

SOA4All: An Innovative Integrated Approach to Services Composition1

 Freddy Lecue Yosu Gorronogoitia, Rafael Gonzalez, Matteo Villa
The University of Manchester Mateusz Radzimski TXT e-Solutions SpA
 Booth Street East ATOS Research Via Frigia 27
 Manchester, UK Albarracín, 25 I-20126 Milan, Italy
 E-28037 Madrid, Spain

1 Foundation Project: Supported by European Commission VII Framework IP Project Soa4All.

Abstract

Automated web service composition has been tackled
from different directions and to different purposes. In
addition, most of the approaches address the composition
problem with underspecified requirements, returning
compositions models that do not necessarily satisfy and
fulfill end-users objectives. Satisfying the latter objectives
is a difficult problem, especially from scratch, which
requires stronger requirements and a further step of
integration with service-based components in order to
make service oriented computing and service composition
a reality. In this work, we address this issue by presenting
an innovative and integrated approach to service
composition which consists in i) an automatic template
process generator, that is able to generate abstract
process templates and their hierarchy form past
executions; ii) a novel and scalable approach to AI
parametric-design techniques using a multi agent
approach to configure and adapt services processes,
heavily relying on the latter set of abstract process
templates; iii) an optimization process that maximize the
overall quality of final compositions.

1. Introduction

A key to the success of a distributed business service
model stands in the possibility of reusing the wealth of
existing services, their descriptions, some past experience
of their use on order to elaborate new ones by
composition, providing novel and complex
functionalities, even with better overall qualities (e.g., in
term of Quality of Services QoS). However, given the
requirements for a new service, the task of identifying the
existing ones useful to its realization, combining them,
and then optimize its result is extremely demanding and
time-consuming for a human operator. In addition,
composing services from scratch is a complex task which
may fail to satisfy the end-users’ objectives. Therefore,
the development of support tools in this respect is
necessary to enact a distributed service view. Ideally,
such tools should be able to automatically generate an

optimal composed service, starting not only just from
properly formulated user requirements (such as
preferences and constraints, overall goal) but also with
use of predefined template (or schema generally
speaking) based composition in order to assist the end-
user. However, up to now, the search for such a Holy
Grail has been unsuccessful. This is mainly due to the fact
that most of composition approaches e.g., [TraP04] make
composition requirements and goals underspecified and
even not considered in some cases, so considering
compositions from scratch, which is very difficult to get.
Towards such issues some template based composition
approaches [SirHP02] have been proposed in the
literature, then coming up with some pre-existing and
predefined composition templates ready to be instantiate.
However, the latter templates are required before starting
the composition process. In addition, their results are not
optimized at all. Consequently, automated computation of
optimal composition with support of on-the-fly
compositions templates is not considered in literature.
This means that, in order to obtain an end-to-end
architecture that generates compositions templates,
instantiate them with concrete service and then optimize
them, we need to chain and integrate different, phase-
specific techniques.

Since the selection of initial template by then end-
users has high impact on the relevance of the final result,
phases high in the chain must effectively provide
appropriate specifications of compositions templates so
that phases lower in the chain can focus on concretize
them in an optimal way. This calls for a careful
adaptation and integration. Our contribution in this work
is an architecture designed and realized within the context
of the SOA4All project (http://www.soa4all.eu/),
performing end-to-end template generation and optimal
composition by seamlessly integrating a template
generator, a service composer and optimizer. This
integration poses serious challenges, in particular at the
interface of the template generator and composer, where a
high level composition specification (or template) must be
picked from the available ones to assist the end-user in
the composition and optimization process. For the

individual components, we utilize appropriate state-of-
the-art techniques, except for composition where we
provide a novel, advanced and flexible technique, able to
divide a complex modeling problem into many domain-
specific sub-problems that can be tackled by multi-agents
with specialized knowledge.

The current instantiation of our architecture adopts two
well-known languages, WSMO [VitKVF08] and LPML2,
to express requirements and service workflows
respectively. This makes our architecture immediately
usable in conjunction with standard web services engines
such as Active BPEL, as witnessed by our experiments on
an E-Commerce scenario.

