

Project Number: 215219
Project Acronym: SOA4ALL

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D6.4.1 Specification and First Prototype
Of Service Composition and Adaptation

Environment
Activity: Activity 2 - Core Research and Development

Work Package: WP 6 - Service Construction

Due Date: M12

Submission Date: 06/03/2008

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: ATOS

Revision: 1.7

Author(s): Rafael González-Cabero ATOS
Freddy Lecue UNIMAN
Matteo Vila TXT
Sven Abels (reviewer) TIE
 Francoise Baude (reviewer) INRIA

Project co -funded by the European Commission within the Seventh Framework Programme (2007 -2013)

Dissemination Level

PU Public X

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 2 of 56

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

1.0 5/12/2008 First Version Rafael González-Cabero
(ATOS)

1.1 29/1/2009 Template Generator theoretical
description and architecture, Updates

Matteo Vila (TXT), Rafael
González-Cabero(ATOS)

1.2 3/2/2009 Semantic Link Design Operador and
Optimizer Sections

Freddy Lecue (UNIMAN)

1.3 6/2/2009 Process Template Generator updates Matteo Vila (TXT)

1.4 14/2/2009 General review Rafael González-
Cabero(ATOS)

1.5 25/2/2009 Comments from the reviewer Sven Abels (TIE)

1.6 3/3/2009 Comments from the reviewer Francoise Baude (INRIA)

1.7 4/3/2009 Some revisions Matteo Villa (TXT)

Final 9/3/2009 Overall format and quality revision Malena Donato (ATOS)

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 3 of 56

Table of Contents

VERSION HISTORY ___ 2

TABLE OF CONTENTS _________________________________ ____________________ 3

LIST OF FIGURES ___ 4

LIST OF TABLES ____________________________________ _____________________ 5

GLOSSARY OF ACRONYMS ______________________________ __________________ 6

EXECUTIVE SUMMARY __ 7

1. INTRODUCTION __ 8

PURPOSE AND SCOPE __ 9

STRUCTURE OF THE DOCUMENT ___ 9

2. REQUIREMENTS __ 10

2.1 REQUIREMENTS FROM THE USE CASES ____________________________ 10

2.1.1 End-user Integrated Enterprise Service Delivery Platform ________________ 10

2.1.2 W21C BT Infrastructure __ 11

2.1.3 C2C Service eCommerce ___ 11

2.2 REQUIREMENTS FROM SOA4ALL __________________________________ 12

3. THEORETICAL GROUNDING___ 14

3.1 PARAMETRIC DESIGN BASED COMPOSITION AND ADAPTATION ________ 15

3.1.1 Analysis __ 16

3.1.2 Synthesis ___ 18

3.1.3 A Multi-agent Approach to the Parametric Design Synthesis Phase ________ 21

3.1.4 Design Analysis Agents __ 25

3.2 OPTIMIZING SEMANTIC WEB SERVICE COMPOSITION _________________ 25

3.2.1 Background __ 27

3.2.2 Quality Model __ 28

3.2.3 A Genetic Algorithm Based Optimization _____________________________ 30

3.2.4 Conclusion __ 32

3.3 TEMPLATES GENERATION __ 32

3.3.1 Current approaches and their limitations _____________________________ 33

3.3.2 The Template Generator ___ 33

3.3.3 The template generation process ___________________________________ 34

4. DESIGN OF THE 1ST PROTOTYPE ______________________________________ 37

4.1 STRUCTURAL VIEW OF THE 1ST PROTOTYPE _______________________ 37

4.1.1 Ubication within SOA4All ___ 37

4.1.2 WP6 Task 6.4 Core Components Description _________________________ 38

4.2 BEHAVIOURAL VIEW FOR THE 1ST PROTOTYPE _____________________ 41

4.2.1 Compose service ___ 42

5. CONCLUSIONS __ 51

6. REFERENCES ___ 52

ANNEX A. THE PROCESS TEMPLATE GENERATOR OF SOA4ALL COMPARED TO
THE PROCESS MINER OF SUPER __ 54

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 4 of 56

List of Figures
Figure 1 From abstract processes to concrete executable processes.14

Figure 2 Relationship among the Design, Configuration Design and Parametric Design tasks.
 ...15

Figure 3 Analysis and Synthesis phases (adapted from [4]). ..16

Figure 4 Adaptation process 1st iteration. ...17

Figure 5 Adaptation Process 2nd iteration. ..17

Figure 6 Adaptation Process final iteration. ..18

Figure 7 Parametric design synthesis as a search (figure adapted from [7]).18

Figure 8 The fixed Design Structure. ..19

Figure 9 Taxonomy of possible designs models. ..20

Figure 10 Multi-agent Approach to Parametric Design. ..21

Figure 11 Taxonomy of the agents involved in the parametric design process.22

Figure 12 The relationship between Goals and Process Templates.23

Figure 13 The Semantic Link Design Operator. ..24

Figure 14 Semantic Link jisl , between service is and js
 ..25

Figure 15 Process Optimization recombining services of lightweight process.26

Figure 16. Sample of an ALE Domain Ontology T. ...27

Figure 17 A (Concrete) Web Service Composition. ...28

Figure 18 Quality Aggregation Rules for Service Composition. ..30

Figure 19 Genotype Encoding for Service Composition. ..31

Figure 20: Template Generator typical use-case. ...33

Figure 21 The Workflow of the Process Template Generation Process.34

Figure 22 Graphical representation of the template generation process.36

Figure 23 WP6 Overall Picture and its place inside SOA4All. ...38

Figure 24 Core components of Task 6.4. ..39

Figure 25 Design-Time Composer Use Cases Diagram. ..41

Figure 26 Classes involved in a composition request. ..42

Figure 27 Analysis for Composition Sequence Diagram. ..43

Figure 28 Generation of the Design Plan Sequence Diagram. ..44

Figure 29 Agents involved in the composition process class diagram.45

Figure 30 The Blackboard Control Agent Sequence Diagram...46

Figure 31 Analysis Agent Sequence Diagram. ...47

Figure 32 Design Modification Agent Sequence Diagram. ..49

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 5 of 56

List of Tables
Table 1 Task 6.4 Software Roadmap. ..37

Table 2 Comparative analysis Super-IP vs SOA4All Template Generator.55

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 6 of 56

Glossary of Acronyms

Acronym Definition

BPM Business Process Modelling

BT British Telecom

BT 21CN 21st British Telecom Century Network

C2C Commerce to Commerce

COP Constraint Optimization Problem

CSP Constraint Satisfaction Problem

D Deliverable

DSB Distributed Service Bus

EC European Commission

eCommerce Electronic Commerce

eShop Electronic Shop

GA Genetic Algorithm

ID Identificator

IP Integer lineal Programming

IT Information Technology

MAS Multi Agent Systems

NF Non-Functional

NP Nondeterministic Polynomial

ProM Process Mining

QoS Quality of Service

SOA Service-Oriented Architecture

UML Unified Modelling Language

URI Uniform Resource Identifier

WP Work Package

DAG Direct Acyclic Graph

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 7 of 56

Executive summary
One of the main objectives of SOA4All is to facilitate to a wide spectrum of users the
adoption of service-oriented computing, so that they can benefit from the advantages that
such paradigm brings. Web services are becoming the de facto standard for the
implementation of service-oriented architectures, specially in the case distributed enterprise
computing systems, as they enable collaborative business processes and ease their
construction by their recombination. Nevertheless, service orientation and hence the usage
of Web services to provide business functionality is mostly kept within enterprises
boundaries.

In this work package, we address this problem from one concrete perspective of the service
lifecycle, service construction as the composition of business processes. Most research on
Business Process Management (BPM hereafter) mainly addresses sophisticated and highly
formalised process descriptions. Processes are usually specified once, instantiated very
often, highly repetitive and are characterised by a certain degree of temporal stability. In
order to achieve the adoption of these technologies by the mainstream of users there is still a
great need of enabling non-technical users to describe their to-be processes in a lightweight
manner. Lightweight means simple to use and having an abstr act way to represent
composite services and processes . In other words it means to provide a user interface
and tools to easily construct, deploy and execute the services and processes as well as the
underlying composition model and its representation in a specific language.

However, a lightweight BPM process modelling language needs enough expression power at
the same time. To reduce the inherent complexity of BPM orchestration, we will create an
automatic system for the flexible and ad-hoc compos ition of services . We will build an
environment that will transform the aforementioned lightweight processes in to
complex services orchestrations transparently in a context-dependant manner . In this
document, D6.4.1 Specification and First Prototype Of Service Composition and
Adaptation Environment, we address precisely this transparent transformation from a user-
oriented lightweight representation to a more complex one, by means of advanced
composition techniques. As described in the description of work, this deliverable includes a
draft of the functional requirements that we have to consider in order to design the software,
as well as design models in standard notations such as UML. Nevertheless, in our humble
opinion, solely these specifications without the description of the background theory that
leads us to that design, and its associated algorithms, is meaningless. Therefore, we will also
make special emphasis in what we refer as its theoretical grounding. This theoretical
grounding will include advances in three main topics: an scalable approach to service
composition using parametric design; a novel approach to service composition to optimize
services using genetic algorithms; and finally, as parametric design and design in general
will rely heavily on a set of abstract process templates, a generator of such abstract
templates from past executions.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 8 of 56

1. Introduction
SOA4All motto is to enable the SOA revolution on a worldwide scale. One of the main
difficulties to overcome this enterprise is to empower non-technical users to do simple IT
modelling and development work in the area of service construction and composition. This
involves elements of BPM to describe the processes, which bring together constituent
services. However, the use of existing BPM solutions requires high expertise in both
business and IT. Moreover, the composed processes should be tailored to a specific context
(e.g. user characteristics, geographical location, environmental details, etc.) both at design-
time and at run-time on a per case basis.

In the context of this task, Task 6.4 Context-aware Service Composition and Adaptation,
we aim to aid end-users to tackle with these difficulties by Creating a scalable system for
the flexible and ad-hoc creation and adaptation of complex services at design time .
We should transform the aforementioned lightweight processes in to optimized complex
services orchestrations; or already existing complex services should be adapted to a specific
use. These activities should be heavily influenced by the context in which they will be carried
out.

The system for the flexible and ad-hoc creation and adaptation of complex services will make
use of available generic process templates, the environmental context information, and user
needs (expressed using the lightweight modelling language). Thus, it will be adaptive in the
sense that the composition system will be able to tailor itself to the needs of a particular user
in a particular context. We will base this activity on the knowledge-intensive configuration of
instances of generic parameterized process templates. The inputs for this composition tool
will be the user requirements (a lightweight BPM process, see T6.3 and its specification in
D6.3.1. First Specification Of Lightweight Process Modelling Language) and context. The
user requirements will determine the skeleton of the service template (formed by a set of pre-
designed reusable templates). We will use context and the current state of affairs as
requirements and constraints that determine the parametric design process that will
instantiate this newly formed service template. Both this parametric design process, and the
initial creation of the skeleton, will be enabled and enhanced by means of the semantic
descriptions of service templates; and a set of different case-based heuristics. To ensure the
application of parametric design in a controlled and safe fashion, we will access the
variability of generic process composition templates for the target class of problems, and
identify classes of generic problem-solving templates which comprise a suitable basis for
adaptive service composition. We will then investigate the impact of context on the variability
dimension.

