

Project Number: 215219

Project Acronym: SOA4All

Project Title: Service Oriented Architectures for All

Instrument: Integrated Project

Thematic
Priority:

Information and Communication
Technologies

D6.5.2 Advanced Prototype For Adaptive
Service Composition Execution

Activity 2: Core Research and Development

Work Package: WP6 Service Construction

Due Date: 28/02/2010

Submission Date: 28/02/2010

Start Date of Project: 01/03/2008

Duration of Project: 36 Months

Organisation Responsible of Deliverable: CEFRIEL

Revision: 1.1

Author(s): Gianluca Ripa, Teodoro De Giorgio (CEFRIEL), Yosu Gorroñogoitia
(ATOS), Adrian Mos, Fy Ravoajanahary (INRIA)

Reviewers: Maria Maleshkova (OU), Matteo Villa (TXT)

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 2 of 41

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 25/11/2009 Table of content Gianluca Ripa (CEFRIEL)

0.2 18/01/2010 First draft Gianluca Ripa (CEFRIEL)

0.3 25/01/2010 Section 4 Gianluca Ripa, Teodoro De
Giorgio (CEFRIEL)

0.4 01/02/2010 Section 3 Gianluca Ripa, Teodoro De
Giorgio (CEFRIEL)

0.5 04/02/2010 Integrated comments and contributions Gianluca Ripa, Maurilio
Zuccalà (CEFRIEL), Yosu
Gorroñogoitia (ATOS)

0.6 09/02/2009 Installation and Use Teodoro De Giorgio
(CEFRIEL)

0.7 15/02/2009 Added section on LPML to BPEL
transformation

Adrian Mos, Fy
Ravoajanahary (INRIA)

0.8 15/02/2009 Integrated comments and contributions Teodoro De Giorgio
(CEFRIEL)

1.0 17/02/2009 Draft for internal review Gianluca Ripa (CEFRIEL)

1.0.1 22/02/2009 Internal Review Maria Maleshkova (OU)

1.0.2 23/02/2009 Internal Review Matteo Villa (TXT)

1.1 25/02/2009 Integrated comments and contributions Teodoro De Giorgio,
Gianluca Ripa (CEFRIEL)

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 3 of 41

Table of Contents

EXECUTIVE SUMMARY __ 6

1. INTRODUCTION __ 8

1.1 INTRODUCTORY EXPLANATION OF THE DELIVERABLE _________________ 8
1.2 PURPOSE AND SCOPE __ 8
1.3 STRUCTURE OF THE DOCUMENT ___________________________________ 8

2. THEORETICAL GROUNDING__ 9

2.1 THE PROBLEM ___ 9
2.2 OUR APPROACH __ 11
2.3 EXAMPLES OF ANNOTATIONS FOR SERVICE ADAPTATION ____________ 15

3. DESIGN AND IMPLEMENTATION _______________________________________ 18

3.1 ARCHITECTURE OF THE EE V2 ____________________________________ 18
3.1.1 Architecture __ 18
3.1.2 Interfaces exposed __ 20

3.2 IMPLEMENTATION ___ 22
3.2.1 Automatic Deployment of LPML models ______________________________ 22
3.2.2 Execution and self adaptation ______________________________________ 26

4. INSTALLATION AND USE ___ 31

5. CONCLUSIONS __ 34

6. REFERENCES ___ 35

ANNEX A. RDF EXTRACTED FROM MICROWSMO DESCRIPTION _____________ 37

ANNEX B. RESTFUL AND WSDL/SOAP SERVICE DESCRIPTION _____________ 38

ANNEX C. WEATHERFORECAST2THEWEATHER MAPPING SCRIPT___________ 40

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 4 of 41

List of Figures

Figure 1 - SOA4All Studio “Create” buttons ... 9

Figure 2 - Sample Process ...10

Figure 3 - MicroWSMO of the Weather Forecast service as displayed in a browser13

Figure 4 - Domain ontology for the EE services ..14

Figure 5 - Runtime service adaptation ..15

Figure 6 - Execution Engine v2 component diagram ..18

Figure 7 - Execution Engine v2 deployment diagram ..20

Figure 8 - Sequence Diagram: Automatic Deployment of LPML ...25

Figure 9 - Execution and self adaptation sequence diagram ..27

Figure 10 - Integration between EE and the DSB ...28

Figure 11 – EE v2 SOA4All source code tree ...31

 List of Tables

Table 1 - Candidate Services for the Sample Process ..11

Table 2 - Concepts for supporting RESTful service description ..12

Table 3 - Operations and parameters of the WeatherForecase service and of the
TheWeather services ..14

Table 4 - Monitoring Events ..22

Table 5 - Mapping of LPML to BPEL Elements ...24

Table 6 – EE v2 modules ...31

List of Listings

Listing 1 – Mapping script fragment ..14

Listing 2 – MicroWSMO fragment ...16

Listing 3 – Description of latitude parameter in RDF format extracted from the MicroWSMO17

Listing 4 – SAWSDL description of latitude parameter ...17

Listing 5 – Example LPMDeployer SOAP Request ...21

Listing 6 – Generic MicroWSMO description in RDF ..37

Listing 7 – WeatherForecast service description in MicroWSMO based on RDF38

Listing 8 – TheWeather service description in SAWSDL ...39

Listing 9 – WeatherForecast2TheWeather mapping script ...41

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 5 of 41

Glossary of Acronyms

Acronym Definition

BPEL Business Process Executable Language

D Deliverable

EC European Commission

EE Execution Engine

EE v1 Execution Engine version 1

EE v2 Execution Engine version 2

HTS Human Task Service

IM Intermediate Model

LPML Lightweight Process Modelling Language

MSG Mapping Script Generator

PE Process Editor

POM Project Object Model

RDF Resource Description Framework

RDFa RDF in attributes

RDFS RDF Schema

REST Representational State Transfer

SAWSDL Semantic Annotations for WSDL and XML Schema

SOAP Simple Object Access Protocol

SWS Semantic Web Service

WP Work Package

WSDL Web Services Description Language

WSMO Web Service Modelling Ontology

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 6 of 41

Executive summary

The Advanced Prototype For Adaptive Service Composition Execution (EE v2) adds further
functionalities to the lightweight composition environment presented in the first prototype, the
EE v1 presented in [5]. EE v1 is able to adapt service requests to actual service interfaces at
execution time, it supports the service selection according to functional, non-functional and
contextual information and provide fault handling and dynamic rebinding mechanisms. The
new functionality of EE v1 are:

 RESTful services support: EE v1 was able to work only with Web Services based
on the WSDL and SOAP standards; the EE v2 overcomes this limitation allowing a
process to use WSDL/SOAP and RESTful Web services at the same time
transparently.

 Automatic deployment of LPML models: when the EE v1 was released, the
lightweight process modelling language was still under development, now the EE v2
includes full support for processes described in the LMPL as it allows the deployment
of LPML models automatically from the Process Editor1 (described in [24]) by
translating them into executable processes/services.

 Support for Human tasks: EE v2 include the support for processes that contains
activities that are executed by humans such as checking requests for completeness
and correctness. These activities are called human tasks.

As for the integration aspects, the EE v2 is ready to be integrated with some of the other
SOA4All components, namely:

 Process Editor: the EE v2 exposes a Web Service that provides access to the
deploy functionality of the EE; this service is invoked by the Process Editor when the
user asks for the execution of a newly developed process.

 Consumption Platform: when a process is deployed, it can be accessible as an
HTTP/SOAP Web Service; the SOA4All component in charge of invoking the
executable process is the Consumption Platform.

 Analysis platform: during execution, the EE v2 generates events that trigger
messages sent to the Analysis Platform, that is the component in charge of displaying
these events to the users.

Furthermore, the EE v2 includes some internal improvements, with respect to the previous
prototype:

1. decoupling from BPEL engine implementation: while the EE v1 supported only Active
BPEL, now the EE v2 supports any BPEL engine implementation2;

2. update to the latest version of Axis2;

3. general refactoring and re-design for simplifying the architecture of the component.

The EE v2 is available with its source code through the SOA4All SVN repository.

Finally, a final release of the EE prototype is planned by the end of August 2010 (month 30 of
the SOA4All the project). In the final release further improvements will be implemented, if
needed, based on the feedbacks coming from the implementation of the SOA4All use cases,

1 The component of the SOA4All Studio that allows a user to build processes in a lightweight
manner, without requiring heavy technical skills.

2 Actually the EE v2 was tested with Active BPEL and Apache ODE.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 7 of 41

in addition to some refinements and bug fixes. This document describes in detail all the
above-mentioned aspects.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 8 of 41

1. Introduction

1.1 Introductory explanation of the deliverable

The first prototype of the composition framework (EE v1) [5], released on February 2009
(month 12 of the SOA4All project) was built on top of SCENE [12] and incorporated a new
approach for adapting service requests to actual service interfaces through semantic
annotations. The approach was described in detail in [5], [14] and [15].

The Advanced Prototype For Adaptive Service Composition Execution (EE v2) is the new
updated version of EE that is in charge of translating the LPML models into executable
processes, exposing them as services and executing them. It interacts with the Process
Editor, the Consumption Platform and the Analysis Platform.

This document contains the description of the software release of the EE v2. This document
highlights also the theoretical background of the new features of the EE v2.

1.2 Purpose and Scope

This document aims to describe the Execution Engine v2 in all its aspects, with specific
emphasis on the novelties and on the improvements with respect to the previous release.
This document describes the software components developed for the EE v2, the new
approach adopted for exploiting semantic annotations in self-adaptation at runtime and the
definition of interfaces for the integration in the SOA4All Runtime and SOA4All Studio. To
help the description different examples are provided. Such examples are used also as test
cases.