The remainder of this paper is organized as follows. In

Section 2, we use a reference “E-Commerce” scenario to
illustrate our approach. In Section 3, we describe in detail
our architecture, its modules implementing the Template
Generator, the Design Time Composer and the
Composition Optimizer. Section 4 presents details about
the prototype implementation. Section 5 briefly comments
on related work. Finally, Section 6 draws some
conclusions and talks about possible future directions.

2. A Motivating Use Case

The scenario takes place in the E-Commerce domain.
It is about utilizing the cloud to expose services and
product information from sellers but allowing resellers to
expose product offers to multiple platforms and to utilize
various distribution channels. All of sellers are from
different companies which are all producing different
products from the textile industry reaching from footwear
to T-Shirts. They are responsible for the E-Commerce
part of their companies.

On the one hand the sellers want to increase their sales
by offering (semantic) web services, allowing resellers to
retrieve a product list and to order a specific product.
Each of these services has their own non functional
quality criteria (here we only consider the price and

2 This language is the composition language supported by
SOA4All the EU project that funds this work.

response time for illustration purpose). For instance, here
is a list of semantic web services exposed by a Footwear
provider:
 getFootwearProductIDList that returns the list of its
product Identities i.e., ProductIDList. The price “pr”
and response time “t” values are respectively: $5 and
25ms.

 getFootwearProductData that returns a list of
information ProductData (e.g., Name, Origin) given a
product identity ProductID. (pr: $1, t: 150ms).

 getFootwearProductPrice that returns the ProductPrice
of a product identity ProductID. (pr: $0.5, t: 50ms).

 getFootwearProductURI that returns the ProductURI
of a product identity ProductID. (pr: $3, t: 5000ms).

 classifyEUFootwearProductPriceData that classifies a
EuropeanProduct in categories of price. (pr: $2, t:
1000ms).

 classifyFootwearProductPriceData that classifies a
Product in categories of price. (pr: $1, t: 200ms).

wherein all input and output services parameters refer to
concept of a domain ontology (Figure 1 shows a portion
of the DL based ontology in AL - Attributive language
with Atomic negation, Concept intersection, Universal

restrictions and Limited existential quantification - we use
in this scenario).

 On the other hand the resellers, without any technical
background in web service and semantic web
technologies, want to generate some side income by
reusing and composing the latter services, for instance by
exposing their composition on web 2.0 sites. However,
automating composition from scratch is far from trivial.
In addition, the overall quality of connected services can
be not appropriate for business purpose.
 We address this scenario by presenting an integrated
architecture (Figure 2) that generates on-the-fly
compositions templates, concretize one of them
(depending on the user selection – see “Starting Point” of
Figure 2) in an optimal way with relevant services. By
using our architecture, any reseller as any end-user will
take profit of traced of past services execution in order to

generate abstract compositions, then concrete
compositions and finally compositions as optimal as

 Figure 1 Sample of an AL Ontology T

 Figure 2 Core Architecture

possible in order to deal with the resellers’ business
perspectives. For instance this can be achieved by
minimizing their prices and ensuring seamless
connections between services as well.

3. Architecture

3.1 Templates Generation

Designing complex processes, composed of several
services invocation, can be a difficult task for end-users.
On the other hand, the availability of pre-defined process
template can ease this task. Anyway, how to define such
templates may also be a difficult or expensive task,
especially in those situations where either an a-priori
model is unknown or the effort to create the model is too
complex. Process Mining techniques [CooW95,
VanHV02] aim at automatically discovering a process
model, based on data gathered during its past executions
(logs). Most of existing state-of-the-art approaches is
devoted to identify a single process formalisation, often
resulting in particularly complicated templates and not
very accurate (single template for all possible executions).
The resulting template, even if formally complete and
adequate to support a process execution, turns out to
provide little help to let end-users understand what the
hidden process template.

Several approaches have been undertaken to solve
these kinds of problems. The Template Generator adopts
the methodology proposed by [GreGP05], aiming at
discovering not a single template, but rather an hierarchy
of possible templates, at different abstraction levels,
where leaves represent a disjoint set of possible
executions, and higher level present a more abstract view,
as shown in Figure 3.

