

Project Number: 215219

Project Acronym: SOA4ALL

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic Priority: Information and Communication Technologies

D6.3.2. Advanced Specification Of Lightweight,
Context-aware Process Modelling Language

Activity: Activity 2 - Core R&D Activities

Work Package: WP 6 - Service Construction

Due Date: M18

Submission Date: 14/09/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: SAP

Revision: 25

Author(s): Florian Schnabel SAP
Lai Xu SAP
Yosu Gorronogoitia ATOS
Mateusz Radzimski ATOS
Freddy Lecue INRIA
Gianluca Ripa CEFRIEL
Sven Abels TIE
Sean Blood TIE
Martin Junghans UKARL
Adrian Mos INRIA
Nikolay Mehandjiev UNIMAN

Reviwers: Barry Norton UIBK
Matthias Born SAP

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 2 of 71

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

01 12/06/09
ToC defined according to the Wiki,
rough descriptions provided to each
section according to the Wiki

Florian Schnabel (SAP)

02 15/06/09 Further work on section descriptions Florian Schnabel (SAP)

03 15/06/09 Refinement of data flow section Lai Xu (SAP)

04 15/06/09 Refinement of ToC Florian Schnabel (SAP)

05 18/06/09 Comments and updates by UNIMAN Freddy Lecue (INRIA)

06 19/06/09 Update of partner contributions Florian Schnabel (SAP)

07 19/06/09 Update of contents based on Freddy’s
comments

Florian Schnabel (SAP),
Freddy Lecue

08 29/06/09 Final allocation of partner contribution,
update deliverable based on ATOS’
comments.

09 30/06/09 Draft of element specification,
extension of data flow section

Florian Schnabel, Lai Xu
(SAP)

10 30/06/09 Integration of section about context-
awareness

Matthias Born (SAP)

11 30/06/09 Integration of Yosu’s comments Florian Schnabel (SAP)

12 02/07/09 Refinement of element descriptions Florian Schnabel (SAP)

13 05/07/09 Refinement of element descriptions,
ATOS input for goals and
implementation, TIE input for section 5

Florian Schnabel (SAP),
Yosu Gorronogoitia(ATOS),
Sven Abels (TIE)

14 15/07/09 Integration of semantic annotation
section written by ATOS

Yosu Gorronogoitia (ATOS)

15 15/07/09 Comments on section 5 Sven Abels (TIE)

16 20/07/09 Update mediation, integrate data flow
contribution of UNIMAN, moved data
mediation in 3.3 to 4.3

Florian Schnabel, Lai Xu
(SAP), Freddy Lecue
(INRIA)

17 04/08/09 Update section 4.1 Florian Schnabel (SAP)

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 3 of 71

18 07/08/09 Update APIs in section 5.1 Sean Blood (SAP)

19 11/08/09 Update element description, section
5.1, goal section

Martin Junghans (UKARL),
Sean Blood, Florian
Schnabel (SAP)

20 12/08/09 Finalize section 3 Florian Schnabel (SAP)

21 12/08/09 Update section 4, 5, 6 Florian Schnabel (SAP),
Martin Junghans (UKARL)

22 18/08/09 Update of section 5.2 Sven Abels (TIE)

23 27/08/09 Update of section 4 Florian Schnabel (SAP)

24 01/09/09 Update conclusion Florian Schnabel (SAP)

25 14/09/09 Final editing Malena Donato (ATOS)

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 4 of 71

Table of Contents
EXECUTIVE SUMMARY __ 7

1. INTRODUCTION __ 8

1.1 PURPOSE AND SCOPE OF THE DELIVERABLE ________________________ 8

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 8

2. SUMMARY OF THE RECENT WORK IN T6.3 _______________________________ 9

2.1 SUMMARY OF D6.3.1 __ 9

2.2 SUMMARY OF RELATED WORK _____________________________________ 9

3. LIGHTWEIGHT, CONTEXT-AWARE PROCESS MODELLING ______ ___________ 11

3.1 ABSTRACTION LAYERS FOR THE LPML _____________________________ 11

3.2 SEMANTIC ANNOTATIONS FOR PROCESSES AND ITS ELEMENTS _______ 12

3.3 CONTEXT-AWARE PROCESS MODELLING PRINCIPLES ________________ 14

3.4 SUMMARY AND REMARKS __ 16

4. LIGHTWEIGHT, CONTEXT-AWARE PROCESS MODELLING LANGUA GE ______ 18

4.1 METAMODEL OF LIGHTWEIGHT PROCESS MODELING LANGUAGE ______ 18

4.1.1 Design Process for Lightweight Process Modelling and Execution _________ 19

4.1.2 Modeller’s view of the LPML Metamodel _____________________________ 20

4.1.3 Complete LPML Metamodel _______________________________________ 21

4.1.4 LPML Metamodel Elements _______________________________________ 22

4.2 PATTERNS AND TEMPLATES ______________________________________ 27

4.3 GOALS ___ 27

4.4 DATA FLOW PERSPECTIVE __ 32

4.4.1 Data Manipulation and Operators ___________________________________ 32

4.4.2 External View of Data Flow Manipulation _____________________________ 33

4.5 SUMMARY AND REMARKS __ 34

5. LPML API: REQUIREMENTS, DESIGN AND IMPLEMENTATION _ _____________ 35

5.1 LMPL API REQUIREMENTS __ 35

5.2 LPML API SPECIFICATION ___ 36

5.2.1 Using EMF as a Basis for the LPML API _____________________________ 41

5.2.2 Serialization in RDF/S __ 42

5.2.3 Transformation into BPEL ___ 43

5.3 SUMMARY AND REMARKS __ 49

6. LANGUAGE EVALUATION _______________________________ ______________ 50

6.1 USER CATEGORIZATION __ 50

6.2 COMPLETENESS AND EXPRESSIVENESS OF THE LPML _______________ 50

6.3 PATTERN-BASED ANALYSIS OF THE LPML __________________________ 52

6.4 RECOMMENDATIONS __ 54

7. CONCLUSIONS __ 55

8. REFERENCES ___ 56

ANNEX A. SAMPLE FILE _______________________________________ ________ 58

ANNEX B. TERMINOLOGY __ 67

ANNEX C. LPML AND SEMANTIC ANNOTATION LANGUAGES ____________ ____ 69

ANNEX D. EVALUATION INFORMATION ____________________________ ______ 70

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 5 of 71

Glossary of Acronyms

Acronym Definition

B2B Business-to-Business

BPA Business Process Analysis

BPEL Business Process Executable Language

BPM Business Process Management

BPML Business Process Modelling Language

BT British Telecom

CCTS Core Components Technical Specification

D Deliverable

ebXML Electronic Business using eXtensible Markup Language

EPC Event-driven Process Chains

IDE Integrated Development Environment

IT Information Technology

PHP PHP Hypertext Pre-processor

QoS Quality of Service

SAP Systeme Anwendungen und Produkte

SDK Software Development Kit

SOA Service-Oriented Architecture

T Task

UML Unified Modelling Language

WP Work Package

WSMO Web Service Modelling Ontology

YAWL Yet Another Workflow Language

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 6 of 71

List of Figures
Figure 1: Lightweight process modelling language stack .. 11

Figure 2: Semantic annotations for LPML elements.. 13

Figure 3: Abstraction of a Context-Driven Process Flow Scenario .. 15

Figure 4: Combined Abstraction of a Context-Driven Process Flow Scenario 15

Figure 5: Design Process for Lightweight Process Modelling .. 19

Figure 6: Modeller’s view of the LPML metamodel ... 20

Figure 7: Semantic annotations for the LPML ... 21

Figure 8: Complete LPML metamodel .. 22

Figure 9: Reference to WSMO-Lite ontology .. 30

Figure 10 LPML Goal concept .. 31

Figure 11: Example for LPML usage in the SOA4All composer (Task 2.6) 37

Figure 12: Additional helper classes for the LPML API ... 41

Figure 13: LPML to BPEL transformation chain .. 47

Figure 14: Simplified representation of the STP-IM Metamodel .. 48

Figure 15: Relation of LPML to semantic annotation languages ... 69

List of Tables
Table 1: Graphical symbols for the Lightweight Process Modelling Language 9

Table 2 : Description of Process ... 23

Table 3: Description of ProcessElement and its children .. 23

Table 4: Service and goal description ... 24

Table 5: Elements for semantic annotation ... 25

Table 6: Elements for the data flow handling .. 26

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 7 of 71

Executive Summary
Existing process modelling languages and especially executable process modelling
languages are not designed for non-experienced users. In SOA4All we have therefore
introduced Lightweight Process Modelling seeking to lower the entry barrier for process
modelling. Non-experienced users get advanced guidance during the modelling activities.

This deliverable will provide an advanced specification of the lightweight process modelling
methodology and Lightweight Process Modelling Language (LPML) as described in D6.3.1.
We will describe in more detail the identified three design principles of lightweight modelling.
These design principles comprise abstraction of process models, the use of semantic
annotations, and context-awareness. In order to realize these design principles we have
created new elements for the LPML. Selected concepts of existing process modelling
languages like BPMN and BPEL complement the LPML. We will present a coherent
metamodel of the elements, properties, and relationships.

On the programmatic perspective, the LPML requires to be managed by an API that
abstracts and hides the complexities of the LPML elements and their concrete serialization
formats to the programmer. This deliverable describes as well the LPML API, which provides
programmatic process modeling and serialization support, either for storage as RDF and
transformation into SOA4ALL extended BPEL 2.01 or other executable languages.

The LPML is the SOA4All language for process modelling used in the entire project. The
graphical, abstract process models are created by the end-user using the process editor of
T2.6. These abstract process models are enhanced by the composer and the optimizer of
T6.4. Finally the process models represented in the LPML are executed by the execution
engine developed in T6.5.

1 We refer to the extended BPEL language used by D6.5.1 Execution Environment

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 8 of 71

1. Introduction
1.1 Purpose and Scope of the Deliverable
Existing process modelling languages and especially executable process modelling
languages are not designed for non-experienced users. In SOA4All we have therefore
introduced Lightweight Process Modelling seeking to lower the entry barrier for process
modelling. Non-experienced users will be able to abstract from composition details and get
advanced guidance during the modelling activities.

This deliverable will provide an advanced specification of the lightweight process modelling
methodology and Lightweight Process Modelling Language (LPML) as described in D6.3.1.
We will describe in more detail the identified three design principles of lightweight modelling.
These design principles comprise abstraction of process models, the use of semantic
annotations, and context-awareness. The LPML is combination of a selection of appropriate,
existing process modelling concepts, elements, and artifacts and new modelling concepts.
The reused concepts are mainly defined in BPMN and BPEL. We based our selection on
literature analysis (Koehler and Vanhatalo 2007; zur Muehlen and Recker 2008) and the
requirements of the use cases. Furthermore a coherent metamodel of the LPML and its
elements, properties, and relationships will be presented. This metamodel will provide
specific elements in order to implement the mentioned design principles.

On the programmatic perspective, the LPML requires to be managed by an API that
abstracts and hides the complexities of the LPML elements and their concrete serialization
formats to the programmer. This deliverable describes as well the LPML API, which provides
programmatic process modeling and serialization support, either for storage as RDF and
transformation into SOA4ALL extended BPEL 2.02 or other executable languages.

The LPML is the SOA4All language for process modelling used in the entire project. In order
to enhance the abstract, graphical models by execution details, a specific design process will
be set up. The abstract, graphical process models are created by the end-user using the
process editor of T2.6. These abstract process models are enhanced by the composer and
the optimizer of T6.4. Finally the process models represented in the LPML are executed by
the execution engine developed in T6.5. The detailed proceeding of each task is covered by
this deliverable.

The contents of the proposed process composition language has to be evaluated in order to
prove the applicability in practice. We will follow an evaluation approach by appealing to the
concept of ontological completeness and coverage. Evaluating a language would be strongly
dependent on both the target users and usage of the language. The target usage of the
language is covered by SOA4All use cases.

1.2 Structure of the Document
This document is organised as follows. Section 2 covers a summary of the recent work done
in T6.3 as well as related work. The design principles of the lightweight process modelling
are addressed by Section 3. Afterwards, in Section 4, the LPML is described in more detail.
The requirements, design, and implementation of the LPML API is presented in Section 5.
Section 6 gives an insight into the envisaged evaluation of the LPML. Finally, Section 7
concludes the document.

2 We refer to the extended BPEL language used by D6.5.1 Execution Environment

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 9 of 71

2. Summary of the Recent Work in T6.3
2.1 Summary of D6.3.1
Table 1 recalls the graphical elements for the LPML. We adopted seven notations from
BPMN and added two goal related notations. We suppose that these graphical symbols are
only understandable by advanced modellers. The process editor developed by T2.6 uses
even more abstracted symbols. In this deliverable D6.3.2 we will provide detailed element
descriptions. However, the graphical symbols are only one option to visualize the element
descriptions of Section 4.1.

In order to better abstract the language and make it more lightweight we will dismiss the
graphical representation of composite activity goals as described in D6.3.1.

Starts a process flow

Ends a process flow

An activity is a unit of work, the
job to be performed

Sequence Flow defines the
execution order of activities

Exclusive Gateway

When splitting, it routes the
sequence flow to exactly one of
the outgoing branch on
conditions. When merging, it
awaits one incoming branch to
complete before triggering the
outgoing flow

Parallel Gateway

When used to split the
sequence flow, all outgoing
branches are activated
simultaneously. When
merging parallel branches it
waits for all incoming
branches to complete before
triggering the outgoing flow

Inclusive Gateway

When splitting, one or more braches are activated based on branching
conditions. When merging, it awaits all active incoming branches to complete.

Atomic Activity Goal

Atomic goals are those that are associated with a single concrete activity,
involving just one step of computation.

The main design principles have already be introduced in D6.3.1 including the LPML stack,
context-awareness, the use of patterns, templates, and goals. We will refer to D6.3.1 for a
more detailed description. However, the main aspects are repeated in the appropriate
sections of this deliverable D6.3.2.

2.2 Summary of Related Work
The related work of our LPML is covered by D6.1.1 and D6.3.1. In the following, we will only
present the work that has not been described yet by these two deliverables. We will introduce

Table 1: Graphical symbols for the Lightweight Process Modelling Language

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 10 of 71

two BPEL extension mechanisms that influenced the design of the LPML.

BPEL-Light (Nitzsche, van Lessen et al. 2007b): The purpose of BPEL-Light is to make
BPEL independent of the Web Service Stack. Therefore, new elements are defined replacing
those elements that reference to WSDL-based elements or elements referencing WSDL
interfaces. Being independent of WSDL means that process tasks or activities can reference
WSMO goals, WSMO-Lite services or other service interfaces.

BPEL4SWS (Nitzsche, van Lessen et al. 2007a): This BPEL dialect defines references to
WSMO goals and to interfaces described in OWL/S. BPEL4SWS therefore extends BPEL
similar to BPEL-Light by elements that replace all those elements depending on WSDL.
BPEL4SWS is a kind of instantiation of BPEL-Light. The semantic web services will be
grounded to WSDL.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 11 of 71

3. Lightweight, Context-aware Process Modelling
As described in D6.3.1 lightweight process modelling is a combination of techniques that
seek to lower the entry barrier for process modelling. In the following, we will present the
identified aspects that are the different abstraction layers of the lightweight process modelling
stack, semantic annotations, and context awareness.

