

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic Priority: Information and Communication Technologies

D6.5.1. Specification and first prototype of the

composition framework
Activity: Activity 2 - Core Research and Development Activities

Work Package: WP6 - Service Construction

Due Date: M12

Submission Date: 13/03/2009

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: CEFRIEL

Revision: 1.0

Authors: Gianluca Ripa CEFRIEL
Maurilio Zuccalà CEFRIEL
Adrian Mos INRIA

Reviewers: Virginie Legrand INRIA
Jesus Gorronogoitia ATOS

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 2 of 46

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 15/12/2008 TOC defined Gianluca Ripa (CEFRIEL)

0.2 16/01/2009 First version Gianluca Ripa, Maurilio
Zuccalà (CEFRIEL)

0.3 23/01/2009 TOC modified Maurilio Zuccalà (CEFRIEL)

0.4 31/01/2009 Revised content Gianluca Ripa (CEFRIEL)

0.5 06/02/2009 Added section 3.3 Adrian Mos (INRIA)

1.0 09/02/2009 General revision Gianluca Ripa (CEFRIEL)

1.01 20/02/2009 Internal Review Virginie Legrand (INRIA)

1.02 04/03/209 Internal Review Jesus Gorronogoitia (ATOS)

1.1 06/03/2009 Final version after internal review Gianluca Ripa (CEFRIEL)

Final 13/03/2009 Overall format and quality revision Malena Donato (ATOS)

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 3 of 46

Table of Contents
EXECUTIVE SUMMARY __ 7

1. INTRODUCTION __ 8

1.1 PURPOSE AND SCOPE OF THIS DELIVERABLE ________________________ 8

1.2 STRUCTURE OF THE DOCUMENT ___________________________________ 8

2. REQUIREMENTS FOR THE EXECUTION ENGINE FOR LIGHTWEIGHT
PROCESSES ___ 9

2.1 FUNCTIONAL REQUIREMENTS ______________________________________ 9

2.2 NON FUNCTIONAL REQUIREMENTS _________________________________ 9

2.3 TECHNOLOGICAL AND SYSTEM REQUIREMENTS _____________________ 10

2.4 SUMMARY OF REQUIREMENTS ____________________________________ 11

3. SPECIFICATION OF THE EXECUTION INFRASTRUCTURE FOR A DAPTABLE
SERVICE COMPOSITIONS ___ 14

3.1 BASELINE FOR DEVELOPEMENT ___________________________________ 14

3.1.1 Service Composition Execution Environment (SCENE) __________________ 14

3.1.2 Semantic BPEL Execution Engine (SBPELEE) ________________________ 16

3.2 EXECUTION ENGINE DEVELOPMENT ROADMAP ______________________ 16

3.3 A NEW APPROACH FOR ADAPTING SERVICE REQUESTS TO ACTUAL
SERVICE INTERFACES THROUGH SEMANTIC ANNOTATIONS _________________ 17

3.3.1 The approach used in SCENE for adapting service requests to actual service
interfaces ___ 18

3.3.2 The approach extended through the use of semantic annotations __________ 19

3.4 GENERATION OF RUNTIME ARTEFACTS ____________________________ 23

3.5 INTEGRATION IN SOA4ALL __ 24

3.5.1 Execution Engine Main Components Description _______________________ 26

3.6 SUMMARY OF FULFILLED REQUIREMENTS __________________________ 27

4. CONCLUSIONS __ 29

5. REFERENCES ___ 30

ANNEX A. COMPARISON BETWEEN SOA4ALL, SECSE AND SUPER APPROAC HES
 32

A.1. DIFFERENCES AND SIMILARITIES BETWEEN SOA4ALL EXECUT ION ENGINE
AND SBPELEE _______________________________________ ___________________ 32

A.2. DIFFERENCES AND SIMILARITIES BETWEEN SOA4ALL EXECUT ION ENGINE
AND SECSE __ 33

ANNEX B. THEWEATHER TO FORECAST MAPPING SCHEMA _____________ ___ 35

ANNEX C. SAWSDLS SERVICE DESCRIPTION _____________________________ 38

C.1. THEWEATHER SERVICE SAWSDL DESCRIPTION SPECIFICATION __________ 38

C.2. FORECAST SERVICE SAWSDL DESCRIPTION SPECIFICATION _ ____________ 41

ANNEX D. LIFTING SCHEMA MAPPING ____________________________ _______ 44

ANNEX E. SAMPLE ONTOLOGIES _________________________________ ______ 45

E.1. SAMPLE GPS ONTOLOGY _______________________________ _____________ 45

E.2. SAMPLE TIME ONTOLOGY ______________________________ ______________ 45

E.3. SAMPLE WEATHER FORECAST ONTOLOGY __________________ ___________ 45

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 4 of 46

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 5 of 46

Glossary of Acronyms

List of Figures
Figure 1 – Rule that establishes the binding to the most reliable service14

Figure 2 – Architecture of SCENE ..15

Figure 3 - Intermediating SOA Development Spaces ...24

Figure 4 Service Construction Framework overall picture. ..25

List of Tables
Table 1 – Summary of requirements ...13

Table 2 – Software development roadmap ...17

Table 3- Interface of TheWeather service ..20

Acronym Definition

BPEL Business Process Executable Language

BPM Business Process Management

BPML Business Process Modelling Language

BPMN Business Process Modelling Notation

BPMS Business Process Management System

D Deliverable

EC European Commission

JBI Java Business Integration

QoS Quality of Service

SCA Service Component Architecture

SLA Service Level Agreement

SOA Service-Oriented Architecture

SAWSDL Semantic Annotated WSDL

T Task

WP Work Package

WSCI Web Service Choreography Interface

WSDL Web Service Description Language

XPDL XML Process Definition Language

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 6 of 46

Table 4 -.Interface of the Forecast service ...20

Table 5 – Summary of fulfilled requirements (- no, O partially, X yes)28

Table 6 Comparative analysis Super-IP vs SOA4All Execution Engine.32

Table 7 Comparative analysis Super-IP vs SOA4All Execution Engine.33

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 7 of 46

Executive summary
In the definition of the Execution Engine for Lightweight Processes, we have started from the
requirements coming from the SOA4All use cases, from our experience and from the state of
the art analysis.

A selection of most relevant requirements coming out from the SOA4All use cases are:

- supporting manual and automatic adaptation of specific services or entire processes
to different consumption settings;

- enabling dynamic selection and composition services;

- supporting third party services freely available on the Internet as well as enterprise
services;

- taking into account the unavailability and the possible faults of third party services;

- allowing non-technical users to compose services.

Some of the requirements listed above have been addressed in other projects before, see for
instance SUPER [13], focusing on BPM, and SeCSE [12], focusing on adaptable service
compositions, however no project has considered all of them as a whole. Furthermore the
use of the solutions proposed by these projects requires high expertise in both business and
IT while SOA4All has to enable non technical users for building and executing processes and
service compositions.

The SOA4All Execution Engine is built on top of SCENE [8] that represents the baseline for
development. One of the planned extensions is to evaluate the integration of SCENE with
part of the SBPELEE engine [6] developed in SUPER.

In order to fulfill the SOA4All requirements some developments were realized and others are
planned, they are:

• implementing new approaches that aim at simplifying and partially automating the
work of a potential user that has to design and execute a lightweight process.

• defining and implementing an approach for the generation of the executable artifacts
needed by the SCENE platform starting from the more abstract artifacts produced by
the users (as described in [1]) and optimized by our adaptation framework (as
described in [2]).

• integrating the Execution Engine in the SOA4All runtime (as described in [3]) for
exploiting functionalities offered by other components of the SOA4All architecture.

We will conduct an experiment on the e-government scenario developed in the context of the
WP7 of SOA4All.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 8 of 46

1. Introduction

1.1 Purpose and scope of this deliverable
This deliverable contains the requirement specification and the design draft of the Execution
Engine for Lightweight Processes as well as the description of the implementation of a first
running prototype with basic functionality. The design draft is based on the state-of-the-art
report, use case requirements as well as conceptual considerations.

The Execution Engine will exploit a set of basic mechanisms such as dynamic discovery,
selection, adaptation, invocation, mediation, monitoring developed in the other work
packages, for supporting the dynamic and adaptive reconfiguration in reaction to
environmental changes. In the definition of the execution framework, we have started from
the requirements coming from the SOA4All use cases and from the state of the art analysis.

From SOA4All use cases, and from our experience, we know that the high dynamics of
businesses and the continuous evolution of end users expectations and needs lead to
developing systems able to self-adapt to various kinds of changes, depending on:

• the specific capabilities of components services actually available,

• the environmental conditions in which the system is being executed, and

• the possible faults and unavailability of components services.

For enabling the runtime self reconfiguration of a service composition a set of constraint and
rules has to be defined before execution. Since SOA4All targets non-technical users we are
developing new approaches for allowing non–technical users to take advantage of the self-
reconfiguration capabilities of a service composition. These approaches will exploit:

• the semantic description of the services;

• the classification of the contextual information and of the possible faults and
unavailability of components services that can happen during execution.

