
Project Title Policy and Security Configuration Management

Project Acronym PoSecCo

Project No 257109

Instrument Integrated Project

Thematic Priority Information and Communication Technologies

Start Date of Project 01.10.2010

Duration of Project 36 Months

Project Website http://www.posecco.eu

D4.3 – TAILORING SEMANTIC PROCESS MINING
METHODS TO BEHAVIORAL LANDSCAPE

MODELS

Work Package WP4, Operational Landscape Description & Audit

Lead Author (Org) Jan Martijn van der Werf (TUE)

Contributing Author(s)
(Org)

Wil van der Aalst (TUE), Annett Laube (BFH), Eric Verbeek (TUE)

Due Date 30.09.2011

Date 03.10.2011

Version 1.0

Dissemination level

X PU: Public

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the Commission)

CO: Confidential, only for members of the consortium (including the Commission)

PoSecCo project (project no 257109) is partially supported/co-funded by the European Community/ European Union/EU under the
Information and Communication Technologies (ICT) theme of the 7th Framework Programme for R&D (FP7). This document does not
represent the opinion of the European Community, and the European Community is not responsible for any use that might be made of
its content.

Project No 257109

Date 03.10.2011

Dissemination Level PU

Versioning and contribution history

Version Date Author Notes

0.1 19.07.2011 Jan Martijn van der Werf (TUE) Draft version

0.2 12.09.2011 Annett Laube (BFH) Draft Exec Summary and Conclusion

0.3 13.09.2011 Jan Martijn van der Werf (TUE) Incorporated comments Serena Ponta

0.4 29.09.2011 Jan Martijn van der Werf (TUE) Incorporated comments internal review
Günther Karjoth

1.0 03.10.2011 Jan Martijn van der Werf (TUE) Approved by Ronald Maier (UIBK)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The above referenced consortium members shall have no liability for damages
of any kind including without limitation direct, special, indirect, or consequential damages that may result from
the use of these materials subject to any liability which is mandatory due to applicable law.

Copyright 2011 by PoSecCo

1

Project No 257109

Date 03.10.2011

Dissemination Level PU

CONTENTS

1 Introduction 4

1.1 Purpose and Scope . 4

1.2 Structure of the Document . 5

2 Behavior in FI Applications 6

2.1 Process Models . 6

2.2 Behavioral Aspects in the Landscape Model . 7

2.2.1 Business Layer . 9

2.2.2 IT Layer . 9

2.2.3 Infrastructure Layer . 9

3 Process Mining 12

3.1 Event Logs . 13

3.2 Discovery . 17

3.3 Conformance . 19

3.4 Enhancement . 21

3.5 Process Mining in PoSecCo . 22

4 Semantic Process Mining 27

4.1 Enriching Logs with Semantics . 27

4.1.1 Transform Event Logs into a Semantic Model . 28

4.1.2 Semantic Extension to Event Logs . 30

4.2 Semantical Conformance Checking . 32

5 Conclusions 37

s

2

Project No 257109

Date 03.10.2011

Dissemination Level PU

EXECUTIVE SUMMARY

Future Internet (FI) applications are compositions of services of different kinds and layers, ranging from
low-level infrastructure services to high-level business services. These services communicate in order to
deliver a business service. Communication in FI applications is mostly asynchronous: services communicate
via message exchange.

The PoSecCo functional system model describes the structure of FI applications in three layers: the business
layer, the IT layer and the infrastructure layer (as described in more detail in Deliverable D4.2). The business
layer describes the business services that a service provider offers, and which business processes implement
these services. The IT layer describes the IT service compositions that implement each of the business
processes, and the actual implementation of these service compositions and their deployment is described
in the infrastructure layer. Such a structural description of the service landscape does not consider the
interactions between services, i.e., the choreography, at any architectural level.

Behavior, i.e., the order in which messages are sent and received, can exist on the different architectural
levels (Business, IT Layer, Infrastructure) and can be described using languages like Business Process
Modeling Notation (BPMN) or the Web Services Choreography Description Language (WS-CDL). On the
Business Layer, behavioral aspects describe which business (sub-)processes interact and in which order the
business processes are executed. On the IT Layer, the main behavior lies in the communication between IT
resources, focusing on the order in which messages are sent, like software components composing a given IT
service. The Infrastructure layer describes the implemented soft- and hardware realizing the different abstract
IT resources. Once deployed, the software components generate execution data to enable the monitoring of
the service landscape.