We will also try to enhance the composition and adaptation processes in two different
innovative ways.

• We will develop a module to achieve optimal service compositions , mainly by
means of the non-functional (henceforth NF) quality of services (e.g., price,
robustness, response time, reliability). In this direction the NF quality of service is
useful to provide different priority to different applications, users, or data flows, or to
guarantee a certain level of performance to a data flow.

• We will develop an automatic template generator , that will generate new process
templates using data coming from past service executions. We will dynamically
compose service templates applying machine-learning techniques, and being able
also to order them in a hierarchical fashion. This module will be very useful in many
complex organisational situations, where the effort required for specifying a process
schema is too high. Later on, end-users will have the opportunity of adapting these
automatically generated processes.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 9 of 56

 Purpose and Scope
The goal of this deliverable is twofold:

• From an engineering perspective, the goal of this deliverable is to provide a
specification and a design for the first prototype of the Service Composition
and Adaptation Environment .

• From a research perspective to provide a clear description of the advanced
techniques and algorithms that we will use . That includes a novel approach to AI
parametric-design techniques using a multi agent approach to configure and adapt
services processes; an innovative composition algorithm for optimal services, based
on the formal description of the semantics of both functional and non-functional
properties of services; and finally, an automatic template process generator, that is
able to generate abstract process templates and their hierarchy form past executions.

 Structure of the document
We structure the deliverable into the following sections:

• Requirements . In this section, we will enumerate the requirements applicable to the
service composition and adaptation environment. They will be a resume of those that
verse about service composition and adaptation of the catalogue of requirements that
we defined in the deliverable D6.1.1 State of the Art Report And Requirements For
Service Construction. That includes requirements identified in the use cases; and
those posed by SOA4All challenges as a whole.

• Theoretical Grounding . In this section, we will describe the theory and our research
approach to service composition and adaptation, covering an extension to the classic
approach to design, advanced algorithms to achieve optimized compositions of
services, and the automatic extraction of process templates from previous logs.

• Design of the 1 st Prototype . Finally, in this section we are going to provide a
specification of the software artefacts that compose the first implementation of the
prototype of the Service Composition Framework.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 10 of 56

2. Requirements
In this section, we will enumerate the requirements applicable to the service composition and
adaptation environment that we have extracted from the necessities identified in the use
cases; and those posed by SOA4All challenges as a whole1. In this section we will
summarize the requirements that we consider for the presented work.

2.1 Requirements from the Use Cases
2.1.1 End-user Integrated Enterprise Service Delive ry Platform

WP7 End-User Integrated Enterprise Service Delivery Platform use case focuses in the EU
Services Directive that targets at facilitating and harmonizing the provisioning of services
within the EU. “Service” in this context means all sorts of economic services and includes
consulting, construction, maintenance, advertising, tourism, etc. The Directive’s vision is “to
make progress towards a genuine Internal Market in Services so that, in the largest
sector of the European economy, both businesses and consumers can take full
advantage of the opportunities it presents” [1]. By supporting the development of a truly
integrated Internal Market in Services, the Directive will help realize the considerable
potential in terms of economic growth and job creation of the services sector in Europe. This
requires establishing new communication mechanisms between service providers and
administration offices. Let us now enumerate the main requirements that we have identified
as relevant to this concrete task:

• The models and tools should support a range of different users with different roles
and skills. In the concrete context of this use case we will differentiate, Front office,
high-level knowledge of all processes, and Back-office, very detailed knowledge of
selected processes

• The lightweight processes and services are connected via user defined control flow
(incl. rule-based logic)

• Processes should be reusable. Further, a process should be identifiable as a building
block that can be recombined to more complex processes.

• We must take in to account when composing processes the nature of each
component of processes. They can be:

o Concrete services (classes of services or services instances)

o Services templates, similar to above mentioned, but with some information left
intentionally unspecified.

o Goals, which are functional descriptions of the objective that the user wants to
achieve with a service invocation.

• Regarding the parameters involved in the description of process the use case
requires that:

o Dynamic input parameters may be output parameters of preceding services or
context-dependent parameters.

o The definition of static input parameters should be also possible.

o Input parameters may be provided by the user (via browser-based UI) or by

1 The catalogue of requirements for this work package are contained in the deliverable
D6.1.1 State of the Art Report And Requirements For Service Construction

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 11 of 56

automatic information sources (services output or current context).

• Regarding the abstraction level that we might expect Processes should be described
with the enough abstraction and freedom to allow:

o transparent deployment on demand

o multiple and parallel running instances per process

2.1.2 W21C BT Infrastructure

Web21C is the name currently given to the platform over which BT will provide next
generation services on top of its all IP-based 21st Century Network (BT 21CN). BT will
provide some of these services (e.g. Ribbit service s); but also third parties will
provide others (e.g. facebook, amazon, etc.). Web21 C is central to BT’s transformation
from a traditional telecommunications company to a converged software and services
business . Web21C will allow third parties to use BT’s network as a platform for delivery of
their services, for which BT get revenue. These are not typically other network competitors,
but a new breed of partner - software companies, developers and content providers.

Currently Web21C comprises of a set of Web services, and software development kits
(SDKs) that provide external access to a number of BT capabilities, such as making a voice
call and sending an SMS text message.

In the following, we identify different requirements from each of the scenarios that we have
defined for this use case that we believe relevant.

• From the Web21c Telco application design scenario (casual-user side) we identify
the following:

o The representation, tools and techniques that we will develop to compose
services should envisage that different communities might generate
compositions, which can be either internal or external to the
telecommunication company.

o Services compositions should be based on different criteria, namely
functionally based, non-functional based (e.g. QoS), user goal based, and
context-based.

o We should define formally the lightweight model operational semantics in
order to automate tasks such as the suggestions for compatible services in
Web service compositions.

o Compositions should be easily extendable.

• From the Business Reseller scenario, we identify the following requirements

o The lightweight process model should allow the definition of fault-handling
situations, and provide constructs to report errors.

o The lightweight process model should also contain information about the QoS,
context criteria, etc… in order to be used in a ranking process later on.

o Apart from a non-determinist first, the composition system should allow the
possibility of computing the optimal Web service composition. This
optimization process will be based on non-functional and functional
parameters, context for a given goals.

2.1.3 C2C Service eCommerce

C2C Service eCommerce use case will be entirely focused on providing an easy way for

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 12 of 56

end users to use third party services offered throu gh the framework; enabling them to
build eCommerce applications in order to market and sell their own products , such as
photos or furniture or by providing their own innovative services built from a mash-up of
existing service offers. End customers are able to use various SOA4All-enhanced tools
offered through this framework to build their own end customer applications. While people
may use the SOA4All results to build generic applications, the eCommerce framework will
provide eCommerce specific functionality and will itself also use the SOA4All services for
achieving this. For example, it will provide typical Web Shop functionalities such as a
shopping cart feature and an access to payment providers using the SOA4All service
orchestration and communication facilities. More precisely, WP9 will provide services for
different eCommerce areas such as advertisement, marketing, distribution and payment,
based on existing partner products and services. In addition, it will enable the inclusion of
additional third party services via a service broker.

The requirements we believe that more closely related with service composition are:

• Complex services need to be constructed based on the connection of simple
services.

• The end users can build their eShop using ready-to-use process templates such as
manage products, categories, stock, payment and delivery options and services.

2.2 Requirements from SOA4All
As we have presented, SOA4All will be highly steered by the requirements from use cases,
Nevertheless we must also take in to account the requirements that arise from the general
project objectives, the research challenges that a service Web architecture poses.

In the deliverable D1.1.1 Design Principles for a Service Web, we present the principles and
rationale behind a service Web architecture; along with a outlining of how these principles
will provide the means and methods for an internet-scale deployment and adoption of SOA
infrastructures. These principles are those described by the SOA paradigm, combined with
the principles underlying Web, the Autonomic computing initiative, and the Semantic Web.
We presented those principles at a very high level since we can address them from various
points of view, using various technologies. The commitment to these principles poses
specific challenges and requirements that will affect directly to this work. Let us enumerate
them.

• We should support both machine and human-based comp utation. In several
scenarios, Web 2.0 and human computing approaches, together with their underlying
social consensus-building mechanisms, have proven the potential of combining human-
based services with services provided via automated reasoning. Services operated by
humans can be introduced to solving tasks that otherwise remain computationally
infeasible. The transparent provisioning of services abstracting over whether the ‘engine’
is a human or machine will significantly increase the overall quality of services available
to the end-user.

• Dynamicity and adaptability. Services can appear, change, or disappear; we envisage
a great services churning rate. Thus, it should be possible to control the life cycle of
services and to handle their dynamicity by offering proper mechanisms that enable the
adaptation of those systems that exploit these dynamic services. Adaptation usually is
concerned with the possibility of replacing on the fly a service with a similar one that we
should identify and select during the execution of the system.

• Scalability. SOA4All main objective is to provide a framework and an infrastructure that
help to realize a world where billions of parties are exposing and consuming services via
advanced Web technology. We are still far of this scenario, since SOA is largely an in-

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 13 of 56

house enterprise-specific solution. However, it is not hard to predict that in the midterm
as more advanced mobile devices and more efficient wireless infrastructures appear,
facilitating ubiquitous computing; and as optical and broadband communication
infrastructures expand, we expect the number of Web services to grow exponentially in
the next few years. This near-term situation imposes great scalability requirements on the
overall SOA4All infrastructure. Therefore the composition, adaptation and execution
framework should be either able to handle growing amounts of work in a graceful
manner; or to be readily enlarged to cope with new workload on the fly (i.e. should be
elastic).

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 14 of 56

3. Theoretical Grounding
In this section we will describe the theory and therefore the motivation of the design of the
composition software environment. Let us introduce the overall process, and relate it with the
different sections that we will include hereafter.

As we have previously stated, the main motivation of our work is to facilitate to non-expert
users the composition and adaptation of processes, by means of a lightweight BPMN
processes.

 Figure 1 From abstract processes to concrete executable processes2.

Our approach consists in letting users handle an abstract and easy to use processes
representation, that one the on hand will ease enormously its usage; and on the other will be
flexible enough to allow its later context-dependent customization. The user will handle
coarse-grained goals, and the system will carry out intelligently the transformation in to
concrete and executable process, that the system will tailor to the concrete execution context
and the current state of affairs.

