (part of) the Web at one specific moment in time. This
snapshot can be done for a broad scope without major problems, just extending the duration
of the crawl. The snapshot strategy is though not appropriate for doing crawls that allow to
follow the changes on Web sites, as, amongst others, depending on how long a crawl takes it
might take a long time until a page is revisited.

The incremental crawling strategy is, as opposed to the snapshot strategy, optimal for doing
continuous crawls, i.e., crawls that allow capturing changes on Web sites. This makes that a
URL needs to be visited multiple times: when an already visited URL is rediscovered it is not
rejected but instead put into the frontier again. Using the incremental strategy the frontier
queues will never empty and a crawl could go on for an indefinite long time. If the scope of
the crawl is not limited, the frontier will not only revisit known URLs over and over again but it
will at the same time continue to expand the crawl field, even though much slower than using
the snapshot strategy.

Both crawling strategies can be used with different types of crawls, as will be described in the
next section. [5] mentions an example of how both crawling strategies can complement each
other: a part of the Web that shall be crawled can be analyzed with regard to how often the
pages change. The snapshot strategy can then be used to crawl the given part in a broad
and extensive manner once (or on a regular basis), while the incremental strategy can be
added to follow the changes on sites that have been identified as changing frequently (e.g.
news sites).

4.4 Crawler Types

This section provides an overview of four major crawl types. We will explain the purposes
that underlie the single types as well as specific issues that appear with these crawler types.

4.4.1 Broad Crawling

Broad crawling (or universal crawling) is the type of crawling that can be used with the
purpose of crawling a large part of the Web, if not even the whole Web. Not only the amount
of collected Web data is important, but as well the completeness of coverage of single Web
sites. Big universal search engines like Google, Yahoo or MSN operate such broad crawls.
This crawler type can use both crawling strategies as described in Section 4.3. Using the
snapshot strategy in a repeated manner over the same seeds, the crawl operator would get

32 http://nwa.nb.no/

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 46 of 56

single snapshots of the crawled part of the Web that might though be temporally quite apart.
Using the incremental strategy, one crawl could lead to incremental updates of a search
engine index, or of any other data repository used.

According to [6] the major issues in broad crawls are:

− performance – A broad crawler often needs to handle not only thousands, but billions
of Web documents in the smallest possible amount of time. That makes that
scalability is a crucial factor in large universal crawls. A huge number of documents
needs to be fetched from the Web (bandwidth issue), processed (CPU issue) and
stored permanently (disk space issue). Single points that can help improving the
performance of a broad crawl include the minimization of Domain Name System
(DNS) lookups that the crawler makes to resolve host names to IP addresses, the
careful distribution of crawl jobs on a large number of crawl machines, etc.

− trade-off between freshness, importance and coverage – As we said already before,
the Web is very dynamic. That makes that new pages are added constantly while
existent pages get modified or removed. To achieve a high coverage a crawler needs
to find the new pages (frontier extension) while to achieve a high freshness it needs
to frequently revisit pages (constant frontier). A solution to this problem might be to
limit the frequent revisits to pages that once are recognized as really changing
frequently (e.g. news sites). Also not each broad crawl operator is actually interested
in crawling the whole Web, the purpose might as well be to crawl pages on some
specific topic, or others. If the intention is to crawl a large number of sites, it might be
necessary to limit the coverage of single Web sites, i.e. limit the depth with which a
site is crawled. Although this makes that not each site will be crawled completely, this
trade-off enlarges the coverage of the crawl with regard to the whole Web or the
intended part of it.

4.4.2 Focused Crawling

As compared to the broad crawler, the intention of the focused (or topical) crawler is to
collect pages from a specific domain, category, topic or similar. There exist several ways to
implement focused crawlers and to limit the scope of a crawl: by limiting the URLs to be
visited to certain given domains, by doing similarity checks between fetched pages and a
given set of example pages, by checking fetched pages for keywords related to a given topic,
by using supervised learning mechanism where classifiers work over a set of labelled
example pages, etc. An example of a topical crawler is the vertical seekda search engine,
that as opposed to universal search engines as Google, Yahoo or MSN, focuses its crawls
on Web services and related information.