Process mining techniques use these execution data in the form of event logs to analyze the behavior of the
landscape components. In process mining, we can distinguish three main activities:

• Discovery: From an event log a process model, e.g. a Petri net, is generated without using any a-priori
information.

• Conformance: An existing model is compared with an event log of the system. It is checked if reality,
as recorded in the log, conforms to the model and vice versa.

• Enhancement: An a-priori model is changed or extended using the data from event logs.

All three process mining activities can be used within PoSecCo. Discovery and enhancement can mainly
be used to discover and update behavioral aspects in the different model layers of the service landscape,
whereas conformance can be used to check behavioral aspects during audit activities of service offerings of
service providers.

Semantic process mining techniques mainly focus on conformance. Many specifications a system execution
should adhere to are expressed in high-level terms at the business layer, whereas the execution data resides
on the lowest level at the infrastructure. In order to automatically check these high-level specifications, we
need to bridge the gap between the different layers of abstraction. To do so, we need to relate elements in the
event logs to concepts at higher levels of abstractions. For this, we combine techniques from the semantic
web, like ontologies with process mining techniques. These techniques allow us to combine elements from
different information sources, and to use reasoning to verify the high level specifications.

The PoSecCo functional system model can be translated into an ontology (cf. Deliverable D3.2), and then
be used in semantic process mining as an additional source of information. In this way, it is possible to
define high-level policies on the business layer, and verify these policies on the event logs available in the
infrastructure layer.

3

Project No 257109

Date 03.10.2011

Dissemination Level PU

1 INTRODUCTION

1.1 Purpose and Scope

This deliverable describes behavioral aspects within the architecture of Future Internet (FI) applications in the
scope of PoSecCo. Whereas PoSecCo defines a policy design methodology to design a golden configuration
of the service landscape top-down starting with requirement engineering of business processes, process
mining allows the analysis of the AS-IS situation of an existing service landscape. Figure 1 depicts the
relation between the PoSecCo architecture tools (introduced in Deliverable D1.2) and process mining.

The golden configuration defines an ideal set of configurations that complies with all security requirements
and that implements these in a cost-efficient way. This golden configuration is used to configure the service
landscape. A configuration management system (CMS) is then used to configure the real service landscape
according to the golden configuration. In PoSecCo, we assume that the CMS is aligned with the actual, the
real configuration of the service landscape.

Figure 1: Process mining in PoSecCo

In the real service landscape with the current configuration, that can be retrieved from the Configuration
Management Database (CMDB), execution logs are generated. Based on these logs, and the information
available from the PoSecCo Model Repository, process mining aims at the analysis of behavioral aspects
of such service landscapes. By analyzing the AS-IS situation, process mining can also help to identify
the elements present in a service landscape and to validate and update the model in the PoSecCo Model
Repository.

Semantic process mining techniques use in addition to the event log other sources of information to analyze
behavioral aspects of a service landscape. This allows not only to discover behavioral aspects in the different
architectural layers, but also to check the conformance of these models to rules or policies.

This deliverable is intended to explore the possible behavioral aspects within a service landscape, and how
process mining can be used in PoSecCo. Deliverable D4.7 will extend the PoSecCo functional system model
with behavioral aspects.

4

Project No 257109

Date 03.10.2011

Dissemination Level PU

1.2 Structure of the Document

This deliverable is structured as follows. In Section 2, we define the concepts of behavior and processes,
and explore the PoSecCo functional system model (described in detail in Deliverable D4.2) discussing
where these concepts can be found in the PoSecCo functional system model. The abstract descriptions
are accompanied by real-life examples from our use case partner Crossgate. Section 3 discusses process
mining in general and describes the three main activities in process mining – discovery, conformance and
enhancement – in more detail. In Section 4, we present semantic process mining in relation with the PoSecCo
project. Section 5 concludes this deliverable.