1.2 Structure of the document
This deliverable is organised as follows. Section 1 gives an introduction to the scope and
content of this deliverable. Section 2 summarizes the requirements for the adaptive service
compositions execution framework. In Section 3 we present the specification of the execution
infrastructure for adaptable service compositions and a new approach for allowing non–
technical users to take advantage of the self reconfiguration capabilities of a service
composition. Finally in section 4 we draw some conclusion.

A short paper is included as confidential Annex to this paper.

Other annexes to this document are:

• ANNEX A: Comparison between SOA4All, SeCSE and SUPER approaches;

• ANNEX B: theweather to forecast mapping schema;

• ANNEX C: sawsdls service description;

• ANNEX D: lifting schema mapping.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 9 of 46

2. Requirements for the Execution Engine for Lightw eight
Processes
The requirements for the Execution Engine for Lightweight Processes result out of the
SOA4All use cases as well as from the experiences from previous projects. In this section,
we refer to an example already developed in the SeCSE project [12] and refined to meet the
expectations of the SOA4All use cases. We do not refer directly to SOA4All use cases
scenarios, as example, because they are defined in details in parallel to the writing of this
document.

2.1 Functional Requirements
In order to better explain the functional requirements of our execution framework we refer to
an example: a weather forecast service built to support car drivers exploiting a car navigation
system in knowing the weather conditions at the destination place and at the estimated
arrival time in a very user friendly way. The user must be only required to select the
destination on the car navigation system and the weather forecast information is
automatically displayed with the result of the trip planning.

In the example, the destination and the arrival time can only be known by the system at
execution time. This is a common situation since many services depend on information
known only during execution. Furthermore, from the experience, we know that, very often,
the weather forecast services support only a certain geographical area or even a single
country. Each of them can have a different granularity with respect to places (i.e. only big
cities, all cities, by GPS coordinates,) and times (i.e. for a certain day of the week, for a
certain hour of the day) of the forecast. In this hypothesis, we can only select the concrete
service to invoke at execution time. There is a need for runtime adaptation and dynamic
binding mechanisms w.r.t.. user’s context.

Since the system will discover, select and bind the appropriate concrete service to invoke
only at execution time, necessarily it will have a different interface or different protocol from
those expected by the service requester. The system must be able to adapt service
requests to actual service interfaces at execution time . This is also the situation of the
WP7 scenario where, for instance for payment activities, depending on the consumers
choices a completely different data should be transmitted to the payment broker.

In many situations, there is a probability to discover several candidate services able to return
the weather forecasts for the same location and time. While these services could be
considered equivalent for provided functionalities, they could provide very different results in
term of :

• quality of service provided (e.g. availability, reliability, response time, reputation),
• underlying business models (from free-use to pay-per-invocation) and other non-

functional characteristics (e.g. ability to negotiate or re-negotiate an SLA, ability to
monitor the execution, requirements for security and identity management).

The execution infrastructure should support the ser vice selection according to
functional, non-functional and contextual informati on.

Almost every service can fail or malfunction in its execution for many reasons. Since we can
rely on many candidate services, when a fault occurs the system must be able to be aware of
this and when possible should try to recover the execution. The execution infrastructure
should provide fault handling and dynamic rebinding mechanisms.

2.2 Non functional requirements
Within Web 2.0, active consumers (often referred as prosumers) become part of the content
providing process and often in the form of a community of creators. One of the main
objectives of SOA4All is to allow non-technical users to compose services, in a user friendly,

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 10 of 46

Web-2.0 way. Users should be able to discover, select and compose services publicly
available on the Internet, not being faced to too high technological barriers. The execution
infrastructure should support service prosumers.

In SOA4All, there is the assumption that in a near future, a suitably large collection of third
party services will be deployed and will become available for discovery and consumption. In
this context services can appear, be modified, or disappear in an ad hoc fashion. In this open
world setting the idea of being able to self-manage is very important. As we already
discussed in [4] the basic requisites for a self-manageable system are:

• being knowledge aware,

• ability to sense and analyze environmental conditions,

• ability to actuate on its environment.

The characteristics of autonomous systems are being applied today in four fundamental
areas of self-management to drive significant operational improvements where traditional
manual-based processes are neither efficient nor effective. These four areas are related to
different attributes of autonomous systems, and they are self-configuring capabilities, self-
healing capabilities, self-optimizing capabilities, and self-protecting capabilities.

For each of these main areas of applicability, a design principle can be extracted where it is
believed it should be incorporated in SOA4All execution framework in order to leverage the
construction, configuration and deployment of infrastructures that enable Web scale service-
oriented environments:

1. Self-configuring: The system should analyze monitoring information and react
accordingly. For instance, in the context of compositions of services when a service
losts its quality, it should be replaced with another one.

2. Self-healing: When a service is published and it becomes public ly available, it
should announce its capacity and should be incorpor ated seamlessly. The rest
of the system should reconfigure itself to take advantage from the presence of the
new service.

3. Self optimizing: The system should be able to monitor itself and s hould be able
to carry out actions to tune its resources .

4. Self-protecting: The runtime environment should be able to use infor mation
coming from other components of the architectures f or anticipating problems
and take steps to avoid or mitigate them.

Another non-functional requirement of the SOA4All execution environment is scalability .
Indeed Service-oriented computing at Internet scale raises scalability issues (e.g.
performance management, replication and load balancing) not present in current intra-
company solutions. In fact, the growing number of Web services and increased use of
service infrastructure across business networks brings new challenges that are not
addressed adequately today to master the very large and meeting the challenge of dealing
with billions of services.

2.3 Technological and system requirements
SOA4All Runtime consists of an infrastructure that brings Web services and SOA to the Web
scale. In particular, the SOA4All framework defines some facets from which result out a
technological and a system requirement for the SOA4All service composition execution
framework:

- A Web grounding for semantic descriptions.

- A Distributed Service Bus for accessing and co-ordinating services at Web scale.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 11 of 46

WSMO will be an essential building block for the overall SOA4All architecture. As the project
progresses, the current WSMO specification will be further developed and extended to
enable further functionalities. WSMO Lite represents one of these extensions. WSMO Lite
realizes the WSMO concepts in a lightweight manner using RDF/S and SAWSDL,
established as parts of the Semantic Web and Web services language suite. We assume
that services involved in the composition are seman tically annotated using the
grounding schema described in [9]. This is related with the self-* characteristics of the
execution environment since they are configured through the semantic descriptions of the
component service available for use inside a service composition or inside a process. The
execution environment relies on these descriptions for selecting services to invoke and for
adapting requests and responses. A composition reconfigures itself by means of substituting
a service implementation with one other.

If all the invocations go through the Distributed Service Bus (DSB), monitoring only needs to
catch the messages sent to the services, otherwise the service composition execution engine
will also have to notify which messages have been sent and received (this is different from
the monitoring events it will have to send about the actual evolution of the process). Invoking
through the DSB makes it simpler and more homogeneous.

2.4 Summary of requirements
In Table 1 the requirements for the execution infrastructure are summarized. The
requirements are uniquely identified by a label for being properly referenced in the remainder
of the document. The labels adopt the following syntax:

- functional requirements F plus number,

- non functional requirements NF plus number,

- system requirements S plus number.

N. Requirement
type

Requirement short
description

Source of
requirement

Explanation

F1 Functional Dynamicity

There is the need for
runtime adaptation and
dynamic binding
mechanisms

Use cases All our use cases
require the support
for manually and
automatically
adapting specific
services or entire
processes to
different
consumption
settings.

F1.1 Functional Adaptation

The system must be able
to adapt service requests
to actual service interfaces
at execution time

Use cases All our use cases
aim at allowing
dynamic selection
and composition of
third party services.

F1.2 Functional Dynamic Binding

The execution
infrastructure should
support the service

Use cases All our use cases
require the
management of the
Quality of Service
(QoS) and Service

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 12 of 46

selection according to
functional, non-functional
and contextual information

Level Agreements
(SLAs) in
composed services

F2 Functional Functional fault handling

The execution
infrastructure should
provide fault handling and
rebinding mechanisms
w.r.t. availability and faults

Use cases All our use cases
aim at supporting
freely available
services on the
Internet as well as
enterprise services.
Third party services
are inherently
unreliable and, for
this reason, the
unavailability and the
possible faults have
to be taken into
account.

NF1 Non functional User-friendly
composition

Enabling service
prosumers

SOA4All
Vision

One of the main
objective of SOA4All
is to allow non-
technical users to
compose services.

S1 Non functional /
System
requirement

Adaptation to contextual
changes

The system should analyze
monitoring information and
react accordingly

SOA4All
Vision and
Architecture

In a world of billions
of services it is
necessary to deal
with timely and
accurate information
about the execution
of applications and
infrastructural
services in order to
govern their
execution supporting
the adaptation to
contextual changes
(e.g. availability of
services, variations
in their execution
time, etc)

S2 Non functional /
System
requirement

System Self-
configuration

When a service is
published, it should
announce its capacity and
the rest of the system
should reconfigure itself to
take advantage from the
presence of the new
service. In particular, the
system should support
WSMO Lite annotations.

SOA4All
Vision and
Architecture

Semantic service
annotation is
essential for service
discovery and
service composition
and must go beyond
the technical
description of
services such as
provided by WSDL.
To this extent we
utilize and extend
the WSML family of

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 13 of 46

 languages for the
purpose of
semantically
annotating services.

S3 Non functional /
System
requirement

Self -optimization

The system should be able
to monitor itself and should
be able to carry out actions
to tune its resources.