3.1 Abstraction Layers for the LPML
As depicted in Figure 1 our modelling stack comprises three layers in general. The top layer
forms a graphical representation layer that has been designed for non-modelling experts. It
hides as much information as possible from the user by relying on a set of simple and easy-
to-understand symbols. This new layer has been defined in SOA4All and is described in
more detail in Section 4.1.2. Our framework also allows modelling experts to model
processes in a more detailed graphical representation. This is addressed by the middle layer
in Figure 1. However, this layer is not part of the research work of SOA4All since there are
already a couple of languages existing, like BPMN or YAWL. The bottom layer provides the
textual representations of processes. It forms the canonical format of our process model and
is described in the SOA4All LPML. The LPML metamodel is based on the Eclipse Modelling
Framework (EMF) (Foundation 2009) metamodel and can have various representations, e.g.
in UML, Java or XML. It is then easy to transform the LPML models into XPDL or WS-BPEL
models or to serialize the models in RDF-S in order to be stored in a semantic space. The
LPML models are based on the information given by the user. The models will be then
enhanced in several steps in order to contain enough information for execution. Besides the
provision of a basis for executable models, the textual representation will facilitate exchange
and reuse of process models independently of the graphical representation.

Abstract graphical process
(Graphically abstracted LPML)

Full-blown graphical process
(e.g. BPMN)

Canonical layer
(LPML)

<LPML>
<activity>…</activity>
<activity>… <activity>

</LPML>

Model Transformation

Starting point for process modelling in SOA4All is the process editor as part of the SOA4All
Studio. The process editor is used to create the abstract graphical processes as depicted in
the upper layer of Figure 1. In the backend the process editor directly creates an LPML
process model represented in Java. Hence, a simple model transformation from the graphical
abstraction into an LPML representation is performed within the process editor.

As described above the LPML can have various representations. It will be easy to transform
an XML representation of the LPML model into XPDL and hence symbolize it graphically in
BPMN. However, this model transformation from LPML into XPDL is not addressed by

Figure 1: Lightweight process modelling language stack

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 12 of 71

SOA4All.

3.2 Semantic Annotations for Processes and its Elem ents
In this Section, we will describe the semantic annotations for activities and the process as a
whole. Semantic annotations provide additional, machine-readable information that refers to
ontology concepts. Key for SOA4All is the lightweightness of these annotations. The
annotations will be integrated into the LPML as WSMO-Lite annotations and are referenced
by WSDLs through SAWSDL annotations. An overview of the relation of the LPML to existing
semantic annotation languages can be found in Annex C.

The semantic annotations for processes and its elements mainly depend on the adoption of
knowledge representation models, such as ontologies. The benefit will be to partially
automate the modelling of processes using some domain and context specific knowledge.
The project SUPER defined five ontologies in order to combine semantics and process
modelling3. Contrary to SUPER, we will define the semantic extensions in a more lightweight
way (similar to the SAWSDL approach for WSDL). We will define semantic annotations for
process elements such as activities, goals, etc. and for the process as a whole. The semantic
annotations will then reference to concepts or instances of existing domain specific
ontologies for SWS like WSMO, WSMO-Lite, or Micro-WSMO or they will include logical
expressions or metadata.

Hereafter, we will explain how semantic annotations can be used for the lightweight
modelling methodology and how they are included in the LPML metamodel. Annotations are
used to complement the syntactic description of processes and main modelling elements by
providing a semantic meaning. The purpose of such annotations is to support some sort of
automation during both modelling and execution of processes. This support will be offered by
the SOA4ALL modelling tools: Process Editor, DT Composer, Optimizer and Runtime
Executor. Annotations can also be used to check the fulfilment of models with the
requirements and constraints. In addition, human modellers can also use annotations to
share a better understanding of process models and their modelling elements, patterns and
templates.

The semantic annotation approach in LPML is depicted in Figure 2. The SemanticAnnotation
class contains a URI reference to an ontology concept or instance. The annotation is
ontology-agnostic, that is, it can reference concepts described by different ontologies like
WSMO, WSMO-Lite, or Micro-WSMO. The modelling tools will properly interpret those
annotations. SemanticAnnotation also includes an optional expression property that can be
used either to contain a logic expression or a literal (supporting the expression of metadata:
keyword=value). That could be useful to describe authoring process information using, for
instance, the Dublin Core ontology. Optionally modelling tools can use AnnotationType
enumeration to categorize the taxonomy of supported annotation types.

3 See http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-251/paper13.pdf

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 13 of 71

Modellers can use annotations to provide semantic meanings to process models as a whole
or to some modelling elements. The annotations have to follow a certain type defined for the
LPML. We can use these annotations to describe:

• Requirements: A requirement references an ontology concept. The requirement range is
therefore the ontology concept range. Accepted requirement values are instances of that
concept. Requirements are used to describe processes and its elements (mostly
activities/goals). At process level, requirements can be used to specify the domain
specific scope for the process and other global requirements, for instance: bureaucratic
procedure, recorded procedure, acknowledge procedure, etc. For instance in WP7
scenarios, a requirement can specify an eGoverment registration domain (comprising any
formal application/procedure registration). The expected checking level could be
determined from the domain specific ontology used to reference annotations or could be
explicitly stated by the human modeller using another requirement annotation. When
applied to activity goals, annotations described the functional classification of desired
SWS, as it is explained in Section 4.1. Examples of requirements for activities are, for
instance: document and recording management, application/procedure checking, failure
management, archiving, payment (electronic, tax office), electronic record management,
physical document management, etc.

• Constraints: we model constraints using annotations as requirements are. Nevertheless,
constraints and requirements are conceptually dissimilar since requirements have
positive meaning while constraints have restrictive or negative implications, limiting the
scope or acceptable functionality. As requirements, they can be applied either to
processes themselves or to their modelling elements: activities/goals. Examples of
constraints are free/non-free procedure, checked procedure, legal checking, reject
unchecked or failed applications, credit/debit card payment, etc.

Figure 2: Semantic annotations for LPML elements

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 14 of 71

• Non-functional properties: they can be applied either to processes themselves or to their
modelling elements. Examples of restrictions are: the geographical location of external
partner services (i.e. payment services), response times, cost ranges, number of
concurrent invocations supported, secure transactions, acknowledge transactions, etc. At
process level, non-functional properties may impose global non-functional restrictions
upon external partners participating in all the activities of the process. Non-functional
properties could also be used to determine possible template expansions, for instance,
selecting from available payment templates, to set human tasks or to set the role in order
to validate or execute the process.

• Metadata (parameter=value) supporting, for instance authoring information such as
author, creation date, versions, revisions, etc.

• Logical expressions, expressed in any logical language supported by the modelling tools,
which can be used as conditions of Exclusive Gateway flows or for Goal
preconditions/effects.

• Other annotations specifically related to Activities/Goals, such as preconditions and
effects that are described in Section 4.3.

LPML semantic annotations can be in principle optionally attached to any process element
including the process itself. Whether annotations are optional or mandatory for a certain
process element will be described in Section 4.1.4

• Process: annotations are used to describe global requirements, constraints, NF
properties and metadata. These annotations have global scope and precedence over
annotations of the process modelling elements.

• Activity: annotations are mainly used to describe NF properties of attached SWS,
supporting optimization and self* features during runtime.

• Goal: annotations are used to describe preconditions, effects, functional classification and
NF properties of wanted SWS.

• Gateway/Flow: annotations are used to describe flow conditions in Exclusive Gateways. If
the condition is true-evaluated that flow is followed, otherwise discarded.

• Parameter: Activities have placeholders for input variable (message in) and output
variable (message out). Both can be annotated with semantic concepts that describe their
types. In case of abstract activities (Goals), input and output annotations are used to
complement the goal description. Alternative, in case of concrete activities, input/output
annotations could be used to match the types that appear within the SAWSDL description
of the bound SWS.

• Connector: annotations can be used to describe some activity connector properties, such
as truncating elements (when passing from parameters of one activity to another) and the
connection type. They are established by the SOA4ALL modelling tools.

3.3 Context-aware Process Modelling Principles
This section will describe the context-driver principle. In SOA4All, we will mainly address
three aspects, the dynamic appearance of structures, the dynamic linguistic representation of
components, and the component instantiation.

The basic idea of context awareness is not new. In fact, the concept context has been
researched for many years within related disciplines (Akman and Surav 1996). In the domain
of artificial intelligence, context is usually defined as the generalization of a collection of
assumptions (McCarthy 1993) for both knowledge management and communication

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 15 of 71

management (Brezillon and Abu-Hakima 1995). In computer science, one of the most
commonly cited definition was given by Dey (Dey 2000) who defines context as "any
information that can be used to characterize the situation of an entity" and categorises it into
four dimensions of location, identity, time and activity. Dey (Dey 2000) also states that
context should be modelled and formalized.
Within the last years, there have been initial approaches that consider context awareness
within business process models (Rosemann and Recker 2006; Rosemann, Recker et al.
2006; Saidani and Nurcan 2007). Rosemann et al. (Rosemann, Recker et al. 2008)
contemplate on the situations which affect the flow of business process models. In their work,
they do not focus on structural differences and how context methods can actually change the
flow of these models. Their focus is set on the formalization of these situations in the form of
process contexts. The context awareness aspects which are developed within our work
consider the context-driven differences in the structural appearance of business process
models and focus on various levels, context-driven terminologies for business artefacts, and
context-driven instantiation of abstract activities. Furthermore, our proposal does not focus
on any specific application of contexts and neither on any specific context categorisation. It
rather contemplates context-driven differences in general on an abstract level. We have
already described the context-driver in D6.3.1. In the following, we want to summarize briefly
the general idea.

One aspect of the lightweight process modelling environment is to allow for the definition of
contextualized processes by supporting the specification of context information sources and
their role they play in the process. Hence, our framework integrates the principles of context
awareness aspects in the appearance of business process models and their terminology.
Context awareness plays an essential role for the dynamic appearance of structures, the
dynamic linguistic representation of components, and the component instantiation. The
context-driver principle allows to identify, store, and represent a business process artefact
only once while specifying the differences depending on specific context categories (e.g.,
business process, industry, country, etc). Context awareness can be applied on each layer of
our process modelling language stack. However, it is of great importance in the canonical
process representation. Based on that we can define various ways in symbolizing the context
in the graphical process models. Figure 3 depicts a scenario with two abstract business
process models in two different business contexts. The activities of these models are marked
with capital letters.

We can recognise that both business process models are similar. In fact, they are the same,
apart from the aspect that activity B is omitted in business context C2. Without context
awareness we would have keep two separate business process model representations.
However, with the usage of context awareness we are able to have one business process
model representation which is able to consider differences regarding its appearance in a
specific business context, which is depicted in Figure 4.

Figure 3: Abstraction of a Context-Driven Process Flow Scenario

Figure 4: Combined Abstraction of a Context-Driven Process Flow Scenario

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 16 of 71

Process structures embrace context awareness aspects of all levels. They define the
context-driven flow of business processes and contain activities. In addition, relations
between activities and other business artefacts are context dependent as well.

Furthermore, every process artefacts has a unique semantic representation, and the context
in which it is used assigned. In a process model this representation constitutes labelling and
naming. A problem why business process models are sometimes not easy to understand is
that business artefacts can be called differently depending on the business situation or the
business sector. For example, a financial department uses the term ‘Invoice’, whereas a
sales department uses the term ‘Bill’ for the same entity. Thus, the term actually depends on
the business context. Although these different business terms refer to the same entity, their
business context is very important for two reasons. The first reason is the selection of the
correct business term for the creation of labels. The second reason is the selection of
business artefacts based on their labels, which might result in ambiguous situations without
business contexts. The general idea is to create a standardised, consistent, and
understandable description of every process artefact using ontologies and to link each
process artefact to a specific business context. The primary purpose is to achieve
consistency in the naming and to facilitate the understandability of the business process
models depending on a business context. For this purpose, the conceptual framework
specifies a common process knowledge base using ontologies to which these models can
refer. This knowledge base builds the basis for the semantic meaning of business artefacts
and business process models and it therefore provides a common understanding regardless
of the used business process modelling notation, syntax, or terminology. The content in this
process knowledge base is supposed to be maintained on a collaborative basis without much
manual user-interaction. The common understandability supports business collaboration
within and across companies. We want to give a brief example. Let us assume a modeller
creates an activity ‘create invoice’, which is already available in the knowledge base. Now,
the idea is to avoid creating a second instance of this activity, but rather to adjust the valid
business context of the activity ‘send offer’. Logically, a modeller would first need to define, in
which business context he is modelling. As a result, the usage of insufficient business
artefacts and terminology can be avoided.

The third aspect of the context driver principle in SOA4All is to provide a frame for potential
instantiations of abstract activities. The user will model process activities as a set of
requirements and constraints. In order to translate these roughly described activities into
goals and services the context information can be helpful in order to preselect or propose
potential instantiations.

As one of the SOA4All extensions to existing approaches we will introduce an attribute
contextReference into the LPML elements containing a reference to a context file. This
context file will be read by the process editor, the components provided by T6.4, and the
execution engine of T6.5. The contextReference can as well be implemented as semantic
annotation. However, a coherent concept for context-awareness in SOA4All is not yet
provided. We envisage providing that concept by month 30.

3.4 Summary and Remarks
In this Section, we have described the basic principles for lightweight process modelling. We
have covered semantic annotations that support automatic discovery, instantiation,
composition, and execution of processes and process elements. The annotations contain
information such as requirements, constraints, or metadata and are generated by the user or
by context information. Besides the semantic annotation and context-awareness of process
elements, we have introduced the lightweight process modelling language stack. This

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 17 of 71

modelling stack provides a graphical representation layer of the process models that is easily
understandable by non-expert users. The graphical representation of the LPML models is
created by the process editor and addressed in T2.6. The textual representation of the LPML
serving as canonical format is as well addressed by SOA4All. We will now go on with the
detailed description of the LPML elements.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 18 of 71

4. Lightweight, Context-aware Process Modelling Lan guage
In this Section, we will give an insight into the LPML. We will therefore introduce the design
process within SOA4All for process modelling and execution. This process describes the
necessary steps in order to support the user in creating an executable process model out of
the abstract graphical model. Afterwards we will describe the LPML metamodel and its
elements in more detail. In order to make the metamodel easily understandable we will
provide several views on the metamodel. In addition, we will cover special aspects of the
LPML, such as patterns and templates, goals, and the data flow. The patterns, templates,
and goals will support the user in modelling the control-flow of its processes. The data flow
aspect highlights the process model from another perspective than the control flow. As
patterns, templates, and goals do for the control flow we will introduce new means supporting
the user in modelling the data flow.

4.1 Metamodel of Lightweight Process Modeling Langu age
The aim of the LPML is to simplify the work of a process designer hiding technical aspects,
performing automatic optimizations and allowing late binding to concrete services and
service substitution at runtime. Thus, the metamodel is devised taking into account both the
usability of the tool that will be provided to the user and the underlying design process.

In fact, the LPML is devised as visual notation with specific constraints to be used by a
process modeller expert in order to create an executable process. The LPML metamodel
describes the elements, their properties, the relationships between each element and the
constraints applicable in their usage. Some elements of the LPML are not provided directly
by the process designer but can be derived automatically by the tools exploiting predefined
semantic descriptions and ontologies of services and goals.

In this Section, we will provide first a brief description of the design process that allows to go
from a conceptual description of a process (provided by the user) to its execution. Then the
metamodel for our LPML is presented in more detail.

Basically, we will define one holistic metamodel comprising two views, the modeller’s view on
the abstract LPML layer and the backend view of the complete LPML metamodel. As
mentioned in Section 3.1, the LPML metamodel is based on the EMF metamodel [50] and is
visualized here in UML class diagram notation.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 19 of 71

4.1.1 Design Process for Lightweight Process Modell ing and Execution

State 1
Abstract LPML

model

Abstract
Semantic

Annotation

State 2
Goal/Service
description

Semantic
Annotation

T2.2
And
T6.4

State 4
List of

Service
References

Service

State 3
Goal

instantiation

Goal

T2.2
And
T6.4

WP5

WP5

State 5
Service

selection

Conversation

T6.5

Figure 5 depicts the procedure of how to define an executable process starting from an
abstract semantic description (expressed in a visual notation) defined by the user, with the
tools that automatically perform some of these steps. The procedure is performed in five
steps:

1. The first step for the user is to specify, by dragging and dropping graphical elements
in the Process Editor, an abstract process model. The modeller’s metamodel view
(State1 in Figure 5) covers the information that is provided by the user’s process
model in the process editor. The activities contain abstract semantic descriptions, e.g.
in natural language. These semantic descriptions comprise information like
requirements, constraints, non-functional properties, or metadata.