5

Project No 257109

Date 03.10.2011

Dissemination Level PU

2 BEHAVIOR IN FI APPLICATIONS

The design of FI applications comprises both the structure of the services, called their composition, as well
as their dynamics, called its behavior. Dynamic aspects that need to be considered during the design
of such applications is the order in which services are invoked, and how these services communicate.
Communication in FI applications is asynchronous: services communicate via message exchange. The
asynchronous nature of FI applications makes the dynamic aspects of FI applications error-prone: as messages
can be received and processed in any order, such applications are very sensitive for undesired deadlocks. It
therefore requires a well-considered behavioral design.

In this chapter, we introduce the basic concepts of modeling behavior using process models, and, based on
a running example, indicate places in the service landscape where behavior is involved.

2.1 Process Models

A process model is a set of tasks with causal dependencies between these tasks. These causal dependencies
define the control flow of the process model, i.e., the ordering in which the tasks can be executed. Like in
basic programming, we can identify five basic patterns in causal dependencies:

• Sequence: a linear ordering between two tasks: task A is always directly followed by task B;

• Or-split : a choice has to be made between several outgoing branches;

• And-split : all outgoing branches will be executed;

• Or-join: at least one of the incoming branches should be ready in order to continue;

• And-join: all incoming branches should be ready in order to continue;

Many more advanced patterns exist for modeling the control flow. For a more elaborate overview on control
flow patterns, we refer the reader to [6].

The execution of a process model is the execution of the tasks in that process such that its causal dependencies
are met. To execute a task, resources can be used. Resources can be consumable or durable. Typical
examples of consumable resources are parts, energy consumption or costs. Human operators and hardware
are examples of durable resources.

An important aspect of process models is that it can be repeated: it can be executed for many different
instances. An instance is the single execution of a process model, consisting of a state, which is determined

Figure 2: Example process model in BPMN 2.0 notation

6

Project No 257109

Date 03.10.2011

Dissemination Level PU

by the tasks already executed on that instance. Data can be associated to each instance, and changed by
executing tasks on the instance according to the control flow of the process model.

A process model defines two types of concurrency: within an instance, if two tasks can be executed simultaneously
on the instance without influencing each other (e.g., no shared resources), and over instances, i.e., several
instances of the same process model can be executed simultaneously, where only resources are shared over
the different instances.

For modeling behavior, many different modeling languages exist. Formal languages like process algebras
[20, 15] and Petri nets [26] and Linear Time Logic (LTL) [25] provide a formal ground for the verification of
behavioral aspects within a model. Industrial languages include the Event-Process Chains (EPC) [28, 18] and
Business Process Modeling Notation (BPMN) [22] for modeling business processes, the Business Process
Execution Language for Web Services (BPEL4WS) [10] for modeling web services, and the Web Services
Choreography Description Language (WS-CDL) [17] for modeling the interaction between web servies. A
language can be procedural or declarative. In procedural languages all allowed behavior is modeled explicitly,
e.g., process algebras, Petri nets, BPMN and WS-CDL, whereas in declarative languages, like LTL, the
allowed behavior is left implicitly. Some languages have a graphical representation, like Petri nets and
BPMN, others are only textual, like process algrebras, LTL and WS-CDL. An editor supporting many of these
languages is Oryx [11].

An example process model in the BPMN 2.0 notation is depicted in Figure 2. This process model consists of
five tasks, represented as rounded rectangles, one subprocess, represented as a rounded rectangle with a
plus operator, and both an and-split and and-join, and an or-split and or-join. The process model models an
example process when a quotation is received: after receiving a quotation from some customers, the goods
on the quotation are ordered. After ordering the goods, at least once, but possibly multiple times, goods are
received. When all goods all received, the goods are send to the customer. In the mean time, an invoice has
been created and sent to the customer. Sending the invoice is a process in itself, and therefore represented
as a subprocess.

2.2 Behavioral Aspects in the Landscape Model

In the previous section, we introduced the notion of behavior. In this section, we consider the functional
system model used within PoSecCo and described in Deliverable D4.2. We indicate where in the model
behavioral aspects can be found. For a more elaborate explanation of the functional system model, we refer
the reader to Deliverable D4.2.

The functional system model serves as an architectural framework of a FI application. It describes the
elements of the FI application and how these elements are related, covering the various aspects of such an
application, from high level business aspects to low level infrastructural details like software and hardware
components. Although the functional system model describes which elements are able to communicate, it
does not describe how and in which order the elements communicate.