We will realize this transformation process using a knowledge-intensive configuration
process, more precisely a parametric design process. As we shall see, in order to increase
the scalability of this process, we will extend the classical approach to this synthesis task by
using an opportunistic approach, based on blackboard-based multi-agent system.
Nevertheless, the hearth of this system, as in classical approaches, is a set of reusable
process templates that capture patterns of functionality of the system. Knowledge-experts
are mean to create these templates, but we will provide an automatic template generator
system that will ease experts’ task, and in some cases, will allow end-users to obtain their
own templates based on previous processes enactments.

Finally, when the system has generated an executable process we will perform, upon user
request, an optimization process on it, based on the concrete services NF properties.

2 Please, note that we express both abstract and executable processes using the same
lightweight BPM language, defined in the deliverable D6.3.1. First Specification Of
Lightweight Process Modelling Language. The difference resides mainly in the nature of its
activities, and the complexity of their control flow (see Figure 1).

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 15 of 56

In the following sections we will describe all these topics, what is a parametric design, how
we plan to implement it, how we plan to optimize its generated executable processes, and
last but not least, how we plan to aim experts and end-users in the complicated task of the
creation of process templates by means of the process template generator.

3.1 Parametric Design based Composition and Adaptat ion

Figure 2 Relationship among the Design, Configuration Design and Parametric Design tasks.

As we have stated, the core of processes transformation will be perform by means of a
parametric design procedure. Parametric design is a simplification of the design as
configuration problem (as shown in Figure 2), which is in itself a simplified form of design
where a set of pre-defined components3 is a priori selected and combined till it satisfies a set
of requirements and obeys a set of constraints [2][3]. Nevertheless, configuration-based
design assumes a free arrangement of the components that compose the design. Parametric
design refines configuration design, assuming the existence of functional solution templates
that guide the design process, decreasing greatly the complexity of the design process.
Parametric design restricts thus the space of possible designs, assuming that the targeted
artifact can be expressed in the form of parameterized functional templates.

As described in [4], parametric design can be divided in two main phases, namely analysis
and synthesis. The synthesis phase is common for any problem that we may address, since
its starting point is a common formalized design model. The analysis phase, to the contrary,
involves the gathering of design constraints, needs and desires which by nature are
dependent of the problem to solve. Let us depict these concepts in detail in the following
sections.

3 The set of components considered for a design as configuration task receives is denoted as
technology. We remit the reader to [5] for a clear description in all this matters.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 16 of 56

Figure 3 Analysis and Synthesis phases (adapted from [4]).

3.1.1 Analysis

In the analysis phase we transform the needs, desires of the user and specific constraints of
domain into a formal and complete set of requirements and constraints [4]. In this analysis
process the composition system use of knowledge of the domain and external information
sources. Fortunately in the context of service composition and service adaptation, the initial
requirements are precise and very well structured, and therefore the analysis phase losses
great part of its importance. On the one hand this process is not as difficult as in other
domains where parametric design is being use (e.g. architecture, 3D objects modeling, etc).
On the other hand, the process can be heavily automated, since in other fields analysis might
involve a lot of human intervention and a knowledge elicitation process.

3.1.1.1 Analysis for Composition

In the context of the composition activity, the highly structured inputs of are:

• An abstract lightweight process definition . The input for the analysis for
composition activity is an abstract lightweight process. This is one of the key
concepts of our approach, in order to be able to customize services to a certain
context, user-preference or situation; we need certain initial degree of freedom,
admitting thus certain level of abstraction in our processes. Note that this degree of
freedom is directly proportional to the easiness of use, since the user is not forced to
specify the process in high detail.

• A fixed set of user constraints and preferences . They express the concrete
preferences or restrictions that the user may pose in a concrete moment. The user
can have a clear idea of some high-level requirement (e.g. price, time of execution of
the service, security-related issues, etc.)

• Contextual information . The context of the environment, paying special attention to
the context of the end-user, must be taken in to account in the analysis phase.

3.1.1.2 Analysis for Adaptation

In the analysis for adaptation there are a couple of subtle differences in the inputs:

o A lightweight process definition. As in the case of composition the input contains
also a lightweight process definition. In this case, it does not have to be an abstract
one, since adaptation can take as a starting point more concrete process
descriptions than composition.

o A non-monotonic requirements and preferences . A set of non-monotonic
requirements obtained in a negotiation process with the external agent that interacts
with the service adaptation module.

o The result of the previous iteration of the adaptat ion process.

With this inputs as a starting point a first draft of the design model is created, and as such it
is offered to the external agent. The agent then can add/modify/remove its requirements, in
order to influence in the next iteration the adaptation process. Let us clarify the adaptation
process with a sequence of schematic pictures.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 17 of 56

negotiation
+

context

<P, Vr, C, R, Pr, cf>

analysis

<P, Vr, C, R, Pr, cf>

analysis

synthesis

Figure 4 Adaptation process 1st iteration.

In the first iteration we obtain a preliminary design, that can be used as an input to the next
iteration (as portrayed in Figure 5). Contrary to the case of composition, the user is aware of
the result of the parametric design process.

negotiation
+

context

<P, Vr, C, R, Pr, cf>

analysis

synthesis

+ <C’, R’>+ <C’, R’>

Figure 5 Adaptation Process 2nd iteration.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 18 of 56

negotiation
+

context

<P, Vr, C, R, Pr, cf>

analysis

synthesis

+ <C’’, R’’>+ <C’, R’>+ <C’, R’>

Figure 6 Adaptation Process final iteration.

3.1.2 Synthesis

The synthesis phase of parametric design can be characterized as search in a space of
subassemblies [6]. We can consider it a search problem in a large space of artifacts of a
subset of artifacts that satisfy multiple constraints. From the myriad of possible objects that
can be generated, only an utterly small number of objects will be viable, they are needles in a
huge haystack. Moreover, these designs are usually not by far optimal solutions. In Figure 7
we represent this search through the design space. From an initial design (depicted as a red
circle in Figure 7 that we refer design plan as we will describe later on) we have to navigate
thorough the space of possible intermediate design structures till we reach a design that we
consider a final solution (the possible final solutions will also be described later on)

Figure 7 Parametric design synthesis as a search (figure adapted from [7]).

Transitions between states are realized by applying design operators (represented as arrows
in Figure 7) to design models. Initially it is not required, but ideally, a design operator should
drive the search towards a design model that is closer to the targeted final state (i.e. solution
design model, either optimal or suboptimal, as we shall see).

In order to guide the navigation the synthesis phase of the parametric design process, the
automatic designer makes use of knowledge about the world and of specific design
knowledge. As depicted in the main use of specific domain knowledge is to relate possible

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 19 of 56

violations on the requirements and constraints of the design with concrete design decisions.

3.1.2.1 Characterization and formalization of design models

As we have already stated in the beginning of the description of parametric design,
parametric design knowledge-intensive configuration process where designs have their
structure fixed. Let us describe the design model of parametric design, which of course will
include the fixed structure.

Figure 8 The fixed Design Structure.

We formalize a parametric design model as follows:

<P, Vr, A, C, R, DS, Pr, Cf>

• Parameters and Value Ranges. The set P represents the set of parameters that can
be attached both to:

o Elements . Each of the elements that belong to the design structure may have
their own parameters.

o Whole structures . The whole design structure can also be parameterized.

• Value Ranges . The set Vr (Vr={V1,......, VN}) represents the possible value ranges
that each of the parameters where each Vi = {vi1,....., viM}.

• Assignment Set . The assignment set A is a set of tuples {(pi, vij)} that represent the
values associated with each of the parameters, both those of the design structure and
those of the elements that compose the design structure. In the case that the
parameter pij represents an atomic goal, we assign it a service that can solve that
goal (details about how we represent such things are given in the deliverable D6.3.1).

• Constraints and requirements . The sets C(={c1…cN}) and R(={r1…rN}) represent the
sets of constraints and requirements that formalize the admissibility and suitability of
a design. Constraints indicate limitations on what counts as a possible design solution
[4]. Requirements are also constraints and, as was described in [5], the difference
between requirements and constraints is conceptual rather than formal.
Requirements typically have a “positive” connotation, in the sense that they describe
the desired properties that the solution must satisfy; whereas constraints have a
“negative” connotation, in the sense that they limit the space of admissible designs,
by expressing the applicable technological or physical constraints.

• Design Structure . As we have stated, parametric design fixes the structure of the
design to be configured (a service in our case). Thus our problem of parametric
design should also include the fixed process structure DS, which parameters should
belong to the set P. We show a graphical representation of a design structure in
Figure 8.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 20 of 56

• Preferences and Global Cost Function . The set Pr(={pr1..prN}) is the set of
preferences. Preferences describe knowledge that allows us given two design
models, Di and Dj, to make a judgement about which of the two is the more suitable
(in accordance with some criterion. The Global Cost Function (cf) is closely related
with the set of preferences, and provides a global cost criterion for ordering solution
designs. As described in [7] we define a cost criteria is for each preference. The
global cost function can be derived thus the combination of these preference-specific
cost criteria. The global cost function Cf = F(cf1(pr1),...,cfN(prN)), where cfi(pri) is the
cost function associated with preference pri.

3.1.2.2 The taxonomy of possible designs

In Figure 9 we show graphically the taxonomy of possible design models. Depending on the
characteristics of a given design model D, formalized as we have defined in the previous
section, D can be classified as follows

Figure 9 Taxonomy of possible designs models.

o D is a complete design model if each parameter, say pi, in the parameters
set P has a valid value assigned in D. In the case of the parameters that
represent services (i.e. goals) means that each of the activities in the structure
process has a service associated with it.

iiiiii VvAvpvPpDComplete ∈∧∈∃∈∀≡),()(

o D is an admissible design model if the design model does not violate any
constraint in the set C in the design model D.

)()(DcCcDAdmissible ii ¬∈∀≡

o D is a suitable design model is if satisfies all applicable requirements in the
set R. C(={c1…cN}) and R(={r1…rN}).

)()(DrRrDSuitable ii ∈∀≡

o D is a valid design model is if it is both an admissible and suitable model.

)()()(DSuitableDAdmissibleDValid ∧≡

o D is a solution design mode l, and therefore a solution to a parametric design
problem, if it is complete and valid.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 21 of 56

)()()(DCompleteDValidDSolution ∧≡

o An finally, a design model D is an optimal solution design model if there not
exist any other solution model with a smaller global cost than the cost of D.
More formally:

)'()()'(' DCFDCFDSolutionDutionOptimalSol CF <→∀≡

Note that we write OptimalSolutionCF since it depends on the cost function that we
consider.

3.1.3 A Multi-agent Approach to the Parametric Desi gn Synthesis Phase

[8] describes that the occurrence of some combination of a set of problem characteristics can
serve as a good indication of the appropriateness of the blackboard approach. In our opinion
the synthesis phase of parametric design is a perfect candidate to be approached using a
blackboard model, since it posses many of the afore mentioned characteristics, such as a
large solution space, the need of the developing of various lines of reasoning, the need of
incremental reasoning, opportunistic control, multiple reasoning techniques, etc.