General
requirement

In order to increase
performances, and
to reduce human
effort in managing
the system

S4 System
requirement

Soa4all Integration

The runtime environment
should be able to use
information coming from
other components of the
architecture for anticipating
problems and take steps to
avoid or mitigate them

SOA4All
Architecture

The runtime
environment is a
component of the
SOA4All architecture
and should
cooperate with all
the other
components.

S5 Non functional/
System
requirement

Scalability

Taking advantage from the
SOA4All Distributed
Service Bus for addressing
the scalability scalability
requirement and for
acheving coherence of the
architecture.

SOA4All
Vision and
Architecture

The DSB enables for
accessing services
at Web scale, by
seeking appropriate
distribution
techniques that
evolve the traditional
ESB techniques
towards the
fully Distributed
Service Bus; without
a priori altering the
communication and
interaction
approaches of ESB.

Table 1 – Summary of requirements

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 14 of 46

3. Specification of the execution infrastructure fo r
adaptable service compositions
Some of the requirements listed in section 2 have been addressed in other projects before,
see for instance SUPER [13], focusing on BPM, and SeCSE [12], focusing on adaptable
service compositions), however no project has considered all of them as a whole.
Furthermore the use of these solutions requires high expertise in both business and IT while
SOA4All has to enable non technical users for building and executing service process and
service compositions.

The SOA4All execution infrastructure for adaptable service compositions is built on top of
SCENE [8] that represents the baseline for development. The following subsections describe
SCENE and the extensions already realized and envisioned for the second year of the
project. For one of these extensions it is planned to evaluate the integration of SCENE with
part of the SBPELEE engine [6] developed in SUPER. The SBPELEE engine is briefly
described in section 3.1.2.

3.1 Baseline for developement
3.1.1 Service Composition Execution Environment (SC ENE)

3.1.1.1 The SCENE language

In SCENE a service centric system is defined in terms of two main aspects: the application-
dependent control logic that is expressed using BPEL, and the policies that enable self-
adaptation at runtime. These policies, among other things, allow designers to postpone the
binding to specific component services until runtime. At design time the designer associates
to a BPEL service invocation an abstract service, e.g., a generic weather forecast service in
the example mentioned in section 2, and defines a binding rule that defines how to determine
the binding to a concrete service. In our specific example, this rule states the selection of the
service with the best actual reliability.

Event: bindingEvent
Condition: action=getForecast
Action: bind getForecast, criteria: best candidateServiceList.QoS.reliability

3.1.1.2 The SCENE platform

The SCENE platform provides the runtime execution environment for compositions written in
the SCENE language. As mentioned above, the SCENE language extends the standard
BPEL language with rules that are used to guide the execution of self-adaptation operations
at runtime. Figure 1 shows an example of a rule, written in pseudo-code, referred to the
example of the weather forecast we have introduced before. The rule allows the runtime
environment to bind to the concrete service implementation that has proved to have the best
reliability.

The SCENE prototype includes the following components depicted in Figure 2:

• a BPEL engine, Active BPEL [17], which is in charge of executing the process part of
the service composition;

• an open source rule engine, Drools [18], responsible for running the rules;

• WSBinder [19], responsible for executing binding actions at runtime based on the
directions defined in the rule language;

Figure 1 – Rule that establishes the binding to the most reliable service

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 15 of 46

• a set of Proxies that decouple the BPEL process and the execution environment from
the logic needed to support reconfiguration.

The components of SCENE interact through a publish-subscribe paradigm. At runtime, when
the execution of the process reaches the invocation of an external service, a proxy operation
is actually called. If the proxy does not refer to any concrete service, it emits a bindingEvent.
The rule engine - that has subscribed to this event - receives it and activates a rule able to
handle - possibly with the activation of WSBinder - the missing binding. The control is then
passed to the proxy that, possibly activating an adapter, invokes the proper operation on the
bound service, and then passes the control back to the BPEL execution environment.

Event bus

Standard BPEL

engine

pub/sub/unsub

notify

Client

req.

Drools Rule engine

Registry

(WS)

Composite

Service

Interface

PROXYinvoke

invoke

req.

invoke

Knowledge

repository

Bus connectorBus connector Bus connector

pub/sub/unsub

notify

Binding framework

Bus connector

pub/sub/unsub

notify

pub/sub/unsub

notify

Bus connector

Monitoring

Manager

pub/sub/unsub

notify

invoke

invoke

concrete services concrete services concrete services

3.1.1.3 The SCENE process deployer

An additional component of the SCENE platform is the Process Deployer. The Process
Deployer is not meant to interact directly with a human user, it is meant to be called by a
composition designer.

When a deploy process is launched a number of activities are performed:

- The WSDLs of the services used by the BPEL process are downloaded and weaved
to produce the WSDL of the proxies used by the platform to enable dynamic binding.

- The BPEL process is weaved to produce the BPEL process using the proxies instead
of the real services.

- The java code implementing the stubs, used by the proxies to access the real
services is automatically generated.

- The java code implementing the proxies is automatically generated and it is packaged
as axis2 services.

- The weaved BPEL process and the weaved WSDLs are packaged as an ActiveBpel
deployable archive.

- The proxies are deployed under Axis2

- The weaved BPEL process is deployed under ActiveBpel

Figure 2 – Architecture of SCENE

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 16 of 46

- The rules written in the high-level language are translated into the low-level language
required by Drools and deployed.

- Some deployment descriptors of the SCENE platform are updated with the necessary
information so that a new deployed process is available for invocation.

3.1.2 Semantic BPEL Execution Engine (SBPELEE)

The SUPER architecture [6] distinguishes two layers for Semantic Business Process (SBP)
execution: the Semantic BPEL Execution Engine (SBPELEE) and the Semantic Execution
Environment (SEE). The SBPELEE layer is responsible for orchestrating the execution of
some activities according a the control and data flow.

3.1.2.1 The SBPELEE language

SBPELEE executes a process described in terms of a BPEL4SWS model, an SA-WSDL
document describing the service defined by the process model and a WSDL containing the
service descriptions to import and deploy in the process model.

As described in Error! Reference source not found. BPEL4SWS extends the BPEL
language with the ability to use semantic information for describing activity implementations
using semantics and thus independent of their interface descriptions. In addition, data
models used in processes are represented semantically using ontologies, which enable the
use of process relevant data for reasoning. Mismatches on the data and process level can
also be resolved using mediation on the ontological level.

3.1.2.2 The SBPELEE architecture

The architecture of SBPELEE, as described in [6], has been centred on Apache ODE, which
is the execution engine chosen by the SUPER consortium to be extended. Apache ODE was
extended in SUPER for supporting BPEL4SWS.

3.1.2.3 The SBPELEE deployer

In order to be able to deploy a BPEL4SWS model into SBPELEE people from SUPER
changed both the Parser and Compiler of Apache ODE for supporting some BPEL
extensions they have defined.

3.2 Execution engine development roadmap
In SOA4All we are evolving the SCENE Platform and the SCENE Process Deployer in order
to obtain an execution environment for lightweight processes as described in [1]. In order to
achieve this objective we are implementing new approaches that aim at simplifying and
partially automating the work of a potential user that has to design and execute a lightweight
process. In particular:

• In section 3.3 we present in details a new approach for adapting service requests to
actual service interfaces through semantic annotations. This is also the main
achievement already realized during the first year of the SOA4All project and it is the
main new functionality of the first prototype of the composition framework released at
the time of writing.

• In section 3.4, we present an approach to the generation of artifacts. We are defining
and implementing an approach for the generation of the executable artifacts needed
by the SCENE platform starting from the more abstract artifacts produced by the user
(as described in [1]) and optimized by our adaptation environment (as described in
[2]).

• In section 3.5 we show how the extended SCENE platform will be integrated in the
SOA4All runtime (as described in [3])

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 17 of 46

In this section, we provide, summarized in Table 2, the roadmap for development of the
SOA4All execution engine software. It specifies the delivery dates of the software associated
with task T6.5 and what will be the planned extensions for each milestone.

Component

Milestone

Lightweight Process Executor Lightweight Process Deployer

M12 Prototype

Semantic
Enabled
Execution
Engine

Developed a new approach for
adapting service requests to actual
service interfaces at runtime

Extended the SCENE platform
integrating the new approach

Conducted an experiment on a
sample scenario

-

M18 Established

1st Prototype
Demonstrator

Experiments for substituting the
BPEL engine used in SCENE with
SBPELEE developed in SUPER

New experiments based on the
WP7 scenario (see [5])

Definition of the artefacts
generation process

M24 Refined

Advanced
Prototype For
Adaptive
Service
Composition
Execution

Development of new approaches
for exploiting semantic annotations
in self-adaptation at runtime

Development of an extended
demonstrator implementing the
WP7 scenario

Partial integration in the SOA4All
Runtime

Development of the 1st version of
the Process Deployer

Development of a demonstrator
based on the scenario defined in
the WP7 scenario

Partial integration in the SOA4All
Studio

M30 Matured

Final Prototype
For Adaptive
Service
Composition
Execution

Refinement of the Executor

Integration in the SOA4All Runtime

Refinement of the Deployer

Integration in the SOA4All Studio

3.3 A new approach for adapting service requests to actual
service interfaces through semantic annotations
An interesting challenge in the context of service oriented systems is the possibility of
building applications where loosely coupled component services can be selected at run time

Table 2 – Software development roadmap

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 18 of 46

and can be replaced by other services when needed. Most of the research efforts aiming at
supporting this dynamic selection and binding to services assume that the interface of the
services to be composed are known at design time. In [7], based on our experience with
industrial partners of the European integrated project SeCSE [12] we argued that this
assumption was not totally realistic, as a consequence of the lack of standardization in
service oriented systems. To solve this problem, in the same paper we presented an
approach to allow invocation of services whose interface and behavior differs from one
another. This approach is incorporated in the SCENE framework described in section 3.1.1
above. In that paper we identified a number of possible mismatches between services and
some basic mapping functions that can be used to solve simple mismatches. Such mapping
functions can be combined in a script to solve complex mismatches. Scripts can be executed
by a mediator that receives an operation request, parses it, and eventually performs the
needed adaptations.