Furthermore, this deliverables shows the architecture of the Execution Engine.

1.3 Structure of the document

Section 2 introduces the approach used for allowing the RESTful services support in the
context of process execution.

Section 3 describes the design and implementation of the Advanced Prototype For Adaptive
Service Composition Execution.

Section 4 depicts the details about the installation and use of the EE v2.

Finally, section 5 draws some conclusion.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 9 of 41

2. Theoretical Grounding

In the deliverable [5] we presented SAWSDL as a service description language for
supporting the dynamic replacement of Web Services inside a service composition, even in
presence of syntactic mismatches between service interfaces. Starting from the results
shown in [12] that identify a number of possible mismatches between services, and some
basic mapping functions that can be used to solve that mismatches. Such mapping functions
can be combined in a script to solve complex mismatches. Scripts can be executed by a
mediator that receives an operation request, parses it, and eventually performs the needed
adaptations. In [14] and [15] we describe how to use SAWSDL for the automatic generation
of the scripts for the mapping between Web Services based on WSDL descriptions. EE v1
includes the implementation of this approach.

During the second year of the SOA4All project, we added to the EE the support for REST
services. Indeed, in the last years, a lot of web APIs implementing the REST principles were
created as a lightweight alternative to HTTP/SOAP. Moreover, the support for REST services
is a SOA4All requirement coming from the SOA4All Use Cases.

Since SOA4All proposes MicroWSMO [4] as semantic service description language for
REST services, we implemented the support for REST services grounding on MicroWSMO.
Thus, the EE v2 is able to use service descriptions in MicroWSMO and SAWSDL format and
to invoke both HTTP/SOAP and REST services. Furthermore, since the Execution
Environment (from the first release) is able to react to contextual changes, faults and
misbehaviours of the component services of a process by replacing a service with a different
one, the EE v2 is able to substitute a HTTP/SOAP service with a REST service as
implementation of an activity of a process.

The EE v2, released at month 24 of the SOA4All project, can deploy and execute lightweight
processes, developed using the Process Editor, that require to invoke both Web Services
and RESTful services. Furthermore, the EE v2 is able to replace at runtime a Web Service
with a RESTful one, and vice versa.

In this section we illustrate the results of our research and the new solution developed for
using SAWSDL and MicroWSMO for enabling the execution of self-adaptive processes.

2.1 The problem

In many situations, process modellers can have the need to use both WSDL and REST
services within a single process. For the sake clarity in this section we refer to the specific
sample process depicted in Figure 2. This process is created by a modeller that has the need
to construct a weather forecast service that returns a weather forecast given as input the
name of a city. First of all, the modeller uses the SOA4All Studio “Discover” feature (depicted
in Figure 1) for searching for a weather forecast service.

Figure 1 - SOA4All Studio “Create” buttons

He finds a WSDL/SOAP service that implements the required functionality and that is
available for use with the required level of quality. The only problem is that the service
requires as input the geographical coordinates of a location and not the city name. Thus, the
modeller search for a service that given a city name returns its geographical coordinates. He
finds such service implemented as REST. Combining these two services in a LPML process
the modeller is able to build the needed service. He can do this assisted by the SOA4All

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 10 of 41

Studio Compose [2] functionality.

Figure 2 - Sample Process

The result is the sample process in Figure 2, composed by two activities (identified by the
symbol in Figure 2) bounded at design time to two services:

 GeoNames3, a RESTful service that gives access to a worldwide geographical
database with a search function,

 ForecastService4, a Web Service, based on WSDL and SOAP that provides weather
forecasts.

As depicted in Figure 2, the sample process:

1. receives the city name string as input,

2. invokes the search operation of GeoNames passing as input the name of the city,
and obtaining as output the coordinates of the city, i.e., latitude and longitude,

3. the output of the previous activity is passed to the following activity as input,

4. invokes the ForecastService, service passing as input the coordinates of the city, i.e.,
latitude and longitude, and obtaining as result the weather forecast for the city,

5. the output of the previous activity is passed to the following activity as input,

6. returns the weather forecast.

During the modelling phase the modeller discovers also some possible alternative services
(that implements the same functionalities but with a lower level of quality) that can be used in
order to successfully execute the composition in case a fault occurs during the invocation of
the GeoNames and/or ForecastService. This can be done without changing the process but
adding specific semantic annotations to the activities as described in [6].

Table 1 lists the available candidate services for the implementation of the sample process
activities and the set of alternatives selected by the modeler.

3 http://www.geonames.org/export/geonames-search.html

4 http://zulu-53.nebula.fi/ws/services/ForecastService?wsdl

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 11 of 41

Table 1 - Candidate Services for the Sample Process

Replacement for WS Name WS Type WS Description

- GeoNames REST http://www.geonames.org/export/geonames-search.html

- ForecastService WSDL/SOAP http://zulu-53.nebula.fi/ws/services/ForecastService?wsdl

ForecastService TheWeatherCRF WSDL/SOAP http://inrete.dyndns.info/TheWeather/TheWeatherCRF.as
mx?wsdl

ForecastService GeoNamesWeather REST http://www.geonames.org/export/JSON-webservices.html

ForecastService WeatherForecast REST http://demo.cefriel.it/rest/services/WeatherForecast.htm

ForecastService TheWeather WSDL/SOAP http://demo.cefriel.it/axis2/services/TheWeather?wsdl

GeoNames GeoService WSDL/SOAP http://demo.cefriel.it/axis2/services/GeoService

In conclusion, the Sample Process scenario proposed in this section requires to compose
heterogeneous SOAP and REST services in a single process definition.

At the time of the writing of this deliverable, other initiatives are facing a similar problem. An
example is Apache ODE [17] that propose a RESTful variant of the BPEL invoke activity that
replaces the attributes partnerLink/operation with resource and method. At the time of
writing, this new Apache ODE feature is not yet implemented and it is in the state of a
proposal, subject to changes based. Even if implemented this solution will solve only the first
part of our problem because it allows to build a process that can have SOAP services for
implementing some activities and REST services for implementing some other activities. This
approach does not allow for replacing a failing SOAP service with a REST one or vice versa.

Furthermore, such heterogeneous composition, in our scenario, must be built in a semi-
automatic way without the need of heavy technical skills. Indeed we assume, as a
requirement for SOA4All, that our modeller is not an IT expert but a business domain expert.

2.2 Our approach

The problem described in the previous section raises some questions:

 How to define guidelines for the semantic annotation of RESTful services?

 How to establish the semantic compatibility between RESTful services and between
RESTful services and Web Services? Given that we already solved the problem of
the compatibility between Web Services.

 How to adapt at runtime RESTful services and Web Services?

In order to support invocation of RESTful services in the EE v2 and to enable service
replacement and service message adaptation between WSDL/SOAP and RESTful services,
we use the MicroWSMO service description for RESTful services.

MicroWSMO (described in detail in [4]) is a semantic annotation mechanism for RESTful
Web Services, based on a microformat called hRESTS (HTML for RESTful Services) for
machine-readable descriptions of Web APIs. MicroWSMO adds SAWSDL-like annotations to
hRESTS service descriptions. SOA4All Studio provides SWEET, a tool used for annotating
Web APIs in MicroWSMO.

Starting from the analysis of the RESTful services and Web Services we derived the
minimum information required for describing the characteristics of a RESTful service needed
by the EE for allowing the invocation and the replacement at runtime:

http://www.geonames.org/export/geonames-search.html
http://zulu-53.nebula.fi/ws/services/ForecastService?wsdl
http://inrete.dyndns.info/TheWeather/TheWeatherCRF.asmx?wsdl
http://inrete.dyndns.info/TheWeather/TheWeatherCRF.asmx?wsdl
http://www.geonames.org/export/JSON-webservices.html
http://demo.cefriel.it/rest/services/WeatherForecast.htm
http://demo.cefriel.it/axis2/services/TheWeather?wsdl

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 12 of 41

 The service description URL;

 The URI template for each operation5;

 The name of the operations;

 A model reference for each operation that refers to the corresponding service
operation concept;

 The name of the method (i.e., GET or POST);

 The list of the input parameters with the following information:

o Parameter name

o Parameter type (as XML Schema datatypes)

o A model reference URI for each parameter

o (If necessary) a reference to a lifting/lowering Schema for each parameter

 The output parameter with the follows information:

o MIME-type (default text/XML)

o If the mime type is text/XML the annotated XML schema, otherwise the model
reference URI

o (If necessary) a reference to a lifting/lowering Schema

This minimum set of data is in line with the Lightweight RESTful Service Model described in
[16] and [4].

In order to support the user in annotating the service descriptions with the needed
information, we defined two ontologies:

 http://www.soa4all.eu/ontology/execution/parameters,

 http://www.soa4all.eu/ontology/execution/mimetypes.

Furthermore, we rely on the XML Schema Datatypes definition. Table 2 shows some
concepts used for annotating the service descriptions involved in the sample process
introduced in section 2.1.

Model References

http://www.w3.org/TR/xmlschema-2/#integer

http://www.w3.org/TR/xmlschema-2/#double

http://www.soa4all.eu/ontology/execution/parameters#Required

http://www.soa4all.eu/ontology/execution/parameters#Optional

http://www.soa4all.eu/ontology/execution/mimetypes#Text_xml

Table 2 - Concepts for supporting RESTful service description6

5 In this context the term operation refers to the meaning defined in [4]: “operation: a single
action that the client can perform on a service”.