Figure 3 Mining Approach of the Template Generator

The Template Generator will then present users with such
graphical representations, and let them the freedom to
choose the template that best fits their goals.

While this approach is found to be very useful in intra-
company scenarios, where process executions logs are
typically generated by enterprise legacy systems, new
challenges emerge when trying to adopt such
technologies to address the Internet of services, due to the
very open nature of the Web. First of all, it should be
noticed that the problem of deriving relevant and useful
process templates out of their services execution logs is
still relevant: in fact users could be actually following
some process while invoking services in a logical
sequence, or they may be actually participating in some
collaborative process with other Internet users, without
even being aware of this fact, or without having the
process structure formalized somewhere.

The first challenge encountered is linked with the
difficulty for a user to understand the meaning of the
services forming the proposed templates: it is obvious that
service names (operations) don’t necessarily reveal
what’s a service is about in an intuitive way, and in any
case this may be subject to different interpretations. This
situation would not happen in intra-company
environments, where a common taxonomy is usually well
established.

To address this challenge, the Template Generator
exploits semantic technologies, including semantic
elements associated with services in the templates
presented to the user, so that a better understanding of the
service scope could be achieved. It should be noticed that
the Template Generator doesn’t require the availability of
semantic annotations on services, but it can exploit them
whenever these are available.

The second challenge arises when trying to decide
upon which logs should be analyzed as input, due to the
expected large amount of users and services invoked over
the Internet, and due to the fact that these belong to
different contexts: just taking all logs together would
result in non-sense templates.

Due to such reasons it is necessary to follow a
contextual-driven filtering approach to input logs (Figure
4), so that only contextually coherent logs will be
processed together by the Template Generator
component. Unfortunately this problem doesn’t have a
simple solution: it is not possible to define an a-priori
fixed template of such context, as it should describe
potentially any situation, and it would eventually turn to
be of little help in specific situations. According to a
“context framework”, where contextual information is
structured along a number of aspects or dimensions,
applications have to play an active role in indicating the
modelling resource used for capturing contextual
information as well as directing the way this information
is kept and managed. The Template Generator will then

allow users to dynamically configure and customize such
framework based on more specific “vertical” scenarios, in
a graphical and intuitive way. The approach is
summarized in the following figure:

The output of the Template Generator is the template
selected by the end-users. As explained, such template
can include one or more abstract activities, and include
semantic descriptions associated with each process
activities. The tool allows exporting such template to
other formats, so that end-users have the possibility to
change or refine it in some graphical editor.

Example (Generated Template Composition):
Figure 5 illustrates a template composition computed by
the Template generator, and then selected by the end-
user. Such a template simply satisfies the following goal:
“aggregates and classifies products of different
providers”.

3.2 Parametric Design Based Composition

Our approach is driven along some modeling principles:
i) iterative, incremental, easy to use, semi-assisted
compositions modeling, ii) coarse-grained goal based
activity-centric description of compositions models, as
opposed to the service-centric SOA composition
approach, iii) semantically annotated activity descriptions
(goals), iv) intensive reuse and customization of
preexisting domain specific process templates and
fragments, v) context-aware model composition and
adaptation. In this picture, the composer assists iteratively
human modelers to complete the composition model, by
fulfilling required model gaps left by human modelers,
with information extracted from different knowledge
sources.

The composer accepts an incomplete composition
model, which comprises a set of activities, logically

linked by a draft workflow, coarse-grained described by
their requirements (goals) and expressed as a set of
annotations that reference semantic concepts defined
within a shared ontology. The composer returns a more
elaborated composition model which has resolved some
of its information gaps: activities are bound to concrete
WS, or expanded with compositions templates or
fragments, data flow is populated with connectors
mediating between Input/Output parameters, semantic
compatibility between subsequent the latter parameters is
checked, etc. The composition approach increases the
level of concreteness of composition models; closer to
executable as opposed to abstract and adaptable (Figure
6).