Such approach requires the definition of scripts by some human being able to completely
understand the mismatches and properly combine the mapping functions. In many situations
this is not possible. Furthermore, such approach requires an intensive effort from a system
integrator that, in the worst case in which a client can be bound to N different services, could
be requested to specify N adapters for each client. In this document we describe a new
approach that aims at solving these problems by exploiting semantic annotations of service
interfaces and domain ontologies. Our approach extends the previous work and permits the
automation of the definition of the adapting scripts.

3.3.1 The approach used in SCENE for adapting service requests to actual service
interfaces

3.3.1.1 Mismatches definition

We say that a service consumer assumes to interact with some abstract service that can
have various concrete realizations (the concrete services), all semantically equivalent to the
abstract service, but that can show some differences with the abstract service in the way
they need to be exploited by the consumer.

A service is described by an interface and a protocol. The former is defined as a tuple Is =
Os;Ds, where Os is the set of offered WSDL operations and Ds is a collection of data the
service can understand. Each offered operation has a name, a set of input parameters and a
set of output parameters. Each datum has a name, a type and a value.
A protocol is defined as a state machine characterized by tuple Ps = (Onames; Ss; Ts), where
Oname is the input alphabet of the state machine, containing names of operation associated to
service transitions. Ss is the set of states the service can go through, and Ts is the set of
transitions defined in the protocol state machine.
Given an abstract service Sabs and a concrete service Sconc, we say that a mismatch occurs
when an operation request expressed in terms of the abstract interface cannot be
understood by the concrete service that should handle it.

We distinguish the following two classes of mismatches:

- Interface-level mismatches: concern differences between names of operations
exposed by an abstract and a concrete service and parameters of these operations.

- Protocol-level mismatches: concern differences in the order in which the operations
offered by an abstract service and by its concrete representation are expected to be
invoked. In this case we say that there is a mismatch between the abstract service
protocol, Pabs, and the concrete service protocol, Pconc.

3.3.1.2 Mapping Functions and Mapping Language definition

To solve the mismatches listed above we defined a set of basic mapping functions. Since in
real cases we often observe combination of mismatches, also our mapping functions can be

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 19 of 46

combined to provide a solution to complex mismatches.

We based our work on two simplifying hypotheses: there is no non-determinism in services
protocols, and there is no operation names overloading. Under these hypotheses our basic
mapping functions are defined as follows:

- ParameterMapping: maps abstract service input data on concrete service input data.

- ReturnParameterMapping: maps abstract service output data on concrete service
output data.

- OperationMapping: maps abstract service operations on concrete service operations.

- StateMapping: maps an abstract service state on a concrete service state.

- TransitionMapping: maps an abstract service transition on a concrete service
transition.

Basic mapping functions can be combined in adaptation scripts, defined in a domain specific
executable language. The language is composed of rules structured in two parts:

- A mismatch definition part that specifies the type of the mismatch to be solved by the
rule, and contains two sub-elements: input, specifying the elements of the abstract
service that show the given mismatch, and mapping, specifying the elements of the
concrete service the input elements have to be mapped on.

- A mapping function part that contains the name of the function to be used to solve the
mismatch.

For an in depth treatment of mismatches, mapping functions and mapping language see [7].

3.3.1.3 Limitations of the previous approach

The approach described in this section shows three main limitations:

- The definition of the scripts requires the intervention of some human being able to
completely understand the mismatches and properly combine the mapping functions.

- It requires an intensive effort from a system integrator that, in the worst case in which
a client can be bound to N different services, could be requested to specify N
adapters for each client.

- It is complicated to add new services during the application run time, since system
integrators should develop a new adapter if they want to invoke a service showing
mismatches in their composition.

In SOA4All we extended the previous work enabling the automation of the definition of the
adapting scripts.

3.3.2 The approach extended through the use of semantic annotations

3.3.2.1 The example

In order to better explain our extended approach we refer to the weather forecast example
mentioned in section 2.1. The system supports the selection of the concrete service to invoke
at run time according to some rules. In particular, in this case the system selects the service
with the best availability in the last hour. If the service fails to respond, the system tries with
the second service with the best availability. The availability in the last hour of each
candidate service is measured by a monitoring subsystem.

We make the hypothesis that the execution infrastructure exploits a set of basic mechanisms
such as dynamic discovery, selection, adaptation, invocation, mediation and monitoring for
supporting the dynamic and adaptive reconfiguration in reaction to environmental changes.
In this perspective new services could be discovered and bound to the composition during

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 20 of 46

the system run time. Of course since there is lack of standardization these newly discovered
services can show some mismatches. In case of mismatch it is necessary to define a new
adaptation script in order to invoke the service in the composition.

We also assume that the system has to be designed to target non-technical users, which will
not be able to add themselves adapters when a new service showing mismatches will be
integrated into the composition.

On the base of the previous hypotheses it is not possible for a system integrator to develop
new adaptation scripts for each newly discovered service, so the capability of automatically
generate adapters is crucial for the system to work properly.

In Table 3 we summarize the interface of one of the candidate concrete services in terms of
operation name, input parameters (type:name) and return value (type:name). In Table 4 we
summarize the interface of another candidate concrete service. In both Table 3 and Table 4
complex types begin with uppercase while simple types begin in lowercase. We can see that
there are some mismatches solvable by some mapping functions specified in section 3.3.1.2:

- ParameterMapping, e.g., int:hour � int:hours;

- ReturnParameterMapping, e.g., the simple type ForecastResponse � the complex
type Forecast;

- OperationMapping, e.g., getForecats � Forecast.

3.3.2.2 Adapting requests and responces for services in the example

In the example the first service interface (depicted in Table 3) is the one specified in the

Table 3- Interface of TheWeather service

Table 4 -.Interface of the Forecast service

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 21 of 46

abstract process. Thus in this case adapting from one service to another means allowing the
process to invoke both services. In general it is always possibile to make an adaptation from
an abstract interface specified in an abstract process to one or more interfaces specified for
concrete services.

We make the hypothesis that the two services in the example do not have any internal or
conversational state. Thanks to this hypothesis, we just need to build an adapter that
provides a mapping between corresponding operations and their parameters. In the opposite
situation we should also build an adapter that provides mapping for states and transitions.

Finally we assume that services involved in the composition are semantically annotated
using the grounding schema described in [9]. Details of semantics annotation for the services
in the example are reported in Annex C.

In order to bring the mapping language to a higher level of abstraction and overcome the
limitations of the previous approach, we exploit in this section a semantics based approach
to automate the adaptation script creation. In Annex A.1 we present the resulting mapping
functions for the three kinds of mismatches as constructed and used in the implementation of
our example. In the example there is a new kind of mapping not described in [4] that solves
kind of mismatches not tested before.

In fact, the response message of the ForecastService service is a string concatenation of
three elements:

- a value of temperature in degrees centigrade;

- the separator character “,”;

- a short description of the weather conditions (e.g.,rainy, cloudy, sunny).

Such mismatch required the definition of two distinct mapping functions:

- a ReturnParameterMapping function for mapping the concrete service output to the
abstract service output data.

- and a new kind of mapping function StringTokenizer for lifting the concrete service
output comma separated string to a structured data type.

These mapping scripts solved all the mismatches in this experimental case study. The
problem, as already summarized in section 2.3, is that in writing those mapping scripts there
is the need for a complete understanding of the semantics of each operation and type
described in the service interfaces.

In fact, in the resulting mapping script (e.g. the one showed in Annex B) there is more
information than the original service descriptions. This information gap must be bridged by
the system integrator. On the contrary, if the needed information about the semantics
associated with the elements of the service descriptions is available, the problem would be
almost completely manageable by a software agent.

Our hypothesis is to have for each candidate service a SAWSDL description based on some
common domain ontologies. The ontology in our case study can be expressed in the OWL
language or in WSML language as described in [9]. Compared to our previous approach in
which the system integrator has to build a mapping from one service description to another,
now each service provider is requested to annotate a service description using a common
domain specific ontology.