Blackboard architectures where firstly introduced in the Hearsay-II speech understanding
system [9]. Blackboard models formalise the metaphor of a group of experts working on a
problem and communicating ideas using a blackboard. The blackboard becomes a repository
of information, which is globally accessible and records the problem specific information
available from each expert. The flow of information between the blackboard and each expert
is bidirectional, since participating experts both contribute modifying the blackboard and
obtain information from the blackboard. Moreover, the blackboard not only con, but also the
controlflow since it also coordinates and synchronizes the participants. In Figure 10 we
depict this approach, where multiple agents observe the same blackboard, and each of them
select different design models to change, each

Figure 10 Multi-agent Approach to Parametric Design.

Apart from these characteristics of blackboard based systems, in the context of our work, in
our concrete case they have two characteristics that we find of great importance :

• Divide et impera principle enabler . The blackboard model is a direct application of
the divide et impera principle. The rationale underlying such a principle is to
decompose complex problems into more manageable and presumably simpler ones.
We can obtain solutions to a problem by bringing together solutions to smaller
subproblems easier to solve. This is a well-known, widely applied, and often
successful approach to dealing with complex problems that need to be solved in a
scalable fashion. In future implementations of our composition and adaptation
system, the reuse of previously solved subproblems will be a necessity.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 22 of 56

• Emergent behaviour enabler . [10] present this advantage of blackboard-based
MAS. The set of agents that share the blackboard intelligently coordinate a response
to the request of the creation of an artefact, which emerges as a result of shared
interests of agents (cf. entities, institutions) within a network of complementary
expertise.

3.1.3.1 Agents Taxonomy

We shall describe now the initial taxonomy of agents that we consider for our MAS. In this
section, we will describe how each of these collaborative agents decide which their actions,
which will be. In Figure 11 we show the initial taxonomy of agents that we define in this first
prototype.

Figure 11 Taxonomy of the agents involved in the parametric design process.

3.1.3.2 Blackboard Control Agent

This type of agent is the one that initializes the blackboard when a synthesis request is
received in the composition system. Its main roles are:

• Constitute and initialize the blackboard. Initially the blackboard will just contain the
initial synthesis request.

• Advertise the newly created blackboard to possibly interested parties. That includes
Design plan generators agents, Design model modification agents, and Design
analysis agents.

• Recollect possible solutions. If one of the design analysis agents notifies that the
synthesis process has resulted in a valid result, the agent sends the result back to the
requester composition system.

Each of the cited types of agents will be described in the following subsections, and we will
illustrate this process more precisely using UML diagrams in the design of the 1st prototype
section.

3.1.3.3 Design Plan Generators

In few words, design plan generator agents are those responsible of generating the initial
design plan using both the initial inputs to the parametric design process and the knowledge
about the domain and context of the environment. A design plan specifies a sequence of
design actions to take for producing a design or part of a design. Design commitments made
by a design plan are abstract; as depicted in [6], choices are not made at the level of
primitive objects but at the intermediate level of design abstractions. In our case, this choices
are made in the level of goals (either atomic or composite), but they should not define
concrete service invocations, this kind of assignment should be further refined in the
parametric design process.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 23 of 56

As in the case of In our concrete scenario, the design planner using the assumptions about
the context contained in the adapter, should select which is the template that fits better in the
actual context. In Figure 12 we show how a composite goal is related with different
processes templates. Once a user request is placed in the initial blackboard, it contains a
high-level process that contains, for example the Goali, the set of requirements (preferences
and constraints of the user). The design plan generator, using the assumptions and
applicability conditions contained in the adapters (adapterij and adapterik) and the plus the
actual context, chooses the most appropriate process template to replace Goali.

Figure 12 The relationship between Goals and Process Templates.

3.1.3.4 Design Modification Agents

Design Modification Agents are always wait patiently until in some of the blackboards that
they are aware of appears a design model that they can modify. The behaviour of all the
design modification agents in the multi-agent parametric design problem is determined by
same task for determining the design model to change.

The effectors that Design Modification Agent posses are design operator. As we have
described, when certain circumstances hold, they apply one design operator to a given
design, obtaining one or several new designs. Design operators are transitions between
design models [7]. We portrayed them in Figure 7 as links between the spheres that
represent the design models. A design operator thus is an action taken by a design
transformation agent that from a given design model obtains a new one by altering some of
its parameters. This generated design hopefully lead us to a design model closer to a valid
state, but we cannot assure it beforehand.

The behaviour of each of the design modification agents is a modification of the one
described depicted in [7] for parametric design. We will depict this process using sequence
diagrams in the 1st Prototype Design section.

In the first prototype, we will use just two design operators, namely the semantic link design
operator and the goal decomposer design operator. As the design-time composition
environment evolves, we will continue plugging in new ones. Let us describe the short yet
only initial catalogue of design operators that we plan to use.

3.1.3.4.1 Semantic Link Design Operator

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 24 of 56

Figure 13 The Semantic Link Design Operator.

The Semantic Link Design Operator, as shown in Figure 13, takes as input a process
template which actions are fixed atomic goals (we refer to them as goals); and binds those
atomic goals to fixed services using the semantic link based algorithm described in [11].
Therefore, services s are assigned to achieve a goal G in case

• s satisfies the latter goals

• some semantic links between s and previous/next goals in the composition exists.

Input and output parameters of services are associated with concepts in a common ontology,
or terminology T , where the WSMO-Lite capability [12] and SAWSDL[13] is used to
describe them (through semantic annotations). According to this level of description Web
service composition consists in retrieving some semantic links [11] noted jisl , (Figure 14) i.e.,

jjiTiji ssInsOutSimssl),_,_(,:, = (1)

between output parameters TsOut i ∈_ and input parameters TsIn j ∈_ of other services

js . Thereby is and js are partially linked according to a matching function TSim . Given a

terminology T , [14] and [15] value the range of the latter function along five matching types:
Exact i.e., ji sInsOut __ ≡ , PlugIn i.e., ji sInsOut __ ⊂ , Subsume i.e., ji sInsOut __ ⊃ ,

Intersection i.e.,)__(⊆⊥∩¬ ji sInsOut , Disjoint i.e., ⊆⊥∩ ji sInsOut __ .

Example (Matching Type): Suppose 2,1sl (like in Figure 14) be a semantic link between two

services 1s and 2s such that the output parameter NetworkConnection of 1s is (semantic)

linked to the input parameter SlowNetworkConnection of 2s . According to Figure 17 this link
is valued by a Subsume matching type since

nkConnectioSlowNetwor nection NetworkCon ⊃ .

The matching function TSim enables, at design time, finding some levels of semantic
compatibilities (i.e., Exact, PlugIn, Subsume, Intersection) and incompatibilities (i.e., Disjoint)
among independently defined service descriptions.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 25 of 56

Figure 14 Semantic Link jisl , between service is and js

Therefore, this design operator transforms an incomplete design in to a complete one, mainly
by considering and automating data flow in Web service composition.

3.1.3.4.2 Goals Decomposer Design Operator

This design operator is quite similar to the design plan generators that we have already
described. They substitute composite goals of the design structure. Therefore, they follow a
similar approach, using goals, adapters and process templates to transform abstract
processes into more concrete ones. Note that the final endeavour of the synthesis phase is
to transform the initial design structure formed by abstract elements in to a process
described only in terms of concrete activities (i.e. it does not contain any composite goal).
This design operator seeks precisely that, to use context information to make user design a
little more concrete, closer to be executable (and likely more complex).

3.1.4 Design Analysis Agents

Design analysis agents, once a new design modification agent has generated a new design
model inside the blackboard, analyze where the design fits in the taxonomy of possible
designs presented in Figure 9. In case that the design model the agent finds a solution, the
design analysis agent notifies this fact to the design blackboard control agent.

The idea is that as we manage a knowledge-level representation of designs models, and as
[8] blackboard systems allow multiple lines of reasoning and reasoning techniques of
representations and logical representation and reasoning mechanisms; we can have several
type of analysis agents that perform their tests in different ways (e.g. using model checking
techniques [16], constraint processing [17], etc.)

3.2 Optimizing Semantic Web Service Composition
In this section, we focus on optimizing Web service composition at functional level. In such a
level, we consider a Web service composition where a set of services is composed to
achieve a goal based on the semantic similarities between input and output parameters as
indicators of service functionality.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 26 of 56

Figure 15 Process Optimization recombining services of lightweight process.

To this end, we consider the template based compositions (provided in the previous section)
where their underlying goals (also known as tasks or patterns) can be assigned by different
services. The motivation of the composition optimizer is as following: “retrieving a service
assigned to each goal of the template based composition such that the i) similarity between
output and input parameters (also known as the data flow in Web service composition) and ii)
non functional quality of services is maximal”.

To measure semantic similarity, we use the concept of (functional) semantic link [11], defined
as a semantic connection between an output and an input parameter of two services. Web
service compositions could thus be estimated and ranked not only along well known non
functional parameters such as Quality of Services (QoS) [18] but also along the dimension of
semantic similarity as indicator of functional fit [19]. In this section, we propose to unify both
types of criteria in an innovative and extensible model allowing us to estimate and optimise
the quality of service compositions.

Maximizing the quality of service composition using this model is essentially a multi-objective
optimization problem with constraints on quality of services and semantic links, which is
known to be NP-hard [20]. Most approaches in the literature addressing optimization in Web
service composition use Integer linear Programming (IP) e.g., [21]. However, IP approaches
have been shown to have poor scalability in terms of time taken to compute optimal
compositions when the size of the initial set of services grows. Such a case can arise in the
future Semantic Web, where a large number of semantic services will be accessible globally.
This is the vision of SOA4All. Rapid computation of optimal compositions is especially
important for interactive systems providing service composition facilities for end users, where
long delays may be unacceptable. In this section, we demonstrate that the optimisation
problem can be automated in a more scalable manner using Genetic Algorithms (GAs), and
propose an approach to tackle QoS-aware semantic Web service composition.

In the section 4.3.2 we briefly review i) semantic links, ii) their common descriptions and iii)
the Web service composition model. Section 4.3.3 introduces the quality criteria for QoS-
aware semantic Web service composition. Section 4.4.4 details the GA-based evolutionary
approach, including the strategies of the crossover, mutation and fitness function. Finally,
section 4.4.5 draws some conclusions.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 27 of 56

3.2.1 Background

In this section, we describe how we use semantic links to model Web service composition. In
addition, we remind the definition of Common Description in semantic links.

3.2.1.1 Common Description of a Semantic Link

Besides computing the matching type of a semantic link, [22] suggest to computing a finer

level of information i.e., the Extra and Common Descriptions between isOut _ and jsIn _
of a

semantic link jisl , . They adapt the definition of syntactic difference [23]for comparing ALE DL
descriptions and then obtaining a compact representation. The Extra Description

ij sOutsIn __ :

}___|min{:__ ijiij sOutsInsOutEEsOutsIn ∩≡∩= (2)

Refers to information required by jsIn _ but not provided by isOut _ to ensure a correct data

flow between is and js . The Common Description of isOut _ and jsIn _ , defining as their

Least Common Subsumer [24] lcs , refers to information required by jsIn _
and provided by

isOut _ . by isOut _ . In case ⊆⊥¬∩ ji sInsOut __ , ij sOutsIn __ is replaced by its more

general form i.e.,)_,_(_ ijj sOutsInlcssIn .