As described in Deliverable 4.2, the functional system model is a layered model with three layers: the business
layer, the IT layer and the infrastructure layer. Based on a running example, behavioral aspects of each of the
layers will be discussed.

Running Example

As a running example we will consider a service provider, CG, that offers the business service “EDI” to some
customer C. The service implements the transportation of several types of EDI messages into a quotation for
trading partner TP. If the EDI message is an invoice, it is signed by an external trusted party B. The service is
implemented using a transaction engine on a small, private cluster, consisting of five virtual machines running
on a network storage server and two high performance servers. The service has been designed using the
PoSecCo tools (cf. Deliverable D1.2).

7

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 3: Business process of running example

8

Project No 257109

Date 03.10.2011

Dissemination Level PU

2.2.1 Business Layer

The business layer of the functional system model involves the high level business services a service provider
provides to its customers. Business services are implemented by a hierarchically structured set of business
processes that interact. The functional system model covers the structure of these business processes: the
subprocesses from which they are composed1, and which business processes are allowed to interact. The
behavioral aspect in the business layer describes how the interaction between business processes takes
place.

Consider the running example. The business process implementing this service is designed hierarchically:
the base business process implementing the EDI service is called “EDI business process”. It consists of two
activities “input” and “output”, and one subprocess “transform”. The subprocess “transform” consists of three
activities, “to base model”, “to TP model”, and “sign”. In the instance model, the structure, i.e., the hierarchy
and the interaction, of the business process is stored, as shown in Figure 3. However, the order in which the
activities occur, e.g., as depicted in Figure 3, is not stored in this model.

2.2.2 IT Layer

The IT layer defines the IT services and IT resources that implement the business processes defined in the
business layer. For each of the business processes, an IT service model is created. This service model
defines the IT resources with their interfaces, and how these interfaces are connected. These interfaces
consist of operations that can be called. As in the business layer, the functional system model only describes
the structure of which resources are allowed to communicate with which other resources. The order in which
the resources are called is not specified.

To model the interaction, also called the choreography [2], between resources, i.e., the order in which
the resources communicate, process modeling languages, like the Web Service Choreography Description
Language (WS-CDL), or the newly defined Choreography view in BPMN 2.0 (see [22], Chapter 11) are used.

Consider again the running example. In this example, the business service is realized using different service
models for the “EDI business process”, the “input business process”, the “output business process”, the
“toBaseModel business process”, and the “toTPModel business process. Each of these service models is
implemented and sold by CG. The “sign business process” is outsourced to company B. Figure 4 depicts the
service models, the interfaces, and which components can communicate. Part of the corresponding instance
model is shown in Figure 5. Although the business process model as depicted in Figure 3 implies the SAP
Connector to be the initiator, this cannot be concluded from the structure in Figure 4 and Figure 5.

2.2.3 Infrastructure Layer

The infrastructure layer describes the configuration of the implemented landscape. Firstly, it defines which
resources run on which nodes, and secondly, it defines the platform on which the resources run, like (virtual)
servers and network peripherals. Whereas the behavior aspects on the other two layers describe the desired
situation, this layer gives the current configuration of the different soft- and hardware components. The IT
layer defines how and which resources communicate, and in which order. The infrastructure layer describes
the real interactions.

Many different interactions exist on the infrastructure layer. For example, to monitor access control and the
activities performed on a node, the node should log who accesses the machines, at what time, and what
actions were performed. For example, a firewall should record when its management system has been
accessed, and what changes have been performed. Moreover, a firewall should also record what traffic
has been blocked, and what traffic has been allowed. In this way, it is possible to audit behavioral security
aspects.

The nodes and resources within a service landscape should record their usage, like who accessed what

1Note that activities in a business process are represented as leaves in the hierarchical tree structure of business processes.

9

Project No 257109

Date 03.10.2011

Dissemination Level PU

SAP-Connector

TA-Engine

S-SMTP-Server

EDI to BM BM to TP

CG

Sign

B

Figure 4: Service model of EDI service

Figure 5: Part of the instance model for the running example

10

Project No 257109

Date 03.10.2011

Dissemination Level PU

Sign

service

firewall x

SAPConn-C S-SMTPmailer-C

DB-C TA-C W-C

SAP-Connector-C

TA-Engine-C

S-SMTP-C

EDI-to-BM-C

BM-to-TP-C

Sign-C

Figure 6: Infrastructure of running example

functionality, and when has which action been performed. In this way, a large data collection is created and
maintained in the service landscape.