In Annex C we report the semantically annotated WSDL of the “TheWeather” service and of
the “ForecastService” service. The two SAWSDLs show that the two operations named
respectively getForecast and Forecast were annotated using the same concept of the
WeatherrForecast domain ontology ../weatherForecasts/#WeatherForecastByTimeLocation.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 22 of 46

This can be interpreted as semantic similarity between the two operations and as the fact
that they can execute the same abstract task: return the forecast of the weather conditions
given the location and time. Of course this is not enough for inferring that the getForecast
and Forecast operations can substitute each other in a dynamic service composition. In both
SAWSDLs descriptions all the data types used as input and output parameters of the
operations are annotated once again using the concepts of the WheaterForecast, GPS and
Time domain specific ontologies. These ontologies were developed expressly for the
implementation of this example and are showed in Annex E.The input and output parameters
(at least mandatory inputs and outputs) of two operations must be annotated to the same
concept of the same ontology for inferring that the operation request message of one service
can be mapped to the operation request message expected by the second service. The
same happens for response messages.

Again this is not always enough for completing the mapping. In some cases the need of a
lifting or lowering mapping schema to map an unstructured data to a structured one or vice
versa is raised. Below we describe how to use the semantic annotations to the WSDLs for
generating the various parts of the mapping script. This information can be used for solving
the mismatch on the operation name. In our prototype, a software agent executed at design
or publication time:

1. parses the SAWSDLs,

2. finds the concepts of the ontology related to the different operations,

3. establishes the mismatch on the operation name,

4. selects the corresponding mapping function Rename-Operation,

5. produces the mapping script.

In the same way, a software agent is able to parse the annotated schema types of the input
parameters in the SAWSDLs and to find the relationships between the various elements:

- getForecast.latitude � .../GPS/#latitude � Forecast.latitude

- getForecast.longitude � .../GPS/#longitude � Forecast.longitude

- getForecast.hour � .../time/#timeDistance_hours � Forecast.hours

- getForecast.min � .../time/#timeDistance_minutes � Forecast.mins

Resolved the mismatch on the parameters names the mapping agent will look for
mismatches in the input parameter types. In this case there are no mismatches on types.

The mismatch on the responses is more complex. In the SAWSDL of the Forecast service
we can see that the response type is the complex type Forecast that is a sequence of simple
elements; each element has its model reference in the ontology and from the annotations we
infer that the Forecast complex type must be interpreted as an instance of the
WeatherForecast concept.

In the SAWSDL of the TheWeather service again we can see that the response must be
interpreted as an instance of the WeatherForecast concept but now the response message
type is string. In this case we are able to solve the mismatch on the parameter name but not
on the parameter type. Anyway, it has to be noted that in the SAWSDL of the TheWeather
service, associated with the response message type there is a lifting mapping schema. In
SAWSDL a lifting schema mapping lifts data from a structured data type to a semantic
model. SAWSDL does not prescribe any particular mapping representation language. Here
we used our own mapping language derived directly from our mapping functions already
described in section 3.3.1.2. In Annex D there is the lifting schema mapping for the
ForecastService response. Given this information again our software agent is able to infer
the mapping function and generate the mapping script.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 23 of 46

Our approach allows the invocation of services whose interface and behavior differ from
each other by means of semantic annotations. The approach addresses the following
requirements of SOA4All:

- adaptation , since it enables the automation of the adaptation scripts, overcoming
some of the current limitations and issues connected to lack of standardization in
service centric systems,

- user-friendly composition , since it allows developing new added-value services in a
lightweight and effective manner and it moves some tasks, in the process of
developing added-value services, from the system integrator (e.g., manual mapping
for adapting service requests to actual service interfaces) to each service provider
(e.g., annotation of service descriptions);

- system self-reconfiguration , since it eliminates the complexity of adding new
mismatching services at run time to the service composition by developing service
adapters;

The main advantage of our solution is the possibility to bring the service mapping language
to a higher level of abstraction by means of semantic annotations of service interfaces: we
achieve service composition by building service descriptions that exploit shared domain
ontologies, instead of describing service mappings at a syntactical level. This approach
greatly simplifies the work of SOA4All users, since it simplifies adaptive and dynamic service
composition also in an open world setting. At the time of writing, the implementation of the
first prototype implementing the new approach was released.

In the next section 3.4 we describe a new approach for the deployment of a lightweight
process into the execution engine. This approach will be developed during the second year
of the project and it will replace the process deployer component developed for SCENE.

3.4 Generation of runtime artefacts
Once a lightweight process has been designed (for details about lightweight process
modelling see [1]), several deployable artefacts need to be generated in order to prepare it
for execution: i.e. all the deployable elements listed in section 3.1.1.3 and the mapping
scripts described in section 3.3.2.2.

Before generation can begin, abstract lightweight processes need to be translated into
executable processes. We will evaluate the use of a meta-model based approach to
generating artefacts, leveraging work done in the Eclipse SOA Tools (STP) Project as part of
the STP-Intermediate Model component. The artefacts to be generated include the actual
executable language (i.e. the SCENE language) to be deployed to the execution engine, as
well as architectural artefacts required by the SOA4All Runtime, as described in [3].

The generative approach provided by STP-IM provides a means to move information from
successive process design and architecture specification stages to the infrastructure
development stages corresponding to technologies such as JBI, which is being targeted by
SOA4All.

Figure 3 outlines the generic relationship between different possible SOA editors, the STP-IM
and the SOA runtimes (such as Process Engines, ESBs or SCA platforms). Editors not using
the STP-IM can directly generate deployment artifacts for the SOA runtime of choice.
Naturally, the process editor in SOA4All will go through a transformation in order to generate
executable processes to be deployed onto the process engine.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 24 of 46

In addition, editors that target other editors for exporting artefacts must have one
transformation for each such target editor. Using the Intermediate Model, editors must only
have one transformation for exporting data and / or one transformation from importing data to
/ from the IM. This could be useful in SOA4All for transporting information between different
Studio editors. The STP-IM contains elements that aim to cover some of the most common
concepts found in SOA-related editors and deployment platforms. A detailed description of
the meta-model can be found at http://www.eclipse.org/stp/im

Due to this “hybrid” nature of the meta-model, some of its concepts cannot map directly to
the corresponding concepts in each of the editors it aims to unite. This is unavoidable and in
fact desirable in order to attain a higher-level set of abstractions that can more easily map to
different specifications. By using highly configurable elements, the IM facilitates the transport
of platform-specific information between editors, while not directly supporting the full
semantics of each element of source and target editors.

In its current implementation, the STP-IM has a number of plug-ins, one for each type of
transformation (such as one plug-in from the transformation from BPMN to the IM, one for
the transformation from the IM to SCA and so on). Each plug-in provides its own pop-up
menu item registered for particular file types. In addition, the STP-IM must be made usable
outside the Eclipse context. This is possible as the Eclipse Modelling Framework (EMF) can
be extracted and used separately from the Eclipse platform. The STP-IM will be extended to
include additional elements as required by the SOA4All lightweight process language, as well
as the additional transformations necessary to target the SOA4All runtime.

3.5 Integration in SOA4All
In Figure 4 we depict the overall picture of WP6 and where we situate it inside the overall
SOA4All architecture. Let us briefly describe the components of the Service Construction
environment, in order to situate the software that we are going to describe in this deliverable.
Users will use the user interface component to specify their required composite services and
processes (part of the SOA4All Studio). Nevertheless, we need to define a graph-oriented
lightweight process modelling language that we will use as specification language. To
improve usability pre-designed and user-designed process templates are stored in the
semantic service & template repository.

Once created and stored, in order to be usable and interpretable these lightweight processes
have to be translated in to more complex processes that can be interpreted by an execution

Figure 3 - Intermediating SOA Development Spaces

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 25 of 46

in an effective fashion. We will create a scalable design-time composer for the flexible
and ad-hoc creation and adaptation of complex servi ces at design time . The system will
transparently transform the aforementioned lightweight processes in to optimized complex
services orchestrations; or already existing complex services processes could be adapted to
a specific use. These activities will be heavily influenced by the context in which they will be
carried out.

Finally, regarding the runtime phase of service construction, the outcome work package WP6
will be the execution engine . It will execute complex processes that represent orchestration
of services. The execution engine is an execution infrastructure for lightweight processes,
adaptive to environmental changes and flexible enough to allow its context-dependent self-
reconfiguration. In SOA4All the term "execution infrastructure for lightweight processes"
mainly refers to model and execute composite services and processes in a lightweight
manner as described in [1]. This execution infrastructure will exploit a set of basic
mechanisms such as dynamic discovery, selection, adaptation, invocation, monitoring
developed in the work packages WP1, WP2 and WP5, for supporting the dynamic and
adaptive reconfiguration in reaction to environmental changes.

Figure 4 Service Construction Framework overall picture.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 26 of 46

3.5.1 Execution Engine Main Components Description

3.5.1.1 Lightweight Process Executor

• Description : the Lightweight Process Executor component will carry out the adaptive
and context aware execution of process and service composition, offering thus one
external interface for each process deployed within the execution environment.
During execution a lightweight process need to invoke concrete services trough the
Distributed Service Bus and may need to discover new candidate services for an
activity. The execution produces logs for the Template Generator component and
produces and uses monitoring information.