2. The second step is to create semantic service and goal annotations out of these
rough descriptions. T2.2 and T6.4 will enhance the process model by annotations for
the functional classification, non-functional properties, preconditions, and effects.
While a goal annotation formulates a request to the characteristics, the service
annotation describes a concrete characteristic.

3. Now the T6.4 components can map the semantic annotations to an existing goal or
services publicly described in a repository. In case of mapping the annotations to
existing goal descriptions, we have to figure out the goal that fits best. The goal
instantiation is referred to as state 3 in Figure 5.

4. Either the selected goal out of state 3 or the semantic service annotation is given to
the discovery engine of WP5 in order to find a set of appropriate services. The service
set is ordered in a list. For each service in the list the ServiceGrounding is instantiated
that contains the reference of the service URI. The ServiceGrounding element acts as
the GoalConversation and provides the binding to an existing service. Furthermore
this view addresses the service replacement at runtime. This is represented by state 4
in Figure 1.

5. The final step is now performed by the execution engine developed in T6.5. This
execution engine at runtime selects the best-fitting service out of the list and executes
it. Before execution the Execution Engine is able to exploit semantic annotation of

Figure 5: Design Process for Lightweight Process Modelling

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 20 of 71

candidate service for automatically generate mapping script necessary for adapting
the execution to the actual service interfaces.

Steps 1, 2, 3 and 4 can iterate several times in a cycling design process. The user can start
the modelling from each of the states 1, 2 ,3, or 4.

The presented design process for the model enhancement is performed in several steps by
multiple tasks. In order to make this enhancement procedure better understandable we will
provide in the next section several metamodel views dedicated to the model states before
and after each step.

4.1.2 Modeller’s view of the LPML Metamodel

The LPML metamodel view of the modeller serves as communication means for the abstract
graphical layer. The user will only see a subset of elements that are essential for the
graphical process representation. Figure 6 provides an UML representation of the modeller’s
view of the LPML metamodel.

All the LMPL elements of this view and their characteristics are described in the following.

- Process represents the container of all other process elements. It is characterized at least
by a start element and an end element and has an unambiguous ID.

Figure 6: Modeller’s view of the LPML metamodel

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 21 of 71

- ProcessElement is a general construct for referring every element in the process model.
Each ProcessElement is connected to another through a precedence association
characterized by a Flow.

- Flow is an association class related to the association of two process elements. It can
represent both control and data flow.

- Gateway is a ProcessElement that represents a process split or merge according to a
specific condition. It can be a ParallelGateway or an EclusiveGateway.

- Activity is a ProcessElement that specifies the execution of some unit of work.

4.1.3 Complete LPML Metamodel

As described by Section 4.1.1, we have to create the semantic service and goal annotations
out of rough element descriptions. In the following, we will describe the metamodel elements
for the semantic annotations. Figure 7 visualizes the metamodel view covering the semantic
annotations.

- SemanticAnnotation contains the reference to the annotation file in case of an existing
ontological annotation, in case the annotation is newly created it is represented by the
attribute expression. Any annotation is of a certain type AnnotationType.

- AnnotationType enumerates the potential annotation types. It is limited to annotations for
functional classification, non-functional properties, preconditions, effects, metadata,
requirements, constraints, selection criteria, and replacement conditions.

Figure 7: Semantic annotations for the LPML

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 22 of 71

Now we are going to map the semantic annotations to existing goal and service descriptions.
In case of mapping the annotations to the goal descriptions we have to figure out the goal
that fits best. The goal instantiation is referred to as state 3 in Figure 5. In the complete LPML
metamodel (see Figure 8) the element Goal will be instantiated and reference the goal. The
selection of the appropriate goal is done by T2.2 and T6.4 based on the SelectionCriteria.

Either the selected goal out of state 3 or the semantic annotation data – both including the
parameter for input and output variables - is given to the discovery engine of WP5 in order to
find a set of appropriate services (class Service in Figure 8). The service set is ordered in a
list according to SelectionCriteria (see Figure 8). For each service in the list that is described
through SAWSDL annotations, the Service class contains the reference of the service URI.

Furthermore, the LPML metamodel addresses the service replacement at runtime. We
therefore have added the replacementCondition class specifying criteria for a potential
service replacement as depicted as state 4 in Figure 5.

The LPML metamodel is independent of any existing process modelling language. Thus we
keep flexibility and allow for transforming the LPML into any existing language. In a later step
in SOA4All we will provide a concept for the mapping and transformation of the LPML into an
extended version of BPEL.

In the Annex A you can find process models in LPML representation out of the use cases.

4.1.4 LPML Metamodel Elements

We will now provide a detailed description of the elements of the LPML metamodel. The
elements are grouped in several tables comprising information about the elements included,
the attributes or literals, a potential reference to a context file, semantic annotations, and the
rational of the inclusion. In order to keep the LPML really light we won’t support event

Figure 8: Complete LPML metamodel

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 23 of 71

handling as it is in other process modelling languages. We will subsume events to activities.

The LPML metamodel includes the process element serving as modelling container. It
defines the process structure. Processes have a special association to exactly one start
element that represents the entry point into the process and one end element representing
the entity that performs the callback in case the process has terminated. The start element is
thereby invoked by external callers and triggers the whole process. The process element can
be encapsulated and published as a service and is described in detail in Table 2.

In addition we included the attributes isPattern and isTemplate. These two attributes define
whether a process is a pattern or a template. In these two cases the process does not
necessarily contain a start and an end element. We will describe the support for patterns and
templates in detail in section 4.2.

Process

Elements included All elements can be included. A process necessarily contains one start
and one end activity.

Attributes ID
isPattern
isTemplate

Reference to context file Yes
Semantic Annotation functionalClassification

precondition
effect
metaData

Table 3 covers the description of ProcessElement and most of its children. The children
described here are the basic process structuring elements for the control flow. The process
element is an abstraction of potential modelling elements. It contains common attributes and
is part of the process. An activity represents a working step within a process.

A gateway splits or merges the control flow. We explicitly won’t support an inclusive gateway
element. This element can be replaced by a combination of an exclusive and a parallel
gateway.

The Flow element is an association class attached to the relation of two process elements.
This association describes the source and destination element. In addition it is a child of
ProcessElement. The aggregation between Flow and ProcessElement describes the amount
of incoming or outgoing flows a process element has.

Element Related Elements Attributes Reference
to context

file

Semantic annotations

Process
Element

Part of:
Process

Children:
Activity
Flow
Gateway

ID
templateReference
patternReference

Yes Not applicable

Table 2 : Description of Process

Table 3: Description of ProcessElement and its children

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 24 of 71

Connector

Association:
SemanticAnnotation

Activity Parent:
ProcessElement

Children:
Goal
Service

Association:
Conversation
Connector
parameter

Name
Operation
startElement
endElement
humanTask
synchronous

Yes FunctionalClassification
nonFunctionalProperty
precondition
effect
metadata
requirement
constraint

Flow Parent:
ProcessElement

Condition Yes Not applicable

Gateway Parent:
Process Element

Children:
ExclusiveGateway
ParallelGateway

Condition
split

Yes Not applicable

Exclusive
Gateway

Parent:
Gateway

 Yes Not applicable

Parallel
Gateway

Parent:
Gateway

 Yes Not applicable

In order to separate the activity description and its instantiation we created the Conversation
element that associates goals or services to an activity. This approach is similar to the
separation of activities (invoke, receive etc.) and their partner link. While the Goal element
references existing goals, the service class provides a list of services. The Conversation can
have attached a goal and a list of potential services. As described in the design process for
lightweight process modelling (see section 4.1.1) the conversation references a concrete
service that is selected by analysing the semantic annotations, the referenced goal, and the
SelectionCriteria. The SelectionCriteria class is of type enumeration and defines the ranking
of services in the service list. In case a selected service is not available, the
ReplacementCondition of type enumeration defines when to replace that service. Table 4
gives an overview of the Conversation element and attached services and goals.

Element Related elements Attributes/Literals Reference
to context

file

Semantic annotations

Conversati
on

Association:
Activity
Goal
Service
ReplacementCondition
SelectionCriteria

compositeGoal Yes Not applicable

Service Association:
Conversation

Parent:

serviceReference Not applicable

Table 4: Service and goal description

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 25 of 71

Activity

Goal Association:
Conversation

Parent:
Activity

goalReference FunctionalClassification
nonFunctionalProperty
precondition
effect

Selection
Criteria

Parent:
SemanticAnnotation

Association:
Conversation

bestPrice
bestResponseTime
rating

Yes Not applicable

Replace-
ment
Condition

Parent:
SemanticAnnotation

Association:
Conversation

Fault
faultAfterRetry
noResponse

Yes Not applicable

Table 5 provides a detailed description of the elements needed in order to attach semantic
annotations to the process elements. The SemanticAnnotation element is the class for all
types of annotations for process elements and contains besides the attributes ID and
referenceURI the attribute expression. Expression has a value in case a semantic annotation
is created from scratch. In case a semantic annotation already exists the referenceURI
references this annotation. The class AnnotationType enumerates the potential annotation
types. The relation of inputParameter and outputParameter of an activity is specified by the
Parameter element.

Element Related elements Attributes/Literals

Semantic Annotation Association:
Process
ProcessElement
AnnotationType
Parameter

Children:
ReplacementCondition
SelectionCriteria

ID
referenceURI
expression

Annotation Type Association:
SemanticAnnotation

functionalClassification
nonFunctionalProperty
precondition
effect
metaData
requirement
constraint
selectionCriteria
replacementCondition

Parameter Association:
SemanticAnnotation
Connector
Activity

Type

Table 5: Elements for semantic annotation

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 26 of 71

Table 6 addresses the data flow handling. The Connector element is responsible for the data
mapping between services. Further, various specifications of the connector element are
provided. All elements for the data flow handling refer to a context file.

Element Related elements Attributes

Connector Parent:
ProcessElement

Association:
Activity
Parameter
ConnectorTypeEnumeration

Chlidren:
Merge
Split
Loop
Filter
SubDescription
Sort
Count
Reduction
Aggregation

IDName
URISemanticMapping
URISyntacticMapping
URIListInputParameters
URIListOutputParameters
TruncatingElement
connectorType
controlFlowConnector

ConnectorTypeEnu
meration

Association:
Connector

Exact
PlugIn
Subsume
Intersection
Disjoint
Abduction

Merge Parent:
Connector

Split Parent:
Connector

Loop Parent:
Connector

NumberOfLoop

Sub Description Parent:
Connector

ExtractionRule
URIListExtractedConcept

Filter Parent:
Connector

Rules
Any
All

Sort Parent:
Connector

URISortingConcept
AscendingSorting
DescendingSorting

Count Parent:
Connector

NumberOfElements

Reduction Parent:
Connector

NumberOfElements

Aggregation Parent:
Connector

URIListAggregatedConcept

A sample file of an existing WP9 process can be found in Annex A.

Table 6: Elements for the data flow handling

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 27 of 71

4.2 Patterns and templates
There is wide agreement that patterns can accelerate designing process models and reduce
modelling time. Patterns enable participants of a community to communicate more
effectively, with greater conciseness and less ambiguity (Medicke and McDavid 2004;
Buschmann, Henney et al. 2007; Tran, Coulette et al. 2007). According to D6.3.1, we thus
choose to use a part of well-known workflow patterns from (van der Aalst, ter Hofstede et al.
2003a) as our process pattern in order to support modelling the control flow perspective. The
patterns range from very simple to very complex and cover the behaviour that can be
captured within most business process models.

The workflow patterns from (van der Aalst, ter Hofstede et al. 2003a) are however too fine-
grained and not sufficiently enriched with information on the context and consequences to
represent a reusable solution. As described in D6.3.1, therefore, we introduce workflow
templates – here as well for the control flow perspective – that are different combinations of
process patterns. The processes represented by a workflow template are sound. Certain
workflow templates can be enriched by specific information in order to be applicable to
different business domains.

Workflow templates and process patterns are similar to the processes as their descriptions
are stored in the semantic spaces and can be referenced by a URI to the respective
description. As already stated, workflow templates are sound processes. Process patterns
are not sound. In order to distinguish between process descriptions, workflow templates, and
process patterns, two annotations are added to their descriptions. The flag isTemplate is
set to true , if a workflow template is described and to false otherwise. The flag
isPattern is set to true , if a process pattern is described and to false otherwise.

Once business processes are modeled within the LPML, workflow templates and process
patterns might be incorporated. As workflow templates are sound processes, it is also
possible to model novel processes by simply instantiating and possibly customizing the
workflow template. In those cases, when templates and patterns are reused, it is useful to
identify which activities and goals of the process are part of which template or pattern. This
objective is accomplished by annotating each process activity, activity goal, or composite
activity goal that is part of a workflow template or process pattern with a reference to the
corresponding process pattern or workflow template. If activities or goals are not part of a
template or pattern, then the annotation is not used for these elements.

On the level of the LPML information model, we therefore introduce an annotating notation
that may be attached to the following process elements: activity, atomic activity goal, and
composite activity goal. The LPML UML model also shows the attribute that represents such
an annotation of activities. The visualization of these annotations is similar to comment
annotations or OCL (Object Constraint Language) constraints on attributes within UML
diagrams. The simplicity of this notation gives non-expert users a quick understanding of the
matter.

The process pattern and workflow template annotations contain a reference to a pattern or
template, respectively, available in the semantic spaces. Since workflow templates can be
considered as sound processes, which description is stored in the semantic spaces, workflow
templates are also identified by a unique URI. The same applies for referencing the process
patterns. Consequently, URIs of template and pattern descriptions represent the references
within the annotations of activities and goals.

4.3 Goals
Process activities are traditionally concrete and bound to services or other means of

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 28 of 71

implementation at design time. As introduced in D6.3.1 and D6.4.1 we will use activity goals
as unbound activities that are bound to a particular service either at design time or at runtime
by SOA4ALL WP6 composition services (Composer or Executor). Goals will support users in
modelling the control flow perspective.

LPML introduces a Goal element to describe those unbound activities. LPML Goal is aligned
to the SOA4ALL Goal specification, based on WSMO Lite, which is described in this section.

Syntax of Goals

Here were talk about the information model and its UML representation. Obviously, the
syntax is independent from a later BPEL serialization.

Semantics of Goals

The following paragraphs show one approach to define a semantics of LPML goals. First, the
description of Web services is outlined. The functionality-based discovery by WP5 provides a
semantics of the functional classification of WSMO-Lite service descriptions. Thus, we will
also briefly describe the classification and its relationship to the Web service descriptions.
Derived from these requirements, the structure of a LPML goal is investigated. Afterwards, a
semantics of such goals is introduced. LPML goals must at least contain or reference the
information required for a discovery as developed in WP5. For more detailed information
about the functionality-based discovery we refer to D5.3.2.

WSMO-Lite, as presented in (Vitvar, Kopecky et al. 2008), does not provide any formal
semantics. It also does not provide an interpretation of the classification and the classification
hierarchy. That is, what does it mean if a Web service is assigned to a class of the functional
classification root, and what does the subclass relationship between classes of the functional
classification mean. The meaning of the WSMO-Lite elements intended for the purpose of
describing the functionality of Web services becomes even more unclear, when classification
is considered along with pre-conditions and effects. A formal semantics of functionalities
should have a clear understanding of a class, a sub class relationship, and the classification
of services.

Functionality-based Discovery A functionality of a Web service is described by the tuple

 with the set of input variable names, the set of output variable names, the
pre-condition, and the effect. Inputs and outputs are sets of locally unique names of
variables, i.e., strings. Preconditions and effects are logic expressions on an abstract level.
From a more concrete perspective, WSML axioms represent those logical expressions.
These axioms may include the input and output variables. Input and output variable names
are subsets of the variables within the axioms of preconditions and effects. By M18, a WP5
goal is composed out of the above mentioned attributes. The first ranking prototype will not
include non-functional properties. After M18, WP5 goals will be extended to non-functional
properties. As a consequence, the LPML has to be extended accordingly, once the ranking
algorithm specifies how preferences over non-functional properties are defined.