Same as for the broad crawl, the focused crawl can be based upon both crawling strategies
as described in Section 4.3. This depends on the importance of collecting the changes of
Web sites accurately. A crawler that is intended to collect news pages on a specific topic will
use an incremental strategy while a crawler whose purpose it is to collect all pages on one
topic in a quite complete manner, will preferably opt for the snapshot strategy. Depending on
the scope limitation of a focused crawl, completeness might be an issue or not, as the
crawler will be able to crawl the allowed sites in-depth if the scope is sufficiently limited.

An important issue in topical crawling, where the crawl is intended to collect pages related to
a specific topic, is how to assign priorities or costs to URLs in queues or to the frontier
queues themselves. Such priorities need to be distributed by the time the URL is put into a
frontier queue, which makes that there need to be heuristics that help decide on how to
assign costs or priorities to URLs. When the goal of the topical crawl is to detect pages
related to a specific topic, we need to find good ways, be it heuristics or guesses, to
determine whether a yet unvisited page might be on that topic or not. Such heuristics can be
based on an analysis of the page where the link comes from, on the domain of the link, or on

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 47 of 56

many other points.

4.4.3 Continuous Crawling

Continuous crawling is the type of crawling that can be used to accurately follow changes on
Web sites, mostly on restricted parts of the Web. This crawler type uses an incremental
crawling strategy as described above in Section 4.3. That is after having visited a URL the
crawler enqueues it again so that it will be revisited.

There are three important issues to mention concerning such continuous crawls:

− resources usage – When we crawl large portions of the Web (e.g. one country's Web)
and store the data to build an archive, we need a lot of disk storage space. That is we
need to seize all possible opportunities to not unnecessarily increase the need of disk
space. One such method would be to detect whether a revisited page has changed
since the last visit or not, and to only store it in case it has changed.

− crawl scope – As well important in continuous crawls is the fact to limit the scope of a
crawl. If the scope is not limited, the frontier will grow indefinitely and will not allow the
revisiting of URLs in a reasonably small time frame. This again will lead to the fact
that lots of intermediate changes in frequently changing Web sites will not be crawled
and will be lost.

− politeness policies – We talked before about a reasonable time frame within which we
want a crawler to revisit URLs to not loose too many changes on Web sites. This
leads us to the obligation of crawling operators to respect certain politeness policies,
whereas different Web servers may set up different politeness restrictions. Such
politeness policies are necessary to prevent crawlers from crawling certain servers
too aggressively, what in the worst case could lead to the crawler being blacklisted.

4.5 Web Service Crawling Techniques

We so far gave an overview on crawling in general, that is mostly applied to crawling for
normal Web pages (HTML). Now in the scope of SOA4All we will focus our crawling activities
on crawling for Web services and their related information. With the current development of
Service Oriented Architectures, the number of services available online are considerably
increasing. More and more companies, organisations and persons in general are publishing
their WSDL-based and RESTful services on the Web. With the emergence of Semantic Web
and Semantic Web services technologies it is envisioned that the number of Semantic Web
services published online will start growing fast as well.

The fact as such that many services are available does not yet help any potential service
user. The users need to be aware of the services and need to be able to search and find
them. Therefore crawling the Web for services, be it WSDL, RESTful or Semantic Web
services, becomes an important challenge.