6 It has to be noted that the SOA4All WP3 team is defining a common minimal service model,
which will detail the two ontologies that we have sketched in Table 2.

http://www.soa4all.eu/ontology/execution/mimetypes

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 13 of 41

In order to better explain why in the EE v2 this information is required, we provide a
comparison between two simple compatible services: the first WeatherForecast7 described
using MicroWSMO annotations and the second TheWeather8 described with SAWSDL.

Our approach starting from the two service descriptions is able to establish the semantic
compatibility and to automatically provide the service substitution in case of necessity. In
order to do this we should define some criteria of compatibility and map information between
these two service descriptions.

Figure 3 - MicroWSMO of the Weather Forecast service as displayed in a browser

Figure 3 shows the human readable service description of a sample RESTful service. The
source code of this page is a MicroWSMO service description in RDF. As described in
D3.4.3, MicroWSMO allows HTML service documentation to be annotated with service
semantics in the same way that WSDL is annotated with SAWSDL. In section 4.1 of D3.4.3
the minimal service model is described: the interaction of a service consumer with a RESTful
service is a series of operations where the consumer sends a request to a resource (using
one of the HTTP methods GET, POST, PUT or DELETE) and receives a response that may
link to further resources. In D3.4.3 there is the RDFS realization of this service model and the
extension with semantic annotation.

Annex A shows an instance of the service model extracted from the MicroWSMO description
of the WeatherForecast RESTful service and the SAWSDL service description of
TheWeather service.

Referring to the two services descriptions in Annex A, in Table 3 we show how the EE v2 is
able to understand if two services are semantically compatible and adapt the service
messages by describing analogies and differences between the two service descriptions.

 WeatherForecast RESTful service TheWeather WSDL/SOAP service

 Name Semantic Annotation Name Semantic Annotation

Operation getForecastByLocation weather#ByLocation getForecast weather#ByLocation

Input
lat gps#Latitude latitude gps#Latitude

7 http://demo.cefriel.it/rest/services/WeatherForecast.htm

8 http://demo.cefriel.it/axis2/services/TheWeather?wsdl

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 14 of 41

Parameters lon gps#Longitude longitude gps#Longitude
hour time#Hours hour time#Hours
min time#Minutes min time#Minutes

Output
Parameters

previsione weather#Description weather weather#Description
temperatura weather#Temp temp weather#Temp
 wind weather#Wind

Table 3 - Operations and parameters of the WeatherForecase service and of the
TheWeather services

The semantic annotations shown in Figure 4 refer to a domain ontology shared between
services and created to annotate the service interfaces9.

Figure 4 - Domain ontology for the EE services

By the analysis of the semantic annotations, it is possible to establish the semantic
compatibility between the two services. In fact, only the „wind‟ parameter, that is an optional
parameter, cannot be mapped to a parameter of the WeatherForecast service.

To adapt the messages between RESTful and WSDL/SOAP messages as described in [1]
we use the same mapping functions used to solve the mismatches identified between
WSDL/SOAP services, but taking care of using the right information that distinguishes
WSDL/SOAP services from RESTful services. For example, in case the TheWeather is the
expected service and the WeatherForecast is the available service, the instance of the
operation rename function in the mapping script will be the one depicted in Listing 1.

<OperationRename>

 <ExpectedService>

 <OperationName>getForecast</OperationName>

 </ExpectedService>

 <AvailableService>

 <URITemplate>

 http://demo.cefriel.it/rest/service/getForecastByLocation?{-join|&|lat,lon}

 </URITemplate>

 <Method>POST</Method>

 </AvailableService>

</OperationRename>

Listing 1 – Mapping script fragment

In Listing 1 we can see the new mapping language keywords introduced in the EE v2,
namely: URITemplate and Method. The main difference is that, in order to properly invoke

9 It would be also possible to use different ontologies for annotating the services descriptions.
If a mediation between the ontology is possible then, at a conceptual level, we are in the
same situation of having all the annotations based on one shared domain ontology except
from the technical details.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 15 of 41

the RESTful services, the EE requires an URITemplate for each operation. In addition,
Annex C provides the complete mapping script automatically generated from the EE v2
deployer component starting from the two service descriptions. In Annex C it is possible to
see all the information provided in each mapping function. The example shows the simplest
case of adaptation between services, while the approach as described in [1] includes other
mapping functions used to solve complex situations like protocol mismatches.

We described above how to use SAWSDL and MicroWSMO for supporting the dynamic
replacement of RESTful and WSDL/SOAP services inside a service composition. At runtime
the behaviour of the EE is exactly the same of the EE v1 as shown in Figure 5, despite the
fact that now the candidate services can be both WSDL/SOAP services or REST services.

Figure 5 - Runtime service adaptation

2.3 Examples of Annotations for Service Adaptation

SOA4All Work Package 3 (Service Annotation and Reasoning), has defined languages
(SAWSDL and MicroWSMO), guidelines and tools for annotating the Web service
descriptions of REST and WSDL services. In our Execution Environment we rely on these
specifications and it is out of scope of T6.5 to define new languages and tool for annotating
Web services descriptions.

In this section, we describe in detail an approach for annotating service description that is a
specialization of the approaches defined in the WP3 targeted to the specific elements
needed for allowing the self-adaptive execution of the LPML processes.

As already mentioned, our approach is based on MicroWSMO, an extension of hREST that
adds semantic annotations to an HTML description like SAWSDL adds semantic annotations
to a WSDL service description. Furthermore, MicroWSMO adds to hREST the same
attributes that SAWSDL adds to WSDL, namely: modelReference, liftingSchemaMapping
and loweringSchemaMapping. Such attributes can be used with elements of the WSDL and
hREST definition. It is also possible to attach multiple URIs in a single annotation, but in this
case, no logical relationship between them is defined by the SAWSDL specification. While
this flexible approach can promote the use of SAWSDL, it allows many degrees of freedom
to the user. In order to solve our specific problem and to allow the automatic generation of
mapping scripts, we add the following constraints for the annotation of the service

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 16 of 41

descriptions:

1. Each operation must be annotated with a modelReference attribute;

2. Each input or output parameter, except from the optional ones, must be annotated
with a modelReference attribute;

3. We rely on the data type defined in XML Schema for simple types:

o Each input or output parameter not defined with an XML Schema10, must be
annotated with a modelReference attribute that points to the relative types
defined in “http://www.w3.org/TR/xmlschema-2/# “;

o Each input or output parameter of type anyURI11, must be annotated with a
modelReference attribute that points to the
http://www.soa4all.eu/ontology/execution/mimetypes ontology, that contains
the concepts represented by all the supported content types (e.g. text/xml);

4. In case an input or output parameter is of type anyURI and content type is text/xml,
the description must include the XMLSchema related to it and the XMLSchema must
be annotated à la SAWSDL.

5. The optional input or output parameter must be annotated with a modelReference
attribute in order to allow the adaptation also of these parameters in case they are
present in both the services involved in the adaptation process.

As for SAWSDL service descriptions, we shown different examples of annotation in [1], here
we show some examples of annotations for RESTful services descriptions in order to clarify
the requirements listed above.

An example of annotation of an input parameter is shown in Listing 2.

 Parameters:

 <code>(<a rel="sawsdl:modelReference"

 href="http://www.soa4all.eu/ontology/execution/gps#Latitude">lat)

 lat

 </code>(<a rel="sawsdl:modelReference"

 href="http://www.soa4all.eu/ontology/execution/parameters#Required">Required)

 <i>[<a rel="sawsdl:modelReference"

 href="http://www.w3.org/TR/xmlschema-2/#double">double]

 </i> - the latitude of the location

Listing 2 – MicroWSMO fragment12

From the MicroWSMO service description it is possible to extract an RDF document. The
fragment above is transformed in the following RDF:

<wsl:hasInputMessage>

 <wsl:Message>

 <sawsdl:modelReference rdf:resource="http://www.soa4all.eu/ontology/execution/parameters#Required"/>

 <sawsdl:modelReference rdf:resource="http://www.w3.org/TR/xmlschema-2/#double"/>

 <sawsdl:modelReference rdf:resource="http://www.soa4all.eu/ontology/execution/gps#Latitude"/>

 <rdfs:label xml:lang="en">lat</rdfs:label>

 </wsl:Message>

</wsl:hasInputMessage>

10 This may happen with RESTfull services

11 http://www.w3.org/TR/xmlschema-2/#anyURI

12 The semantic annotation format used is included in the MicroWSMO service description
using the RDFa (see D3.4.3 for details).

http://www.soa4all.eu/ontology/execution/types

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 17 of 41

Listing 3 – Description of latitude parameter in RDF format extracted from the MicroWSMO

In Listing 3, it is possible to see the description of an input parameter of a service operation
for a RESTful service, in Listing 4 the same parameter is described in SAWSDL.

<xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" maxOccurs="1" name="latitude" type="xs:double"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/gps#Latitude"/>

 ...

 </xs:sequence>

</xs:complexType>

Listing 4 – SAWSDL description of latitude parameter

As shown in Listing 3 and Listing 4, the parameters in the MicroWSMO and in the SAWSDL
descriptions are compatibles. Thus, the EE v2 is able to adapt one service to the other.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 18 of 41

3. Design and Implementation

This section depicts the internal architecture of the component and implementation details.

3.1 Architecture of the EE v2

3.1.1 Architecture

This section describes the architecture and implementation details of the Execution Engine
advanced prototype. Figure 6 depicts the component diagram of the EE v2. The EE v2 is
composed of three main subcomponents, described in the following sections.