Each Web service is described and can be discovered by the description of the functionality.
The discovery engine matches functionality descriptions of the available Web services with
the desired functionality of a search query. Anticipatory, goals must be able to express the
desired functionality of a Web service that is bound at runtime.

As WSMO-Lite is used to describe services, the functional classification that comes with
WSMO-Lite can be incorporated to the functionality description. WP5 provides a semantics of
the functional classification, which is a classification hierarchy of functionality descriptions.
Note, that this is a hierarchy on functionality description and not on service descriptions. The
construction of the hierarchy relies on the definition of ‘sub class of’-relationship between
functionality classes.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 29 of 71

A class is super class of another class , if
 holds. Consequently, by this sub class

relationship guarantees that the functionality of sub classes extend the functionality of their
super class. That is, a class may provide more input or output variable names or further
pre-conditions or effects than a class . Then is a sub class of in such hierarchy.

Given a hierarchy as defined in D5.3.2, WSMO-Lite Web service descriptions are assigned to
the most specific functionality classes that match the functionality of the
corresponding Web services. Since a goal is bound to a service at process execution time,
the goal must provide the information that is necessary to create the functionality description
of the desired Web service.

A LPML goal provides the following attributes: inputs, outputs, pre-conditions, effects, a
functional classification, and with the development of the ranking algorithm a notion of
preferences over non-functional properties. The semantics is based on the functionality
rather than just types of input and output variables. Existing approaches like (Keller, Lara et
al. 2004) that also take the functionality into account do not scale for a large number of Web
services. Note, the WSMO-Lite description of Web services is related to the description of
goals, since the Web service functionality descriptions are matched against the desired
functionality description of goals. In contrast to WSMO-Lite description of Web services,
LPML goal descriptions are enhanced by the input and output sets in order to allow a
distinction between input/output variables and those bound variables occurring in pre-
condition and effect axioms. The definition of a semantics of goals relies on the mathematical
underpinning of the service functionality description such that goals become universally
comprehensible.

With respect to LPML goals, the semantics of the functional classification hierarchy can be
summarized as follows: classes of the classification hierarchy are viewed as goals and the
‘sub class of’-relationship is regarded as a ‘sub goal of’-relationship between goals. As
mentioned, the classification of services assigns the service descriptions to a particular set of
functionality classes, which correspond to the goals. Thereby, goals are also hierarchically
structured by the same functional classification hierarchy. The classes of the classification
hierarchy can be abstracted by names given to a goal. This means, goals define functionality
classes and the structure of the functional classification used by the WSMO-Lite ontology
implies a subclass relationship upon the goals of services. The overall effect of a service that
is assigned to a set H of goals of the functional classification is the conjunction of the effects
of the individual goals in H and the effect of the service itself. That is, similar to queries
described in D5.3.2, goals incorporate class names in order to hide the complexity of a
functionality description of a class. Furthermore, queries or goals using the functionality
classification are much more efficiently to compute. On top of the classification hierarchy,
there are goals that do not depend on other goals, i.e., classes that are not sub class of
another class in the functional classification. The semantics of a WSMO-Lite service
description introduced above is used to provide a semantics of LPML goals. As depicted in
Figure 9 both WSDL and hRESTS services can refer to the WSMO-Lite ontology.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 30 of 71

In the following we will present a short example defining preconditions and effects of a web
service description:

- Precondition of a Web service description: BookOrder(o) and hasISBN(o, i) and ISBN(i)
and hasCreditCardDetails(o, c) and CreditCardDetails(c) and (hasCardType(c, "VISA") or
hasCardType(c, "Amex")) and hasExpiration(c, e) and AtLeast3MonthsInFuture(e)

- Effect of a Web service description: OrderConfirmation(oc) and hasDetails(i, d) and
hasPrice(i, p) and hasOrderedGood(oc, d) and hasAmount(oc, p) and paymentBy(oc, c)

The precondition and effect description of the goal could be as follows:

- Desired Pre-condition, i.e., a query or a goal: JournalOrder(jo) and hasISBN(jo, i) and
ISBN(i) and CreditCardPayment(jo, c) and hasCardType(c, "VISA")

- Desired Effect, i.e., after a goal was bound to a s ervice and the service was
executed: OrderConfirmation(oc) and hasDetails(i, d) and hasOrderedGood(oc, d) and
paymentBy(oc, c)

This example shows how one possible class “BookSellingWebService” could look like. The
class does not have to be equal to the actual service description. In the functional
classification hierarchy of functionality classes, we could add a sub class to
“BookSellingWebService” if we require more pre-conditions to hold. Let’s say,
“ComicBookSellingWebService” is a sub class, if we add to the pre-condition one axiom that
ensures that the ordered book is a comic book.

The desired pre-condition given in this example could be regarded as what a user might
express to formulate a goal of a book selling web service. It would match the
“BookSellingWebService”, but it is far from efficient. For the expression of goals, we utilize
the functionality classes that already express the common functionality of book selling Web
services. Thus, the user does not need to write large input/output sets, pre-condition/effect
expressions. The user specifies the classes and also might provide further input/output/pre-
condition/effect to refine the goal.

LPML Goal Metamodel

The LPML Goal concept is represented by the UML model in Figure 10.

Figure 9: Reference to WSMO-Lite ontology

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 31 of 71

A LPML Goal represents an unbound abstract Activity that has some optional properties of
type: Functional classification, non-functional property, precondition and effect. A LPML Goal
can be understood as an abstract classifier for fitting SWS. An instance of the goal class
represents a concrete goal, which provides concrete instance references to some of its
optional properties. They can be optionally provided by the modeller, but they could also be
derived from domain specific contextual information and knowledge bases by WP6 tools,
concretely: Composer and Optimizer at design time, and Executor at runtime. The goal
approach is quite suitable for average users, since they can browse and inspect available
goals stored within the SOA4ALL Goal registry, choose one of them and populate it with
concrete values.

All LPML Goal elements are optional. However, at least one of them has to be specified. A
LPML Goal describes optional requirements using a Functional Classification element,
which points at a subclass of a WSMO-Lite FunctionalClassificationRoot. Goal preferences
are described with the Non-functional Property element that points at a WSMOLite
NonFunctionalParameter instance. Preconditions are described by the Precondition
element, which points at a WSMO-Lite Condition instance. Postconditions are described by
the Postcondition element, which points at a WSMOLite Effect instance.

Alternately, a LPML Goal can refer to a WSMO-Lite goal instance available within the
SOA4ALL goal registry using the reference property. In this case, if other LPML Goal
properties are specified, they complement/refine the referenced goal.

LPML Goal and Activity are annotated with optional semantic annotations. In this way we

Figure 10 LPML Goal concept

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 32 of 71

allow a unbound number of annotations of different types (see AnnotationType enumeration
in Figure 10). Therefore, any optional properties of goals, such as requirements, preferences,
preconditions, effects, inputs and outputs are represented as optional annotations of any type
defined by the AnnotationType: FunctionalClassification, NFProperty, Precondition, and
Effect. Complementary, a Goal can reference to a Goal instance available somewhere. A
goal matching mechanism is optionally used to set the requested discovery matching to the
WP5 discovery service.

4.4 Data Flow Perspective
For process-aware applications various perspectives can be distinguished. While the control-
flow perspective captures aspects related to control-flow dependencies between various
tasks (e.g. parallelism, choice, synchronization, etc.) the data perspective deals with passing
information, scoping of variables, etc. Same like defining patterns and templates for the
control flow we can define patterns for the data flow. However, this is not main work of
SOA4All. In the following we will present how the user is supported in modelling the data
flow.

Besides purely control flow oriented constructs, the LPML aims at providing some data flow
oriented constructs for supporting mashup-based service composition. We do not aim at
replacing complex workflow languages though, but rather promote a data processing model.
To this end, we present an (non exhaustive) list of operators enabled by the LPML. Such
operators are required to model data manipulation through the LPML. By doing so the
SOA4All approach differentiates from existing approaches that handle mediation by
dynamically defining mediators. The latter approach would require deep knowledge in
ontologies that the typical SOA4All users won’t have. Afterwards we will give an insight into
the SOA4All data handling from the perspective of each involved component.

In Annex B you will find the terminology of the concepts used in this section.

4.4.1 Data Manipulation and Operators

In the following we will consider only input and output based data manipulation. We will
provide a mechanism to manipulate both data types and values. In addition we assume that
services require and consume RDF graph respectively as input and output parameters. The
current list of operators supported by the LPML for data manipulation is as following:

- Merge (Union) Operator: This operator takes an arbitrary number of RDF graphs as
inputs, expressed in RDF/XML or N3 format, and produces an RDF graph that is composed
of the merge of its inputs. The Split operator is the reverse of Merge, it splits an RDF graph
into multiple identical RDF graphs.

- Split Operator: This operator receives an RDF graph and splits it into two identical output
RDF graphs. This operator can be used when the end-user wants to perform different
operations on data from the same RDF graph. The Merge operator is the reverse of Split, it
merges multiple RDF graph into a single combined RDF graph.

- Count Operator: This operator counts the number of items in the input RDF graph, and
outputs that number.

- Filter Operator: The Filter operator can be used to include or exclude items from a RDF
graph. Therefore some rules can be created on top of the language to compare RDF graphs
to values the end-user specifies. For example, you may create a rule that says "permit items
where the ‘item.Tag’ is of ‘ontology#concept’ type. We could also model a rule that says "omit
any items where the ‘item.Tag.published’ is before ‘Date#date’.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 33 of 71

- Reduction Operator: This operator returns a specified number of items from the top of the
input RDF graph. This operator limits the number of items in the output RDF graph. We could
also imagine selecting a random item from a RDF graph.

- Sort Operator: This operator (functional) sorts an input RDF graph by any item element,
such as title or description. Items can be sorted in either ascending or descending order.

- Loop Operator: The Loop operator introduces the idea of sub-data processing. Any other
operators could be inserted inside the Loop operator. An input RDF graph is provided to the
Loop operator, the sub-data processing is ran once for each item in the input RDF graph.

- Sub-Description Operator: In case the data required by the end-user is deep in the
description, this operator can be used to extract and select some sub-descriptions from the
input. The sub-description operator is the reverse of Aggregation; it extracts description of
RDF graph into a more general RDF graph.

- Aggregation Operator: In case specific description on data required by the end-user is
coming from different services, this operator can be used to aggregate the different
descriptions of input RDF graphs in one description as an output RDF graph. The
Aggregation operator is the reverse of sub-description; it aggregates descriptions of RDF
graphs into a more specific RDF graph.

Each connection (operator, service) has the following optional attribute regarding the data
passing: Rounding-up, rounding-down, truncating (these options are shown and can be
selected trough the process editor and then modelled by the LPML). This option is required in
case the data provided and consumed are not of the same data type, so a process of
rounding-up, rounding-down, truncating could be required in some cases. Once the
composition modelling through the LPML, the truncating process of data is first achieved by
T6.4 (at semantic level) and then by T6.5 (at syntactic level).

4.4.2 External View of Data Flow Manipulation

All described operators are considered as semantic and syntactic mapping elements in
LPML. The data they manipulate are propagated through the end-user (process editor in
T2.6), the composer (T6.4), the optimizer (T6.4), and the executor (T6.4). In the LPML
approach data mediation is handled by these four components.

From an End-User Perspective

From an end-user perspective, the aforementioned list of operators will be available through
a toolbox provided by T2.6. Besides simply drawing connections from outputs of services to
inputs of other service, the end-user has the possibility to specify the “kind” of connections
she would have between her services, actually like other Mashup editors (i.e. Yahoo! Pipes,
Deri Pipes, SIMILE Banach), stating that the output will be send to this input. In that way the
end-user could visualise, easily drag and drop the appropriate operators and then link them
to the services she wants to appear in the final composition. All these connections are stored
through the LPML description of the composition; they describe how services are connected.

Alternatively, in case the user requires more specific or advanced data manipulation within
her process, T2.6 provides some (heavy-weight) functionality for dragging/dropping the
appropriate external (built-in) service, achieving the latter required specific data manipulation.

From a Composer and Optimizer Perspective (T6.4)

From a T6.4 perspective, the data manipulation is ensured (only) at semantic level i.e., the
composer (as a back-end mechanism) simply checks the semantic consistency of data
connections (or semantic compatibility i.e., a mapping between those two data types is
“semantically” possible) upon domain specific data type ontology. This is achieved by

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 34 of 71

exploiting some light semantic based reasoning through the semantic link operator of the
composer and optimizer in T6.4 (through WP3 reasoning). Semantic mapping is easier for
the user, but it leaves the syntactic mapping issue open (to be resolved by the execution
engine). In case of consistency the information is sent out to the execution engine (T6.5) with
possible pre-checking by the end-user.

Otherwise the connections are labelled to “semantic-unsuitable” and returned to the end-user
through the process editor. In the latter case the (semantic) data manipulation is only semi-
automatically supported.

The semantic compatibility is helpful for computing the syntactic mapping (achieved by the
execution engine in T6.5). The support is done by means of some scores between data.

From the Execution Engine Perspective (T6.5)

Once the data manipulation is ensured at semantic level, the syntactic mapping takes place
through T6.5 by means of some Assign/Copy elements + XPath/XQuery processes. This is
achieved by passing the XML data of one service to the other service (more specially when
there is heterogeneity of XML encoding). In other words the semantic mapping is propagated
to the executor engine (as a back-end mechanism) which is in charge of finalising the
syntactic mapping (automatically at transformation time during transformation from LPML to
e.g., BPEL, or at runtime) and so creating the proper executable composition.

In case the syntactic mapping of T6.5 fails, the fault connections are labelled to “syntactic-
unsuitable” and returned to the end-user through the process editor (based on a tool that
allows user-based syntactic mapping). During execution the execution engine should then
call the editor again in order to transform data.

In this case the (syntactic) data manipulation is only semi-automatically supported.

Key Summary

The T2.6 Process Editor relies on T6.4 (semantic mapping) and T6.5 (syntactic mapping) to
do data mapping when possible, and when not, it should provide a tool for manual mapping,
but relying on T6.5 for the syntactic serialization into BPEL.

4.5 Summary and Remarks
In this section we provided a deep insight into the LPML elements and the mechanism they
support. These mechanisms implement the modelling principles defined in section 3. We first
introduced the design process of how the abstract, graphical process models are
systematically enhanced in order to be eventually executed. Afterwards we presented the
metamodel from the modellers perspective as well as the complete LPML metamodel. We
then described in more detail how the LPML implements the new design principles for
process modelling, namely support for patterns and templates, for goals and for data flow.
While patterns, templates and goals are mainly defined for supporting users in modelling the
control flow, the data flow perspective highlights to facilitate the passing of data.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 35 of 71

5. LPML API: Requirements, Design and Implementatio n
Previous sections describe the LPML metamodel, that is, the set of elements, properties,
relationships, assumptions, constraints, etc. that constitute the LPML. However, on the
programmatic perspective, LPML requires to be managed by an API that abstracts and hides
the complexities of the LPML elements and their concrete serialization formats to the
programmer. This section describes the LPML API, which provides programmatic process
modeling and serialization support, either for storage as RDF and transformation into
SOA4ALL extended BPEL 2.04 or other executable languages. In the former case, a RDF
schema for LPML and its mapping to the LPML elements is provided within the API. In the
latter case, we describe the BPEL extensions and the mapping between LPML elements and
SOA4ALL extended BPEL 2.0 elements.