Figure 16. Sample of an ALE Domain Ontology T.

Example: (Extra & Common Description)

Suppose 2,1sl in previous Example. On the one hand the Extra Description missing in

NetworkConnection to be used by the input parameter SlowNetworkConnection is defined by
nection NetworkConn \ kConnectioSlowNetwor i.e., MAdslnetSpeed 1.∀ . On the other hand

the Common Description is defined by
nection)NetworkConction,tworkConnelcs(SlowNe i.e., NetworkConnection.

3.2.1.2 Modelling Semantic Web Service Composition along Template based Web service
composition

Here we remind how semantic links are represented in the template based Web service
composition. The process model of Web service composition and its semantic links is
specified by a state chart [25]. Its states refer to services whereas we label its transitions with
semantic links. In addition some basic composition constructs such as sequence, conditional
branching (i.e., OR-Branching), structured loops, concurrent threads (i.e., AND-Branching),
and inter-thread synchronization can be found. To simplify the presentation, we initially
assume that all considered state charts are acyclic and consists of only sequences, OR-
Branching and AND-Branching.

Example (Process Model of a Web Service Composition):

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 28 of 56

Suppose a composition (Figure 17) extending Example 1 with six more services 81, ≤≤iis , eight

more semantic links jisl , . Its process model consists of sequences, OR-, AND-Branching.

Figure 17 A (Concrete) Web Service Composition.

The previous example illustrates a composition wherein goals iG and abstract semantic link
A
jisl , have been respectively concretized by one of their n candidate services (e.g., is) and

2n candidate links (e.g., jisl ,). Indeed some services with common functionality,

preconditions and effects although different input, output parameters and quality (e.g., QoS)
can be selected to perform a target goal iG and obtaining a concrete composition. Such a

selection will have a direct impact on semantic links involved in the concrete composition.

In the following, we address the issue of selecting and composing a large and changing
collection of services. We will make the choice of services at composition time, based on
both quality of i) services and ii) their semantic links.

3.2.2 Quality Model

First of all we present a quality criterion to value semantic links. Then we suggest extending
it with the non functional QoS to estimate both quality levels of any compositions.

Quality of Semantic Links

We consider two generic quality criteria for semantic links jisl , defined by

jjiTi ssInsOutSims),_,_(, :

• Common Description rate]1,0()(, ∈jicd slq is defined by:

()
|)_,_(||__|

|_,Out_s|
 :)(slq i

ji,cd
jiij

j

sInsOutlcssOutsIn

sInlcs

+
= (3)

cdq estimates the rate of descriptions which is well specified for ensuring a correct data flow

between is and js .

In more details |.| refers to the size of ALE concept descriptions ([26] p.17) i.e., |T|, |⊥⊥⊥⊥|, |A|,

|¬A|, |∃r| are 1; |C⊓ D| := |C|+|D|;|∀r.C| and |∃r.C| are 1 + |C|. For instance |Adsl1M| is 3 in
Figure 17.

• Matching Quality mq of a semantic link jisl , is a value in (0; 1] defined by

)_,_(jiT sInsOutSim i.e., either 1 (Exact),
4
3

 (PlugIn),
2
1

(Subsume) and

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 29 of 56

4
1

(Intersection). Contrary to cdq , mq does not estimate similarity between the

parameters of semantic links but gives a general overview (discretized values) of their
semantic relationships.

In case we consider ji sInsOut __ ∩ to be not satisfiable, it is straightforward to extend and

adapt our quality model by i) computing contraction [27] between isOut _ and jsIn _ , and ii)

valuing the Disjoint matching type. Thus, the two quality criteria can be update in
consequence.

Given the above quality criteria, the quality vector of a semantic link jisl , is defined as follows:

))(),((:)(,,, jimjicdji slqslqslq = (4)

Example. (Quality of Semantic Links)

Let '
2s be another candidate service for 2G in Figure 17 with NetworkConnection as an input.

The link '
2,1sl between 1s and '

2s is better than '
2,1sl since)()(2,1

'
2,1 slqslq > .

In case is and js are related by more than one link, the value of each criterion is retrieved by

computing their average.

3.2.2.1 QoS-Extended Quality of Semantic Link

Here we extend the latter quality model by also exploiting the NF properties of services (also
known as QoS attributes [28]) involved in each semantic link. We simplify the presentation by
considering only:

• Execution Price +∈ Rsq ipr)(of service is i.e., the fee requested by the service

provider for invoking it.

• Response Time +∈ Rsq it)(of service is i.e., the expected delay between the

request and result moments.

The latter values of execution price and response time are given by service providers or third
parties.

We will define a quality vector of a service is as follows:

))(),((:)(itipri sqsqsq = (5)

Thus a QoS-extended quality vector of a semantic link jisl , :

))(),(),((:)(,,

*

jjiiji sqslqsqslq = (6)

Given an abstract link between goals ji GG , , one may select the link with the best matching

quality, common description rate, the cheapest and fastest services, or may be a
compromise between the four by means of (6). Moreover, the selection could be influenced
by predefining some constraints e.g., a service response time lower than a given value.

Example (QoS-Extended Quality of Semantic Link)

Suppose 2G and its two candidate services 2s and '
2s wherein)()(2

'
2 sqsq < . According to

the latter example , '
2s should be preferred regarding the quality of its semantic link with 1s ,

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 30 of 56

whereas 2s should be preferred regarding its QoS. So what about the best candidate for

Asl 2,1 regarding both criteria:
*

q ?

3.2.2.2 Quality of Composition

Here we describe how to compute the quality of any concrete composition (Figure 19), given
the quality of its underlying services and semantic links (here s and sl sl stand respectively
for is and jisl ,). The approach for computing semantic quality of such a composition c is

adapted from the application-driven heuristics of [19], while the computation of its NF QoS is
similar to [29].

Common Description rate cdQ of both a sequential and AND-Branching composition c is

defined as the average of its semantic links’ common description rate)(slqcd . The common

description rate of an OR-Branching composition is a sum of)(slqcd weighted by slp i.e., the

probability that semantic link sl be chosen at run time. The composition designer initializes
such probabilities; and may eventually update them considering the information obtained by
monitoring the workflow executions.

• Execution Price prQ of a sequential and AND-Branching composition c is a sum of

every service’s execution price)(sqpr . The execution price of an OR-Branching

composition c is defined in the same way as)(cQcd , by changing)(cqcd by)(sqpr .

• Details for computing Matching Quality)(cQm and Response Time)(cQt can be

found in Figure 18.

Using the above aggregation rules, the quality vector of any concrete composition can be
defined by (7). Contrary to QoS criteria },{, prtllQ ∈ , the higher },{, mcdllQ ∈ the higher its thl quality

for semantic criterion.

))(),(),(),((:)(cQcQcQcQcQ prtmcd= (7)

Definitions (4), (5), (6) as well as (7) can be extended by considering further quality of
semantic links and services.

Figure 18 Quality Aggregation Rules for Service Composition.

3.2.3 A Genetic Algorithm Based Optimization

The optimization problem i.e., determining the best set of services of a composition with
respect to some quality constraints, is NP-hard. In case the number of goals and candidate
services are respectively n and m , the naive approach considers an exhaustive search of

the optimal composition among all the nm concrete compositions. Since such an approach is
impractical for large-scale composition, we address this issue by presenting a GA-based
approach [30] which i) supports constraints not only on QoS but also on quality of semantic
links and ii) requires the set of selected services as a solution to maximize a given objective.
In this section, compositions will refer to their concrete form.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 31 of 56

3.2.3.1 GA Parameters for Optimizing Composition

By applying a GA-based approach the optimal solution (represented by its genotype) is
determined by simulating the evolution of an initial population (through generation) until
survival of best-fitted individuals (here compositions) satisfying some constraints. The
survivors are obtained by crossover, mutation, selection of compositions from previous
generations. Details of GA parameterization follow:

• Genotype : it is defined by an array of integer. The number of items is equal to the
number goals involved in the composition. Each item, in turn, contains an index to an
array of candidate services matching that goal. Each composition, as a potential
solution of the optimization problem, can be encoded using this genotype.

Example. (Genotype and Composition)

 Figure 19 Genotype Encoding for Service Composition.

• Initial Population : it consists of an initial set of compositions (characterized by their
genotypes) wherein services are randomly selected.

• Global and Local Constraints . They have to be met by compositions c e.g.,
8.0)(>cQcd .

• Fitness Function : this function is required to quantify the “quality” of any composition
c . Such a function f needs to maximize semantic quality attributes, while minimizing
the QoS attributes of c :

)()(

)()(
)(

cQcQ

cQcQ
cf

ttprpr

mmcdcd

ωω
ωω

+
+= (8)

where },,,{ mcdtprlQ ∈ refer to lQ normalized in the interval]1,0[.]1,0[∈lω is the weight assigned

to the

thl quality criterion and 1
},,,{

=∑ ∈ mcdtprl lω . In this way preferences on quality of the desired

compositions can be done by simply adjusting lω e.g., the Common Description rate could

be weighted higher.

In addition f must drive the evolution towards constraint satisfaction. To this end
compositions that do not meet the constraints are penalized by extending (8) with respect to
(9).

2

},,,{
minmax)()(

)(
)()(' ∑

∈














+
∆−=

mcdtprl ll

l
pe

cQcQ

cQ
cfcf ω (9)

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 32 of 56

where max
lQ and min

lQ are respectively the maximum and minimal value of the thl quality constraint,

peω weights the penalty factor and lQ∆ is defined by:









>−
≤≤
>−

=∆

llll

lll

llll

l

QQifQQ

QQQif

QQifQQ

Q
minmin

maxmin

maxmax

0 (10)

• Operators on Genotypes . They define authorized alterations on genotypes not only
to ensure evolution of compositions’ population along generations but also to prevent
convergence to local optimum. We use i) composition mutation i.e., randomly
selection of a goal (i.e., a position in the genotype) and its service, ii) the standard
two-points crossover i.e., randomly combination of two compositions, iii) selection of
compositions which is fitness-based i.e., compositions disobeying constraints are
selected proportionally from previous generations.

• Stopping Criterion . It enables to stop the evolution of a population. First of all we
iterate until the constraints are met (i.e., },,,{0 mcdtprlQl ∈∀=∆) within a maximum

number of generations. Once the latter constraints are satisfied we iterate until the
best fitness composition remains unchanged for a given number of generations.