Execution Engine

Deployer WS

Deployer

LPML2BPEL ProxyGenerator

Mapping Script Generator ApacheODEDeployer

Process Engine

Apache ODE 1.1
BPEL Management API

EVOPublisher

ProcessExecution

Self-Adaptation Framework

Axis2 1.5.1 Management Service

Binder Adapter

Figure 6 - Execution Engine v2 component diagram

EE v2 is part of the SOA4All architecture described in [1]; it is connected, interacts and
exchange information mainly with the follows components briefly described:

 Process Editor: it allows users to create, modify, share, and annotate process
models based on the LPML.

 Consumption Platform: it is the gateway for users to the service world when they
act as consumers. The platform allows them to formalise their desires in several
ways, defining and refining goals that can be used to discover and invoke the
services that fulfil their needs.

 Analysis Platform: it obtains information (monitoring events) from the monitoring
subsystem (e.g., EE v2) and performs processing in order to extract meaningful
information.

 SWS Repository: it is a common SWS description repository that contains the SWS
descriptions used by the SOA4All component, in this case the EE v2.

The following sections fulfil also the integration aspects between the EE v2 and of the other
SOA4All components.

3.1.1.1 Deployer

The Deployer is the component that more than the others makes use of the semantic
annotations derived from the LPML and from the services descriptions. It uses this semantic
information for generating:

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 19 of 41

 a BPEL process definition from the LPML coming from the Process Engine;

 the BPEL package to be deployed in the Process Engine under Apache ODE;

 a Java proxy for each activity in the BPEL, to be deployed in the Process Engine
under Axis2;

 a mapping script to be deployed in the Adapter that in this way is instructed for
adapting the proxy requests for the use with all the candidate services identified for
each activity.

3.1.1.2 Process Engine

The Process Engine is composed by third party components that can be plugged and
unplugged in the architecture.

It is composed of the following sub-components:

 a standard BPEL 2.0 engine (Apache ODE v1.1) responsible of executing BPEL
processes generated by the LPML2BPEL transformation at deploy time;

 a SOAP server Axis2 v1.5.1, responsible of executing service proxies auto-generated
by the deployment process,

 the EVOPublisher: an extension of the component developed in the SUPER IP
project, responsible of sending monitoring events to the Analisys Platform.

It is worth to note that in the previous version of the EE none of the components of the
Process Engine v2 was present. In fact, the previous version was based on Active BPEL 2.1
and Axis2 1.1, and the EVO publisher was absent.

3.1.1.3 Self-Adaptation Framework

The Self-Adaptation Framework is the core part of the EE since it implements all the self-
adaptation mechanisms described in section 3 and in [5]. The sub-components of the Self-
Adaptation Framework are:

 The Binder: responsible for executing binding (and re-binding) actions at runtime
based on the directions defined by rules. This component is able to execute various
policies for selecting the candidate services. For instance, the services could be
selected from a predefined list. The selection could be based both on functional and
non-functional attributes expressed as Goals in the SOA4All terminology.

 The Adapter: responsible for executing adaptation actions at runtime based on the
mapping scripts auto-generated at deploy time exploiting the semantic descriptions of
the Web Services and of the RESTful services, as described in detail in section 2.2.

3.1.1.4 Runtime View

At runtime (see Figure 7) the EE v2 interacts with the Process Editor through the Deployer
WS interface, with the Consumption Platform through the ProcessExecution interface, with
the Analysis Platform through the EVOPublisher and with the third party Web Services and
RESTful services invoked directly by the service proxies.

Internally, at runtime, besides the components already described in Figure 6 there are some
other components. These components are the ones automatically generated, compiled and
deployed at deploy-time by the Deployer. They are:

 DeployableBPELProcesses: they are BPEL processes that implements the same
control flow and data flow of the original LPML model and that are exposed as Web
Services by the Apache ODE BPEL Engine; the DeployableBPELProcesses are
instructed for invoking the GeneratedProxies instead of the actual services.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 20 of 41

 GeneratedProxies: they implements all the runtime self-adaptation characteristics of
the EE13; they are exposed as Web Services by the Axis2 SOAP server and they are
invoked by the BPEL process instance running in Apache ODE;

 BindingRules: the binding rules are used by the Binder for selecting a concrete
service implementation for executing an activity;

 Mapping scripts: they are XML scripts used by the Adapter when a proxy has to
invoke a service and to adapt its request/response messages.

demo.cefriel.it

Process Engine

Apache ODE 1.1
BPEL Management API

EVOPublisher

ProcessExecution

Axis2 1.5.1 Management Service

Deployable BPEL Process

-executor 1

-deployed process *

GeneratedProxy

-executor 1
-deployed service proxy *

Deployer WS

Deployer

LPML2BPEL ProxyGenerator

Mapping Script Generator ApacheODEDeployer

Self-Adaptation Framework

Binder

Adapter

MapingScript

1
*

Provider1

Service1

Provider2

Service2

Node1

ConsumptionPlatform

Node2

Process Editor

BindingRules

1
*

Analisys Platform

Figure 7 - Execution Engine v2 deployment diagram

3.1.2 Interfaces exposed

3.1.2.1 Deployment Interface

The deployer component expose the LPMDeployer Web Service as interface for the other
components. LPMDeployer Web Service is reachable at:

http://demo.cefriel.it:8084/axis2d/services/LPMDeployer?wsdl.14

The service has one operation (named deployServiceLPM) used to send the location of the

13 As described in [5], at runtime, when the execution of the process reaches the invocation
of an external service, a proxy operation is actually called. If the proxy does not refer to any
concrete service, it activates the Binder that solve the missing binding. The control is then
passed to the proxy that, possibly activating an adapter, invokes the proper operation on the
bound service, and then passes the control back to the BPEL execution environment.

14 At this URI the LPMDeployer Web Service SAWSDL description is available. The
SAWSDL is also on the SOA4All iServe Repository.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 21 of 41

LPM to the deployer. It is composed by the parameters of input:

 LPMName: required parameter, if only the LPMName is provided the service will look
at the default EE repository in order to retrieve the LPM process.

 LPMURI: optional parameter, if the LPMURI is provided the deployer will find the LPM
serialized as an XML file at that URI.

 LPMVersion: optional parameter, it is used in case of future extensions of the
language for back compatibility.

 LPMFileContent: optional parameter, if the LPMFileContent is provided as an XML
file encoded as Base64Binary.

 deploymentOption: optional parameter, for use in case of future extensions of the
language for back compatibility.

One sample SOAP Request for the LPMDeployer Service is shown below:

<soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:lpm="http://www.soa4all.eu/execution/services/LPMDeployer">

 <soapenv:Header/>

 <soapenv:Body>

 <lpm:deployServiceLPM>

 <lpm:LPMName>LPMTest</lpm:LPMName>

 <lpm:LPMURI>

 http://www.soa4all.eu/execution/LPM/LPMTest.xml

 </lpm:LPMURI>

 </lpm:deployServiceLPM>

 </soapenv:Body>

</soapenv:Envelope>

Listing 5 – Example LPMDeployer SOAP Request

The LPMURI parameter refers to the LPM process model URI.

The result of the deployServiceLPM operation is a WSDL/SOAP ready for being invoked (or
a SOAP FAULT in case of errors during the deployment). This WSDL/SOAP service, that is
the result of the deploy operation execution, exposes at least one operation (e.g.
"executeProcess").

3.1.2.2 Consumption Interface

In order to deploy a process the user invokes the executor public WSDL/SOAP interface
described in the previous section. The output of this invocation is a WSDL/SOAP ready for
being invoked that includes the end-point of the deployed process. The process can be
launched through this WSDL/SOAP interface.

Thus, the SOA4All Consumption Platform will invoke the deployed processes using the end-
point returned by the deployServiceLPM operation.

In the beginning, using a fresh EE installation, the only available service is the deploy
service. After the SOA4All user deploys its first process, the EE will expose the deploy
process and the new developed process as a WSDL/SOAP service. When you deploy your
second process, the EE will expose 3 services, the deploy service plus the two new
WSDLs/services of the two new developed processes. And so on with any new deployed
service.

3.1.2.3 Monitoring and Analysis interface

The EE v2 communicates with the SOA4All Monitoring and Analysis Platform through
asynchronous events generated by the EE v2.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 22 of 41

The events generated are:

Monitoring Events

ActivityAborted BusinessActivityUnsuccessfullyFinished

ActivityAssigned ProcessAborted

ActivityAutomaticallySkipped ProcessCompleted

ActivityCompleted ProcessInstantiated

ActivityManuallySkipped ProcessMonitoringEvent

ActivityReassigned ProcessResumed

ActivityRelieved ProcessStarted

ActivityResumed ProcessSuspended

ActivityScheduled ProcessTerminated

ActivityStarted VariableChangedEvent

ActivitySuspended VariableEvent

ActivityWithdrawn VariableReadEvent

BusinessActivityClosed BusinessActivityStarted

BusinessActivityNotStarted BusinessActivitySucessfullyFinished

BusinessActivityOpen

Table 4 - Monitoring Events

Details about the events listed in Table 4 are in [2] and [10]. Indeed, the implementation of
the EVO publisher component of the EE is done reusing the EVO publisher developed in the
FP6 SUPER IP project15.

The events are sent to the Monitoring Platform through an Active MQ message queue on a
topic named: “soa4all.events.execution_engine_v2”.

The Monitoring Platform will be subscribed to this topic in order to consume the events.

3.2 Implementation

3.2.1 Automatic Deployment of LPML models

3.2.1.1 LPML to BPEL transformation

In this section, we describe the advanced prototype of LPML to BPEL transformation as well
as the mapping of LPML elements to their BPEL counterparts.