While this section describes LPML API, its implementation will be released as a separate
deliverable (as part of D6.5.2 due on M24)

5.1 LMPL API Requirements
SOA4ALL process models are described using the LPML metamodel. From a pure technical
perspective, LPML models require to be programmatically managed and formally serialised
in order to satisfy some main requirements:

• Support a programmatic creation, modification and usage of process models, accessing
and inspecting processes and their elements within any SOA4ALL component, just like
accessing any on-memory model of POJO/Java Beans objects, in a very similar way the
XML DOM does with XML documents. LPML API should also include helper classes
providing common features required to manage LPML models: accessing process model
elements, adding new elements, replacing elements, etc.

• Support for storage and retrieval into/from the SOA4ALL template repository included in
the main SOA4ALL data repositories: Semantic Space nodes distributed along the
SOA4ALL infrastructure. This requirement allows further reuse of process models,
fragments and templates, one of requirements for the Lightweight Process Modelling
approach.

• Support for interoperability among T2.6 SOA4ALL Studio Process Editor (see T2.6) and
WP6 components, and internally among the WP6 components: composer, optimizer,
process template generator (T6.4) and executor (T6.5). Those components interchange
mainly process models (in LPML format). Due to the WS RCP oriented integration
approach encouraged by the SOA4ALL DSB, these SOA4ALL components have to
exchange LPML based process model objects. Nonetheless, this is discouraged since
LPML contains complex POJO beans, which would require building complex SOAP bean
serializers and deserializers. Therefore is better SOA4ALL tools exchange RDF
documents (serialized as XML documents) which are default supported by common
SOAP engines.

• LPML is intended to describe process models, abstract process models (templates), and
process fragments. LPML serialization should provide suitable features for inspecting
process blocks or fragments, to retrieve process models as a whole or inquire concrete
elements, leveraging on existing Web data representation technologies, such as
XML/XSD or RDF/S, accompanied with powerful querying support, that is, XQuery/XPath,
SPARQL respectively.

4 We refer to the extended BPEL language used by D6.5.1 Execution Environment

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 36 of 71

• Support for the validation (well-formedness) of imported (loaded) LPML process models.

• Support for LPML translation into BPM executable languages

WP6 components (i.e. Composer, Optimizer, Process Templates Generator, Executor)
interact with each other during the Design Time and Deployment Time modelling phases,
mostly exchanging LPML process models through the DSB. Although the RDF/S serialization
of LPML process models is suitable for the needs of Composer, Optimizer and Process
Templates Generator, it is not suitable for the Executor. The reason is that LPML, even if
executable (since it contains all required information for the execution time), it is not
supported by the Executor engine, since it uses an Apache ODE process execution engine,
which only understands BPEL 2.0. Therefore, LPML API should include a LPML to BPEL
translator (as part of D6.5.2 deliverable due on M24) which creates SOA4ALL extended
BPEL 2.0 executable process models from LPML process models. LPML is not serialized
directly into BPEL 2.0 since:

• LPML aims to be a lightweight version compare to most WS-based work-flow languages

• LPML is agnostic of the underlying WS-based work-flow technology

• LPML has not a one-to-one mapping with BPEL 2.0 (even with required SOA4ALL
extensions)

but LPML provides a mapping into BPEL 2.0 (plus some required SOA4ALL extensions) and
it could provide a similar mapping and serialization into other workflow languages (i.e. YAWL)

The SOA4ALL extensions to BPEL 2.0 and the LPML to BPEL translation techniques and
mappings are described in next sub-sections.

5.2 LPML API Specification
In order to make the LPML available for the other work packages and tasks, a library is
created by task 6.3 that will provide interfaces as described below.

This library will be provided as a Jar file to other parts of SOA4All. It will be used as a base
whenever LPML code needs to be exchanged. The library supports two types of serialization
as described above:

• Extended BPEL 2.0 which will be usable by the execution engine but may also be
used by 3rd party tools as it is backwards compliant.

• RDF which is the base for storing LPML models in the semantic spaces.

As such, the library may also be used to convert between those two serializations by simply
loading an LPML model and serializing it again.

The LPML library focuses on the model itself and its loading and saving to different formats.
Other work packages will then this library to do specific operations with it such as displaying
it to the user (2.6) or optimizing the model (6.4) or executing it (6.5). However, they are not
part of the LPML library itself but are rather using it as a base library for their tasks. The
following picture shows the usage of the LPML API:

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 37 of 71

The figure shows three usages of the LPML for the communication and execution of the T2.6
composer which allows users to create processes graphically.

1. The first example shows the saving of a model in the Semantic Spaces. The 2.6
composer will use the save method of the library for performing this which will
serialize the model data into RDF and send it to the Semantic Spaces using the
Distributed Service Bus.

2. The second example shows the execution of a process. The 2.6 composer will use
the LPML library to serialize all data into extended BPEL 2.0 or RDF and send it to
the WP6 execution engine via the Distributed Service Bus. The WP6 execution
engine will use the LPML library to deserialize the model back to a POJO
representation.

3. The third example shows a two-way exchange between the 2.6 editor and the WP6
Template generator. The 2.6 composer will send a request to the 2.6 service via the
Distributed Service Bus. The template generator will create a template and serialize it
to RDF or extended BPEL 2.0 which will afterwards be sent back to the 2.6 composer.
This will use the LPML library to convert the data into POJO instances and will then
load it into the UI pert of the 2.6 editor in order to display it to the user.

LPML API manages LPML models as POJO objects and provides support for a

Figure 11: Example for LPML usage in the SOA4All composer (Task 2.6)

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 38 of 71

programmatic inspection and access to LPML model objects. The API heavily relies on the
LPML metamodel which has been described in earlier sections of this document. As such,
the API uses the metamodel internally and allows users to create instances of the different
parts. For example, users can create an Instance of the Activity class and add it to the
metamodel in order to add an Activity to a SequenceFlow which is in itself included in a
process.

In addition to this, the API implementation will contain two additional interfaces for any
implementations that perform loading and saving activities. The API will contain two
implementations out of the box for BPEL 2.0 and RDF:

public interface LPMLExporter
{
 public String export(Process process);

}

public interface LPMLImporter
{
 public Process import(String lpmldata);

}

Example for an implementation:

public class RDFHandler implements LPMLExporter, LPMLImporter
{

 @Override
 public Process import(String lpmldata)
 {
 . . .
 }

 @Override
 public String export(Process process)
 {
 . . .
 }

}

The LPML API allows users

• To create a new LPML model

By creating an instance of a new process without any data inside. It acts as a starting
point for new models. The resulting POJO can be used to directly or indirectly add
new elements to the process such as Flows, Conversations, Activities or Goals.

Example 1: Creating an empty process

 Process p =new MetmodelFactoryImpl().createProcess();

Example 2: Creating a simple process:

MetmodelFactory factory = new MetmodelFactoryImpl();

//create a new process:
Process p=factory.createProcess();

//create services (could also be any other subclass of
ProcessElement):

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 39 of 71

Service s1=factory.createService();
s1.setServiceReference("http://tieglobal.com/SOA4All/product.wsdl");
s1.setName("Check Purchase Items");

Service s2=factory.createService();
s2.setServiceReference("http://tieglobal.com/SOA4All/purchase.wsdl");
s2.setName("Check Purchase Items");

Service s3=factory.createService();
s3.setServiceReference("http://tieglobal.com/SOA4All/check.wsdl");
s3.setName("Check Purchase Items");

//let's create a goal as well:
Goal g=factory.createGoal();
g.setGoalReference("http://tieglobal.com/SOA4All/productservice.wsmo"
);
g.setName("OrderProductGoal");

//now we have to add them all to the process.
p.getProcessElements().add(s1);
p.getProcessElements().add(s2);
p.getProcessElements().add(s3);
p.getProcessElements().add(g);

• To load an existing LPML model

This feature will allow users to import an existing model from a string. Formats that
will be implemented in the project are extended BPEL 2.0 and RDF.

Example:

 LPMLImporter importer= new RDFHandler();
 Process process=importer.import (lpmldata);

• To save an LPML model

Similar to the import facility, this feature will allow users to export a model into either
extended BPEL 2.0 or RDF.

Example:

 LPMLExporter exporter= new RDFHandler();
 String rdfdata=exporter.export (process);

• To convert an LPML model

As the LPML implementation supports different formats, this method can be used to
convert between them. This will allow users to do a bidirectional conversion between
extended BPEL 2.0 and LPML RDF.

Example:

 LPMLImporter importer= new RDFHandler();
 Process process= importer.import(lpmldata);

LPMLExporter exporter= new BPELHandler();
 String bpeldata= exporter.export(process);

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 40 of 71

• To validate the syntax of an LPML model (RDF and extended BPEL 2.0)

This method may be used to validate a string, which contains either extended BPEL
2.0 information or RDF information. Please note that this validation will only check the
syntax and not the semantic correctness of a model.

Example:

 try
 {
 LPMLImporter importer= new RDFHandler();
 Process process = importer.import(lpmldata);
 //file is valid
 //...
 }
 catch(ValidationException ve)
 {
 //file is invalid
 //...

 }

The library allows developers to modify, add and delete parts of the model by using the
properties and methods of the API which are in sync with the LPMML metamodel definition.

The LPML API is designed to be widely extendible in terms of the serialization types. As such
it makes use of interfaces which may be implemented by different serialization types.
However, within the SOA4All project, only RDF and extended BPEL 2.0 will be implemented.
Nevertheless, new serialization types may be added at a later stage when providing new
versions of the LPML API. However, backwards compatibility will be provided in those cases.

As shown in the metamodel, the central point of an LPML instance is a Process object. A
process object is interlinked with other elements directly or indirectly such as Flows ,
Activities and Goals .

Please note that the operations and properties that are provided by the LPML POJO classes
are identical to the LPML metamodel and can therefore be seen in Figure 8.

Optionally, the LPML core API can be extended by other SOA4ALL components that provide
additional helper classes specialized on concrete features. For instance, T6.4 components
such as Composer and Optimizer will add additional interfaces as add-ons to the LPML core
API. This is depicted in Figure 12.

T6.4 Composer request additional operations in the LPML API to support semi-automatic
process composition and adaptation. These operations consume and produce some objects
that not necessarily are part of LPML but are required by the semi-automatic composition
parametric techniques. Composer uses replaceCompositeGoal to expand a process activity
described as a composite goal with a matching process template. Similarly, replaceGoal
replace an abstract activity described by a goal with a concrete activity bound to a SWS.Map
operations create dataflow connectors between parameters of two activities.

Remaining operations support semi-automated design-time parametric composition and
adaptation. Composer requires parameterized process models where parameters refined the
domain specific contextualized behaviour of the business process. Specialized parameters
are requirements and constraints, as they were described in section 3.2. Requirements and
constraints can be specified as assignment sets, that is, pairs (parameter, value) or as
boolean evaluated logical expressions.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 41 of 71

5.2.1 Using EMF as a Basis for the LPML API

We have decided to leverage the Eclipse Modeling Framework in designing and
implementing the LPML, its API and the BPEL generation logic. This section gives the
reasoning behind this decision by giving a very brief overview of EMF and presenting its
advantages in the context of LPML.

EMF Overview:

 “The EMF project is a modeling framework and code generation facility for building tools and
other applications based on a structured data model.”5

EMF contains different parts out of which we use the main EMF core, which contains a
metamodel (called Ecore) for describing models with an expressivity similar to UML class
diagrams. The core part of EMF also provides code-generation capabilities that significantly
facilitate the creation of APIs for models built with EMF and that supports round-trip
engineering needed in model evolution. It ensures that the UML model of LPML is kept in
sync with its Ecore counterpart, which in turn and keeps the Java code for LPML elements
updated. If any of these are changed during LPML evolution, the other are kept in sync.

In addition to Ecore and code generation support, EMF provides runtime support for model
management including change notification (listeners can be notified when the model instance
has been notified), persistence support (easy storing/loading of XML-based serialized
models) and undo/redo.

All of the above-mentioned features are useful for the LPML API, as presented in the
following paragraphs.

EMF Advantages to LPML

- API generation: The LPML has been designed in UML, which facilitates shared
understanding and collaborative design of the language elements. Using EMF’s generative
capabilities, the LPML Ecore representation was extracted out of UML and in addition, Java
classes corresponding to each of the LPML elements were automatically created. This
approach allows for future changes due to possible language evolution to be easily

5 Source: Eclipse Modeling Framework Project website: http://www.eclipse.org/modeling/emf/

Figure 12: Additional helper classes for the LPML API

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 42 of 71

incorporated in the code with minimal potential for errors. It also saved significant amounts of
time by avoiding manual coding all the classes and their relationships in Java. The API
simply needs to use these classes in order to operate with LPML elements in a natural way
(e.g. using the EMF factory to generate instances of types Activity or Process).

- Reusability of SOA metamodel-based transformation approach: As detailed in section
below, the EMF foundation for LPML enables its integration with the metamodel-based
transformation approach for SOA that is provided by the STP-Intermediate Model project. We
are extending the STP-IM to account for LPML as a source language for transformations,
and for extended BPEL as a target language for transformations.

- Serialization: EMF provides a serialization mechanism that is very straightforward to use (it
amounts to a couple of method calls for creating a file). It generates XML files that contain
elements corresponding to the Ecore instance. In LPML’s case we have elements such as
<process> or <activity> that directly map to the language elements. Of course, in SOA4All
our main target for serialization is RDF which is also going to be used for LPML serialization,
but EMF serialization provides a simple alternative that might be offered as an export facility.

- Change notification: EMF offers a notification mechanism that can be used to signal model
instance changes (e.g. a new Activity has been added in the editor). This could be leveraged
by the Process Editor or future Process Editor plugins to add behaviour in a clean and
extensible way (e.g. for an Activity of a certain type, open up a wizard to guide the user in
specifying different parameters).

- Undo/Redo and Transactions: for Studio developers, EMF provides a mechanism for
implementing consistent Undo/Redo operations that keep the model instance in a coherent
state. It also provides means of executing concurrent requests while preserving model
integrity, through its transactional capabilities (the default EMF-generated classes are not
thread-safe). This could be useful in collaborative design of a process in the Process Editor
for instance.

5.2.2 Serialization in RDF/S

This section describes the RDF schema used to serialize the LPML models into RDF and the
mapping between the LPML information model and the RDF Schema when there is not a
direct one-to-one mapping.

LPML models will be serialized as RDF, as requested by the storage requirement. Since
LPML models are implemented programmatically as POJO objects we can use some of the
available POJO serialization into RDF frameworks, such as JenaBean6.

Jenabean is a RDF/OWL persistence framework for Java Beans. Bindings between POJO
objects and RDF schema are managed using the Java 5 annotation mechanism. That
approach imposes minimal changes in the POJO model, which is quite convenient and
compatible with the EMF infrastructure of the LPML API. Jenabean uses the Java Bean
conventions to inspect POJO properties and derive their mapping into the RDF schema,
based on the supplied POJO annotation. For instance, in the following Process class of
LPML API, JenaBean annotations are shown in next code snippet:

@Namespace("http://eu.SOA4All.wp6.lightweighbpml#")
public class Process implements Cloneable {

 private Collection<FlowObject> elements;
 …

6 http://code.google.com/p/jenabean/

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 43 of 71

 @RdfProperty("http://eu.SOA4All.wp6.lightweighbpml#hasElement")
 public Collection<FlowObject> getElements() {
 return elements;

 }

…

}

@Namespace("http://eu.SOA4All.wp6.lightweighbpml#") describes the base namespace of the RDF
Schema for LPML.
@RdfProperty("http://eu.SOA4All.wp6.lightweighbpml#hasElement") describes the URL of the RDF
property to get the process elements.

RDFS Classes are represented by JenaBean as @Namespace#<ClassName> and POJO getters by
the value of the @RdfProperty annotation.