The ability to create event logs will be modeled in the Functional System Model (see Deliverable 4.2) as
logging capability of the IT Layer concept ITResource that is the base class of all software installed
in the systems. The logging capability relates the logging configuration settings to the instances of the
ITResource. More information about capabilities and configurations will be found in the upcoming deliverable
D3.3 - Configuration meta-model.

Consider again the running example. Figure 6 depicts the infrastructure. The two resources that need
communication with the outside are placed before a firewall. There is a server, SAPConn-C, to run the
SAPConnector resource SAPConnector-C specific for customer C, and server S-SMTPmailer-C running
the customer specific resource S-SMTP-C. Behind the firewall, the transaction engine and transformation
is running. The transaction engine runs on a single server named TA-C, and stores its data on the database
server DB-C. Together, the servers serve the TA-engine resource. The last server, W-C runs the transformation
services BM-to-TP-C and EDI-to-BM-C. The Sign service has been outsourced to the trusted party B. All
resources are specific for customer C.

Each server needs to record when it has been accessed, by whom and what commands have been executed.
Besides, the different resources require different levels of logging. For example, the transaction engine stores
when which message has been send or received, and the server responsible for sending e-mails records
when messages have been sent, and to whom.

The data recorded by the different nodes and resources in the infrastructure layer is the main input for process
mining, which we will describe in the next sections.

11

Project No 257109

Date 03.10.2011

Dissemination Level PU

8 1 Introduction

Fig. 1.3 The BPM life-cycle showing the different uses of process models

As Fig. 1.3 shows, process models play a dominant role in the (re)design and
configuration/implementation phases, whereas data plays a dominant role in the
enactment/monitoring and diagnosis/requirements phases. The figure also lists the
different ways in which process models are used (as identified in Sect. 1.2). Until
recently, there were few connections between the data produced while executing
the process and the actual process design. In fact, in most organizations the diag-
nosis/requirements phase is not supported in a systematic and continuous manner.
Only severe problems or major external changes will trigger another iteration of the
life-cycle, and factual information about the current process is not actively used in
redesign decisions. Process mining offers the possibility to truly “close” the BPM
life-cycle. Data recorded by information systems can be used to provide a better
view on the actual processes, i.e., deviations can be analyzed and the quality of
models can be improved.

Process mining is a relative young research discipline that sits between machine
learning and data mining on the one hand and process modeling and analysis on
the other hand. The idea of process mining is to discover, monitor and improve real
processes (i.e., not assumed processes) by extracting knowledge from event logs
readily available in today’s systems.

Figure 1.4 shows that process mining establishes links between the actual pro-
cesses and their data on the one hand and process models on the other hand.
As explained in Sect. 1.1, the digital universe and the physical universe become
more and more aligned. Today’s information systems log enormous amounts of
events. Classical WFM systems (e.g., Staffware and COSA), BPM systems (e.g.,
BPM|one by Pallas Athena, SmartBPM by Pegasystems, FileNet, Global 360, and
Teamwork by Lombardi Software), ERP systems (e.g., SAP Business Suite, Ora-
cle E-Business Suite, and Microsoft Dynamics NAV), PDM systems (e.g., Wind-
chill), CRM systems (e.g., Microsoft Dynamics CRM and SalesForce), middleware
(e.g., IBM’s WebSphere and Cordys Business Operations Platform), and hospital
information systems (e.g., Chipsoft and Siemens Soarian) provide detailed infor-
mation about the activities that have been executed. Figure 1.4 refers to such data
as event logs. All of the PAISs just mentioned directly provide such event logs.