As previously indicated in [6], the transformation of LPML models to BPEL is realised using

15 http://www.ip-super.org

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 23 of 41

the Intermediate Model (IM) project16, part of the Eclipse SOA Tools Platform Project17. The
IM uses a SOA meta-model that is well suited to express in a generic form different service-
related notions as well as process descriptions. Using transformations to and from the IM,
consumers and producers can generate and respectively extract SOA artefacts shared
between different platforms and technologies. In SOA4All, we have implemented a
transformation from LPML to the IM, as well as reused and updated a transformation from
the IM to BPEL. These transformations working in conjunction realise the complete LPML to
BPEL transformation. The overall procedure has been outlined in [6] and the rest of this
section discusses the current implementation.

The starting point of the transformation is the API defined in D6.3.2, more specifically the
LPMLExporter interface, implemented by the BPELExporter class. The EE Deployer invokes
the exportProcess method of this class passing it the top-level element of the LPML process
to transform (i.e. the LPML Process instance). The method generates the BPEL content and
returns it to the Deployer.

LPML to IM

The first part of the transformation involves the generation of the IM instance. This is
accomplished through a complete 2-phase parsing of the LPML elements referenced by the
top-level Process element. The first phase involves the extraction of activities and gateways
from the LPML process and creating the corresponding elements in the IM metamodel
instance. The second phase involves obtaining the flows present in the LPML process and
creating their equivalent entities in the IM instance. The two phases are coordinated through
the use of correlated data structures that ensure the consistency of the generated IM model.

IM to BPEL

The second part of the transformation involves the generation of the BPEL process from the
IM instance. This transformation reuses existing open-source code available in the Eclipse
IM2BPEL plugin18 and it depends on BPEL-related Eclipse plugins available in the Eclipse
BPEL Project19. This phase is performed through a process consisting of three main steps.
First, a BPEL skeleton resource is created as a stream, containing all the basic mandatory
information to get an empty executable process. This includes the reference to the client
WSDL, an empty list of services participating in this BPEL process aka "PartnerLinks", a list
of messages used within the process including "request" and "response" message types, and
finally the orchestration logic in a sequence containing the "receive" and "reply" requests. A
file is created as well, on which this skeleton stream is associated. Then, the BPEL
generation really starts with the IM model on the one hand, and the BPEL skeleton file on the
other hand. The IM model is loaded and parsed in order to realise a matching between each
of its entities and the corresponding BPEL constructs. Owing to the preparation phase where
BPEL-specific structures were put in the IM model during the LPML to IM transformation, the
identification of either a basic or a structured BPEL activity in an IM is straightforward. The
generation of BPEL 2.0 compliant constructs is facilitated by helper classes provided by a
library from the Eclipse BPEL project. Finally, the BPEL skeleton is enriched with all these
generated constructs to achieve the complete BPEL process reflecting the model expressed
in LPML. This IM to BPEL transformation also includes the generation of the client WSDL file
enabling the exposure of the BPEL process as a Web Service.

16 http://www.eclipse.org/stp/im/

17 http://www.eclipse.org/stp/

18 Contribution under review: https://bugs.eclipse.org/bugs/show_bug.cgi?id=233412

19 http://www.eclipse.org/bpel/

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 24 of 41

LPML Element BPEL Element SOA4All BPEL
extensions

Comments

Process Process

Activity Invoke AdaptiveInvoke In case and LPM
activity has a
replacement
condition and/or a
selection criteria
associated it must be
mapped on an
AdaptiveInvoke.

Parallel Gateway Flow + required Sequence
elements

Exclusive Gateway If + required Sequence
elements

Flow Implicit ordering in
Sequence

Service
(serviceReference)

Partner Link + required
corresponding
element in the WSDL
of the BPEL

Service List alternativeServiceList

humanTask humanTask

SemanticAnnotation
(type=
replacementCondition)

 replacementCondition

SemanticAnnotation
(type=
selectionCriteria)

 selectionCriteria

Table 5 - Mapping of LPML to BPEL Elements

3.2.1.2 Executable artefacts generation process

In this section, we describe the generation of proxies and of the adaptation rules.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 25 of 41

MSGDeployer WSPE LPML2BPEL Axis2 ManagementProxy Generator ODE Deployer

LPML2BPEL(LPML process)

BPEL

deploy(LPML process)

generateScripts(serviceList)

ack

ack

ackack

Service AdapterODE Management

deploy(BPEL)

generateProxies(serviceList)

deploy(proxies.aar)

deploy(BPEL archive)

deploy(mappingScripts)

Automatic Deployment of LPML models

Figure 8 - Sequence Diagram: Automatic Deployment of LPML

The deployment of the LPM process consists of several interrelated activities that make the
process ready to be executed. In Figure 8 are shown all the components involved and the
relationships between them and the artefacts generated and deployed to the respective
component able to process them.

All the components in the figure are included into the EE v2, except for the Process Editor
that invokes the EE v2 by using the LPMDeployer Web Service. LPMDeployer is a service
with all the capabilities to manage the EE v2 in the deployment phase of the process. It is
directly linked to the Deployer WS component that manages and uses the other components
involved.

By using the LPML2BPEL transformation (see section 3.2.1.1) the LPM model is translated
in BPEL 2.0. The reason is that the EE v2 use Apache ODE as system for executing the
process and BPEL 2.0 is the standard specification supported.

After the SOAP Request and the LPML2BPEL transformation, the artefact generated is the
SOA4All Extended BPEL 2.0 (for details see [6]) of the process that contains all the
information derived from the LPM process models transformed for satisfying the execution
purposes.

The Deployer WS component receives the Extended BPEL of the Process from the
LPMl2BPEL transformation and performs three main steps:

 Proxies generation

 Deployment of the process in Apache ODE

 Mapping script generation and adaptation rules

For each service involved in the process deployed, a specific dedicated proxy is generated at
runtime. The proxy exposes a similar interface exposed by the service provider and uses the
information extracted by the Extended BPEL in order to allow the dynamic replacement of
services and in reaction to contextual situations and to manage situations that requires
human tasks. In case of replacement, the proxy is able to select and bind to the right service
thanks to the selecting criteria and the list of the possible alternative services provided during
the deployment from the process.

The second step is the deployment of the process in Apache ODE, as described in detail in
[17] it consists in:

 Creating a temporary service unit directory for the BPEL processes

 Placing the relevant .bpel, .wsdl and .xsd files into the temporary directory

 Creating an ODE deployment descriptor (deploy.xml) and placing it in the temporary

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 26 of 41

directory

 Zipping up the contents of the temporary directory into a service unit archive

 Creating a temporary service assembly directory

 Placing the service unit archive in a temporary service assembly directory

 Updating the service assembly's jbi.xml descriptor

 Zipping up the contents of the service assembly directory into a service assembly
archive

 Copying the service assembly archive into the appropriate deploy directory

The current version of Apache ODE does not support the invocation of RESTful services, but
is planned (as anticipated in [17]) to extend the invoke activity to handle RESTful Web
Services. The invoke activity replaces the attributes partnerLink/operation with resource and
method. The method attribute identifies the HTTP method. All HTTP methods are supported,
although this spec is only concerned with GET, POST, PUT and DELETE. The resource
attribute identifies a BPEL variable of a simple type (xsd:uri, xsd:string etc.) used as the URL
of the actual resource. The resource element can be used instead of the resource attribute to
calculate the URL using an expression.

Even if Apache ODE right now is not able to invoke RESTful services, EE v2 is able to
support the invocation of RESTful service thanks to the approach described in detail in
section 2 and implemented in the EE v2.

The last step is the mapping script generation. For each service present in the process and
starting from the list of the possible alternative services it is possible to generate mapping
scripts between:

 WSDL/SOAP services;

 RESTful services;

 WSDL/SOAP and RESTful services.

All the mapping scripts generated are available to the service adapter and used in case of
need during the execution of the process at runtime. EE v2 could use the SWS Repository
introduced in 3.1.1 to retrieve the semantic service descriptions.

3.2.2 Execution and self adaptation

In this section, we describe what happens at runtime.

3.2.2.1 Processes execution and self-adaptation

The deployment of a process described above generates all the artefacts required to execute
a process and to provide the self-adaptation at runtime. The artefacts are available inside the
EE v2 and the deployed processes are ready for the activation. It is possible to see the list of
the processes and to activate them by using the Web Services described at the following
web address: http://demo.cefriel.it:8085/ode/services/listServices

Using these services, the process of execution starts when the Consumption Platform
executes the process and sends the input required for the invocation of the services
expected from the process.

In the sequence diagram in Figure 9 it is described a possible scenario of service invocation
and rebinding. The activation of the process permits to Apache ODE the execution of the
compiled BPEL process selected.

The role of the adapter during the execution is to check and in case of necessity adapt the

http://demo.cefriel.it:8085/ode/services/listServices

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 27 of 41

request/response during the invocation of a service. Service adapter is the component in the
middle between proxies and real services provided by third part.