3.2.3.2 Executing GA for Optimizing Composition

Given these parameters, the execution of the GA consists in i) defining the initial population
(as a set of compositions), and computing the fitness function (evaluation criterion) of each
composition, ii) evolving the population by applying mutation and crossover of compositions
(Goals with only one candidate service are disregarded), iii) selecting compositions, iv) evaluating
compositions of the population, and v) back to step (ii) if the stopping criterion is not satisfied.

In case no solution exists, users may relax constraints of the optimization problem. Instead,
fuzzy logic could be used to address the imprecision in specifying quality constraints,
estimating quality values and expressing composition quality.

3.2.4 Conclusion

In this section we studied how to optimize Web service composition, given a template based
Web service composition. To this end we focused on QoS-aware semantic Web service
composition. This approach has been directed to meet the main challenges facing this
problem i.e., how to effectively compute optimal compositions of QoS-aware Web services
by considering their semantic links. First of all we have presented an innovative and
extensible model to evaluate quality of i) Web services (QoS), ii) their semantic links, and iii)
their compositions. In regards to the latter criteria, the problem is formalized as an
optimization problem with multiple constraints. Since one of our main concerns is about
optimization of large-scale Web service compositions (i.e., many services can achieve a
same functionality), we suggested to follow a GA-based approach which is faster than
applying IP.

3.3 Templates Generation
In the context of Task 6.4 we are developing a lightweight process modelling language,
which will enable users to design process models and reusable templates. Despite of this, in
several complex industrial situations it is not possible to define an “a priori” template for a
process, either due to the complexity of the real situation or to the high effort required to
formalise such template.

Thus, the problem is to understand what is the typical workflow followed by the various

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 33 of 56

activities, in order to formalise their sequence in a composed schema

3.3.1 Current approaches and their limitations

Process mining techniques are aiming at abstracting from past task and service instances to
induct a new schema, previously unknown, describing all of them. Most of existing state-of-
the-art approaches are devoted to identify a single process formalisation, often resulting in
particularly complicated schemas and not very accurate especially in cases of processes
made by several activities and complex behavioural rules. The resulting complexity is due to
the need of deriving a single schema able to explain every event recorded in the logs.

The resulting schema, even if formally complete and adequate to support a process
execution, turns out to provide little help to solve the initial problem, that is to let end-users
understand what the hidden process schema. This is especially true if such tools are to be
used at a managerial level, in order to derive a business-oriented process schema, at a
higher level of abstraction.

3.3.2 The Template Generator

In order to overcome such limitations, we plan develop a Template Generator tool which
taking service execution logs as inputs is able to generate an hierarchy of process schemas
(at different level of complexity/completeness) and a taxonomy of possible process templates
(at different level of abstraction), able to support end-users in the selection of the most
suitable one.

Such tool will exploit state-of-the-art Process mining, Process Abstraction and Clustering
techniques in an innovative way, in order to present the end-users with the most suitable
templates representations and let them choose the one that most fits their needs. The
selected one, described with the SOA4All lightweight language (task T6.3) can be further
validated, adapted or refined by end-users thanks to the SOA4All Process editor developed
in T2.6.

In this way, the effort and the complexity for creating new processes can be lowered, and
made more accessible to all kind of users. In this sense, such technologies contribute to the
“4ALL” objectives of the project .

This approach perfectly fits and complements the typical process management cycle, made
of a design, execution and verification phase. The following picture shows the role of the
Template generator component within the context of SOA4All:

Figure 20: Template Generator typical use-case.

More in detail, the Process Generator will offer the following features:

• It will generate a hierarchy of process schemas at different level of
complexity/completeness, and a taxonomy of possible process templates (at different
level of abstraction

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 34 of 56

• It will support end-users to graphically analyse such hierarchy and taxonomy

• It will be able to analyse service execution logs gathered by the Service Analysis
tools developed within T2.3, thus taking into account contextual information

• It will be able to generate process templates based on the SOA4All Light-weight
language (as defined into T6.3) thus making them directly available for editing in the
SOA4All Process editor

• It will be based on the popular open-source ProM framework4, featuring state-of-the-
art workflow discovery techniques, which will be complemented with plug-ins
featuring innovative hierarchy mining and process abstraction and clustering
algorithms

• We will integrate it in the SOA4All Studio, the user will be able to access the
generated processes and adapt them according to her needs.

It should be remarked that this tool is not aiming at advancing research in mining, clustering
or abstraction techniques, which already have a good degree of maturity, but rather on an
optimal way of using such techniques.

3.3.3 The template generation process

In the following section, we depict the process that we carry out in order to generate process
templates from logs of past execution of services. The process (depicted in Figure 21) is
composed of the following steps:

Figure 21 The Workflow of the Process Template Generation Process.

1. Preliminary Workflow Discovery. As the first step, we generate a preliminary
schema for the initial set of logs. In this phase, we will use state-of-the-art
Workflow discovery techniques, as the ones that are available in literature and
available in the ProM framework [31], such as Alpha, Multi-phase, Genetic, Social
Network. Anyway, we should stress that such algorithms are not able to induce
hierarchical process models.

4 http://prom.win.tue.nl/tools/prom/

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 35 of 56

2. Logs Clustering thanks to Discriminant Rule Extract ion methods . The
preliminary schema generated in this way is based on the whole set of logs. In
order to detect and to separate meaningful execution scenarios into meaningful
set (cluster), we will exploit Discriminant Rule Extraction and Log Clustering
techniques (see [32] and [33]). A Discriminant Rule is a process feature about
flows within a schema. We can consider them as a global hidden process
constraint, which is detectable in the logs. They allow discovering different
structural variants of a process. We can find such rules thanks to specific feature
mining algorithms. Finally, in order to partition the initial log set into clusters, we
project logs in the multi-dimension space induced by such set of discriminant
rules, and we apply a numeric data-clustering algorithm on it.

3. Derivation of Process Schemas for the Clusters. Once we have a new set of
logs arranged into cluster, each of which can be interpreted as a possible different
execution of the same process – in this way we are reducing the degree of
complexity in the schema, but also the degree of completeness of the schema.
Once again, such log clusters can be modelled with a specific workflow schema,
using the same Process Mining techniques described in bullet 1) (i.e. ProM tool).

4. Nodes Refinement. We can iterate this process and repeat steps 2 and 3 for
each node we wish to refine, in order to obtain a final hierarchy of workflow
schemas (Hierarchy Discovery).The idea is to let the end-user choose the
maximum number of iterations.

5. Final Hierarchy Selection . We present to the end-user the final hierarchy of
schemas: leaves will constitute a disjoint set, which represents the initial log set in
a more accurate and expressive way rather than the preliminary schema (root).
Indeed, we lose Completeness vs the initial schema, which was aiming at
describing all logs. At this point, is up to the user to select the most suitable
schema, based on the number of possible situations (i.e. different possible
executions) he wants to take into account and based on the complexity of the
schema.

6. Process Abstraction . So far, we have performed operations in order to achieve
a good compromise between complexity and completeness. In order to further
improve our process representations and make them fully available for analysis
and business planning purposes, we apply a process abstraction methodology, in
order to re-structure the knowledge embedded in the various schemas of the
hierarchy in a taxonomy of schemas at different level of abstraction. The resulting
taxonomy is a tree where leaves describe real process instances and higher-level
nodes represent an abstract view on heterogeneous process instances schemas.
The approach is to start bottom-up from the hierarchy created at bullet 5), and to
modify each non-leaf node, in order to make it an abstraction of the schemas
associated to its children. The abstraction technique replaces groups of
homogeneous activities with a single, abstract activity (thanks to “is-a” and “part-
of” relationships). Finally, end-users will be able to navigate such taxonomy and to
visualise the various schemas, based on the abstraction degree they need

The following picture shows in a more detailed way the whole process: from the initial set of
logs, the schema complexity is reduced by logs clustering into disjoint set (thus increasing
the number of possible schemas) – as shown in the “Process Single schema” box in the
picture. Then, abstraction techniques allow to produce a taxonomy of schemas at different
level of abstractions (upper part of the picture):

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 36 of 56

Figure 22 Graphical representation of the template generation process.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 37 of 56

4. Design of the 1 st Prototype
In this section, we are going to be more concrete than in the previous one devoted to the
theoretical grounding. We are going to provide a specification of the software artefacts that
compose the first implementation of the prototype of the Service Composition Framework.

In the following table, Table 1, we depict the roadmap of the software that will be following. It
specifies the delivery dates of the software associated with this task; and what will be the
extend of this software.

Table 1 Task 6.4 Software Roadmap.

Milestone M12 1st Prot. M18 2nd Prot. M24 3rd
Prot

M30

(Final
Version)

Design-Time
Composer

Basic(Standalone
& Composition)

Basic(Integrated
& Adaptation)

Advanced Matured

Composition
Optimizer Basic(Integrated) Advanced Matured

Templates
Generator Basic(Integrated) Advanced

Matured

Let us know describe the design of the 1st Prototype of the software, which is the basic
version of the design-time composer. We will follow a classic approach to describe the
design of the environment. On the one hand, we will sketch its structural view, a picture of
the Service Composition Framework, describing the components that constitute it, even
those that will not be delivered for the 1st Prototype5. After that, we will depict the
behavioural view of the components that we will deliver in the first prototype, how these
software modules will interact to achieve the necessary functionality to cope with the
requirements listed in the requirements section.

4.1 Structural View of the 1st Prototype
4.1.1 Ubication within SOA4All

In Figure 23 we depict the overall picture of WP6 and where we situate it inside the overall
SOA4All architecture. Let us briefly describe the components of the Service Construction
environment, in order to situate the software that we are going to describe in this deliverable.
Users will use the user interface component to specify their required composite services and
processes (part of the SOA4All Studio). Nevertheless, we need to define a graph-oriented
lightweight process modelling language that we will use as specification language. To
improve usability pre-designed and user-designed process templates are stored in the
semantic service & template repository.

Once created and stored, in order to be usable and interpretable these lightweight processes
have to be translated in to more complex processes that can be interpreted by an execution
in an effective fashion. We will create a scalable design-time composer for the flexible
and ad-hoc creation and adaptation of complex servi ces at design time . The system will
transparently transform the aforementioned lightweight processes in to optimized complex

5 Note that these descriptions are tentative, should be considered a first draft.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 38 of 56

services orchestrations; or already existing complex services processes could be adapted to
a specific use. These activities will be heavily influenced by the context in which they will be
carried out.

Finally, regarding the runtime phase of service construction, the outcome of this work
package will be the execution engine . It will execute complex processes that represent
orchestration of services. This execution will be adaptive to environmental changes; and
flexible enough to allow its context-dependent self -reconfiguration. This engine will
consider also context during execution as well.

Figure 23 WP6 Overall Picture and its place inside SOA4All.

4.1.2 WP6 Task 6.4 Core Components Description

In the following subsections we are going to describe, each of the components which belong
to the task 6.4, which are pictured Figure 24. We depict the software modules, and the initial
interfaces that are going to be exposed6.