To our knowledge there are very few service crawlers out there so far. One of the existing
service crawlers was developed by seekda. seekda's crawler is using (and extending) an
existing Web crawler, namely the Internet Archive open source crawler Heritrix [5]. Heritrix is
an archival crawler which was developed in the intention to be used for producing archived
periodic snapshots of a large portion of the Web. Web search engines, such as Google, are
also collecting WSDL descriptions from the Web. As pointed out in [7], crawling services
using classical search engines that search over the whole Web results into a higher
percentage of resulting active services than using a crawler over the classical service
registries only (as e.g. UDDI). But, as we have explained in Section 3, it does not result in the
same number of services than the one we can find with a specialized Web service crawler,
as, e.g., the one from seekda.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 48 of 56

So instead of using standard Web search engines to seek for Web services we will, in the
scope of SOA4All, use the specific Web service search engine of seekda and develop further
methods to detect Web services. As described in Section 3, the seekda search engine
contains more than 27.000 services up to this moment. These services do only consist of
WSDL service descriptions, there are no RESTful or Semantic Web services yet. In the
following we provide an insight into the approach pursued so far for crawling the Web in a
focused way for Web services and related information.

As described in Section 4.2 on basic crawl steps, a crawl for Web services needs to start
from a set of seed URLs. These seeds contain, e.g., services that we know already,
commonly known service repositories, Web pages that publish or promote Web services or
that simply talk about Web services. As we look for services and related information - which
is mostly stored in textual documents - we can in our focused crawl already reject a lot of
content by default, like images, audio or video files. What we want to look at specifically are
textual documents, such as HTML pages, XML files, PDF documents, and other. The
targeted documents are all types of files that could be either directly a service description or
some related information.

So far we work with the premise that every service is described with a WSDL interface
specification. I. e. during the crawl process we check whether a fetched page is in XML and if
so, whether it is a valid WSDL description. In a first step the crawl will be focusing on WSDL
1.1 descriptions, as they are prominently used on the Web, as compared to WSDL 2.0
descriptions. After having detected Web services we try to gather more information around
the service endpoint (like, e.g., their geographic location or liveliness). Beside the Web
service descriptions themselves and endpoint related information, our crawls will as well
focus on all relevant sort of service related information. Such information can be quite divers:
documents pointing to the service, the service provider's service definition, documents
pointing to that definition and vice versa, user forums talking about the service, blogs, etc. As
a first step we consider those resources that are directly conneted to the service by a link
graph, i.e. that include links pointing to the service interface description and vice versa. This
can be extended to regard not only links of first grade (i.e. direct links), but as take into
accounts documents from links of higher grade (e.g. a page that links to a page that links to a
service).

We expect to gather pages that include general descriptions of the service functionality,
FAQs, pricing pages, etc. While the resources located in the same domain (where the
service is hosted) will mainly hold descriptive and terms and licenses related information,
pages on different domains will likely include information that talks about and eventually
ranks the service. In order to be able to gather as much related information as possible, our
crawler will, e.g., crawl the sites of service providers more deeply than other sites.

Only a part of the services available on the Web are described using the WSDL standard.
Another very dominant service scheme is the one of RESTful services. This is why we will
need to extend the crawler to as well take into account RESTful services and mashups
(bundled services), so-called Web APIs. We will develop methods to identify these services,
based on aspects like the lexical analysis of the pages (e.g. usage of CamelCases, usage of
certain keywords related to freqeuently used operation names or HTTP methods) and the
analysis of the URIs (e.g. URIs that contain query strings).

A third type of services that the crawler will be extended to are Semantic Web services. We
will develop methods to identify different kinds of Semantic Web service descriptions,
focusing on WSML-Lite and MicroWSMO descriptions that will be used throughout the
SOA4All project to semantically annotate services.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 49 of 56

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 50 of 56

5 Outlook of service crawling techniques

This chapter will first give an overview on the data that is resulting from the crawler that
seekda and the University of Innsbruck are operating jointly in the scope of SOA4All. Then
we will give an outlook on the upcoming challenges that we will cope with in the scope of the
project.