Consumption Platform ApacheODE Proxy 1 Service Adapter 3rd Part WSDL/SOAP Services3rd Part REST Services

execute(processName, input)

invoke(request, expectedService)

invoke(request)

fault

invoke(adaptedRequest')

response'
adaptedResponse

response

invoke(adaptedRequest)

invoke(request)

Proxy 2

binding

fault

rebinding

Figure 9 - Execution and self adaptation sequence diagram

During the execution of the process, Apache ODE performs the service invocation to the
corresponding Proxy. The proxies bind to the expected service suggested in input and invoke
it. As shown in the figure, it is possible that the response of the service invoked is a fault
message. In this case by the analysis of the selection criteria and based on the alternative
service list Proxy 1 selects the new service to be invoked and invokes it. In the case of the
scenario in the sequence, the expected service is a WSDL/SOAP service and the alternative
service is a REST service. The role of the Service Adapter in this second invocation is crucial
for the success of the invocation; it consists of the following steps:

1. Receive from Proxy1 the request from the expected request and the reference to the
alternative service;

2. Select the mapping script related to the adaptation from the expected service to the
alternative service;

3. Adapt the request to the alternative service using the mapping script selected;

4. Invoke the alternative service;

5. Receive the response from the alternative service;

6. Adapt the response to the expected service using the mapping script selected;

7. Send the adapted response to the Proxy 1.

Then, Proxy 1 forwards the response to Apache ODE that continues the execution of the
process.

3.2.2.2 WebService Invocation through the SOA4All DSB

The EE can directly invoke WSDL and REST services through their actual
addresses/endpoints. In SOA4All some services are exposed on the SOA4All DSB as
described in [1]. The EE should be able to send requests for services invocation through the
DSB. Some adapter and specific interface have to be developed.

SOA4ALL third party services are accessible for any potential consumer through the
SOA4ALL Distribute Service Bus. Within a SOA4ALL process executed by the EE, an activity

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 28 of 41

requires to be executed by one of those third party services. EE supports direct invocation
through the generated proxies, hosted by the Axis 2 engine and generated during the
deployment phase, but the invocation through the DSB have additional benefits, as
described in detail in [1]:

 optimal communication performance,

 high scalability,

 DSB monitoring.

EE can be modified in order to use the DSB infrastructure to route activity invocation within a
running process to the third party service bound to that activity. The approach is shown in
Figure 10.

Figure 10 - Integration between EE and the DSB

Each node of a DSB offers a Petals ESB facility named Proxy Component. Currently a REST
Proxy Component is available for routing messages to REST third party services. A similar
WSDL Proxy Component is under development. This component forwards the incoming
message to the DSB endpoint that is closer to the third party service. In turn, this DSB
endpoint invokes the actual third party service and routes back the response message to the
calling DSB service proxy, which returns the response to the external caller. This approach
supports distributed DSB nodes.

In this picture, the caller, which invokes the closer DSB node, is the Execution Environment.
Concretely, the generated proxy (hosted by the Axis 2 component and associated to a
concrete activity within the running process) forwards the message to another Axis 2 proxy
service, the Axis 2 DSB proxy service, which dispatches it to the DSB proxy service of the
closer DSB node.

The Axis 2 proxy service mediates between every EE generated proxy and the bound
service. The endpoint of the bound service is encoded within the actual message and routed
by the Axis 2 DSB proxy service to the DSB Node Service Proxy, which forwards the
message to the correct third party service.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 29 of 41

Axis 2 only contains one instance of the DSB proxy, which forwards all the messages
dispatched by each generated proxy. Axis 2 DSB proxy supports both available DSB Service
proxies: REST-proxy and WSDL-proxy.

3.2.2.3 Human tasks invocation

Most of the activities that are to be found in a process are automatic ones. However, there
are other activities that must be executed by people. These are known as human tasks.
Human tasks are a requirement from the Service Delivery Platform case study (WP7), see
5.2 in [7] and [8].

In order to handle these tasks at a process level, two complementary specifications have
been proposed to become standards: BPEL4People [23] and WS-HumanTask [18].
BPEL4People introduces an extension for BPEL that address human interactions.
Meanwhile, WS-HumanTask defines the concept of a human task, and the operations to
manipulate it. BPEL4People will also support other features such as role-based access
control (RBAC), claim or revocation of a specific task, delegation or escalation of tasks, or
chained execution.

For the purpose at hand, we need a workflow engine supporting human tasks. Intalio Tempo
[14] is a set a components that supports human workflow within a SOA environment. Tempo
aims to be fully BPEL4People compliant, but for now, it does not use any BPEL extensions. It
actually works as a standalone human task Web Service. It exposes its functionality as both
REST and WSDL-based interfaces. Most of the operations defined in WS-HumanTask are
already exposed. Apache ODE, the SOA4ALL BPEL orchestration engine of choice, is also
supported. A more thorough description of Tempo and how it fits into the human task
requirement can be found in [9].

From the WP6 perspective, since the EE is largely based on ODE, a technical decision has
been taken to integrate Tempo within the EE. Tempo contains the definition of a specific
BPEL process that performs all the necessary steps to execute a human task (possibility of
approval, rejection, decisions on deadlines, etc.). Tempo offers this process as an
asynchronous service to be invoked.

The human task, being defined as an asynchronous service, needs a correlation ID, in order
for the HTS to uniquely identify the appropriate process to call back. The other input
parameters that must be sent along with the request are:

 Task Metadata, defines the model for the human task. The possible attributes for this
object are:

o Role Owner, the role that is liable to complete a specific task.

o User Owner, a specific user to whom this task is assigned

o Deadline

o Title

o Description

o User Process Endpoint, in this case it is the same as the Execution Engine

 Task Input, other information required in order to complete the task

The scenario to handle human tasks is as follows:

 At design time, a user of the Process Editor defined in WP2 adds a human task
activity to her process of choice.

 The user also defines the different input parameters

 The user and roles are managed outside SOA4All within the case studies scenarios

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 30 of 41

in [11]. Consistency between SOA4All users and case study roles should be
maintained.

 The human task is defined as an asynchronous Web Service.

 WP6 offer the means to translate an human task into a BPEL invoke and receive
activities to and from the HTS that handle the task object defined above20.

20 At the time of writing this feature is not yet implemented as an automatic translation but it
possible to manually define a BPEL able to invoke the HTS for supporting human tasks.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 31 of 41

4. Installation and Use

The EE v2 uses Subversion21 SOA4All repository to manage its source code and Apache
Maven22 as software project management. The component described in Figure 6 and Figure
7 represents the modules of the soa4all-execution-engine part of the SOA4All project that
are described in Table 6.

Apache ODE Deployer

 Artifact Id: apache-ode-deployer

 Group Id: eu.soa4all.execution.ode

 Packaging: jar

Binder

 Artifact Id: binder

 Group Id: eu.soa4all.execution.binder

 Packaging: jar

Evo Publisher

 Artifact Id: evo-publisher

 Group Id: eu.soa4all.execution.evo

 Packaging: jar

LPM2BPEL

 Artifact Id: lpm2bpel

 Group Id: eu.soa4all.execution.lpm2bpel

 Packaging: jar

Mapping Script Generator

 Artifact Id: mapping-script-generator

 Group Id: eu.soa4all.execution.mapping

 Packaging: jar

Proxy Generator

 Artifact Id: proxy-generator

 Group Id: eu.soa4all.execution.proxygen

 Packaging: jar

Service Adapter

 Artifact Id: service-adapter

 Group Id: eu.soa4all.execution.adapter

 Packaging: jar

LPM Deployer

 Artifact Id: lpm-deployer

 Group Id: eu.soa4all.execution.lpm

 Packaging: aar

Table 6 – EE v2 modules

The organization of the modules follows the standard directory layout for the Maven project.
The dependencies between modules and external libraries are described and configured in
the POM file. Figure 11 and shows the EE v2 source code tree.

Figure 11 – EE v2 SOA4All source code tree

21 http://subversion.apache.org

22 http://maven.apache.org

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 32 of 41

All the artefacts generated from the source code must be deployed in Axis2 and Apache
ODE configured and located in a specific directory called EE v2.

The EE v2 directory contains for the Windows users a preconfigured installation of Tomcat23
that contains the software required for the deployment:

 Apache ODE 1.1

 Axis2 1.5.1

A working installation of the EE v2 is reachable in the machine called demo.cefriel.it; the EE
v2 is composed of three main components: Deployer, ProcessEngine and Self-Adaptation
Framework.

The LPM Deployer (that is released as an axis2 archive that contains LPM2BPEL, Mapping
Script Generator, Proxy Generator and Apache ODE Deployer as jar files) depends on the
following modules:

 Axis2 1.5.1

For installing the LPM Deployer you will need to install Axis2 on the same machine in which
the Execution Engine will be installed and to put the LPMDeployer.aar in the axis2\WEB-
INF\services folder.

The ProcessEngine depends on the following modules:

 Axis2 1.5.1,

 Apache ODE 1.1.

For installing the ProcessEngine:

1. Install Apache ODE 1.1;

2. Install Axis2 1.5.1;

3. Put the EVOPublisher.jar in the ode\WEB-INF\lib folder

4. Add the following line in the ode\WEB-INF\conf\ode-axis2.properties

a. ode-axis2.event.listeners= eu.soa4all.execution.evo.notification.EVOPublisher

The Self-Adaptation Framework is provided with an installer. For installing it is needed to
launch the setup.exe provided.

For the development of the EE v2 components in Eclipse it is suggested to use the Maven
Eclipse Plugin:

1. Download of the current version of the source code from the SVN Repository and
executing the command “mvn install”,

2. Execute the “mvn eclipse:eclipse” command in the soa4all-execution-engine
directory,

3. Add a class path variable in eclipse called “M2_REPO” that point to the Local Maven
Repository,

4. Open the projects in eclipse.

The installation of the modules share the maven lifecycle phases with the following activities:

 validate: validate the project is correct and all necessary information is available;

23 http://tomcat.apache.org

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 33 of 41

 compile: compile the source code of the project;

 test: test the compiled source code using a suitable unit testing framework;

 package: take the compiled code and package it in its distributable format;

 verify: run any checks to verify the package is valid;

 install: install the package into the local repository.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 34 of 41

5. Conclusions

In the context of the SOA4All project, the Execution Engine, together with the other WP6
components and the Process Engine, should enable different groups of end users to build
new services and processes according to their specific needs in a lightweight manner.