Figure 7: The BPM life cycle

3 PROCESS MINING

To position process mining [1], we first describe the so-called Business Process Management (BPM) life-cycle
using Figure 7. The life-cycle describes the different phases of managing a particular business process. In the
design phase, a process is designed. This model is transformed into a running system in the configuration /
implementation phase. If the model is already in executable form and a Workflow Management (WFM) or
BPM system is already running, this phase may be very short. However, if the model is informal and needs to
be hardcoded in conventional software, this phase may take substantial time. After the system supports the
designed processes, the enactment/monitoring phase starts. In this phase, the processes are running while
being monitored by management to see if any changes are needed. Some of these changes are handled in
the adjustment phase shown in Figure 7. In this phase, the process is not redesigned and no new software is
created; only predefined controls are used to adapt or reconfigure the process. The diagnosis/requirements
phase evaluates the process and monitors emerging requirements due to changes in the environment of the
process (e.g., changing policies, laws, competition). Poor performance (e.g., inability to meet service levels)
or new demands imposed by the environment may trigger a new iteration of the BPM lifecycle starting with
the redesign phase.

As Figure 7 shows, process models play a dominant role in the (re)design and configuration/implementation
phases, whereas data plays a dominant role in the enactment/monitoring and diagnosis/requirements phases.
The figure also lists the different ways in which process models are used. Until recently, there were few
connections between the data produced while executing the process and the actual process design. In fact,
in most organizations the diagnosis/requirements phase is not supported in a systematic and continuous
manner. Only severe problems or major external changes will trigger another iteration of the life-cycle, and
factual information about the current process is not actively used in redesign decisions. Process mining
offers the possibility to truly “close” the BPM life-cycle. Data recorded by information systems can be used to
provide a better view on the actual processes, i.e., deviations can be analyzed and the quality of models can
be improved.

Figure 8 shows that process mining establishes links between the actual processes and their data on the one
hand and process models on the other hand.

Today’s information systems log enormous amounts of events. Classical WFM systems (e.g., Staffware and
COSA), BPM systems (e.g.,BPM|one by Pallas Athena, SmartBPM by Pegasystems, FileNet, Global 360, and
Teamwork by Lombardi Software), ERP systems (e.g., SAP Business Suite, Oracle E-Business Suite, and
Microsoft Dynamics NAV), PDM systems (e.g., Windchill), CRM systems (e.g., Microsoft Dynamics CRM and
SalesForce), middleware (e.g., IBM’s WebSphere and Cordys Business Operations Platform), and hospital
information systems (e.g., Chipsoft and Siemens Soarian) provide detailed information about the activities
that have been executed. Figure 8 refers to such data as event logs. All of the systems just mentioned
directly provide such event logs.

12

Project No 257109

Date 03.10.2011

Dissemination Level PU

1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is 〈register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation〉. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

Figure 8: Software systems and its relation to process mining

However, most information systems store such information in unstructured form, e.g., event data is scattered
over many tables or needs to be tapped off from subsystems exchanging messages. For example, Figure 9
shows possible execution data for system configured by the BPM diagram as shown in Figure 2.

Clearly, without any additional information it would be hard to link these four tables together in a meaningful
way. For example, the third column of the history table could be a foreign key pointing to either one of the
three supporting tables. Data retrieval and interpreting this data in the right way is one of the big challenges
in process mining. For example, by examining the database schema, like in Figure ??, the field names can
be retrieved, and used to link the data. Or, if such a schema is not available, the system needs to be tested
and examined in order to discover the right relationships. This step of data extraction is an integral part of
any process mining effort.

As shown in Figure 8, we can identify three main activities in process mining: discovery, conformance
and enhancement. Discovery focuses on re-creating models from event logs, conformance focuses on the
question whether the system is executing according to some specification, and enhancement tries to enhance
existing models using information from the event log. In the remainder of this section, we introduce event
logs, and the three main activities in process mining. Most of the algorithms and techniques discussed in this
chapter are implemented in the tool ProM [3], which can be found at http://www.processmining.org.

3.1 Event Logs

Table 1 shows a fragment of an event log that can be obtained from the execution data as shown in Figure 9.
This table illustrates the typical information present in an event log used for process mining. We assume
that an event log contains data related to a single process. Moreover, each event in the log needs to refer
to a single process instance, often referred to as case. In Table 1, each request corresponds to a case,
e.g., case “Derek W. Dick”. We also assume that events can be related to some activity. In Table 1 events
refer to activities “Receive quotation”, “Create invoice”, “Send invoice”, “Order goods”, “Receive goods”, and
“Send goods”. These assumptions are quite natural in the context of process mining. All mainstream process
modeling notations specify a process as a collection of activities such that the life-cycle of a single instance
is described. Hence, the “Case” and “Activity” columns in Table 1 represent the bare minimum for process
mining. Moreover, events within a case need to be ordered. For example, event “19651016” (the execution of