• Inputs :
o A set of user requirements (user constraints and preferences).
o The execution values (the inputs-outputs of the process activities)
o A set of monitoring data about previous executions

• Outputs :
o Effect of the execution
o Past processes and/or services execution logs (input for Template Generator,

see [2])
• Interfaces exposed :

o there is one external interface for each process deployed within the execution
environment; in fact every process is exposed as a service

3.5.1.2 Lightweight Process Deployer

• Description :
• Inputs :

o A concrete composition i.e., the output of the Composition Optimizer
o A set of semantic annotated service descriptions
o The ontologies used for annotating service descriptions
o The classification of possible faults and unavailabilities of component services

• Outputs :
o A process ready to be invoked and executed, exposed as a service

• Interfaces exposed :
o IDeployer: the interface IDeployer

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 27 of 46

3.6 Summary of fulfilled requirements
In Table 5 we summarize the list of requirements already described in detail in section 2 and
for each requirement we indicate if the requirement is fulfilled or will be fulfilled by Execution
Environment.

N. Requirement Already (even
partially) fulfilled in
SeCSE or SUPER

Already fulfilled in
the 1 st protoype

Planned for the
final prototype

F1.1 Adaptation

O

X

Extended the SeCSE
approach exploiting
semantic annotations

X

Refinements of the
approach and new
experiments are
planned

F1.2 Dynamic
Binding

X X X

F2 Functional
fault
handling

O O X

Planned to extend
the approach
exploiting the
classification of the
possible faults
developed in other
tasks

NF1 User-friendly
composition

- X

User-friendly
composition is more
related to T6.3 and
T6.4. However our
approach makes
dynamic binding
mechanisms
transparent for the
user

X

S1 Adaptation
to contextual
changes

X X X

Planned to extend
the approach
exploiting the
classification of
contextual
information
developed in other
tasks

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 28 of 46

S2 System Self-
configuration

O X

The developed
approach allows for
self reconfiguring
taking advantage
from the presence of
a new published
service

X

Planned to extend
the Process
Deployer and
Executor with self-
configuration
capabilities exploiting
the work of the
Template Generator
developed in T6.4

S3 Self -
optimization

- - X

Planned to extend
the Process
Deployer and
Executor with self-
optimization
capabilities exploiting
the work of the
Process Optimizer
developed in T6.4

S4 SOA4All
Integration

- -
X
See section 3.2

S5 Scalability

- -
O
Scalability will be
considered in the
final evaluation
criteria

Table 5 – Summary of fulfilled requirements (- no, O partially, X yes)

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 29 of 46

4. Conclusions
In the context of the SOA4All project, the execution framework for composite services and
processes should enable different groups of end users to build new services and processes
according to their specific needs in a lightweight manner.

In this deliverable, we have studied the requirements of lightweight, context-aware process
execution from WP7, WP8, and WP9 and provided our methodology and approach for
adaptive process execution and for the generation of runtime artefacts starting from the
modelling language defined in D6.3.1.

At the time of writing, the implementation of our solution is under way. We released a first
prototype on the end of February 2009. In this 1st prototype we developed a new approach
for adapting service requests to actual service interfaces inside a dynamic composition of
services exploiting semantic annotations. The developed approach allows for improving self-
reconfiguring capabilities of the system and for taking advantage from the presence of a new
published service. In fact, when a service is published, it could announce its capacity,
described as WSMO Lite annotations, and then the system will be able to reconfigure itself
by means of automatically developing a new mapping script. This enables the system for
taking advantage from the presence of the new service without human intervention. Under
this point of view, the approach helps also fulfilling the requirement of enabling service
prosumers, since it simplify a lot the tasks of composing services.

We plan to develop a 1st demonstrator of the case study coming from the WP7 of SOA4All
during the second year of the project.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 30 of 46

5. References

[1] SOA4All deliverable D6.3.1 First Specification of Lightweight Process Modelling
Language.

[2] SOA4All deliverable D6.4.1 Specification and First Prototype Of Service Composition
and Adaptation Environment

[3] SOA4All deliverable D1.4.1 SOA4All Reference Architecture Specification

[4] SOA4All deliverable D1.1.1 Design Principles for a Service Web v1

[5] SOA4All deliverable D7.2 Scenario Definition

[6] SUPER deliverable D6.1 Execution Engine Design and Architecture

[7] L. Cavallaro and E. D. Nitto. An approach to adapt service requests to actual service
interfaces. In SEAMS ’08: Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems, pages 129–136, New
York, NY, USA, 2008. ACM.

[8] M. Colombo, E. Di Nitto, and M. Mauri. Scene: A service composition execution
environment supporting dynamic changes disciplined through rules. In ICSOC, pages
191–202, 2006.

[9] Kopeck and A. Schtz. SOA4All - D1.2.1 WSMO grounding in SAWSDL.
http://www.soa4all.eu/resources.html?func=startdown&id=14, 2008.

[10] X. Li, Y. Fan, and F. Jiang. A classification of service composition mismatches
to support service mediation. In GCC ’07: Proc. of the Sixth International Conference
on Grid and Cooperative Computing (GCC 2007), pages 315–321, Washington, DC,
USA, 2007. IEEE Computer Society.

[11] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-
automated adaptation of service interactions. In WWW ’07: Proc. of the 16th
international conference on World Wide Web, pages 993–1002, New York, NY, USA,
2007. ACM Press.

[12] SeCSE (Service Centric System Engineering) Project. http://www.secse-
project.eu.

[13] SUPER Project. http://www.ip-super.org

[14] World Wide Web Consortium (W3C). Semantic Annotations for WSDL and
XML Schema.http://www.w3.org/TR/sawsdl/.

[15] World Wide Web Consortium (W3C). Web Services Description Language
(WSDL) Version 1.1. http://www.w3.org/TR/wsdl.

[16] World Wide Web Consortium (W3C). Web Services Description Language
(WSDL) Version 2.0. http://www.w3.org/TR/wsdl20-primer/.

[17] Active Endpoints: The ActiveBPEL Community Edition Engine,
http://www.activevos.com/community-open-source.php

[18] JBoss: Drools, http://www.jboss.org/drools/

[19] Di Penta, M., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Di Nitto, E.:
Ws binder: a framework to enable dynamic binding of composite web services. In:
ICSE Workshop on Service-Oriented Software Engineering (IW-SOSE 2006) (2006)

[20] Lessen, T., Nitzsche, J., Dimitrov, M., Konstantinov, M., Karastoyanova, D.,

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 31 of 46

Cekov, L., and Leymann, F. 2009. An Execution Engine for Semantic Business
Processes. In Service-Oriented Computing - ICSOC 2007 Workshops: ICSOC 2007,
international Workshops, Vienna, Austria, September 17, 2007, Revised Selected
Papers, E. Di Nitto and M. Ripeanu, Eds. Lecture Notes In Computer Science, vol.
4907. Springer-Verlag, Berlin, Heidelberg, 200-211.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 32 of 46

Annex A. Comparison between SOA4All, SeCSE and SUPE R
approaches

A.1. Differences and similarities between SOA4All Execution
Engine and SBPELEE

In order to understand the differences / similarities with the approach followed by project Super-IP, we
refer to Super Deliverable D6.2 – “Process Execution Engine First Prototype” and to [

i]:

As a summary we include the following table with the main differences:

Table 6 Comparative analysis Super-IP vs SOA4All Execution Engine.

 Super-IP (SBPELEE): SOA4All:

Main Purpose BPEL for Semantic Web Services
(BPEL4SWS) uses Semantic Web
Service Frameworks to define a
communication channel between
two partner services instead of using
the partner link which is based on
WSDL 1.1.

SOA4All aims at making adaptive
and dynamic service composition
easier also for non-technical
users.

Use of BPEL BPEL4SWS extends the WS-BPEL 2.0
process model and uses existing WS-
BPEL 2.0 capabilites.

Executes standard BPEL. The
process model is expressed in
terms of the lightweight process
model defined in T6.3

Use of WSDL WSDL-less interaction model.
BPEL4SWS abstracts from interface
definitions, i.e. port Types, and
provides for a “WSDL-less interaction
model”. It is based on the newly
introduced concept of a conversation.

WSDL-based interaction model.

Use of
SAWSDL

BPEL4SWS uses SAWSDL to
annotate data types of variables used
in a process definition.

The information given in SAWSDL/XSD
documents is used to transform XML
instance data into its ontological
representation and vice versa. In case
an error occurs during lifting or
lowering of data, a liloFault has to be
thrown.

SOA4All uses SAWSDL to help
disambiguate the description of
Web services.

The information given in
SAWSDL/XSD documents is
used to create mapping scripts to
solve complex mismatches.
Scripts can be executed by a
mediator that receives an
operation request, parses it, and

i Dimka Karastoyanova, Tammo van Lessen, Frank, Leymann, Jörg Nitzsche, Daniel Wutke: WS-BPEL
Extension for Semantic Web Services (BPEL4SWS), Version 1.0, Technical Report No. 2008/03

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 33 of 46

eventually performs the needed
adaptations.

Use of WSMO Support WSMO service descriptions Support for WSMO-lite service
descriptions

A.2. Differences and similarities between SOA4All E xecution
Engine and SeCSE

In order to understand the differences / similarities with the approach followed by project SeCSE, we refer to
SeCSE Deliverable A3.D5. “Prototype of service-centric runtime platform” and to [ii] and [iii]:

As a summary we include the following table with the main differences:

Table 7 Comparative analysis Super-IP vs SOA4All Execution Engine.