Using this minimal annotation set, JenaBean can create a RDF Schema, serialize and
deserialize LPML POJOs into/from RDF sources, using JenaBean Bean2RDF and
RDFSMapper objects. Code snippets of LPML API are shown below.

 public void mapToRDFS(Process process, String filePath) {
 Model m = createModel();
 Bean2RDF writer = new Bean2RDF(m);
 writer.saveDeep(process);
 System.out.println(" - model saved");
 try {
 OutputStream fileOutputStream = new FileOutputStream(filePath);
 m.write(fileOutputStream, "RDF/XML-ABBREV");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public Process mapFromRDFS(String filePath, URI processURI) {
 OntModel m = ModelFactory.createOntologyModel();
 try {

InputStream inputStream =
RDFSMapper.class .getResourceAsStream(filePath);

 m.read(inputStream, "");
 } catch (Throwable e) {
 e.printStackTrace();
 }

 RDF2Bean reader = new RDF2Bean(m);
 Process process = reader.loadDeep(Process.class , processURI);
 return process;

 }

5.2.3 Transformation into BPEL

This section describes the SOA4ALL Extended BPEL 2.0 language (that is the concrete
SOA4ALL extensions) into which LPML process models are transformed for execution
purposes. Firstly this section describes the BPEL 2.0 extension mechanism, then the
SOA4ALL LPML extensions to BPEL 2.0, and finally the technical approach to the LPML to
BPEL transformation.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 44 of 71

For making the LPML models suitable for execution, we have considered XPDL (Coalition
2005) or WSBPEL (Oasis 2006) as a language representation that is supported by process
execution engines. We decided to use an extended version of WS-BPEL 2.0 for execution,
the SOA4All Extended BPEL 2.0. This decision takes into account the SOA4All execution
engine that will use that BPEL dialect.

5.2.3.1 Description of BPEL 2.0 extension mechanisms

First of all, BPEL supports extensibility by allowing namespace-qualified attributes to
appear on any BPEL element and by allowing elements from other namespaces to
appear within BPEL defined elements (see D6.5.1, sect. 5.3).

In addition, BPEL provides two explicit extension constructs:
<extensionAssignOperation> and <extensionActivity> .

- The <extensionAssignOperation> construct can be used to extend the standard
<assign> activity. This way it is possible to include extensible data manipulation
operations defined as extension elements under namespaces different from the BPEL
namespace. For further details, see D6.5.1, sect. 8.4.

- The <extensionActivity> construct can be used to include in a BPEL process
definition new activities that are not defined by the specification. The contents of
an <extensionActivity> element is a single element, qualified with a namespace
different from BPEL namespace, that make available BPEL's standard-attributes
and standard-elements . An <extensionActivity> may be a structured activity,
i.e., it may contain other activities. For further details, see D6.5.1, sect. 10.9.

Extensions are allowed in BPEL constructs used in WSDL definitions.

Apache ODE (>= 2.0) supports the extensibility mechanisms provided by BPEL 2.0. In
particular, it provides a plug-in architecture that allows for registering third-party extensions
(D6.5.1).

5.2.3.2 Description of LPML BPEL 2.0 extensions

In order to support the execution of processes expressed in LPML several steps are needed
as described in section 4.1. The last step consists in translating the result of the process
optimizer (T6.4) in an extended version of BPEL to be executed by the SOA4All Execution
Engine (EE) developed in T6.5.

The EE, as described in T6.5, is composed of 2 main components, the Lightweight Process
Executor and the Lightweight Process Deployer. The Process Deployer is in charge of
transforming the output of the Composition Optimizer and some of the information coming
from the process model developed using the Process Editor in a process ready to be invoked
and executed, exposed as a service. This executable process is a process described in
BPEL 2.0 language plus some extension made using the extension mechanisms provided by
the BPEL 2.0 specification.

In order to allow for the dynamic replacement of services inside a process in reaction to
contextual situations we added some extensions to BPEL 2.0. In this section we describe the
extensions.

5.2.3.2.1 Namespace

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 45 of 71

The namespace used for SOA4All BPEL extensions is:
http://www.SOA4All.eu/serviceConstruction/LPML/executable.

Thhis namespace is referenced in the following f the document with the prefix b4all .

5.2.3.2.2 Extension Activities

In SOA4All we define 1 extension activity: b4all:adaptiveInvoke. A b4all:adaptiveInvoke
activity is created for each activity in the process model that allows for service substitution.
The b4all:adaptiveInvoke has the following attributes and elements:

- b4all:humanTask: this attribute is a boolean that, if set to true means that the task is
to be executed by an human being through the Human Tasks Server. The dfault
value is false;

- b4all:replacementCondition: this attribute is a literal that represents an element in a
taxonomy that defines the set of pre-defined replacement conditions. The
replacement conditions are the situations in which the engine will try to substitute a
service with another one. If not specified the default replacementCondition is “fault”
The replacement conditions allowed by the engine are:

o fault;
o faultAfterRetry;
o noResponse.

- b4all:selectionCriteria: this attribute is a literal that represents an element in a
taxonomy that defines the set of pre-defined selection criteria. The selection criteria
is the criteria applied by the engine for selecting a substitute service from a list of
alternatives. The default criteria is “rating”. The selection criteria literals allowed by the
engine are:

o price;
o responseTime;
o rating

- b4all:alternativeServiceList: this element lists the services that can be used as
alternatives in the service substitution. b4all:alternativeServiceList is a list of sub-
elements: b4all:alternativeService;

- b4all:alternativeService: this element is an URI that points to a SAWSDL
specification.

5.2.3.2.3 Extension Assign Operation

In SOA4All we define 1 extension assign operation: b4all:connector .

A b4all:connector element is created for each instance of the Connector class contained in
the process model. The b4all:adaptiveInvoke has the following attributes and elements:

• b4all:semanticMapping: this element lists a set of annotations expressed as
referenceURI and/or expressions.

• b4all:synctactingMapping: this element lists a set of annotations expressed as
referenceURI and/or expressions.

5.2.3.2.4 Extended BPEL Syntax

Syntaxt for b4all:adaptiveInvoke

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 46 of 71

<bpel:extensionActivity>

<b4all:adaptiveInvoke

partnerLink="NCName"

portType="QName"?

operation="NCName"

inputVariable="BPELVariableName"?

outputVariable="BPELVariableName"?

standard-attributes

>

standard-elements

<replacementCondition value="NCName">

<b4all:selectionCriteria>

 </replacementCondition>*

<b4all:alternativeServiceList>?

<b4all:alternativeService>

</b4all:alternativeServiceList>

</bpel:adaptiveInvoke >

Syntaxt for alternativeService

<b4all:alternativeService

serviceDescription="anyURI"/>

Syntaxt for selectionCriteria

<b4all:selectionCriteria

value="NCName"/>

Syntaxt for b4all:connector:

 <bpel:extensionAssignOperation standard attributes>

 <b4all:connector>?

<b4all:annotation type=”QName” reference=”anyURI” expression=”NCName”>

</b4all:connector>

standard elements

 </bpel:extensionAssignOperation>

5.2.3.3 LPML to BPEL transformation

As previously mentioned, SOA4ALL processes defined in LPML will be exported in BPEL 2.0
in order to leverage support from existing process-engines.

To achieve this goal, we have chosen to use the Eclipse STP-IM (SOA Tools Platform
Intermediate Model) project, which entail a transformation chain as depicted in Figure 13:

The following paragraphs will give a brief overview of each of the main elements of the

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 47 of 71

transformation chain: STP-IM, LPML2IM and IM2BPEL. Note that this section does not aim
at fully describing the transformation process; rather it just presents the overall strategy for
doing so. A complete description of this process is going to be provided in D6.5.2 at M24.

LPML BPEL 2.0

LPML2IM IM2BPEL

Eclipse STP-IM

INRIA is leading the Eclipse sub-project called STP-IM (SOA Tools Platform Project
Intermediate-Model). This component is meant as a "bridge" between editors and its
elements have the role of conceptual transport between different development spaces. It
does not aim to offer a complete conceptual reasoning platform for SOA, its purpose is rather
to capture as much common SOA design information from different perspectives as possible.
We are not describe the entire STP-IM metamodel in detail in this section (for more details,
see http://wiki.eclipse.org/STP_Intermediate_Metamodel). However it is important to mention that
STP-IM addresses the architecture-oriented standards in SOA such as SCA and JBI as well
as the workflow and process definition standards. This latter part is directly relevant in the
context of the LPML transformation work as it captures important information about
processes.

Figure 14 provides a partial and simplified representation of the STP-IM metamodel showing
some of the main elements.

Figure 13: LPML to BPEL transformation chain

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 48 of 71

The transformation from LPML to BPEL 2.0 will follow a generative approach relying on the
IM metamodel, and consisting of the two main steps illustrated in Figure 14 and detailed
below.

LPML to IM

When transforming an LPML model into an intermediate model, a plugin will parse the LPML
model by iterating over all the elements of the business process and it will transform each of
them into the appropriate IntermediateModel equivalent so that we get a generic
representation of the LPML process expressed in the IM instance. In STP-IM, processes are
defined as having steps, while each Step can be associated with a service to represent that
its functionality is fulfilled by that particular service. Process steps are also associated with
bindings because they need to use a specific binding of a service when executing a particular
step (a service can have multiple bindings). So, for instance, an LPML activity will be
represented by an IM step, while elements such as semantic annotations will be
implemented as properties in the IM. It is possible that as part of the work for writing the
transformation, the IM metamodel will be extended to better correspond to the needs of the
LPML (perhaps a Step should point to a ServiceCollection in order to better represent the
fact that one Activity in LPML can have a ServiceList. association.

IM to BPEL

Similarly to the first transformation, the “IntermediateModel to BPEL” phase is made up of a
plugin which will iterate over all the elements of the IntermediateModel, and will enable to
transform each element into BPEL 2.0 elements using the elements and the annotations
previously added by the “LPML to IntermediateModel’ transformation. For instance, an IM
step will be either a BPEL basic activity such as an Invoke task, or a BPEL structured activity

Figure 14: Simplified representation of the STP-IM Metamodel

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 49 of 71

such as a loop, depending on the corresponding annotation.

5.3 Summary and Remarks
LPML API provides complete programmatic support for the building and management of
LPML process models, their serialization into RDF format for storage purposes and their
transformation into SOA4ALL extended BPEL format for execution purposes. LPML API is
build upon wide accepted MDD frameworks, such as Eclipse EMF and JenaBeans. The
LPML transformation into BPEL also relies on EMF and STP-IM.

In addition to the LPML API framework specification, we have also described the BPEL 2.0
extensions provided by SOA4ALL to support LPML models execution and runtime adaptation
features.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 50 of 71

6. Language Evaluation
In this section we will evaluate the contents of the proposed process composition language
by appealing to the concept of ontological completeness and coverage. The way in which
target SOA4All users will perceive the language is mediated through the language
representation developed in T2.6, so usability-style evaluations will be conducted within T2.5
in due course.

6.1 User categorization
Evaluating a language would be strongly dependent on both the target users and usage of
the language, for example the best language for controlling either a real or a robotic pet
would be much more limited in scope than the best language used to write fiction. The target
usage of the language is covered by SOA4All use cases as developed by WP7, 8 and 9, and
this document makes explicit reference to the requirements specified by each use case.

As far as the target users are concerned, in SOA4All we can categorise users as belonging
to the following types:

1. IT Experts – people who have substantial IT education, or substantial experience of
using and developing software (and possibly service) systems;

2. Domain Experts – people who have substantial education and experience in domains
other than IT, and use the systems to achieve work objectives. These can be further
divided according to the main use cases of SOA4All:

a. WP7 - Civil Servants / Town-Hall Administrators

b. WP8 - Telecom Engineers

c. WP9 - e-Marketing specialists

3. Casual Users – these are the closest match to “All” in “SOA4All”, and their needs are
covered by the overall developments of SOA4All Studio in WP2. They are not
expected to be IT nor domain experts, and even when they are, they would be
accessing services for purposes different from their main line of work. Because the
domain (or IT) expertise is no longer supporting the users in their use of SOA4All, we
should use the profiles of these users as the “lowest common denominator" profile for
SOA4All users. Students from management and social science disciplines are a
good proxy for this target group of users.

6.2 Completeness and Expressiveness of the LPML
An accepted standard approach for evaluating the completeness of a language is the
approach of measuring the ontological completeness, using the well-established Bunge–
Wand–Weber (BWW) models, in particular the representation model.

Wand and Weber (Wand and Weber 1989) have studied the philosophical works of Mario
Bunge (Bunge 1977) to seek an objective foundation for analysing the coverage of concepts
when developing Information Systems. They define three different types of models:
representation model, state-tracking model, and good decomposition model. Of these we will
focus on the first, since it provides a set of constructs which are thought sufficient to
represent the structure and the behaviour of the world. Annex D contains a plain English
explanation of the concepts within the BWW representation model, adapted from (Green,
Rosemann et al. 2007). It is claimed (Green, Rosemann et al. 2007) that the BWW
representational model has been used in over thirty analysis projects spanning a number of

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 51 of 71

different representational grammars, so its use for such evaluations has been extensively
validated.

In one such study, Green et al (Green, Rosemann et al. 2007) have mapped the BWW
representation model onto the constructs of BPEL. In the table below, we have adapted this
analysis for LPML as a starting point of our ontological completeness evaluation.

Ontological construct Explanation
Thing

Property: Name, Semantic Annotations (or Descriptions)
In general
In particular
Hereditary
Emergent
Intrinsic Correlation set
Non-binding mutual
Binding mutual WSDL Service link, SA-WSDL Service link, WSMO-(Lite) Service link
Attributes Names of properties

Class Partner/Conversation (for semantic Web Service)
Kind

State Connector: A set of semantically annotated variables with value (syntactic and
semantic) assignments

Conceivable state space
State law
Lawful state space
Event Message, Reply, Invoke, Receive, Create Instance (on Activity), InteractionActivity,

ExtensionActivity, Connector
Conceivable event space

Transformation Control flow based: receive, assign, exclusive gateway, inclusive gateway, parallel gateway,
FaultHandler, scope, flow
Data flow based (Connector): merge, split, filter, reduction, sort, subdescription, aggregation,
loop, count

Lawful transformation If, While, Repeat-Until, For Each
Stability Condition Expression (semantic annotation based)
Lawful event space
History
Acts-on Role
Coupling: binding mutual

property
Semantic Web Service link, Activity link, (Atomic or Composite) Goal link

System Process Instance
System composition Partner/Conversations (for Semantic Web Service)
System environment
System structure Partner/Conversations (for Semantic Web Service)
Subsystem
System decomposition
Level structure
External event Message

Stable state
Unstable state
Internal event Receive, Invoke, Reply, Create Instance (on Activity), Invoke

Table 1 . Mapping the BWW Represenation model to LPML (based on LPML Metamodel)

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 52 of 71

Well-defined event Create Instance (on Activity)
Poorly defined event Message, Reply

A notable gap of the LPML coverage in the table is the lack of representation for ‘thing’. This
is common amongst great many process specification / service composition languages,
including BPEL. It has been extensively discussed elsewhere (Green, Rosemann et al.
2007), formulating propositions to be subjected to further testing. For example that the lack of
representation of thing may cause lack of clarity in representing participants in the process,
and confusion when some instances of class (things) participate in a relationship with other
instances whilst other instances do not. Also missing are representations of ‘state law’ and
the related ‘lawful state space’ and ‘lawful event space’, but perhaps more crucial is the lack
of direct representation for ‘System environment’, which is expected to lead to users lacking
clear distinction between things inside and outside of the system. The difficulty in identifying
things outside of the system is expected to lead to difficulties in identifying which entities can
generate significant external events (Green, Rosemann et al. 2007). Within SOA4All we
envisage to model states and the system environment by preconditions and effects.

Also notable is the mapping of “event” and “transformation” BWW constructs to an LPML
activity. Activities are used to represent events which may arise in a business process. In
difference to BPEL, LMPL has no explicit “Wait” construct, so an activity has to be specified
in order to directly represent time delay as event trigger.

‘Transformation’ is a core LPML construct, and this has been mapped to a number of LPML
elements, divided into two groups: Control Flow group and Data Flow.