5.1 Crawled service data

After crawling the Web for Web services and related information, as described in Section 4.4,
we have three different kind of information:

− WSDL service descriptions – We first of all have a large amount of WSDL service
descriptions (seekda has currently more than 133.000 WSDL descriptions). Usually
there are multiple WSDL files out there that correspond to one single service (due,
e.g., to a multiple hosting of the same services). The opposite case also happens, i.e.
that one WSDL description contains multiple actual services. We handle these cases
by assigning the WSDL descriptions to unique services, this way, e.g., removing
duplicates from our services. We first extract the provider from the service description
and build a new unique (seekda) URL for the service. This URL contains the
provider's name. In a second step we then add the service name to it (e.g.
http://seekda.com/providers/cdyne.com/IP2Geo).

− link graphs – During the crawl we build link graphs that contain information about
which page(s) links to which other page(s). This information is useful to help denoting
information that is related to services. Such related information may, e.g., be Web
pages that link directly to Web service descriptions (what we call an inlink of first
grade).

− related information – The hugest amount of data we have after a crawl iteration is the
related information that we collected. The fetched documents are stored in the ARC
file format (Internet Archive): these archives aggregate data in approximately 100MB
large files, the file starts with a special ARC header and concatenates then the single
Web pages. With each archive we produce an index file during the crawl that allows
us to quickly jump to a specific offset in a specific ARC file and extract the
corresponding archive record.

Using these three kind of data that we collect during a crawl we do a first analysis step. After
having specified the unique services and their corresponding WSDL descriptions, we go
through the link graphs to collect all (by out-/inlink) related information and build an index that
assigns related information directly to services (the unique seekda services). After this
analysis step we have services, WSDLs and information that we deem related to the
services.

5.2 Outlook of service crawling techniques

In the following we will give a short outlook on issues that we intend to tackle in the scope of
SOA4All and that shall improve our Web service crawling process and the analysis of the
gathered information:

− identification of services – We will provide methods to identify non-WSDL services,
like REST, JSON, mashups, as well as semantic service descriptions. As a start we
will try to investigate common characteristics of RESTful services, both concerning
their structure and their descriptions on normal HTML Web pages. This will help us
build criteria that we can use to start crawling for such non-WSDL services. At the
same time we will start crawling for semantic service descriptions, like WSML,
WSMO-Lite or MicroWSMO.

− identification of related information – So far we identify related information using the
link graphs that are built during the crawls. We would like to enhance this process in

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 51 of 56

that direction that we are able to extract related information that is not linking to the
service descriptions. We might find such information by (1) crawling domains of
service providers more intensively and (2) doing term vector similarity checks during
the crawl to estimate whether a page is related to a service or not.

− analysis of related information – After we have collected related information, be it in
the way we do it so far, by using link graphs, or in the way we intend to do it as well,
by checking for page similarity, we have a huge amount of (probably) related
information. Now we do not want to stop here. The next step will be to properly
analyze the extracted Web pages. Such analysis can go into two directions: (1)
classifying the related information and (2) extracting concrete information from the
data.

Here the classification is clearly the easier part, although it is already not an easy task
as such. For a classification we need to find out what a page is most probably about,
e.g., is it a pricing page, the provider's contact page, a service documentation, a
terms and conditions page, a FAQ, etc. To do so we can start by analyzing such
pages for a restricted set of services and searching for indications that allow us to
identify specific page types (e.g., a pricing page most probably contains an unusual
high amount of numbers (as compared to normal Web pages) and monetary ISO
codes (e.g. EUR, USD) or signs (e.g. €, $). The second analysis goal of extracting
concrete information is harder to reach. After having successfully classified the
related information we would like to extract concrete information out of them. Such
concrete information would include, e.g., pricing schemes or prices (extracted from
the pricing page), terms and conditions (extracted from the terms and conditions
page), telephone number and email from the provider (extracted from the provider's
contact page), etc.