This adaptable concretization transformation is
implemented using a knowledge-intensive configuration
process, more precisely “a parametric design procedure”
[WieAS95]. In order to increase the scalability of this
procedure, we extend the classical approach to its
synthesis task by using an opportunistic approach, based
on “blackboard-based multi-agent system” [ErmHLR80].
Multi-agent architecture allows also for extra flexibility
with regard to management of knowledgebase used by the
composer, by allowing for hot-plugging or updating
knowledge while the composer is operating. This can be
either adding new ontologies, services and templates
capabilities or registering completely new agents as well.

Figure 6 Adaptable Concretization of Compositions

3.2.1 Parametric Design Procedure

From a high level design model of a composition given
by an end-user, the composer converts the composition
modeling problem in a parametric design problem
[Mot99]. In such a mapping, the parameter set is mapped
to the set of unbound activities, whose values range is
either the range of available services or process templates.
The potential design model solutions are requested to
satisfy some constraints, requirements and preferences
parameters (used to express limitations and desires on the
requested functionality). Then they are all classified along
properties of completeness, admissibility and suitability
[Mot99], but not in term of overall quality (e.g., QoS).

Figure 4 Context-Driven Logs Filtering

Figure 5 Composition generated by the Template
Generator and selected by the End-User

3.2.2 Blackboard-based Multi-Agent System

The composer implements the synthesis phase of
parametric design procedure with a blackboard-based
multi-agent system. Autonomous and specialized agents
share a common backboard upon which they post new
design models, which are modified versions of previously
posted ones, after applying changes driven by some
specific knowledge.

Some agents, named as Design Modification Agents
(DMA), are specialized to introduce changes in the
models, while other agents, named as Design Analysis
Agents validate those changes. All of the DMAs
semantically match the composition activities with a
service or a template by considering semantic
satisfiability of the (semantic) intersection of their
functional descriptions (i.e., defined by input, output,
functional classification, requirement, and preference).
Preconditions, effects imply logical expressions we don’t
support, event we can not expect end-users to express
such Preconditions/Effects logical expressions.

In our approach, four DMAs have been designed:
 A Domain Specific Language [MerHS05] DMA, which
exploits descriptions of services and process templates
according to concrete compositions requirements. A
possible domain language used to describe available
knowledge about known services and composition
templates are shown below, where the functional
classifications simply refer to a concept in a hierarchy
of domains (see WSMO-Lite definition [VitKVF08]).

 templateORservice_def URL

 functionalClassification <URI> [1..*] /** for service and template */
 input <URI> [0..*] /** for service and template */
 output <URI> [0..*] /** for service and template */
 definition <URL> /** only for service*/
 operation <name> /** only for service*/
 global requirement <URI> [0..*] /** for service and template */
 global constraint <URI>[0..*] /** for service and template */
 def_ templateORservice

 A Service Discovery [BenHLRT05] DMA, which binds
activities to concrete services. The discovery process

acts on functional classification, input, output,
preconditions and effects parameters. The result of
candidate services is filtered based on the matching
quality of the input and output parameters of their
operations.

 A Semantic service description DMA, which exploits
domain specific descriptions of services and goals,
according to concrete composition requirements. In
contrast to Service Discovery DMA, this DMA is
enhancing design process by taking into account
additional information to narrow the target of candidate
services: domain specific knowledge, global
annotations and context of compositions.

 A Semantic Link Design Operator [LecL06]. DMA
(Figure 7), that establishes dataflow in the models. In
other words this DMA checks the semantic
compatibility between the input and output parameters
of connected compositions bound activities and creates
suitable connections, constituting the composition data
flow. The latter compatibility is valued by different
standard matching type between semantic descriptions
of output and input parameters of services, by order of
semantic quality: Exact (i.e., same concept to describe
output and input parameters), PlugIn (i.e., the output
parameter is more specific than the input parameter),
Subsume (i.e., the output parameter is more general
than the input parameter) [PaoKPS02] and Intersection
(i.e., some properties are in common) [LiH03]. Such a
DMA acts on models that are already complete in terms
of parametric design process which means that all
services are bound and model contains all necessary
information to start dataflow mapping.

The aim of the blackboard is to control and coordinates
the autonomous and independent agents.
At the beginning of the procedure, the blackboard is seed
with an initial design plan, whose assignment set is
empty. At the end of the procedure none or several found
solutions are returned (completed assignment set). The
procedure finalizes either when the requested number of
solutions are found or when the DMAs can not post new
design models.