 SeCSE (SCENE): SOA4All:

Main Purpose SeCSE aims to offer to system
integrators proper mechanisms for
supporting dynamic changes and the
explicit definition of self-configuration
policies.

SOA4All aims at making adaptive
and dynamic service composition
easier also for non-technical
users.

Use of BPEL Executes standard BPEL.

The process model is expressed in
terms of an abstract BPEL.

Executes standard BPEL.

The process model is expressed
in terms of the lightweight process
model defined in D6.3.1

Use of WSDL WSDL-based interaction model.

Abstract tasks are expressed as WSDL
operations. Concrete services are
selected and bound at runtime
according to some rules.

WSDL-based interaction model.

Abstract goals are concretized at
design time (as defined in D6.4.1)
and expressed as WSDL
operations.

In reaction to environmental
changes or faults, according to
some rules, new candidate
concrete services can be selected
and bound at runtime to the
composition.

Use of
SAWSDL

No use of SAWSDL.

SeCSE specifies a solutions for
possible mismatches between services
interface building adaptation scripts,

SOA4All uses SAWSDL to help
disambiguate the description of
Web services.

The information given in

ii M. Colombo, E. Di Nitto, and M. Mauri. Scene: A service composition execution environment supporting
dynamic changes disciplined through rules. In ICSOC, pages 191–202, 2006.
iii L. Cavallaro and E. Di Nitto. An approach to adapt service requests to actual service interfaces. In
Proceedings of SEAMS ’08, pages 129–136, New York, NY, USA, 2008.ACM.

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 34 of 46

defined in a domain specific
language . The language is composed
of rules structured in a mismatch
definition part and a mapping function
part.

The adaptation scripts are developed
by a system integrator and requires an
intensive effort from a system
integrator that, in the worst case in
which a client can be bound to N
different services, could be requested
to specify N adapters for each client.

SAWSDL/XSD documents is
used to create mapping scripts to
solve complex mismatches.
Scripts can be executed by a
mediator that receives an
operation request, parses it, and
eventually performs the needed
adaptations.

Use of
WSMO-lite

No use of WSMO-Lite Support for WSMO-lite service
descriptions

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 35 of 46

Annex B. TheWeather to Forecast Mapping Schema

<?xml version="1.0" encoding="UTF-8"?>
<ml:Mapping xmlns:ml="http://www.secse-project.eu/MappingLanguageSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.secse-project.eu/MappingLanguageSchema
MappingLanguageSchema.xsd ">
 <ml:RequestorNameSpace>http://it.crf.TheWeather/</ml:RequestorNameSpace
>
 <ml:ServiceNameSpace>http://zulu-53.nebula.fi/xsd</ml:ServiceNameSpace>
 <ml:StartEndpoint>http://inrete.dyndns.info/TheWeather/TheWeatherCRF.as
mx</ml:StartEndpoint>
 <ml:FinalEndpoint>http://zulu-
53.nebula.fi/ws/services/ForecastService</ml:FinalEndpoint>

 <ml:ProtocolRule >
 <ml:ReferenceRuleID>weather2forecasts</ml:ReferenceRuleID>
 <ml:Input>
 <ml:Name>getForecast</ml:Name>
 </ml:Input>
 <ml:Mapping>
 <ml:Name>Forecast</ml:Name>
 </ml:Mapping>
 </ml:OperationRename>
 <ml:MappingFunction>
 <ml:Name>OperationMapping</ml:Name>
 </ml:MappingFunction>
 </ml:ProtocolRule>

 <ml:InterfaceRule ID="weather2forecasts">
 <ml:ReferenceRuleID>weather2forecasts</ml:ReferenceRuleID>
 <ml:DataBinding total="false">
 <ml:Input>
 <ml:Name>getForecast</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>getForecast</ml:type>
 </ml:Input>
 <ml:Mapping>
 <ml:Name>Forecast</ml:Name>
 <ml:Side>AvailableService</ml:Side>
 <ml:type>Forecast</ml:type>
 </ml:Mapping>

 <ml:Input>
 <ml:Name>getForecast.latitude</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>double</ml:type>
 </ml:Input>
 <ml:Mapping>
 <ml:Name>Forecast.latitude</ml:Name>
 <ml:Side>AvailableService</ml:Side>
 <ml:type>double</ml:type>
 </ml:Mapping>

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 36 of 46

 <ml:Input>
 <ml:Name>getForecast.longitude</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>double</ml:type>
 </ml:Input>
 <ml:Mapping>
 <ml:Name>Forecast.longitude</ml:Name>
 <ml:Side>AvailableService</ml:Side>
 <ml:type>double</ml:type>
 </ml:Mapping>

 <ml:Input>
 <ml:Name>getForecast.hour</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>int</ml:type>
 </ml:Input>
 <ml:Mapping>
 <ml:Name>Forecast.hours</ml:Name>
 <ml:Side>AvailableService</ml:Side>
 <ml:type>int</ml:type>
 </ml:Mapping>

 <ml:Input>
 <ml:Name>getForecast.min</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>int</ml:type>
 </ml:Input>
 <ml:Mapping>
 <ml:Name>Forecast.mins</ml:Name>
 <ml:Side>AvailableService</ml:Side>
 <ml:type>int</ml:type>
 </ml:Mapping>
 </ml:DataBinding>
 <ml:MappingFunction>
 <ml:Name>ParameterMapping</ml:Name>
 </ml:MappingFunction>
 <ml:ReturnMappingRuleID>weather2forecastsRet</ml:ReturnMappingRuleID>
</ml:InterfaceRule>

<ml:InterfaceRule ID="weather2forecastsRet">
<ml:ReferenceRuleID>weather2forecastsRet2</ml:ReferenceRuleID>
<ml:DataBinding total="false">
 <ml:Input>
 <ml:Name>ForecastResponse</ml:Name>
 <ml:Side>AvailableService</ml:Side>
 <ml:type>ForecastResponse</ml:type>
 </ml:Input>
 <ml:Mapping>
 <ml:Name>getForecastResponse</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>getForecastResponse</ml:type>
 </ml:Mapping>
</ml:DataBinding>

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 37 of 46

<ml:MappingFunction>
 <ml:Name>ReturnParameterMapping</ml:Name>
</ml:MappingFunction>
</ml:InterfaceRule >

<ml:InterfaceRule ID="weather2forecastsRet2">
<ml:DataBinding total="false">
 <ml:Input>
 <ml:Name>return</ml:Name>
 <ml:Side>AvailableService</ml:Side>
 <ml:type>string</ml:type>
 </ml:Input>
 <ml:MappingFunction>
 <ml:Name>UnformattedStringSplit</ml:Name>
 <ml:StringSplitter>, </ml:StringSplitter>
 <ml:Mapping>
 <ml:Name>getForecastResult.temp</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>Forecast.string</ml:type>
 </ml:Mapping>
 <ml:Mapping>
 <ml:Name>getForecastResult.weather</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>Forecast.Weather</ml:type>
 </ml:Mapping>
 </ml:MappingFunction>
</ml:DataBinding>
</ml:InterfaceRule>

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 38 of 46

Annex C. SAWSDLs service description

C.1. TheWeather service SAWSDL description specific ation

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://it.crf.TheWeather/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://it.crf.TheWeather/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:sawsdl="http://www.w3.org/ns/sawsdl">
 <wsdl:types>
 <xs:schema elementFormDefault="qualified"
targetNamespace="http://it.crf.TheWeather/">
 <xs:element name="getForecast"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#weat
herForecastRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" name="latitude"
type="xs:double"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/GPS#latitude" />
 <xs:element minOccurs="1" maxOccurs="1" name="longitude"
type="xs:double"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/GPS#longitude" />
 <xs:element minOccurs="1" maxOccurs="1" name="hour" type="xs:int"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/time#timeDistance_hou
rs" />
 <xs:element minOccurs="1" maxOccurs="1" name="min" type="xs:int"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/time#timeDistance_min
utes" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="getForecastResponse"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#weat
herForecastResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="getForecastResult"
type="tns:Forecast" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="Forecast"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#weat

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 39 of 46

herForecastResponse">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="utc" type="xs:string"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/time#UTCTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="weather"
type="tns:Weather"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Weat
herConditionsShortDescription" />
 <xs:element minOccurs="0" maxOccurs="1" name="mslp"
type="xs:string"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Pres
sure_hPa" />
 <xs:element minOccurs="0" maxOccurs="1" name="temp"
type="xs:string"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Temp
erature_Centigrades" />
 <xs:element minOccurs="0" maxOccurs="1" name="relh"
type="xs:string"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Humi
dity_Percentage" />
 <xs:element minOccurs="0" maxOccurs="1" name="prcp"
type="xs:string"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Prec
ipitation_mm" />
 <xs:element minOccurs="0" maxOccurs="1" name="wind"
type="xs:string"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Wind
_Knots/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="Weather">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Unavailable" />
 <xs:enumeration value="Clear" />
 <xs:enumeration value="Cloudy" />
 <xs:enumeration value="Overcast" />
 <xs:enumeration value="Rain" />
 <xs:enumeration value="Shower" />
 <xs:enumeration value="Thunderstorm" />
 <xs:enumeration value="Variable_with_rain" />
 <xs:enumeration value="Variable_with_showers" />
 <xs:enumeration value="Variable_with_thunderstorms" />
 <xs:enumeration value="Sleet" />
 <xs:enumeration value="Snow" />
 <xs:enumeration value="Fog" />
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="getWeatherStation">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" name="latitude"
type="xs:double" />
 <xs:element minOccurs="1" maxOccurs="1" name="longitude"
type="xs:double" />