In this deliverable, we describe our methodology and approach for adaptive process
execution and for the generation of runtime artefacts starting from the modelling language
defined in [6].

At the time of writing, the implementation of a second advanced prototype is under way. We
will release it at the end of February 2010. In this 2nd prototype we develop:

 A new approach for supporting both WSDL/SOAP services and RESTful services
based on SAWSDL and MicroWSMO;

 Automatic deployment of LPML models by translating them into executable
processes/services.

 Support for human tasks inside a process.

Furthermore, the EE v2 is already integrated with the Process Editor, with the Consumption
Platform and with the Analysis and Monitoring Platform.

During the second year of the project we already developed a demonstrator based on the
WP9 scenario. During the third year of the project we plan to develop new demonstrators of
the EE v2 based on the use cases of SOA4All.

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 35 of 41

6. References

[1] SOA4All Deliverable D1.4.1A SOA4All Reference Architecture Specification

[2] SOA4All Deliverable D2.3.2 Service Monitoring and Management Tool Suite First
Prototype

[3] SOA4All Deliverable D2.6.2 SOA4All Composer

[4] SOA4All Deliverable D3.4.3 MicroWSMO and hRESTS

[5] SOA4All Deliverable D6.5.1 Specification and First Prototype of Composition
Framework

[6] SOA4All Deliverable D6.3.2 Advanced Specification Of Lightweight, Context-aware
Process Modelling Language

[7] SOA4All Deliverable D7.3 End User Service Design.

[8] SOA4All Deliverable D7.4 End User Service Implementation - First Prototypes

[9] SOA4All Deliverable D7.5 End User Service Implementation (Final Versions)

[10] Project IST 026850 SUPER Deliverable 5.7 Semantic Reverse Business
Engineering

[11] SOA4All Deliverable D7.6 End User Service Annotation and Context
Descriptions

[12] M. Colombo, E. Di Nitto, and M. Mauri. Scene: A service composition
execution environment supporting dynamic changes disciplined through rules. In
ICSOC, pages 191–202, 2006

[13] Cavallaro, L. and Di Nitto, E., “An approach to adapt service requests to actual
service interfaces”, in SEAMS ‟08, Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems, New York, NY, USA,
ACM Press, 2008, pp. 129–136.

[14] Cavallaro, L., Ripa, G. and Zuccalà, M., “Adapting Service Requests to Actual
Service Interfaces through Semantic Annotations”, in PESOS Workshop, Vancouver,
IEEE Computer Society Press, 2009.

[15] De Giorgio, T., Ripa, G., and Zuccalà, M., “SAWSDL for Self-adaptive Service
Composition”, in Beyond SAWSDL 2009, Proceedings of the OTM 2009 workshops,
Vilamoura, Springer Press, 2009, pp. 907–916.

[16] Maleshkova, M., Kopecky, J., Pedrinaci, C., “Adapting SAWSDL for Semantic
Annotations of RESTful Services”, in Beyond SAWSDL 2009, Proceedings of the
OTM 2009 workshops, Vilamoura, Springer Press, 2009, pp 917–926.

[17] Apache ODE web site, http://ode.apache.org

[18] Intalio Tempo web site, http://tempo.intalio.org

[19] World Wide Web Consortium (W3C). Semantic Annotations for WSDL and
XML Schema, http://www.w3.org/TR/sawsdl

[20] World Wide Web Consortium (W3C). RDFa in XHTML,
http://www.w3.org/TR/rdfa-syntax

[21] World Wide Web Consortium (W3C). RDFa Distiller and Parser,
http://www.w3.org/2007/08/pyRdfa

[22] WS-HumanTask specification,

http://ode.apache.org/
http://tempo.intalio.org/
http://www.w3.org/TR/sawsdl
http://www.w3.org/TR/rdfa-syntax
http://www.w3.org/2007/08/pyRdfa

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 36 of 41

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/a0c9ce4c-ee02-
2a10-4b96-cb205464aa02

[23] BPEL4People specification:
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/30c6f5b5-ef02-
2a10-c8b5-cc1147f4d58c

[24] SOA4All Deliverable D2.6.2 SOA4All Composer

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/a0c9ce4c-ee02-2a10-4b96-cb205464aa02
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/a0c9ce4c-ee02-2a10-4b96-cb205464aa02
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/30c6f5b5-ef02-2a10-c8b5-cc1147f4d58c
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/30c6f5b5-ef02-2a10-c8b5-cc1147f4d58c

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 37 of 41

Annex A. RDF extracted from MicroWSMO description

A generic RDF extracted from MicroWSMO service description in RDFa.

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns:hr="http://www.wsmo.org/ns/hrests#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:sawsdl="http://www.w3.org/ns/sawsdl#"

 xmlns:wsl="http://www.wsmo.org/ns/wsmo-lite#" xmlns:xhv="http://www.w3.org/1999/xhtml/vocab#"

 xmlns:xml="http://www.w3.org/XML/1998/namespace">

 <!--Service Description URL-->

 <wsl:Service rdf:ID="serviceID">

 <rdfs:isDefinedBy

 rdf:resource="http://www.soa4all.eu/services/ServiceDescriptionPage.htm" />

 <rdfs:label>serviceName</rdfs:label>

 <sawsdl:modelReference rdf:resource="http://www.soa4all.eu/ontologies/ServiceOntology" />

 <!--The name of the operations for each operation-->

 <wsl:hasOperation>

 <wsl:Operation rdf:ID="operationID"><rdfs:label>operationName</rdfs:label>

 <!--The base URI for each operation-->

 <hr:hasAddress rdf:datatype="http://www.wsmo.org/ns/hrests#URITemplate">

 http://www.soa4all.eu/services/ServiceLocation?{-join|&|parameterName1,parameterName2,...}

 </hr:hasAddress>

 <!--The name of the method (i.e. GET, POST), default is GET--><hr:hasMethod>GET</hr:hasMethod>

 <!--A model references for each operation--><sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontologies/ServiceOntology#OperationConcept" />

 <!--The list of the input parameters with the follows information:-->

 <wsl:hasInputMessage>

 <wsl:Message rdf:ID="inputParameterID">

 <!--A model reference URI for each parameter-->

 <sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontologies/ServiceOntology#ParameterConcept" />

 <!--(If necessary) a reference to a lifting/lowering Schema for each parameter-->

 <sawsdl:liftingSchemaMapping rdf:resource="http://www.soa4all.eu/ontologies/Lifting" />

 <sawsdl:loweringSchemaMapping rdf:resource="http://www.soa4all.eu/ontologies/Lowering" />

 <!--Parameter type (as XML Schema datatypes)-->

 <sawsdl:modelReference rdf:resource="http://www.w3.org/TR/xmlschema-2/#integer" />

 <!--Parameter name--><rdfs:label>parameterName</rdfs:label>

 <!--Parameter required/optional--><sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontology/execution/parameters#Required "/>

 </wsl:Message>

 </wsl:hasInputMessage>

 <wsl:hasInputMessage>

 <wsl:Message rdf:ID="inputParameterID2">

 <!--A model reference URI for each parameter--><sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontologies/ServiceOntology#ParameterConcept" />

 <!--(If necessary) a reference to a lifting/lowering Schema for each parameter-->

 <sawsdl:liftingSchemaMapping rdf:resource="http://www.soa4all.eu/ontologies/Lifting" />

 <sawsdl:loweringSchemaMapping rdf:resource="http://www.soa4all.eu/ontologies/Lowering" />

 <!--Parameter type (as XML Schema datatypes)-->

 <sawsdl:modelReference rdf:resource="http://www.w3.org/TR/xmlschema-2/#integer" />

 <!--Parameter name--><rdfs:label>parameterName</rdfs:label>

 <!--Parameter required/optional--><sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontology/execution/parameters#Required"/>

 </wsl:Message>

 </wsl:hasInputMessage>

 <!--The output parameter-->

 <wsl:hasOutputMessage>

 <wsl:Message>

 <!--Mime type (default text/xml)--><sawsdl:modelReference rdf:resource=".../...#text/xml" />

 <!--If the mime type is text/xml the annotated xml schema--><sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/serviceID/OperationIDOutputSchema.xsd"/>

 <!--otherwise the model reference URI--><sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontologies/ServiceOntology#ParameterConcept"/>

 <!--(If necessary) a reference to a lifting/lowering Schema-->

 <sawsdl:liftingSchemaMapping rdf:resource="http://www.soa4all.eu/ontologies/Lifting" />

 <sawsdl:loweringSchemaMapping rdf:resource="http://www.soa4all.eu/ontologies/Lowering" />

 </wsl:Message>

 </wsl:hasOutputMessage>

 </wsl:Operation>

 </wsl:hasOperation>

 </wsl:Service>

</rdf:RDF>

Listing 6 – Generic MicroWSMO description in RDF

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 38 of 41

Annex B. RESTful and WSDL/SOAP Service description

MicroWSMO service description based on RDF model of the WeatherForecast RESTful
Service.