Example (Final Non Optimal Composition):
Figure 8 depicts the composition computed by the
composer. Such a composition consists in services
connected by semantic links. For instance, according to
Figure 1 the semantic link between both services
getFootwearProductURI and getFootwearProductPrice
with classifyFootwearEUProductPriceData is valued by
a Subsume matching type. Indeed, this link is valued by a

Figure 7 The Semantic Link Design Operator

 Figure 8 Composition returned by the Composer

Subsume matching type since EuropeanProduct is
subsumed (or more specific than) by the conjunction of
ProductURI and ProductPrice.

3.3 Optimizing Service Composition

Since the design-time composer aims at only computing
compositions that satisfy a specific goal and does not
consider global optimization of a composition, a step of
optimization is required (cf. Composition Optimizer in
Figure 2). Mostly due to performance optimization,
context adaptation or specific user preferences and
constraints, it is necessary to optimize the completed
compositions. While the input to the composer is
generally a rather goal-heavy process specification, the
optimizer only accepts complete process models for
which it seeks a better global cost function (in term of
functional and non functional qualities of services). The
optimizer transparently transforms compositions into their
optimal versions by replacing service bindings and
modifying the dataflow but without changing the
workflow (i.e., its structure – Figure 9).

The optimizer receives a complete process model and
tries to replace current bound services with other web
services which make better global cost function (e.g.,
better global performance). The cost function of our
optimization approach uses a combination of functional
and non-functional considerations. The functional
perspective comprises a set of metrics related to how well
the functionalities of the constituent services fit together.
The semantic quality is such a core metric, measuring the
degree of semantic similarity between the outputs
produced by constituent services and the inputs required
by their peers. Such a quality is one of the measures of
the overall functional quality for the composition,
indicating the “goodness of fit” between the
functionalities of the constituent services. To measure the
degree of semantic similarity, we use the concept of
semantic link (used by the composer), and so a semantic
reasoning component which evaluate subsumption of
concept-based parameters. Web service compositions

could thus be optimized and ranked using not only
nonfunctional parameters such as the well-known QoS
[CanPEV05], but also using semantic quality as a core
indicator of functional quality [LecDL08]. In the same
way as [LecN09], we suggest to unify both types of
criteria, allowing us to estimate and optimize the quality
of service compositions.

In addition rules for aggregating quality values of
services and semantic links in the composition are
required. The approach for computing semantic quality of
compositions is adapted from the application-driven
heuristics of [LecDL08], while the computation of its non
functional QoS is similar to [CarSMAK04]. For instance,
the overall price of a sequence-based composition of
services is valued by their average whereas its response
time is valued by their sum.

Optimizing the quality of semantic links between
services and QoS aims at not only consider non functional
properties such as price or availability rate but also the
quality of semantic fit along non-trivial data flow, where
the information required and provided by services does
not match perfectly in every dataflow, using semantic-
based description of services. By addressing non trivial
data flow in composition, we aimed at limiting the costs
of (semantic heterogeneity) data integration between
services by considering appropriate quality of semantic
links.

Optimizing the quality of service composition using
this model is essentially a multi-objective optimization
problem [ArdP07] with constraints and preferences on the
quality of services and their semantic links. Such a
problem is known to be NP-hard [PapS82], thus putting
into question the practical applicability of such
optimization for compositions of realistic scale. To speed
up the application of the proposed optimization model in
a context of realistic scale, we adapt the approach based-
GAs (Genetic Algorithms) of [CanDEV04] in order to
consider non functional properties of services and non
qualities of semantic links between services. In addition
we extend the latter model by revisiting the fitness
function in order to avoid local optimal solution (i.e.
compositions disobeying constraints are considered).

Roughly speaking, the execution of the GA consists in
the following steps: i) defining the initial population (as a
set of concrete compositions), and computing the cost
function (used as an evaluation criterion) for each
composition; ii) evolving the population by applying
mutation and crossover of compositions (this step simply
binds new services in the composition by discovery close
service in the service repository); iii) selecting
compositions; iv) evaluating compositions of the
population; v) and back to step (ii) if the stopping
criterion is not satisfied in the GA evolution. In case no
solution exists, users are requested to relax constraints of
the optimization problem in order to compute alternative

Figure 9 Process Optimization Recombining Services

solutions still providing a reasonable quality of
composition (at both QoS and semantic levels).