Enhancing the gathering and analysis of related information can in a later step help to
improve our crawl process. The knowledge about where we find the most related information
will enable us to focus the crawler even more on finding information that is related to
services.

5.3 Outlook of SOA4All service discovery

Based on the analysis of various discovery approaches (see Section 3) and other
approaches for discovery related tasks such as crawling (see Section 4), this section
provides a unified outlook of service discovery in the SOA4All project.

We start by identifying what the core components and functionalities that are required in
order to build a discovery approach scalable to billions of services as SOA4All aims. Further
on we give an informal overview of possible interaction between them. Please note that this
section is an outlook of the overall service discovery approach in SOA4All not a complete
specification of this discovery approach. Follow-up deliverables in WP5 – Service Location,
due to M12 and M18, might find this investigation an interesting input that could be refined
and extended.

From an architectural point of view we envision that the following components are required
as part of an overall scalable discovery solution: (1) Crawler, (2) Service repository, (3)
Reasoner and (4) Service Discovery components. The relation and role of each of these
components in the overall discovery picture is going to be discussed in the rest of this
section.

As pointed out in Section 4, in open, public and large scale setting, searching for services
becomes a hard challenge given the high number of services as well as their distributed and
unknown locations. Most of the existing solutions analysed in Section 3, including public and
private registries, portals, standard search engines and logic-based discovery approaches

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 52 of 56

have been designed with the scalability dimension in mind. They work for relative small
number of services available in relative closed environments. An approach that deals with
services on a very large scale, i.e., on Web scale requires a crawler component able to
collect service from all over the world. Therefore we envision a SOA4All discovery solution in
which a crawler component plays an active role in finding available services on the Web and
collecting their descriptions and related information relevant for further discovery processing.

Another component that is required as part of the overall discovery approach is the Service
Registry. The registry should provide scalable solutions for storing and managing service
descriptions. Such a repository should be based on Web-based principles (publish,
read/write paradigm) to allow easy access to service descriptions. The crawler component
will store the retrieved service descriptions in the registry

Besides being a scalable solution to the order of billions of services, the SOA4All discovery
approach needs to offer a reasonable degree of accuracy when given a user request. A
reasoner component is needed to enable intelligent matching of user request and service
descriptions. However, the scalability aim should not be neglected and thus scalable, robust
and fast reasoning components need to be integrated, rather then reasoners based on
complex formalisms (as most of the approaches investigated in Section 2).

Last but not least scalable discovery approaches are needed. The discovery work done [34]
identifies different techniques and level of semantic descriptions that are required as part of
an overall discovery approach. Based on the level of semantics used to describe services
and user requests the following approaches are indentified: (1) keyword-based, (2)
leightweight and (3) heavyweight discovery. Given the fact that scalability is a central
requirement in SOA4All less expressive formalisms are preferable, resulting in lower.
processing times. Discovery algorithms and methods are required that investigate the usage
of light descriptions (i.e annotations, classifications, tags) as processing data. The discovery
component(s) will make direct use of the reasoning component during the discovery process.
Another required interaction is between the discovery component and the registry.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 53 of 56

6 Conclusions

This deliverable examined a number of current service description languages on one hand
and service discovery and crawling techniques on the other hand. In particular we provided
an overview of the Web Services Description Language, the WS-* standard for Web service
description. The main elements of a WSDL description were described and intuitive
examples were provided for each of these elements. We also investigated RESTful services
in terms of what they are and how they are described. We furthermore looked at the facilities
offered by WSDL and RESTful services. Last but not least we provided an extended
overview of the most important frameworks for service description in Semantic Web services
domain. We examined how the influence of the Semantic Web has brought new
opportunities for service oriented computing with Web services as the base infrastructure.
Five different approaches for modelling Semantic Web services were described – WSMO,
OWL-S, SWSF, IRS-III and SAWSDL.