6.3 Pattern-based analysis of the LPML
Ontological coverage analysis using the BWW representation model from the previous
section revealed that one specific BWW concept: ‘transformation’ maps to a number of LMPL
constructs. The rationale for this is routed in the use of different LMPL constructs to express
different patterns of control and communication flow. In this section we will analyse the
coverage provided by LPML against a benchmark set of 20 control flow patterns found in
workflow systems (van der Aalst, ter Hofstede et al. 2003b) and a set of six communication
patterns found in Enterprise Application Integration systems (Ruh, Maginnis et al. 2001). The
analysis is adapted from (Wohed, van der Aalst et al. 2003) where it has been applied to
BPEL.

Pattern Description Implementation using LPML

C
on

tr
ol

 fl
ow

 p
at

te
rn

s

fo
un

d
in

 w
or

kf
lo

w
 /

pr

oc
es

s
sy

st
em

s

Sequence A cannot start before B completes Sequence flow

Parallel Split At this point, concurrent execution of
A and B is enabled

Parallel gateway

Synchronization C can only start once the concurrent
A and B complete

Simulated by sequence flow and
parallel gateway

Exclusive Choice At this point, one of (A1..An) is chosen
based on data

Inclusive gateway

Simple Merge C can only start once A or B
completes, only A or B can be run

Simulated by Parallel gateway

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 53 of 71

Multi Choice At this point, two or more of (A1..An)
are chosen based on data

Parallel gateway with conditional
expressions expressed by means
of semantic annotation

Synchronizing Merge C can only start once all the active
Ai from (A1..An) complete

Simulated by Parallel gateway

MultiMerge C is started once for each completion
of active Ai from (A1..An)

Simulated by Parallel gateway

Discriminator C is started just once with the first
completion from all active Ai (i∈ {1..n})

Parallel gateway with conditional
expressions expressed by means
of semantic annotation

Arbitrary Cycles Any portion of the process should be
visited repeatedly

Cycles will be supported by the
next LPML version for M30

Implicit Termination Process completes when nothing left
to do, without explicit term. activity

Implicit not supported, explicit “End
activity” used instead

MI without Synchronization A number of concurrent (sub)process
instances are created

We will figure out by M30 whether
multi-instances need to be
supported.

MI with a Priori Design Time
Knowledge

A number of concurrent (sub)process
instances are created and their
completion synchronised, before
proceeding with the rest of the
process.

We will figure out by M30 whether
multi-instances need to be
supported. MI with/without a Priori

Runtime Knowledge

Deferred Choice Point of choosing A or B is reached
before the decision data is available.

Parallel gateway with conditional
expressions expressed by means
of semantic annotation

Interleaved Parallel Routing Each Ai from (A1..An) is executed
exactly once in an order determined
just after the previous activity

Can be modelled through
preconditions

Milestone C can only be started if A has
finished but a subsequent B has not
yet started

Can be modelled through
preconditions

Cancel Activity Terminate activity Lower level constructs

Cancel Case Terminate instance Not supported

C
om

m
un

ic
at

io
n

P
at

te
rn

s
(E

A
I)

Request/Reply Sender waits for a reply before
continuing

Depends on the
transformation of the LPML in
an executable language. In
LPML the activity will handle
this pattern.

OneWay Sender waits for an acknowledgment
before continuing

Depends on the
transformation of the LPML in
an executable language. In
LPML the activity will handle
this pattern.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 54 of 71

Synchronous Polling Sender polls for a response whilst
receiving one.

Depends on the
transformation of the LPML in
an executable language. In
LPML the activity will handle
this pattern.

Message Passing Sender sends a message and
continues processing

Depends on the service
executing the activity.
However we won’t explicitly
model that.

Publish/Subscribe Request sent to all receivers which
have previously declared interest

Can be modelled implicitly by
data split or control flow split.

Broadcast Request sent to all receivers in a
network, each decides whether to act

Not supported

6.4 Recommendations
The analysis of the ontological coverage and the pattern-based coverage revealed
satisfactory coverage of the exhaustive sets of concepts and patterns used for evaluation.
The most important shortcomings seem to be common with BPEL in terms of lack of
representation for environment and things interacting with the process.

Before recommending the increase of the coverage by introducing new language constructs,
we should be aware of the lightweight nature of the language, which would motivate that the
language is “fit for purpose” only and not complete. At any rate, the coverage of the
language is the same as the underlying BPEL, which is much more complex technically.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 55 of 71

7. Conclusions
This deliverable gave an insight into the advanced specification of the lightweight process
modelling methodology and Lightweight Process Modelling Language (LPML). We have first
described the three design principles abstraction of process models, the use of semantic
annotations, and context-awareness. The LPML comprises new elements and has picked up
selected concepts, elements, and artifacts of BPMN and BPEL. The selection was performed
considering the creation of a lightweight language. A coherent metamodel of the LPML and
its elements, properties, and relationships has been presented. On the programmatic
perspective, the LPML is managed by an API. This deliverable described as well this LPML
API, which provides programmatic process modeling and serialization support, either for
storage as RDF and transformation into SOA4ALL extended BPEL 2.07 or other executable
languages.

The ability to be transformed into other process modelling languages, both executable and
for documentation purposes, is key to the LPML. It is designed to be flexible enough in order
to be easily transformed into various, existing process modelling languages. For the
execution in SOA4All we selected to transform the LPML into BPEL.

A concept for the evaluation of the contents of the LPML has been covered as well by this
deliverable in order to prove the applicability of the LPML. The evaluation approach is based
on the concept of ontological completeness and coverage. The next step in evaluating the
LPML is to extend and apply the evaluation concept. We have to let end-users model their
processes by using the LPML. Any feedback given by these end-users will provide some
ideas to further improve the language by M30.

The application of ontologies in process modeling languages has to be further evaluated in
the future. In the LPML we have chosen a pragmatic proceeding. Ontologies are only applied
for specifying activities. At the moment this approach seems to be most appropriate in order
to achieve a working solution. However, as semantic descriptions will evolve and be attached
to more and more artifacts, other full-fledged ontological approaches like BPMO can be
applicable as well.

The usefulness of the new process modeling features as provided by the LPML has to be
proved. These features will be implemented by the WP6 components, the composer, the
optimizer, the template generator, and the execution engine. The final evaluation can only be
done when these components are in use within SOA4All.

Another work to be done until M30 is the advancement of context-integration. The context
reference can be implemented as semantic annotation. At the moment, a coherent concept
for context-awareness in SOA4All is not yet provided. We envisage providing that concept by
month 30.

In order to provide full benefit of the user support through patterns, templates, and goals a
critical mass of existing artefacts have to be provided. Especially domain-specific patterns,
templates and goals will provide an added value to the user. However, in the context of the
research project SOA4All we will only provide a couple of patterns, templates, and goals
based on the use cases. The provision of a large artefact repository is not focused in
SOA4All.

SOA4All will provide a final version of the LPML specification in D6.3.3 which is due in M30.

7 We refer to the extended BPEL language used by D6.5.1 Execution Environment

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 56 of 71

8. References
Akman, V. and M. Surav (1996). Steps towards formalizing context, American Association for
Artificial Intelligence.

Brezillon, P. and S. Abu-Hakima (1995). "Using knowledge in its context: Report on the ijcai-
93 workshop." AI Magazine 16(1).

Bunge, M. (1977). "Treatise on Basic Philosophy." Ontology I: The furniture of the world 3.

Buschmann, F., K. Henney, et al. (2007). "Past, Present, and Future Trends in Software
Patterns." IEEE Software 24(7/8): 31-37.

Coalition, W. M. (2005). Process Definition Interface -- XML Process Definition Language,
WfMC Standards and Working Groups.

Dey, A. K. (2000). Providing architectural support for building context-aware applications.
Georgia Institute of Technology.

Foundation, E. (2009). Eclipse Modelling Framework (EMF).

Green, P., M. Rosemann, et al. (2007). "Candidate Interoperability Standards: An Ontological
Overlap Analysis." Data & Knowledge Engineering 62(2): 274-291.

Keller, U., R. Lara, et al. (2004). WSMO Web Service Discovery.

Koehler, J. and J. Vanhatalo (2007). "Process anti-patterns: How to avoid the common traps
of business process modelling." IBM WebSphere Developer Technical Journal.

McCarthy, J. (1993). Notes on formalizing context. IJCAI. M. Kaumann. San Mateo,
California: 555-562.

Medicke, J. and D. McDavid (2004). "Patterns for Business Process Modelling." Business
Integration Journal 1: 32-35.

Nitzsche, J., T. van Lessen, et al. (2007a). BPEL for Semantic Web Services (BPEL4SWS).
On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, Springer.

Nitzsche, J., T. van Lessen, et al. (2007b). BPEL-Light. 5th International Conference on
Business Process Management (BPM 2007), Springer.

Oasis (2006). Web Services Business Process Execution Language Version 2.0, OASIS.

Rosemann, M. and J. Recker (2006). Context-aware process design: Exploring the extrinsic
drivers for process flexibility. 18th International Conference on Advanced Information
Systems Engineering, Luxembourg, Namur University Press.

Rosemann, M., J. Recker, et al. (2008). "Contextualisation of business processes."
International Journal of Business Process Integration and Management (IJBPMIM) 3(1): 47-
60.

Rosemann, M., J. Recker, et al. (2006). Understanding context-awareness in business
process design. 17th Australasian Conference on Information Systems, Adelaide, Australia.

Ruh, W. A., F. X. Maginnis, et al. (2001). Enterprise Application Integration: A Wiley Tech
Brief, John Wiley and Sons Inc.

Saidani, O. and S. Nurcan (2007). Towards context-aware business process modelling. 8th
Workshop on Business Processes and Support Systems: Requirements for flexibility and the
ways to achieve it.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 57 of 71

Tran, H. N., B. Coulette, et al. (2007). Broadening the Use of Process Patterns for Modelling
Processes. SEKE, Knowledge Systems Institute Graduate Schools.

van der Aalst, W. M. P., A. H. M. ter Hofstede, et al. (2003a). Workflow Patterns. Distributed
and Parallel Databases: 5-51.

van der Aalst, W. M. P., A. H. M. ter Hofstede, et al. (2003b). "Workflow Patterns." Distributed
and Parallel Databases 14(1).

Vitvar, T., J. Kopecky, et al. (2008). WSMO-Lite: Lightweight Semantic Descriptions for
Services on the Web.

Wand, Y. and R. Weber (1989). An ontological evaluation of systems analysis and design
methods. Information System Concepts: An Indepth Analysis. E. D. Falkenberg and P.
Lindgreen: 79-107.

Wohed, P., W. M. P. van der Aalst, et al. (2003). Analysis of Web Services Composition
Languages: The Case of BPEL4WS. Proceedings of Conceptual Modelling, Springer.

zur Muehlen, M. and J. C. Recker (2008). How Much Language is Enough? Theoretical and
Practical Use of the Business Process Modeling Notation, Springer.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 58 of 71

Annex A. Sample File

The following sample XML file describes the process “UpdateCatalog” out of WP9. The
LPML model in java code has been serialized in XML code.

<org.SOA4All.lpml.impl.ProcessImpl >
 <startElement class ="org.SOA4All.lpml.impl.ActivityImpl">
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ffe </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fcb </ iD >
 <flows />
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <name>Start </ name>
 <startElement >true </ startElement >
 <endElement >false </ endElement >
 </ startElement >
 <processElements >
 <org.SOA4All.lpml.impl.ActivityImpl reference ="../../startElement"/>
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ffd </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fb8 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <name>End</ name>
 <startElement >false </ startElement >
 <endElement >true </ endElement >
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.ParallelGatewayImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ffc </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../../startElement/flows/org.SOA4All.lpml.impl.FlowImpl"/>
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fca </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc7 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fbc </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <split >true </ split >
 </ org.SOA4All.lpml.impl.ParallelGatewayImpl >
 <org.SOA4All.lpml.impl.ParallelGatewayImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ffb </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc8 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc0 </ iD >
 <condition class ="org.SOA4All.lpml.impl.SemanticAnnotationImpl">
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fbd </ iD >

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 59 of 71

<referenceURI >http://www.SOA4All.eu/webshop#loopOnCollection </ referenceURI >

<expression >http://www.SOA4All.eu/webshop#incompleted </ expression >
 <type >SELECTION_CRITERIA</ type >
 </ condition >
 </ org.SOA4All.lpml.impl.FlowImpl >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fb9 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ActivityImpl[2]/flows/org.SOA4All
.lpml.impl.FlowImpl"/>
 </ flows >
 <split >false </ split >
 </ org.SOA4All.lpml.impl.ParallelGatewayImpl >
 <org.SOA4All.lpml.impl.ExclusiveGatewayImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ffa </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc6 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc5 </ iD >
 <condition class ="org.SOA4All.lpml.impl.SemanticAnnotationImpl">
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc4 </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#loopOnCollection </ referenceURI >

<expression >http://www.SOA4All.eu/webshop#listOfProducts </ expression >
 <type >SELECTION_CRITERIA</ type >
 </ condition >
 </ org.SOA4All.lpml.impl.FlowImpl >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fbe </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <split >true </ split >
 </ org.SOA4All.lpml.impl.ExclusiveGatewayImpl >
 <org.SOA4All.lpml.impl.ExclusiveGatewayImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff9 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc1 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ParallelGatewayImpl[2]/flows/org.
SOA4All.lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ExclusiveGatewayImpl/flows/org.SO
A4All.lpml.impl.FlowImpl[3]"/>
 </ flows >
 <split >false </ split >
 </ org.SOA4All.lpml.impl.ExclusiveGatewayImpl >
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe8 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ParallelGatewayImpl/flows/org.SOA
4All.lpml.impl.FlowImpl[2]"/>

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 60 of 71

 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc9 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <name>Clothing provider: Update Catalog </ name>
 <operation >updateCatalog </ operation >
 <startElement >false </ startElement >
 <endElement >false </ endElement >
 <conversation class ="org.SOA4All.lpml.impl.ConversationImpl">
 <compositeGoal >true </ compositeGoal >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff8 </ iD >
 <service class ="org.SOA4All.lpml.impl.ServiceImpl">

<serviceReference >http://www.clothingprovider.com/services/clothingPr ovider
.wsdl </ serviceReference >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fed </ iD >
 </ service >
 <goal class ="org.SOA4All.lpml.impl.GoalImpl">

<goalReference >http://www.SOA4All.eu/webshop/clothingProviderGoal. wsmo</ goa
lReference >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff4 </ iD >
 <name>Clothing Provider </ name>
 </ goal >
 </ conversation >
 <humanTask >false </ humanTask >
 <synchronous >true </ synchronous >
 <outputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fdf </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#listOfProducts </ referenceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe0 </ iD >
 </ org.SOA4All.lpml.impl.ParameterImpl >
 </ outputParameters >
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe7 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ParallelGatewayImpl/flows/org.SOA
4All.lpml.impl.FlowImpl[3]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ExclusiveGatewayImpl/flows/org.SO
A4All.lpml.impl.FlowImpl"/>
 </ flows >
 <name>Footwear provider: get product list </ name>
 <operation >getProductList </ operation >
 <startElement >false </ startElement >
 <endElement >false </ endElement >
 <conversation class ="org.SOA4All.lpml.impl.ConversationImpl">
 <compositeGoal >true </ compositeGoal >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff7 </ iD >
 <service class ="org.SOA4All.lpml.impl.ServiceImpl">