Example (Optimal Composition):
 Suppose de composition returned by the composer in
Figure 8. The optimization process changed its service
binding by discovering services with better non functional
qualities and also with higher semantic quality of the
links between services (Figure 10). For instance, the
services getFootwearProductData and
classifyFootwearProductPriceData have been preferred
since they maximize the cost function of the optimizer
process. On the one hand their price and response time
are the lowest. On the other the semantic quality of both
links between the latter services are better (in term of
matching type). Indeed, the connection between the
conjuction of the output ProductData of
getFootwearProductData and the output ProductPrice of
getFootwearProductPrice and the input Product of
classifyFootwearProductPriceData is of an exact
matching type.

In case of conflicts e.g., the value of the non functional
quality is the best for a first composition but worse
regarding the semantic quality, we compare a weighted
average (with a weight of 1/2) of their normalized values.

4. Prototype Implementation

The Template Generator has been implemented as a
Widget front-end, developed with GWT
(http://code.google.com/webtoolkit/), interfacing with a
server-side component, which is also integrating the
ProM APIs (http://prom.win.tue.nl/tools/prom/) and the
mining plug-in
(http://staff.icar.cnr.it/wfmining/tools.htm).

The composer core has been implemented using
Spring framework IoC container [JohHARS07],
endowing the composer of beam configuration,
management and observable pattern blackboard
notifications for blackboard. All agents, including the
blackboard control agent have been implemented as
Spring beans. The design analysis agents have been
implemented using JBoss Drools rule engine
(http://www.jboss.org/drools/). A specific drools rule
language has been implemented to check the parametric
design taxonomy of design models. The Domain Specific

Language DMA also uses JBoss Drools rule engine. The
semantic service description DMA is using wsmo-api,
wsmo4j (http://wsmo4j.sourceforge.net/). For legacy
WSMO support it is also using WSMO-discovery
module. The service discovery DMA consumes a WSMO
based service, exposed as a WSDL WS, using JAX-WS
(https://jax-ws.dev.java.net/). The semantic link DMA
consumes a semantic link engine, exposed as a WSDL
service, using JAX-WS as well. The latter engine is
internally using the Fact++ Reasoner [TsaH06] through
an interpreter of WSML descriptions. Finally, the
composer exposes the result as a BPEL4SWS service,
understandable by the optimizer.

In the same way as the composer, the optimizer use
Fact++ on top of the semantic links. The GA is
implemented in Java, extending a GPL library JGAP
(http://jgap.sourceforge.net/). The optimal compositions
are computed by using an elitist GA where the best 2
compositions were kept alive across generations, with a
crossover probability of 0.7, a mutation probability of 0.1,
a population of 200 compositions. We consider a simple
stopping criterion i.e., up to 400 generations.

5. Related Work

5.1 Template Generator

Data mining techniques are usually strictly related to
process mining problems: in fact, supposing a certain
number of tasks within a process, the number of possible
different executions is an exponential number (while not
all of them have the same probability to be actually
executed). Here is where data-mining technology helps.
[CooW99], working in the area of software engineering
processes, analysed three different methods for process
discovery: neural networks, Markovian models, and
algorithmic approach. Their work allows to generate
explicit process models, and to measure the actual gap
between process model and actual observed behaviour.
[AgrFL98] introduced the idea of extending process
mining to workflow management, by analyzing the events
recorded in a log and by identifying constraints. Their
approach is based on an algorithmic approach, by
enumerating tasks instances and applying a folding
procedure. [Gol78] shows that the problem of finding a
state-machine compatible with a set of recorded data is
NP-hard. This problem has an analogy with the process
mining problem; even if an important difference is that
process mining needs to take into account concurrent
tasks.