6 Note that as this is ongoing work, some of which will not be delivered until month 18 and
there can be slightly changes in the interfaces.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 39 of 56

Figure 24 Core components of Task 6.4.

4.1.2.1 Design-Time Composer

• Name: Design-Time Composer
• Description : The design-time composer component will carry out two closely related

activities, namely process adaptation and composition, offering thus two external
interfaces, the Service Composer and the Service Adapter.

o The Service Composer perspective is a scalable system for the flexible and ad
hoc creation of complex services, the environmental context information, and
user needs (expressed using the lightweight modelling language).

o The Service Adapter is a subsystem for service context-based adaptation at
design-time. The first and basic usage of this tool is the adaptation of services
according to context (e.g. personal preferences, business rules, etc.), but also
more advanced dynamic adaptation procedures. Mechanisms such as
incremental revealing of services descriptions imply that not all the service
characteristics have to be revealed at once, but require a reciprocal
knowledge, trust and a negotiation process between parties.

Both activities are closely related, since as we have already described, both
composition and adaptation will share the same core of functionalities that are
provided by a parametric design engine which will use a catalogue of generic
knowledge-level service templates and context-dependant configuration.

• Inputs : In both cases the inputs are the same, the difference resides in the nature of
the interaction.

o A Lightweight Process. In the case of composition, an abstract process
expressed in terms of user’s goals.

o A set of user requirements. The user especially in the case of adaptation
might also provide additional requirements about the process to generate.

• Outputs : The outputs both in the case of composition and adaptation are:
o A Lightweight Process. The result of the composition/adaptation process is a

lightweight process, in the case of the composition process it should be an
executable one.

o A set of assumptions. Whilst composing the processes, several assumptions

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 40 of 56

could be made about the context, inputs and outputs of the service, etc. They
are as important as the process in itself, and therefore should be forwarded to
the user.

• Interfaces exposed : This component offers two external interfaces, Service
Composer and Service Adapter. For this 1st Prototype only the Service Composer will
be exposed.

4.1.2.2 Composition Optimizer

• Name: Composition Optimizer
• Description : The composition optimizer considers an innovative and extensible

quality criteria model by coupling non-functional quality of service and semantics of
the executable lightweight process. On the one hand, the non-functional criteria of
Web services are valued by means of Quality of Services (e.g. execution price,
response time, reliability, availability), while on the other semantics is valued along
the semantic links (i.e. data flow in an executable lightweight process) between Web
services. The latter criterion requires the WSML reasoning framework to i) give an
estimation of semantic matching between functional output and input parameters of
services and ii) estimate robustness issues (through a non-standard Description
Logics inference) in data flow of any executable lightweight process. In regards to the
latter criteria the problem is formalized as a Constraint Satisfaction Problem (CSP)
with i) multiple constraints and ii) a function to optimize. Towards such an issue we
model an optimization problem COP (Constraints Optimization Problem), adapted
from CSP. Since one of our main concerns is about optimization of large-scale
executable lightweight process (i.e., many services can achieve a same goal or
functionality), we suggested to follow a Genetic Algorithm-based approach which is
faster than applying Integer Linear Programming.

• Inputs : A set of services (in a repository), their functional qualities, a template based
Web service composition where tasks are semantically described, a set of constraint
to met (in term of Quality of composition: aggregation of Quality of services and
semantic links). We also require a reasoning engine to compute semantic similarities
between output and input parameters of services.

• Outputs : A concrete composition i.e, all tasks of the template based composition are
achieved by a unique service. Such a composition is the most optimal composition
that met the end users constraints.

• Interfaces exposed :
o ConcreteComposition optimizeComposition(SetOfService,

TemplateComposition, Constraints)

4.1.2.3 Templates Generator

• Name: Template Generator
• Description : The Template Generator will be able to analyse service execution logs

and to generate an hierarchy of process schemas (at different level of
complexity/completeness) and a taxonomy of possible process templates (at different
level of abstraction), in order to support end-users in the selection of the most
suitable one. Such a tool will exploit state-of-the-art process mining, process
abstraction and clustering techniques in an innovative way, in order to present the
end-users with the most suitable templates representations and let them choose the
one that most fits their needs. The selected template (described with the SOA4All
light-weight process language - D6.3.1) can be further validated, adapted

• Inputs : Past processes and/or services execution logs
• Outputs : A new process template, defined in the SOA4All light-weight language (as

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 41 of 56

defined into T6.3)
• Interfaces exposed :

o GetProcessSchema (log_set, mining_algo_id, store_location): discover a
schema expressed in the lightweight BPM language for a given set of logs,
using a given mining algorithm, and store it in the semantic space at a given
store_location. Returns a schema ID

o ClusterLogs (log_set, rule_extraction_algo_id, clustering_algo_id,
store_location) : cluser logs based on a given discriminant_rule and clustering
algorithms. Returns number of logs created (n), and a set of cluster IDs

o GetClusterByID (cluster_id) : return a log_cluser given its ID
o Abstract_schema (schema_id, abstraction_algo_id, store_location): performs

a process schema abstraction. Return a new schema ID
o GetSchemaByID (schema_id): returns a schema for a given ID (expressed in

light-weight language)
o DeleteSchemaByID (schema_id): deletes a schema from the Semantic Space
o DeleteClusterByID (cluster_id): deletes a cluster given its ID from the

Semantic Space
• Interaction with internal components : Retrieve service execution logs from the

DSB monitoring collector component developed in T2.3.
• Interaction with external components: The output process is delivered to T6.4

Design Time Composition platform and/or T2.6 Business Process Editor. End-users
will be able to further verify/edit/change the output process

4.2 Behavioural View for the 1st Prototype
The use cases of the overall Context-aware Service Composition and Adaptation
Environment are depicted in Figure 25

Figure 25 Design-Time Composer Use Cases Diagram.

According with the software roadmap (see Table 1)we will cover the Compose Service use
case, which includes the Composition Analysis and the Synthesis subcases. Their textual
description can be found in the correspondent subsections related to these activities in the
theoretical background introduction. Let us know specify using UML sequence diagrams how

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 42 of 56

the system should behave.

4.2.1 Compose service

As described in Figure 3 parametric design is decomposed in two secuential phases in the
case of process composition. Therefore, we consider this use case as divided in two phases,
namely Composition Analysis and Synthesis.

Figure 26 Classes involved in a composition request.

4.2.1.1 Composition Analysis

The following diagram depicts how the different components and agents interact in the
synthesis phase of the parametric design phase. The initial structure that is stored in the
blackboard is specified in the class diagram presented in Figure 26

Figure 27 Analysis for
Composition Sequence

Diagram.

In the analysis phase of
the parametric design, we
also include the creation of
the initial design model
using a design plan
generator. We will explain
the generateDesignPlan
method in a separate
sequence diagram, where
we will depict the steps
taken to achieve its
creation (Figure 28).

Figure 28 Generation of the Design
Plan Sequence Diagram.

The process is rather simple. The
agent gets the request from the
blackboard, checks its knowledge base
that stores both its operational rules,
knowledge about the domain and the
current state of affairs; and depending
on this information chooses one of the
available design plan generators from
the set of available catalogue. After
that, the agent invokes that generator,
to obtain an initial design model (which
corresponds with the red sphere that
appeared in Figure 7).

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

4.2.1.2 Synthesis

Once we have the initial design model, as described previously, the synthesis phase
commences. In Figure 29 we depict the agents involved in this phase (all but the
PlanGenerationAgent, that as we have already stated is used in the analysis phase).

Figure 29 Agents involved in the composition process class diagram.

These agents will carry out the process of synthesis in a collaborative fashion. Let us
describe the behaviour of each of them in the following diagrams, each of them will act
independently, but the final result will be a design model that can be considered a solution.

4.2.1.2.1 Blackboard Controller Agent Behaviour

In Figure 30 we depict the basic interaction of the blackboard controller agent. We define two
basic cases

• The initial case is the moment where the design model that originates the synthesis
phase is introduced in the blackboard. The control agent sends this design model to
all the interested agents, by searching in its knowledge base.

• The other case, which is the habitual case, corresponds with the case where a new
design model has been created in the blackboard on the basis of an already existing
one (update(update:Update, oldDesignModel, newDesignModel):void)). The
blackboard stores the new design, and relates the initial design model and the new
one, tagging this relationship with the URI of the design operator originally used in the
transformation (creating thus the DAG depicted in the Figure 7 when we described
the parametric design as search abstraction). The blackboard control agent then
carries out its duty, informing of the new design to the interested agents, consulting
again its knowledge base.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 46 of 56

Figure 30 The Blackboard Control Agent Sequence Diagram.

4.2.1.2.2 Analysis Agent Behaviour

The analysis agent, once it receives a new design model, retrieves the model from the
blackboard, validates it, and depending on the result of this activity:

• The agent can consider this design model a solution to the problem. It notifies to
blackboard control agent that a solution has been found (using
void:notifySolution(URI) as shown in the diagram on Figure 31).

• Else, it tags the solution with the validation result, so that other agents can use it in
the future to solve the problems that the design model might have. Note that in order
to make other agents aware of the addition to this information to the design model;
we should communicate to peers that observe the blackboard that the information
about this design model has been updated.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

Figure 31 Analysis Agent Sequence Diagram.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

4.2.1.2.3 Design Modification Agent Behaviour

The following sequence diagram depicts the behaviour of a design modification agent.
Basically it receives a notification of a change in a design model, which in this prototype, as
we are depicting, can have two different meanings:

• A design modification agent has changed the design model by means of a design
operator.

• An analysis agent has analyzed the design model. In such case, the design
modification agent might use this additional information to modify the model more
precisely.

For the design modification agent, all the updates are similar. First, the agent must set the its
design focus. Although it seems logical that the agent acts upon the newly created design
model, it is not mandatory. The agent can chose to modify any other design model that is
present in the blackboard.

Once the agent has decided which design model to modify, the agent must choose the action
to do upon this design model. The actions that an agent can carry upon design models in the
case of design modification agents are design operators. The agent reasons using its
knowledge base and in terms of the design model; and decides which design operator to
apply.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

Figure 32 Design Modification Agent Sequence Diagram.

Finally, we must emphasise on the characteristics of the opportunistic approach. The agent,

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 50 of 56

when receiving the notification, after consulting to its knowledge base might do something; or
simply ignore the design model update notification, as we have portrait in the sequence
diagram.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 51 of 56

5. Conclusions
In the context of WP6 of the SOA4All project the term service construction mainly refers to
model complex services in a lightweight mannerThis should enable the non-technical end
user to build new services and processes according to its specific needs. Hence the
technologies used within the SOA4All project should allow for seamlessly integrating every
kind of service, providing them on a generic user interface and making them usable for non-
technical experts.

Since in the area of business process modeling most research addresses sophisticated and
highly formalised process descriptions we focus on the need to enable non-technical users to
describe their to-be processes in a lightweight manner. As stated in the deliverable the term
“lightweight” means simple to use and having an abstract way to represent composite
services and processes.