Having provided an overall overview of existing approaches for service description we looked
at approaches for service discovery and crawling. For service discovery we investigated two
different types of approaches: (1) registry based approaches, including UDDI and ebXML
based approaches and (2) logic based approaches for Semantic Web service discovery that
employ reasoning support to determine the degree e of match between services and user
requests.

As a supporting task for service discovery, we looked at service crawling techniques. We first
provided an overview of the crawling task in the context of Web with an emphasis on focus
crawling techniques. Last but not least we provided an outlook for service crawling
techniques that we envision being appropriate in the context of SOA4All project. An initial set
of WSDL crawled services provided by seekda that can be used by other SOA4All
components has been as well described.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 54 of 56

7 References

[1] http://en.wikipedia.org/wiki/Web_crawler
[2] F. Menczer, 1997. ARACHNID: Adaptive Retrieval Agents Choosing Heuristic

Neighborhoods for Information Discovery. In Proceedings of the 14th International
Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA, 227–235.

[3] F. Menczer and R. Belew. 1998. Adaptive information agents in distributed textual
environments. In Proceedings of the 2nd International Conference on Autonomous
Agents. Minneapolis, MN, 157–164.

[4] COTHEY, V. 2004. Web-crawling reliability. J. Amer. Soc. Inform. Sci. Techn. 55, 14,
1228–1238.

[5] Kristinn Sigurdsson. Adaptive Revisiting with Heritrix. Master Thesis. Universtiy of
Iceland. 2005.

[6] Bing Liu. Web Data Mining – Exploring Hyperlinks, Contents and Usage Data.
Springer. 2006.

[7] Eyhab Al-Masri and Qusay H. Mahmoud, Discovering Web Services in Search
Engines, IEEE Internet Computing, pag. 74-77, 2008

[8] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec and
http://en.wikipedia.org/wiki/UDDI

[9] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=regrep and
http://xml.coverpages.org/ni2005-02-14-a.html

[10] J. Domingue, L. Cabral, F. Hakimpou, D Sell, E. Motta. 2004. Irs-III: A platform and
infrastructure for creating WSMO-based semantic web services. In Proceedings of
the Workshop on WSMO Implementations (WIW 2004), Frankfurt, Germany,
September 2004. CEUR.

[11] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana: Web Services
Description Language (WSDL) 1.1, W3C Note, 15 March 2001, available at
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[12] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. (1998). RFC 2413 - Dublin Core
Metadata for Resource Discovery. Technical report.

[13] Object Management Group Inc. (OMG). 2002. Meta Object Facility (MOF)
specification v1.4.

[14] Roman D, Lausen H, Keller U, editors. 2007. The Web Service Modeling Ontology
(WSMO). WSMO Working Draft D2v1.4, February 2007. Available from
http://www.wsmo.org/TR/d2/v1.4/.

[15] N. Steinmetz and I. Toma, editors, The Web Service Modeling Language (WSML).
WSML Working Draft D16v1, July 2008. Available from
http://www.wsmo.org/TR/d16/d16.1/v0.3/

[16] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider
(eds.), The description logic handbook, Cambridge University Press, 2003.

[17] M. Kifer, G. Lausen, and J. Wu, Logical foundations of object-oriented and
framebased languages, JACM 42 (1995), no. 4, 741–843.

[18] J. W. Lloyd, Foundations of logic programming (2nd edition), Springer-Verlag,
1987.

[19] C. Preist 2004. A conceptual architecture for semantic web services. In 3rd
International Semantic Web Conference (ISWC2004). Springer Verlag: XX,
November 2004.

[20] Semantic Web Services Framework. SWSF Version 1.0. 2005. Available from
http://www.daml.org/services/swsf/1.0/.