5.2 Design Time Composition

Figure 10 Composition returned by the Optimizer

There is intense research on the automated synthesis of
services compositions. Some approaches exploit
heavyweight semantic descriptions of WS: [SirHP02]
exploits DAML service descriptions to derive semi-
automatically service compositions, [HakSCDM05]
proposes a WSMO orchestration complementary model
implemented in IRS-III.
A parametric design method applied to SOA composition
is found in [HarW04], where they applied parametric
design configuration over a fixed composition template.
Other automatic service composition approaches uses AI
techniques. [TraP04] converts the problem of composing
a fixed number of services described by OWL-S models
into an AI planning problem. A complete survey of
proposed techniques for synthesis of service compositions
can be found in [MarP09].
In general existing approaches requires heavyweight
service descriptions, fixed composition templates that
aggregates single services, but do not consider the reuse
of pre-existing process templates.

5.3 Composition Optimization

Proposals to address composition optimization center on
stochastic approaches [CarSMAK04], Constraint
Programming [HasMI06] and Integer linear Programming
(IP) [ZenBNDKC04], [LecDL08], with the latter
considered showing most promise. However, IP
approaches have been shown to have poor scalability in
terms of time taken to compute optimal compositions
when the number of available services grows. The
optimization problem can be also modeled as a knapsack
problem [YuL05], wherein [ArpZAM05] performed
dynamic programming to solve it. Unfortunately the
previous QoS-aware service composition approaches
consider only links valued by Exact matching types,
hence no semantic quality of compositions. Here we
apply [Lec09] by using GAs to achieve optimization in
web service composition, and by i) using semantic links
to consider data flow in composition, ii) considering not
only QoS but also semantic quality (and constraints) of
composition,

5.4 Integration

As confirmed by the previous study on the related work,
many works address template generation, service
composition and optimization, but their integration, which
is far from trivial, is not studied. As motivated by our E-
Commerce scenario, the service providers could benefits
such an integration by using our end-to-end architecture,
easing composition and their optimization.

6. Conclusion

We presented and tested an architecture that achieves

fully end-to-end composition and optimization in a
realistic setting, where a process of compositions
templates is required before starting the approach. The
architecture combines advanced techniques for Template
Generation, flexible Composition, and Optimization, and
therefore significantly departs both from architectures
which only focus on one of these tree components or
compositions approach starting from scratch.

A further direction of work stands in a fuller
integration of semantic-based mining (and reasoning)
within the Template Generator, to support the extraction
of more relevant abstract process, useful for composition
and then optimization processes. In addition, we will
further investigate on the adaptation of our architecture to
contextual information: context-driven logs filtering for
the template generator, and context-based composition
and optimization. Finally, we expect large scale
experiments with thousands of users and services.

7. References
[ArdP07] Danilo Ardagna and Barbara Pernici. Adaptive
service composition in flexible processes. IEEE Trans.
Software Eng., 33(6):369–384, 2007.
[AgrFL98] R. Agrawal, D. Gunopulos, F. Leymann,
Mining process models from workflow logs, in:
Proceedings of the Sixth International Conference on
Extending Database Technology, 1998, pp. 469–483.
[ArpZAM05] Arpinar, I.B., Zhang, R., Aleman-Meza,
B.,Maduko, A.: Ontology-driven web services
composition platform. Inf. Syst. E-Business Management
3(2), 175–199 (2005).
[BenHLRT05] Boualem Benatallah, Mohand-Said Hacid,
Alain Léger, Christophe Rey, Farouk Toumani: On
automating Web services discovery. VLDB J. 14(1): 84-
96 (2005)
[CanPEV05] Canfora G., Di Penta M., Esposito R., and
Villani M. L.. An approach for qos-aware service
composition based on genetic algorithms. In GECCO,
pages 1069–1075, 2005.
[CooW99] J.E. Cook, A.L. Wolf, Software process
validation: quantitatively measuring the correspondence
of a process to a model, ACM Transactions on Software
Engineering and Methodology 8 (2) (1999) 147–176
[CooW95] J.E.Cook and A.L.Wolf. Automating process
discovery through event-data analysis. In Proc.17th Int.
Conf. on Software Engineering (ICSE’95), pages 73–82,
1995.
[ErmHLR80] Erman L. D., Hayes-Roth F., Lesser V. R.,
and Reddy D. R.. The Hearsay-II speech-understanding
system: Integrating knowledge to resolve uncertainty.
Computing Surveys, 12(2):213–253, June 1980