In this deliverable, we have addressed the transformation from the user-friendly lightweight
representation of processes in to complex and concrete executable processes. We have
precisely depicted the algorithms and formal approaches that we will use in order to address
this problem, and how to make it easier for non-experts to build the process templates that
the composition algorithm will use, and how to make the generated processes more efficient.

Finally, we have sketched the first draft of the design of the Service Composition Framework,
which we will use as a blueprint to implement the 1st software prototype. We have included
an overall structural view of the whole Service Composition Framework; and the behavioural
description of the software modules that will be delivered in the 1st Prototype of the
framework.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 52 of 56

6. References
[1] European Commission: Handbook on Implementation of the Services Directive,

Commission of the European Communities Internal Market and Services DG, Brussels,
2007.

[2] Mittal, S. & Frayman, F. (1989). Towards a generic model of configuration tasks. In
Proceedings of the 11th IJCAI, pages 1395–1401, San Mateo, CA, Morgan Kaufman.

[3] Yu, B. and MacCallum, K. (1995). Modelling of Product Configuration Design and
Management by Using Product Structure Knowledge. Int. Workshop on Knowledge
Intensive CAD, Finland, 1995.

[4] Wielinga B. J., Akkermans J. M., Schreiber A. Th., A Formal Analysis of Parametric
Design Problem Solving, In Proceedings of the 9th Banff Knowledge Acquisition
Workshop (KAW-95)

[5] Wielinga B., Schreiber G., Configuration-Design Problem Solving, IEEE Expert: Intelligent
Systems and Their Applications, v.12 n.2, p.49-56, March 1997.

[6] Chandrasekaran, B. 1990. Design problem solving: a task analysis. AI Mag. 11, 4 (Oct.
1990), 59-71.

[7] Motta E., (1999) Reusable Components For Knowledge Modelling Case Studies In
Parametric Design Problem Solving,IOS Press (Netherlands)

[8] Pedrinaci, C. (2005) Knowledge-Based Reasoning Over The Web, PhD. Dissertation,
Universidad País Vasco San Sebastián, Noviembre 2005

[9] Erman L. D., Hayes-Roth F., Lesser V. R., and Reddy D. R.. The Hearsay-II speech-
understanding system: Integrating knowledge to resolve uncertainty. Computing Surveys,
12(2):213–253, June 1980.

[10] Carpenter M., Mehandjiev N., Stalker, I.D.: Flexible Behaviours for Emergent Process
Interoperability. WETICE 2006: 249-254

[11] Lécué F., and Léger A., (2006), ‘A formal model for semantic Web service
composition’, in ISWC 2006, pp. 385–398,

[12] Vitvar T., Kopecký J., Viskova J., Fensel D. (2008) WSMO-Lite Annotations for Web
Services. ESWC 2008: 674-689.

[13] Kopecky J,, Vitvar T., Bournez C., and Farrell J.. Sawsdl: Semantic annotations for
wsdl and xml schema. IEEE Internet Computing,11(6):60–67, 2007.

[14] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara, (2002) Semantic matching of
Web services capabilities. In ISWC, pages 333–347

[15] L. Li and I. Horrocks. A software framework for matchmaking based on semantic Web
technology. In WWW, pages 331–339, 2003.

[16] Clarke E. M., (2000) Model Checking MIT Press (4 Feb 2000) ISBN: 978-
0262032704

[17] Dechter R.(2003) Constraint Processing, Morgan Kaufmann, ISBN: 978-1558608900

[18] Canfora G., Di Penta M., Esposito R., and Villani M. L.. An approach for qos-aware
service composition based on genetic algorithms. In GECCO, pages 1069–1075, 2005.

[19] Lécué F., Delteil A., and Léger A.. Optimizing causal link based Web service
composition. In ECAI, pages 45–49, 2008.

[20] Papadimtriou C. H. and Steiglitz K.. Combinatorial Optimization: Algorithms and

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 53 of 56

Complexity. Prentice-Hall, 1982.

[21] Zeng L., Benatallah B., Dumas M., Kalagnanam J., and Sheng Q. Z.. (2003) Quality
driven Web services composition. In WWW, pages 411–421, 2003

[22] Lécué F. and Delteil A..(2007) Making the difference in semantic Web service
composition. In AAAI, pages 1383–1388, 2007.

[23] Brandt S., Kusters R., and Turhan A.. Approximation and difference in description
logics. In KR, pages 203–214, 2002.

[24] Baader F., Sertkaya B., and Turhan A..(2004) Computing the least common
subsumer w.r.t. a background terminology. In DL, 2004.

[25] Harel D. and Naamad A.. (1996) The statemate semantics of statecharts. ACM
Transactions on Software Engineering Methodologies, 5(4):293–333, 1996.

[26] Küsters R., Non-Standard Inferences in Description Logics, volume 2100 of Lecture
Notes in Computer Science, Springer, 2001.

[27] Colucci S., Di Noia T., Di Sciascio E., Donini F M., and Mongiello M. Concept
abduction and contraction in description logics. In DL, 2003.

[28] O’Sullivan J., Edmond D., and ter Hofstede A. H. M.. (2002) What’s in a service?
Distributed and Parallel Databases, 12(2/3):117–133, 2002.

[29] Cardoso J., Sheth A. P., Miller J. A., Arnold J., and Kochut K. (2004) Quality of
service for workflows and Web service processes. J. Web Sem., 1(3):281–308, 2004.

[30] Goldberg D. E.. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc., Reading, MA, 1989.

[31] Weijters A.J.M.M., van der Aalst W.M.P., van Dongen B., Günther C., Mans R., Alves
de Medeiros A.K., Rozinat A., Song M., and Verbeek E.,In M. Dastani and E. de Jong,
editors, Proceedings of the 19th Belgium-Netherlands Conference on Artificial
Intelligence (BNAIC), 2007.

[32] G. Greco, A. Guzzo, and L. Pontieri. Mining hierarchies of models: From abstract
views to concrete specifications. In Proc. 3rd Intl. Conf. on Business Process
Management (Bprocess mining'05), pages 32--47, 2005

[33] J. A. Hartigan and M. A. Wong. A K-Means Clustering Algorithm. Applied Statistics,
28(1): 100–108, 1979.

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 54 of 56

Annex A. The Process Template Generator of SOA4All
compared to the Process Miner of
SUPER

In order to understand the differences / similarities with the approach followed by project
Super-IP, we refer to Super Deliverable D6.5 – “Semantic Process Mining Prototype”:

“The SUPER methodology, like the usual BPM lifecycle, contains four phases: Semantic
business process modelling, semantic business process configuration, semantic business
process execution and semantic business process analysis”

As mentioned, these are the typical phases that are present in every BPM approach.
SOA4All is also focussing on these 4 phases. So, the differences should be sought in how
such phases are taken in into account. More in detail, if we stick to the objectives of the
“Templates Generator Tool”, we need to compare it with the “Semantic Process Mining”
prototype developed into Super IP.

In the same deliverable (D6.5) we read:

“The Semantic Process Mining prototype aims at providing for a semantic analysis of
process instances that are executed within the SUPER framework. This prototype is a
subcomponent of the Business Process Management (BPM) Analysis Tools of the SUPER
architecture.

The feedback provided by the semantic process mining prototype will aid the (re-)design of
processes in the semantic business process modelling phase and their (re-)configuration
during the semantic business process configuration phase.”

More in detail, Super Semantic Process Mining is composed by a set of plug-ins for ProM.
The most relevant one for our comparative analysis is the following:

“Plugin #3. Semantic Control-Flow Mining – Supports the mining of process models with
different levels of abstractions. The abstraction is provided based on the concepts in a log”

From all this, we see a similarity in the objectives : the discovery of a previously hidden
process schema. The differences are in the strategies chosen by the two approaches:

• Super IP is focussing on a semantic-based approach:

“Current discovery, conformance and extension process mining techniques are
already quite powerful and mature. However, the analysis they provide is purely
syntactic. In other words, these mining techniques are unable to reason over the
concepts behind the labels in the log, thus the actual semantics behind these labels
remain in the head of the business analyst that has to interpret them. Therefore,
within SUPER we are developing process mining techniques that make use of this
semantic Perspective”

The assumption of Super is to: “…make use of the ontological annotations in
logs/models to develop more robust process mining techniques that analyze the
logs/models at the concept level”

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 55 of 56

As such it requires that logs are generated by Super-IP execution tools.

• Our approach for SOA4All is more generic, as it does not assume the availability of
semantic annotations on service logs

Another difference can be found on how the two approaches can present the user with
different levels of abstractions on the discovered process:

• In Super , “more compact models can be generated when instances of different task
subconcepts are all mapped to a common task superconcept”. This is achieved
thanks to a “log filter that would allow the end user to pre-process the log to set the
desired level of abstraction and, afterwards, use one of the existing control-flow
mining algorithms.”. Again the approach is based on the availability of ontologies: “the
plug-in that supports the filtering of the log based on the concepts is the Ontology
Abstraction Filter.”

• Our approach is based on a recursive use of discriminant rule extraction and logs
clustering algorithms, which generates first an hierarchy of possible process schemas
(where leaves constitute a disjoint set representing the initial log set in a more
accurate and expressive way rather than the root schema)

As a summary we include the following table with the main differences:

Table 2 Comparative analysis Super-IP vs SOA4All Template Generator.

 Super-IP: Template Generator SOA4All:

Main Purpose Process Analysis:

The Semantic Process
Mining prototype aims at
providing for a semantic
analysis of process
instances that are
executed within the
SUPER framework

Process & Service Construction:

1. Present end-users with an
understandable taxonomy of process
schemas at different abstraction level,
starting from unstructured activity logs.

2. Allow end-users to use such
schemas as input for service
construction within the SOA4All
framework

Advance Core
Research in Mining
techniques ?

No No

Limitation to just a
single process
schema ?

No, thanks to a log filter:
“that would allow the end
user to pre-process the log to
set the desired level of
abstraction and, afterwards,
use one of the existing
control-flow mining
algorithms”, and based on an
“Ontology Abstraction Filter”

No

Requires Semantic
Annotation on Logs
required ?

Yes No

Derivation of an
hierarchy of

No Yes, thanks to recursive use of
discriminant rule extraction and logs

 FP7 – 215219 – D6.4.1 Specification and 1st Prototype Of Service Composition and Adaptation Environment

© SOA4All consortium Page 56 of 56

schemas clustering algorithms

Generation of a
taxonomy at
different abstraction
levels

No (only separate models ad
different level of abstractions,
not arranged into a
taxonomy)

Yes, by applying taxonomy discovery
techniques on the hierarchy built

Graphical
Navigation in the
taxonomy

No Yes

Compatibility with a
light-weight BP
language

No Yes

Compatibility with
SOA4All studio

No Yes

Technological
Implementation

New plug-ins for ProM Existing plug-ins for ProM

Additional hierarchy & taxonomy
building algorithms

Clustering algorithms