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 40 of 46

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="getWeatherStationResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1"
name="getWeatherStationResult" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </wsdl:types>
 <wsdl:message name="getForecastSoapIn">
 <wsdl:part name="parameters" element="tns:getForecast" />
 </wsdl:message>
 <wsdl:message name="getForecastSoapOut">
 <wsdl:part name="parameters" element="tns:getForecastResponse" />
 </wsdl:message>
 <wsdl:message name="getWeatherStationSoapIn">
 <wsdl:part name="parameters" element="tns:getWeatherStation" />
 </wsdl:message>
 <wsdl:message name="getWeatherStationSoapOut">
 <wsdl:part name="parameters" element="tns:getWeatherStationResponse" />
 </wsdl:message>
 <wsdl:portType name="TheWeatherCRFSoap">
 <wsdl:operation name="getForecast">
 <wsdl:input message="tns:getForecastSoapIn" />
 <wsdl:output message="tns:getForecastSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="getWeatherStation">
 <wsdl:input message="tns:getWeatherStationSoapIn" />
 <wsdl:output message="tns:getWeatherStationSoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="TheWeatherCRFSoap" type="tns:TheWeatherCRFSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="getForecast"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Weat
herForecastByTimeLocation" >
 <soap:operation soapAction="http://it.crf.TheWeather/getForecast"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getWeatherStation">
 <soap:operation soapAction="http://it.crf.TheWeather/getWeatherStation"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 41 of 46

 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="TheWeatherCRFSoap12" type="tns:TheWeatherCRFSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="getForecast">
 <soap12:operation soapAction="http://it.crf.TheWeather/getForecast"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getWeatherStation">
 <soap12:operation
soapAction="http://it.crf.TheWeather/getWeatherStation" style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="TheWeatherCRF">
 <wsdl:port name="TheWeatherCRFSoap" binding="tns:TheWeatherCRFSoap">
 <soap:address
location="http://inrete.dyndns.info/TheWeather/TheWeatherCRF.asmx" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>
 </FacetSpecificationData>
</LanguageSpecificSpecification>

C.2. Forecast service SAWSDL description specificat ion

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:axis2="http://zulu-53.nebula.fi"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:ns0="http://zulu-
53.nebula.fi/xsd" xmlns:ns1="http://org.apache.axis2/xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://zulu-
53.nebula.fi" xmlns:sawsdl="http://www.w3.org/ns/sawsdl">
 <wsdl:documentation>ForecastService</wsdl:documentation>

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 42 of 46

 <wsdl:types>
 <xs:schema xmlns:ns="http://zulu-53.nebula.fi/xsd"
attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://zulu-53.nebula.fi/xsd">
 <xs:element name="Forecast"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Weat
herForecastRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="latitude"
type="xs:double"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/GPS#latitude" />
 <xs:element minOccurs="0" name="longitude"
type="xs:double"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/GPS#longitude"/>
 <xs:element minOccurs="0" name="hours"
type="xs:int"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/time#timeDistance_hou
rs" />
 <xs:element minOccurs="0" name="mins"
type="xs:int"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/time#timeDistance_min
utes" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ForecastResponse"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Weat
herForecastResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="return"
nillable="true" type="xs:string"
sawsdl:liftingSchemaMapping="http://www.soa4all.eu/ontologies/mapping/Forecas
tResponse2WheaterOntology.ml" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </wsdl:types>
 <wsdl:message name="ForecastRequest">
 <wsdl:part element="ns0:Forecast" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="ForecastResponse">
 <wsdl:part element="ns0:ForecastResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="ForecastServicePortType">
 <wsdl:operation name="Forecast"
sawsdl:modelReference="http://www.soa4all.eu/ontologies/weatherForecasts#Weat
herForecastByTimeLocation">
 <wsdl:input message="axis2:ForecastRequest"
wsaw:Action="urn:Forecast"/>
 <wsdl:output message="axis2:ForecastResponse"
wsaw:Action="urn:ForecastResponse"/>

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 43 of 46

 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="ForecastServiceSOAP11Binding"
type="axis2:ForecastServicePortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Forecast">
 <soap:operation soapAction="urn:Forecast"
style="document"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="ForecastServiceSOAP12Binding"
type="axis2:ForecastServicePortType">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Forecast">
 <soap12:operation soapAction="urn:Forecast"
style="document"/>
 <wsdl:input>
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="ForecastServiceHttpBinding"
type="axis2:ForecastServicePortType">
 <http:binding verb="POST"/>
 <wsdl:operation name="Forecast">
 <http:operation location="ForecastService/Forecast"/>
 <wsdl:input>
 <mime:content part="Forecast" type="text/xml"/>
 </wsdl:input>
 <wsdl:output>
 <mime:content part="Forecast" type="text/xml"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="ForecastService">
 <wsdl:port binding="axis2:ForecastServiceSOAP11Binding"
name="ForecastServiceSOAP11port_http">
 <soap:address location="http://zulu-
53.nebula.fi/ws/services/ForecastService"/>
 </wsdl:port>

 </wsdl:service>
</wsdl:definitions>

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 44 of 46

Annex D. Lifting schema mapping

<ml:DataBinding total="false">
 <ml:Input>
 <ml:Name>return</ml:Name>
 <ml:Side>AvailableService</ml:Side>
 <ml:type>string</ml:type>
 </ml:Input>
 <ml:MappingFunction>
 <ml:Name>UnformattedStringSplit</ml:Name>
 <ml:StringSplitter>, </ml:StringSplitter>
 <ml:Mapping>

 <ml:Name>http://www.soa4all.eu/ontologies/weatherForecasts#Temperature_
Centigrades</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>Forecast.string</ml:type>
 </ml:Mapping>
 <ml:Mapping>

 <ml:Name>http://www.soa4all.eu/ontologies/weatherForecasts#WeatherCondi
tionsShortDescription</ml:Name>
 <ml:Side>ExpectedService</ml:Side>
 <ml:type>string</ml:type>
 </ml:Mapping>
 </ml:MappingFunction>
</ml:DataBinding>

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 45 of 46

Annex E. Sample ontologies

E.1. Sample GPS ontology

namespace { _"http://www.soa4all.eu/ontologies/GPS#"
,
 wsmostudio _"http://www.wsmostudio.org#" }

ontology _"http://www.soa4all.eu/ontologies/GPS"
 nonFunctionalProperties
 wsmostudio#version hasValue "0.7.3"
 endNonFunctionalProperties

concept latitude

concept longitude

E.2. Sample time ontology

namespace { _"http://www.soa4all.eu/ontologies/time#"
,
 wsmostudio _"http://www.wsmostudio.org#" }

ontology _"http://www.soa4all.eu/ontologies/time"
 nonFunctionalProperties
 wsmostudio#version hasValue "0.7.3"
 endNonFunctionalProperties

concept minute

concept hour
 hour impliesType (0 24) _decimal

concept UTCTime

E.3. Sample weather forecast ontology

namespace { _"http://www.soa4all.eu/ontologies/weatherForecast#"
,
 wsmostudio _"http://www.wsmostudio.org#" }

ontology _"http://www.soa4all.eu/ontologies/weatherForecast"
 nonFunctionalProperties
 wsmostudio#version hasValue "0.7.3"
 endNonFunctionalProperties

 importsOntology
 { _"http://www.soa4all.eu/ontologies/coordinate",
 _"http://www.soa4all.eu/ontologies/time"}

 SOA4All – FP7 215219 D6.5.1. Specification first prototype of the comp framework

© SOA4ll consortium Page 46 of 46

concept weatherForecastConditionsShortDescription

concept Pressure_hPa

concept Temperature_Centigrades

concept Humidity_Percentage

concept Wind_Knots
 direction impliesType _string
 speed impliesType _string

concept Precipitation_mm

concept getweatherForecast
 latitude impliesType
_"http://www.soa4all.eu/ontologies/coordinate#latitude"
 longitude impliesType
_"http://www.soa4all.eu/ontologies/coordinate#longitude"
 hour impliesType _"http://www.soa4all.eu/ontologies/time#hour"
 minute impliesType _"http://www.soa4all.eu/ontologies/time#minute"

concept weatherForecastResponse
 utc impliesType _"http://www.soa4all.eu/ontologies/time#UTCTime"
 weatherForecastConditionsShortDescription impliesType
_"http://www.soa4all.eu/ontologies/weatherForecast#weatherForecastConditionsS
hortDescription"
 mslp impliesType
_"http://www.soa4all.eu/ontologies/weatherForecast#Pressure_hPa"
 temperature impliesType
_"http://www.soa4all.eu/ontologies/meteorology#Temperature_Centigrades"
 relh impliesType
_"http://www.soa4all.eu/ontologies/weatherForecast#Humidity_Percentage"
 prcp impliesType
_"http://www.soa4all.eu/ontologies/weatherForecast#Precipitation_mm"
 wind impliesType
_"http://www.soa4all.eu/ontologies/weatherForecast#Wind_Knots"
 summary impliesType _string

concept endpoint