13

Project No 257109

Date 03.10.2011

Dissemination Level PU

History
19651016 9/8/10 10:25 AM 1 1 4
19651017 9/8/10 10:37 AM 1 2 6
19651018 9/8/10 1:19 PM 1 3 6
19651019 9/10/10 12:02 PM 2 1 3
19651020 9/11/10 1:40 PM 2 2 1
19651021 9/12/10 11:10 AM 1 4 5
19651022 9/12/10 2:17 PM 1 5 4
19651023 9/14/10 8:37 AM 2 4 2
19651024 9/14/10 11:38 AM 3 1 4
19651025 9/14/10 2:27 PM 3 4 5
19651026 9/16/10 9:28 AM 4 1 3
19651027 9/17/10 3:15 PM 4 4 2
19651028 9/18/10 1:27 PM 1 6 5
19651029 9/18/10 1:45 PM 4 5 3
19651030 9/18/10 2:03 PM 4 2 1
19651031 9/18/10 2:43 PM 5 1 4
19651032 9/18/10 3:10 PM 3 2 6
19651033 9/19/10 2:32 PM 3 5 4
19651034 9/20/10 1:06 PM 3 3 6
19651035 9/20/10 3:54 PM 5 4 5
19651036 9/20/10 4:32 PM 5 5 4
19651037 9/21/10 8:01 AM 5 6 5
19651038 9/21/10 8:37 AM 2 3 1
19651039 9/21/10 9:05 AM 4 6 2
19651040 9/21/10 9:10 AM 2 5 3
19651041 9/22/10 11:48 AM 5 2 6
19651042 9/22/10 2:24 PM 2 6 2
19651043 9/22/10 4:28 PM 5 3 6
19651044 9/23/10 9:42 AM 4 3 1
19651045 9/23/10 11:21 AM 3 6 5

Customer
1 Derek W. Dick
2 Mark Kelly
3 Peter Trewavas
4 Steven Rothery
5 Ian Mosley

Activity
1 Receive quotation
2 Create invoice
3 Send invoice
4 Order goods
5 Receive goods
6 Send goods

Agent
1 Carol
2 Claire
3 John
4 Mike
5 Pete
6 Sue

Figure 9: Example execution data

history

PK id

 timestamp

FK3 customer

FK2 activiy

FK1 user

user

PK id

 username

customer

PK id

 name

activity

PK id

 name

Figure 10: Possible data schema of execution data

activity “Receive quotation” request for case “Derek W. Dick”) occurs before event “19651021” (the execution
of activity “Order goods” for the same case). Without ordering information, it is of course impossible to
discover causal dependencies in process models.

Table 1 shows the information available per event. For example, all events have a timestamp (i.e., date and
time information such as “9/14/10 8:37 AM”). This information is useful when analyzing performance related
properties, e.g., the waiting time between two activities. The events in Table 1 also refer to resources, i.e.,
the persons executing the activities. In the context of process mining, these properties are called attributes.