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 61 of 71

<serviceReference >http://www.footwearprovider.com/services/footwearPr ovider
B.wsdl </ serviceReference >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7feb </ iD >
 </ service >
 <goal class ="org.SOA4All.lpml.impl.GoalImpl">
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff2 </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#footwear_provider </ referenceURI
>
 <type >FUNCTIONAL_CLASSIFICATION</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff1 </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#oneweek_delivery </ referenceURI >
 <type >NON_FUNCTIONAL_PROPERTY</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff3 </ iD >
 <name>Footwear Provider </ name>
 </ goal >
 </ conversation >
 <humanTask >false </ humanTask >
 <synchronous >true </ synchronous >
 <outputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fdd </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#productlist </ referenceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fde </ iD >
 </ org.SOA4All.lpml.impl.ParameterImpl >
 </ outputParameters >
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe6 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ExclusiveGatewayImpl/flows/org.SO
A4All.lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc3 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <name>Footwear provider: get product data </ name>
 <operation >getProductData </ operation >
 <startElement >false </ startElement >
 <endElement >false </ endElement >
 <conversation class ="org.SOA4All.lpml.impl.ConversationImpl"
reference ="../../org.SOA4All.lpml.impl.ActivityImpl[4]/conversation"/>
 <humanTask >false </ humanTask >
 <synchronous >true </ synchronous >
 <inputParameters >

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 62 of 71

 <org.SOA4All.lpml.impl.ParameterImpl >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fdb </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#productid </ referenceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fdc </ iD >
 </ org.SOA4All.lpml.impl.ParameterImpl >
 </ inputParameters >
 <outputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd9 </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#productdata </ referenceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fda </ iD >
 </ org.SOA4All.lpml.impl.ParameterImpl >
 </ outputParameters >
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe5 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ActivityImpl[5]/flows/org.SOA4All
.lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fc2 </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <name>Footwear provider: get product price </ name>
 <operation >getProductPrice </ operation >
 <startElement >false </ startElement >
 <endElement >false </ endElement >
 <conversation class ="org.SOA4All.lpml.impl.ConversationImpl"
reference ="../../org.SOA4All.lpml.impl.ActivityImpl[4]/conversation"/>
 <humanTask >false </ humanTask >
 <synchronous >true </ synchronous >
 <inputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl
reference ="../../../org.SOA4All.lpml.impl.ActivityImpl[5]/inputParameters/o
rg.SOA4All.lpml.impl.ParameterImpl"/>
 </ inputParameters >
 <outputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd7 </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#productdata </ referenceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd8 </ iD >

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 63 of 71

 </ org.SOA4All.lpml.impl.ParameterImpl >
 </ outputParameters >
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe4 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ParallelGatewayImpl/flows/org.SOA
4All.lpml.impl.FlowImpl[4]"/>
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fbb </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <name>Accessories provider: get list of product descripti ons </ name>
 <operation >getListOfProductDescriptions </ operation >
 <startElement >false </ startElement >
 <endElement >false </ endElement >
 <conversation class ="org.SOA4All.lpml.impl.ConversationImpl">
 <compositeGoal >true </ compositeGoal >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff6 </ iD >
 <service class ="org.SOA4All.lpml.impl.ServiceImpl">

<serviceReference >http://www.accessoriesprovider.com/services/accesso riesPr
ovider.wsdl </ serviceReference >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fea </ iD >
 </ service >
 <goal class ="org.SOA4All.lpml.impl.GoalImpl">
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fef </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#accessories_provider </ reference
URI>
 <type >FUNCTIONAL_CLASSIFICATION</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fee </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#special_offers </ referenceURI >
 <type >NON_FUNCTIONAL_PROPERTY</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff0 </ iD >
 <name>Accessories Provider </ name>
 </ goal >
 </ conversation >
 <humanTask >false </ humanTask >
 <synchronous >true </ synchronous >
 <outputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd5 </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#listOfProductDescript ion </ refer
enceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd6 </ iD >

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 64 of 71

 </ org.SOA4All.lpml.impl.ParameterImpl >
 </ outputParameters >
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe3 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ActivityImpl[7]/flows/org.SOA4All
.lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fba </ iD >
 </ org.SOA4All.lpml.impl.FlowImpl >
 </ flows >
 <name>Accessories provider: get list of product prices </ name>
 <operation >getListOfProductPrices </ operation >
 <startElement >false </ startElement >
 <endElement >false </ endElement >
 <conversation class ="org.SOA4All.lpml.impl.ConversationImpl"
reference ="../../org.SOA4All.lpml.impl.ActivityImpl[7]/conversation"/>
 <humanTask >false </ humanTask >
 <synchronous >true </ synchronous >
 <outputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd3 </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#listOfPrices </ referenceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd4 </ iD >
 </ org.SOA4All.lpml.impl.ParameterImpl >
 </ outputParameters >
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe2 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ActivityImpl[3]/flows/org.SOA4All
.lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ParallelGatewayImpl[2]/flows/org.
SOA4All.lpml.impl.FlowImpl"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ActivityImpl[8]/flows/org.SOA4All
.lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ParallelGatewayImpl[2]/flows/org.
SOA4All.lpml.impl.FlowImpl[3]"/>
 </ flows >
 <name>Webshop provider: aggregate catalog </ name>
 <operation >aggregateCatalog </ operation >
 <startElement >false </ startElement >
 <endElement >false </ endElement >
 <conversation class ="org.SOA4All.lpml.impl.ConversationImpl">
 <compositeGoal >true </ compositeGoal >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7ff5 </ iD >
 <service class ="org.SOA4All.lpml.impl.ServiceImpl">

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 65 of 71

<serviceReference >http://www.SOA4All.eu/webshop/services/webshopProvi der.ws
dl </ serviceReference >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe9 </ iD >
 </ service >
 </ conversation >
 <humanTask >false </ humanTask >
 <synchronous >true </ synchronous >
 <inputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd1 </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#webshopcatalog </ referenceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fcf </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#webshopproduct </ referenceURI >
 <type >META_DATA</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fd2 </ iD >
 </ org.SOA4All.lpml.impl.ParameterImpl >
 </ inputParameters >
 <outputParameters />
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.ActivityImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fe1 </ iD >
 <flows >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ActivityImpl[6]/flows/org.SOA4All
.lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../../org.SOA4All.lpml.impl.ExclusiveGatewayImpl[2]/flows/org
.SOA4All.lpml.impl.FlowImpl"/>
 </ flows >
 <name>Webshop provider: aggregate product to catalog </ name>
 <operation >aggregateProductToCatalog </ operation >
 <startElement >false </ startElement >
 <endElement >false </ endElement >
 <conversation class ="org.SOA4All.lpml.impl.ConversationImpl"
reference ="../../org.SOA4All.lpml.impl.ActivityImpl[9]/conversation"/>
 <humanTask >false </ humanTask >
 <synchronous >true </ synchronous >
 <inputParameters >
 <org.SOA4All.lpml.impl.ParameterImpl
reference ="../../../org.SOA4All.lpml.impl.ActivityImpl[9]/inputParameters/o
rg.SOA4All.lpml.impl.ParameterImpl"/>
 </ inputParameters >
 <outputParameters />
 </ org.SOA4All.lpml.impl.ActivityImpl >
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../../startElement/flows/org.SOA4All.lpml.impl.FlowImpl"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ParallelGatewayImpl/flows/org.SOA4All.l
pml.impl.FlowImpl[2]"/>

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 66 of 71

 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ActivityImpl[3]/flows/org.SOA4All.lpml.
impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ParallelGatewayImpl[2]/flows/org.SOA4Al
l.lpml.impl.FlowImpl"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ParallelGatewayImpl/flows/org.SOA4All.l
pml.impl.FlowImpl[3]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ExclusiveGatewayImpl/flows/org.SOA4All.
lpml.impl.FlowImpl"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ExclusiveGatewayImpl/flows/org.SOA4All.
lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ActivityImpl[5]/flows/org.SOA4All.lpml.
impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ActivityImpl[6]/flows/org.SOA4All.lpml.
impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ExclusiveGatewayImpl[2]/flows/org.SOA4A
ll.lpml.impl.FlowImpl"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ParallelGatewayImpl[2]/flows/org.SOA4Al
l.lpml.impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ExclusiveGatewayImpl/flows/org.SOA4All.
lpml.impl.FlowImpl[3]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ParallelGatewayImpl/flows/org.SOA4All.l
pml.impl.FlowImpl[4]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ActivityImpl[7]/flows/org.SOA4All.lpml.
impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ActivityImpl[8]/flows/org.SOA4All.lpml.
impl.FlowImpl[2]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ParallelGatewayImpl[2]/flows/org.SOA4Al
l.lpml.impl.FlowImpl[3]"/>
 <org.SOA4All.lpml.impl.FlowImpl
reference ="../org.SOA4All.lpml.impl.ActivityImpl[2]/flows/org.SOA4All.lpml.
impl.FlowImpl"/>
 </ processElements >
 <endElement class ="org.SOA4All.lpml.impl.ActivityImpl"
reference ="../processElements/org.SOA4All.lpml.impl.ActivityImpl[2]"/>
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-8000 </ iD >
 <semanticAnnotations >
 <org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 <iD >11d1def534ea1be0:2a1172a4:1239522b160:-7fff </ iD >

<referenceURI >http://www.SOA4All.eu/webshop#transactional </ referenceURI >
 <type >NON_FUNCTIONAL_PROPERTY</ type >
 </ org.SOA4All.lpml.impl.SemanticAnnotationImpl >
 </ semanticAnnotations >
</ org.SOA4All.lpml.impl.ProcessImpl >

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 67 of 71

Annex B. Terminology

Terminology for the LPML

process or process
model

A process or process model is a description of a business process in
sufficient detail that it is able to be directly executed by the SOA4All
process editor and service composition execution engine.

process model Is composed of a number of activities which are connected in the form
of a directed graph.

process instance An executing instance of a process model is called a process
instance. There may be multiple instances of a particular process
mode running simultaneously. Each of them should have an
independent existence. The instances typically execute without
reference to each other.

activity instance Each invocation of an activity that executes is termed an activity
instance. An activity instance may initiate one or several task
instances during completion. In Figure 1, activity instance “main
check” is initiated when activity instance “pro-check” completes and
“check” result is successful where the edge between activity
instances “pre-check” and “main check” indicates the condition that
must be satisfied for the subsequent activity instance to be started.

atomic activity An atomic activity is one which has a simple, self-contained definition
and only one instance of the activity executes when it is initiated.

composite activity A composite activity is a complex action which has its implementation
described in terms of a sub-process. When a composite task is
started, it passes control to the first activity(ies) in its corresponding
sub-process. This sub-process executes to completion and at its
conclusion, it passes control back to the composite activity. For
example, composite activity “registration” is dined in terms of the sub-
process comprising activities, “search for tax office in charge & notify
tax office”, “send invoice” and “send confirmation”.

multi-instance
activity

A multi-instance activity is an activity that may have multiple distinct
execution instances running concurrently within the same process
instance. Each of these instances executes independently. Only when
a nominated number of these instances have completed is the activity
following the multiple instance activity initiated.

multi-instance
composite activity

A multi-instance composite activity is a combination of the two
previous constructs and denotes an activity that may have multiple
distinct execution instances each of which is composite structured in
nature (i.e. has a corresponding sub-process).

control channel The control flow between activities occurs via the control channel
which is indicated by a solid arrow between tasks. There may also be
a distinct data channel between process activities which provides a
means of communicating data elements between two connected

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 68 of 71

tasks. Where a distinct data channel is intended between activities, it
is illustrated with a broken (dash-dot) line between them as illustrated
in Figure 1 between activity instances “registration” and “archive”. In
other scenarios, the control and data channels are combined,
however in both cases, where data elements are passed along a
channel between activities, this is illustrated by the pass() relation,
e.g. in Figure 1 data element M is passed from activity instance
“registration” and “archive”.

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 69 of 71

Annex C. LPML and semantic annotation languages

WSML

WSMO-Lite

Ontology

SAWSDL

LPML

Canonical Format, 9 Elements

•Start / Stop

•Activities: Service, Atomic Goal,

Composite Goal

•Connector

•Gateways: Inclusive, Exclusive,

Parallel Gateway

BPEL

extended

WSDL

Goal

Graphical Elements

SOA4All Composervisualized

as

represented

as

Services

MicroWSMO hRESTS

mapped to

executable

representation
activities

are

based on

mapped to

deployed process exposed as WSMO-Lite service

LPML RDF/S
serialized in

REST

Mashups

include

Figure 15: Relation of LPML to semantic annotation languages

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 70 of 71

Annex D. Evaluation information

Plain English definitions of the constructs of the BWW representation model

(adapted from (Green, Rosemann et al. 2007))

Ontological construct Explanation
Thinga A thing is the elementary unit in the BWW ontological model. The real world is made up of things. Two or

more things (composite or simple) can be associated into a composite thing
Propertya: Things possess properties. A property is modelled via a function that maps the thing into some value. For

In general example, the attribute ‘‘weight’’ represents a property that all humans possess. In this regard, weight is an

In particular attribute standing for a property in general. If we focus on the weight of a specific individual, however, we

Hereditary would be concerned with a property in particular. A property of a composite thing that belongs to a component

Emergent thing is called an hereditary property. Otherwise it is called an emergent property. Some properties are inherent

Intrinsic properties of individual things. Such properties are called intrinsic. Other properties are properties of pairs or

Non-binding mutual many things. Such properties are called mutual. Non-binding mutual properties are those properties shared

Binding mutual by two or more things that do not ‘‘make a difference’’ to the things involved; for example, order relations or

Attributes equivalence relations. By contrast, binding mutual properties are those properties shared by two or more things
that do ‘‘make a difference’’ to the things involved. Attributes are the names that we use to represent properties
of things

Class A class is a set of things that can be defined via their possessing a single property
Kind A kind is a set of things that can be defined only via their possessing two or more common properties
State a The vector of values for all property functions of a thing is the state of the thing
Conceivable state space The set of all states that the thing might ever assume is the conceivable state space of the thing
State law A state law restricts the values of the properties of a thing to a subset that is deemed lawful because of natural

laws or human laws
Lawful state space The lawful state space is the set of states of a thing that comply with the state laws of the thing. The lawful state

space is usually a proper subset of the conceivable state space
Event A change in state of a thing is an event
Conceivable event space The event space of a thing is the set of all possible events that can occur in the thing
Transformationa A transformation is a mapping from one state to another state
Lawful transformation A lawful transformation defines which events in a thing are lawful
Lawful event space The lawful event space is the set of all events in a thing that are lawful
History The chronologically-ordered states that a thing traverses in time are the history of the thing
Acts-on A thing acts on another thing if its existence affects the history of the other thing

Coupling:binding Two things are said to be coupled (or interact) if one thing acts on the other. Furthermore, those two things are

mutual property said to share a binding mutual property (or relation); that is, they participate in a relation that ‘‘makes a
difference’’ to the things

System A set of things is a system if, for any bi-partitioning of the set, couplings exist among things in the two subsets
System composition The things in the system are its composition
System environment Things that are not in the system but interact with things in the system are called the environment of the system
System structure The set of couplings that exist among things within the system, and among things in the environment of the

system and things in the system is called the structure
Subsystem A subsystem is a system whose composition and structure are subsets of the composition and structure of

another system
System decomposition A decomposition of a system is a set of subsystems such that every component in the system is either one of the

subsystems in the decomposition or is included in the composition of one of the subsystems in the
decomposition

Level structure A level structure defines a partial order over the subsystems in a decomposition to show which subsystems are
components of other subsystems or the system itself

External event An external event is an event that arises in a thing, subsystem, or system by virtue of the action of some thing in
the environment on the thing, subsystem, or system

Stable statea A stable state is a state in which a thing, subsystem, or system will remain unless forced to change by virtue of
the action of a thing in the environment (an external event)

Unstable state An unstable state is a state that will be changed into another state by virtue of the action of transformations in
the system

Internal event An internal event is an event that arises in a thing, subsystem, or system by virtue of lawful transformations in
the thing, subsystem, or system

Well-defined event A well-defined event is an event in which the subsequent state can always be predicted given that the prior state

 FP7215219 D6.3.2 Advanced Spec. Lightweight, Context-aware Process Mod Lang

© SOA4All consortium Page 71 of 71

is known
Poorly defined event A poorly defined event is an event in which the subsequent state cannot be predicted given that the prior state is

known

a A fundamental and core ontological construct