[Gol78] E.M. Gold, Complexity of automation
identification from given data, Information and Control
37 (3) (1978) 302–320.
[GreGP05] G. Greco, A. Guzzo, and L. Pontieri. Mining
hierarchies of models: From abstract views to concrete
specifications. In BPM, pages 32--47, 2005
[HakSCDM05] Farshad Hakimpour, Denilson Sell,
Liliana Cabral, John Domingue, Enrico Motta: Semantic
Web Service Composition in IRS-III: The Structured
Approach. CEC 2005: 484-487
[HarW04]Teije, A. t. van Harmelen, F. Wielinga, B.
Configuration of Web Services as Parametric Design.
Lecture Notes in Computer Science. Springer Verlag.
ISSU 3257, pages 321-336. 2004
[JohHARS07] R. Johnson, J. Hoeller, A. Arendsen, T.
Risberg, C. Sampaleanu. Professional Java Development
with the Spring Framework. Wrox. 2007
[LecL06] Lécué F., and Léger A., (2006), ‘A formal
model for semantic Web service composition’, in ISWC
2006, pp. 385–398.
[LecDL08] Lécué F., Delteil A., and Léger A..
Optimizing causal link based Web service composition.
In ECAI, pages 45–49, 2008.
[LecN09] Lécué F., Mehandjiev N.: Towards Scalability
of Quality Driven Semantic Web Service Composition.
ICWS 2009: 469-476
[LiH03] L. Li and I. Horrocks. A software framework for
matchmaking based on semantic Web technology. In
WWW, pages 331–339, 2003.
[MarP09]A. Marconi, M. Pistore: Synthesis and
Composition of Web Services. SFM 2009: 89-157
[MerHS05] M. Mernik, J. Heering, and A. M. Sloane,
“When and how to develop domain-specific languages,”
ACM Computing Survies, vol. 37, no. 4, pp. 316–344,
2005
[Mot99] Motta E., (1999) Reusable Components For
Knowledge Modelling Case Studies In Parametric Design
Problem Solving,IOS Press (Netherlands)

[NitN08] Nitzsche, J., Norton, B.: Ontology-based data
mediation in bpel. In: BPM Workshops. (2008) 523–534
[PaoKPS02] M. Paolucci, T. Kawamura, T.R. Payne, and
K. Sycara, (2002) Semantic matching of Web services
capabilities. In ISWC, pages 333–347
[PapS82] Christos H. Papadimtriou and Kenneth
Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, 1982.
[SirHP02] E. Sirin, J. Hendler, B. Parsia, Semi-automatic
composition of Web services using semantic descriptions,
in: Web Services: Modeling, Architecture and
Infrastructure workshop in conjunction with ICEIS2003,
2002
[TraP04] P. Traverso, M. Pistore: Automated
Composition of Semantic Web Services into Executable
Processes. International Semantic Web Conference 2004:
380-394
[TsaH06] D. Tsarkov and I. Horrocks. FaCT++
Description Logic Reasoner: System De-scription. In
Proc. IJCAR 2006, pages 292{297, Seattle, WA, USA,
2006.
[VanHV02] W.M.P. van der Aalst, A. Hirnschall, and
H.M.W. Verbeek. An alternative way to analyze
workflow graphs. In Proc. 14th Int. Conf. on Advanced
Information Systems Engineering, pages 534–552, 2002.
[VitKVF08] Vitvar T., Kopecký J., Viskova J., Fensel D.
(2008) WSMO-Lite Annotations for Web Services.
ESWC 2008: 674-689.
[WieAS95] Wielinga B. J., Akkermans J. M., Schreiber
A. Th., A Formal Analysis of Parametric Design Problem
Solving, In Proceedings of the 9th Banff Knowledge
Acquisition Workshop (KAW-95)
[YuL05] Yu, T., Lin, K.-J.: Service selection algorithms
for composing complex services with multiple qos
constraints. In: ICSOC 2005. LNCS, vol. 3826, pp. 130–
143.