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:foaf="http://xmlns.com/foaf/0.1/"

 xmlns:hr="http://www.wsmo.org/ns/hrests#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:sawsdl="http://www.w3.org/ns/sawsdl#"

 xmlns:wsl="http://www.wsmo.org/ns/wsmo-lite#" xmlns:xhv="http://www.w3.org/1999/xhtml/vocab#"

 xmlns:xml="http://www.w3.org/XML/1998/namespace">

 <wsl:Service rdf:about="#svc1">

 <rdfs:isDefinedBy rdf:resource="http://demo.cefriel.it/rest/services/WeatherForecast.htm" />

 <rdfs:label xml:lang="en">Weather Forecast</rdfs:label>

 <wsl:hasOperation>

 <wsl:Operation rdf:about="#op1">

 <hr:hasAddress rdf:datatype="http://www.wsmo.org/ns/hrests#URITemplate">

 http://demo.cefriel.it/rest/services/WeatherForecast/byLocation?{-join|&|lat,lon}

 </hr:hasAddress>

 <sawsdl:modelReference rdf:resource="http://www.soa4all.eu/ontology/execution/weather#ByLocation"/>

 <rdfs:label xml:lang="en">getForecastByLocation</rdfs:label>

 <wsl:hasInputMessage>

 <wsl:Message>

 <sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontology/execution/parameters#Required"/>

 <sawsdl:modelReference rdf:resource="http://www.w3.org/TR/xmlschema-2/#double"/>

 <sawsdl:modelReference rdf:resource="http://www.soa4all.eu/ontology/execution/gps#Latitude"/>

 <rdfs:label xml:lang="en">lat</rdfs:label>

 </wsl:Message>

 </wsl:hasInputMessage>

 <wsl:hasInputMessage>

 <wsl:Message>

 <sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontology/execution/parameters#Optional"/>

 <sawsdl:modelReference rdf:resource="http://www.w3.org/TR/xmlschema-2/#integer"/>

 <sawsdl:modelReference rdf:resource="http://www.soa4all.eu/ontology/execution/time#Minutes"/>

 <rdfs:label xml:lang="en">min</rdfs:label>

 </wsl:Message>

 </wsl:hasInputMessage>

 <wsl:hasInputMessage>

 <wsl:Message>

 <sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontology/execution/parameters#Optional"/>

 <sawsdl:modelReference rdf:resource="http://www.soa4all.eu/ontology/execution/time#Hours"/>

 <sawsdl:modelReference rdf:resource="http://www.w3.org/TR/xmlschema-2/#integer"/>

 <rdfs:label xml:lang="en">hour</rdfs:label>

 </wsl:Message>

 </wsl:hasInputMessage>

 <wsl:hasInputMessage>

 <wsl:Message>

 <sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontology/execution/parameters#Required"/>

 <sawsdl:modelReference rdf:resource="http://www.w3.org/TR/xmlschema-2/#double"/>

 <sawsdl:modelReference rdf:resource="http://www.soa4all.eu/ontology/execution/gps#Longitude"/>

 <rdfs:label xml:lang="en"> lon</rdfs:label>

 </wsl:Message>

 </wsl:hasInputMessage>

 <wsl:hasOutputMessage>

 <wsl:Message>

 <sawsdl:modelReference

 rdf:resource="http://www.soa4all.eu/ontology/execution/mimetypes#Text_xml"/>

 <sawsdl:modelReference

 rdf:resource="http://demo.cefriel.it/rest/services/OperationIDOutputSchema.xsd"/>

 </wsl:Message>

 </wsl:hasOutputMessage>

 </wsl:Operation>

 </wsl:hasOperation>

 </wsl:Service>

</rdf:RDF>

Listing 7 – WeatherForecast service description in MicroWSMO based on RDF

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 39 of 41

SAWSDL of the WSDL/SOAP TheWeather Service.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://www.soa4all.eu/TheWeather/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 name="TheWeather" targetNamespace="http://www.soa4all.eu/TheWeather/"

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl/">

 <wsdl:types>

 <xs:schema elementFormDefault="qualified"

 targetNamespace="http://www.soa4all.eu/TheWeather/">

 <xs:element name="getForecast"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/weather#ByLocationReq">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" maxOccurs="1" name="latitude" type="xs:double"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/gps#Latitude" />

 <xs:element minOccurs="1" maxOccurs="1" name="longitude" type="xs:double"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/gps#Longitude" />

 <xs:element minOccurs="1" maxOccurs="1" name="hour" type="xs:int"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/time#Hours" />

 <xs:element minOccurs="1" maxOccurs="1" name="min" type="xs:int"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/time#Minutes" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="getForecastResponse"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/weather#ByLocationRes">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="1" name="getForecastResult" type="tns:Forecast" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="Forecast"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/weather#Forecast">

 <xs:sequence>

 <xs:element minOccurs="1" maxOccurs="1" name="weather" type="xs:string"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/weather#Description" />

 <xs:element minOccurs="0" maxOccurs="1" name="temp" type="xs:string"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/weather#Temp" />

 <xs:element minOccurs="0" maxOccurs="1" name="wind" type="xs:string"

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/weather#Wind"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="getForecastSoapIn">

 <wsdl:part name="parameters" element="tns:getForecast" />

 </wsdl:message>

 <wsdl:message name="getForecastSoapOut">

 <wsdl:part name="parameters" element="tns:getForecastResponse" />

 </wsdl:message>

 <wsdl:portType name="TheWeatherSoap">

 <wsdl:operation name="getForecast">

 <sawsdl:attrExtensions

 sawsdl:modelReference="http://www.soa4all.eu/ontology/execution/weather#ByLocation" />

 <wsdl:input message="tns:getForecastSoapIn" />

 <wsdl:output message="tns:getForecastSoapOut" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="TheWeatherSoap" type="tns:TheWeatherSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="getForecast" >

 <soap:operation

 soapAction="="http://www.soa4all.eu/ontology/execution/weather#GetForecast" style="document" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="TheWeather">

 <wsdl:port name="TheWeatherSoap" binding="tns:TheWeatherSoap">

 <soap:address location="http://demo.cefriel.it/axis2/services/TheWeather" />

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Listing 8 – TheWeather service description in SAWSDL

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 40 of 41

Annex C. WeatherForecast2TheWeather mapping script

Mapping Script that contains the information required to adapt messages from
WeatherForecast to TheWeather service.

<?xml version="1.0" encoding="utf-8"?>

<Mapping xmlns:tns="http://www.soa4all.eu/MappingLanguageSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <ExpectedNameSpace>http://it.crf.TheWeather/</ExpectedNameSpace>

 <ExpectedEndpoint>http://inrete.dyndns.info/TheWeather/TheWeatherCRF.asmx</ExpectedEndpoint>

 <AvailableDescription>http://demo.cefriel.it/rest/services/WeatherForecast.htm</AvailableDescription>

 <InterfaceRule ID="weather2previsioni">

 <OperationRename>

 <ExpectedService>

 <OperationName>getForecast</OperationName>

 </ExpectedService>

 <AvailableService>

 <URITemplate>

 http://localhost:3000/rest/previsioni/getForecastByLocation?{-join|&|lat,lon}</URITemplate>

 <Method>POST</Method>

 </AvailableService>

 </OperationRename>

 </InterfaceRule>

 <InterfaceRule ID="weather2previsioni_0">

 <ReferenceRuleID>weather2previsioni</ReferenceRuleID>

 <DataTypeRename>

 <Wrapper>

 <ExpectedService>

 <Name>getForecast.latitude</Name>

 <Type>double</Type>

 </ExpectedService>

 <AvailableService>

 <Name>lat</Name>

 <Type>double</Type>

 </AvailableService>

 </Wrapper>

 <Wrapper>

 <ExpectedService>

 <Name>getForecast.longitude</Name>

 <Type>double</Type>

 </ExpectedService>

 <AvailableService>

 <Name>lon</Name>

 <Type>double</Type>

 </AvailableService>

 </Wrapper>

 <Wrapper>

 <ExpectedService>

 <Name>getForecast.hour</Name>

 <Type>int</Type>

 </ExpectedService>

 <AvailableService>

 <Name>hour</Name>

 <Type>int</Type>

 </AvailableService>

 </Wrapper>

 <Wrapper>

 <ExpectedService>

 <Name>getForecast.min</Name>

 <Type>int</Type>

 </ExpectedService>

 <AvailableService>

 <Name>min</Name>

 <Type>int</Type>

 </AvailableService>

 </Wrapper>

 </DataTypeRename>

 <ReturnMappingRuleID>weather2previsioniRet</ReturnMappingRuleID>

 </InterfaceRule>

 <InterfaceRule ID="weather2previsioniRet">

 <DataTypeRename>

 <Wrapper>

 <ExpectedService>

 <Name>getForecastResponse</Name>

 <Type>getForecastResponse</Type>

 </ExpectedService>

 <AvailableService>

 <Name>previsioniMeteo</Name>

 <Type>previsioniMeteo</Type>

 </AvailableService>

 </Wrapper>

 <Wrapper>

 <ExpectedService>

 SOA4All –FP7 – 215219 – Deliverable report (D6.5.2 Advanced Prototype For Adaptive Service Composition Execution)

© SOA4All consortium Page 41 of 41

 <Name>getForecastResponse.getForecastResult.temp</Name>

 <Type>string</Type>

 </ExpectedService>

 <AvailableService>

 <Name>previsioniMeteo.temperatura</Name>

 <Type>string</Type>

 </AvailableService>

 </Wrapper>

 <Wrapper>

 <ExpectedService>

 <Name>getForecastResponse.getForecastResult.weather</Name>

 <Type>string</Type>

 </ExpectedService>

 <AvailableService>

 <Name>previsioniMeteo.previsione</Name>

 <Type>string</Type>

 </AvailableService>

 </Wrapper>

 </DataTypeRename>

 </InterfaceRule>

</Mapping>

Listing 9 – WeatherForecast2TheWeather mapping script