[21] M. Gruninger, 2003.A guide to the ontology of the process specification language In
Handbook on Ontologies in Information Systems, Studer R, Staab S (eds). Springer-
Verlag: XX.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 55 of 56

[22] BN. Grosof. 1999. A Courteous Compiler From Generalized Courteous Logic
Programs To Ordinary Logic Programs. IBM Report included as part of
documentation in the IBM CommonRules 1.0 software toolkit and documentation,
released on http:// alphaworks.ibm.com. July 1999. Also available at:
http://ebusiness.mit.edu/ bgrosof/#gclp-rr-99k.

[23] W. Chen and M Kifer. HiLog: A foundation for higher-order Logic Programming.
Warren DS. 1993. Journal of Logic Programming 15:3, 187–230.

[24] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A semantic web rule language combining OWL and RuleML, 2003. Available
at http://www.daml.org/2003/11/swrl/.

[25] Knowledge Interchange Format: Draft proposed American National Standard
(dpans). Technical Report 2/98-004, ANS, 1998. Also at
http://logic.stanford.edu/kif/dpans.html.

[26] G. Klyne and J. J. Carroll. Resource description framework (rdf): concepts and
abstract syntax, 2004. W3C Recommendation. Available at
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210.

[27] PDDL-The Planning Domain Definition Language V. 2. Technical Report, report
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control,
1998.

[28] T. Berners-Lee, J. Hendler and O. Lassila. 2001. The semantic web. Scientific
American 284(5):34–43.

[29] D. Fensel: Triple-space computing: Semantic Web Services based on persistent
publication of information: In Proceedings of the IFIP International Conference on
Intelligence in Communication Systems, INTELLCOMM 2004, Bangkok, Thailand,
November 23-26, 2004.

[30] J. Farrell, H. Lausen: Semantic Annotations for WSDL and XML Schema. W3C
Recommendation 28 August 2007. Available at: http://www.w3.org/TR/sawsdl/.

[31] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, and K. Verma.
Web Service Semantics – WSDL-S. Technical note, April 2005. Available at
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html.

[32] R. Fielding. Architectural Styles and The Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.
http://doi.acm.org/10.1145/1367497.1367606

[33] C. Pautasso, O. Zimmermann, F. Leymann: Restful web services vs. "big"' web
services: making the right architectural decision. WWW 2008: 805-814

[34] U. Keller, R. Lara, A. Polleres, I. Toma, M. Kiffer and D. Fensel, D.: WSMO
discovery. Working Draft D5.1v0.1, WSMO, 2004. Available from
http://www.wsmo.org/2004/d5/D5.1/v0.1/.

[35] L. Li, I. Horrocks.: A software framework for matchmaking based on semantic web
technology. In Proceedings of the 12th International Conference on the World Wide
Web, Budapest, Hungary, May 2003.

[36] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.: Semantic matching of web
services capabilities. In Proceeding of The First International Semantic Web
Conference (ISWC2002), Sardinia, Italy, 2002.

[37] C. Preist, A Conceptual Architecture for Semantic Web Services, In Proceedings of
the 3rd International Semantic Web Conference 2004 (ISWC 2004), November 2004,
395–409.

[38] M.J. Hadley: The Web Application Description Language. Available at
http://research.sun.com/techrep/2006/smli_tr-2006-153.pdf

[39] H. Lausen and T. Haselwanter. Finding Web Services. 1st European Semantic
Technology Conference, Vienna, Austria, June 2007.

[40] D. Bachlechner, K. Siorpaes, H. Lausen and D. Fensel. Web service discovery – a
reality check. In 3rd European Semantic Web Conference, 2006.

 SOA4All –FP7 – 215219 D5.1.1 State of Art Report Service Description and Existing Discovery Techniques

© SOA4All consortium Page 56 of 56

[41] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes and J. Zhang. Similarity search for
web services. In VLDB, pages 372-383, 2004.

[42] T. Bellwood (2002). UDDI version 2.04 API specification. Available from
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm

[43] L. Richardson, S. Ruby. RESTful Web Services – Web Services for the Real World.
O’Reilly 2007, ISBN-10: 0-596-52926-0