14

Project No 257109

Date 03.10.2011

Dissemination Level PU

Table 1: An example event log

Event Timestamp Case Activity Resource

19651016 9/8/10 10:25 AM Derek W. Dick Receive quotation Mike
19651017 9/8/10 10:37 AM Derek W. Dick Create invoice Sue
19651018 9/8/10 1:19 PM Derek W. Dick Send invoice Sue
19651019 9/10/10 12:02 PM Mark Kelly Receive quotation John
19651020 9/11/10 1:40 PM Mark Kelly Create invoice Carol
19651021 9/12/10 11:10 AM Derek W. Dick Order goods Pete
19651022 9/12/10 2:17 PM Derek W. Dick Receive goods Mike
19651023 9/14/10 8:37 AM Mark Kelly Order goods Claire
19651024 9/14/10 11:38 AM Peter Trewavas Receive quotation Mike
19651025 9/14/10 2:27 PM Peter Trewavas Order goods Pete
19651026 9/16/10 9:28 AM Steven Rothery Receive quotation John
19651027 9/17/10 3:15 PM Steven Rothery Order goods Claire
19651028 9/18/10 1:27 PM Derek W. Dick Send goods Pete
19651029 9/18/10 1:45 PM Steven Rothery Receive goods John
19651030 9/18/10 2:03 PM Steven Rothery Create invoice Carol
19651031 9/18/10 2:43 PM Ian Mosley Receive quotation Mike
19651032 9/18/10 3:10 PM Peter Trewavas Create invoice Sue
19651033 9/19/10 2:32 PM Peter Trewavas Receive goods Mike
19651034 9/20/10 1:06 PM Peter Trewavas Send invoice Sue
19651035 9/20/10 3:54 PM Ian Mosley Order goods Pete
19651036 9/20/10 4:32 PM Ian Mosley Receive goods Mike
19651037 9/21/10 8:01 AM Ian Mosley Send goods Pete
19651038 9/21/10 8:37 AM Mark Kelly Send invoice Carol
19651039 9/21/10 9:05 AM Steven Rothery Send goods Claire
19651040 9/21/10 9:10 AM Mark Kelly Receive goods John
19651041 9/22/10 11:48 AM Ian Mosley Create invoice Sue
19651042 9/22/10 2:24 PM Mark Kelly Send goods Claire
19651043 9/22/10 4:28 PM Ian Mosley Send invoice Sue
19651044 9/23/10 9:42 AM Steven Rothery Send invoice Carol
19651045 9/23/10 11:21 AM Peter Trewavas Send goods Pete

Until recently, the de facto standard for storing and exchanging events logs was MXML (Mining eXtensible
Markup Language). MXML emerged in 2003 and was later adopted by the process mining tool ProM. Using
MXML, it is possible to store event logs such as the one shown in Table 1 using an XML-based syntax.
MXML has a standard notation for storing timestamps, resources, and transaction types. Moreover, one can
add arbitrary data elements to events and cases. The latter resulted in ad-hoc extensions of MXML where
certain data attributes were interpreted in a specific manner. For example, SA-MXML (Semantically Annotated
Mining eXtensible Markup Language) is a semantic annotated version of the MXML format used by the
ProM framework. SA-MXML incorporates references between elements in logs and concepts in ontologies.
For example, a resource can have a reference to a concept in an ontology describing a hierarchy of roles,
organizational entities, and positions. To realize these semantic annotations, existing XML elements were
interpreted in a new manner. Other extensions were realized in a similar manner. Although this approach
worked quite well in practice, the various ad-hoc extensions also revealed shortcomings of the MXML format.
This triggered the development of XES (eXtensible Event Stream) [13].

XES is the successor of MXML. Based on many practical experiences with MXML, the XES format has
been made less restrictive and truly extendible. In September 2010, the format was adopted by the IEEE
Task Force on Process Mining [12]. The format is supported by tools such as ProM (as of version 6), Nitro,
XESame, and OpenXES. See www.xes-standard.org for detailed information about the standard.

15

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 11: Meta model of XES

16

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 11 shows the XES meta model expressed in terms of a UML class diagram. An XES document
(i.e., XML file) contains one log consisting of any number of traces. Each trace describes a sequential list
of events corresponding to a particular case. The log, its traces, and its events may have any number of
attributes. Attributes may be nested. There are five core types: String, Date, Int, Float, and Boolean. These
correspond to the standard XML types: xs:string, xs:dateTime, xs:long, xs:double, and xs:boolean. For
example, “2011-12-17T21:00:00.000+02:00” is a value of type xs:dateTime representing nine o’clock in the
evening of December 17th 2011 in timezone GMT+2.

XES does not prescribe a fixed set of mandatory attributes for each element (log, trace, and event); an
event can have any number of attributes. However, to provide semantics for such attributes, the log refers
to so-called extensions. An extension gives semantics to particular attributes. In the context of XES, five
standard extensions have been defined. These extensions are described in the so-called XESEXT XML
format [13]. Here, we only mention a subset of standard attributes defined by these extensions.

• The concept extension defines the name attribute for traces and events. For traces, the attribute
typically represents some identifier for the case. For events, the attribute typically represents the activity
name. The concept extension also defines the instance attribute for events. This is used to distinguish
different activity instances in the same trace.

• The life-cycle extension defines the transition attribute for events. When using the standard transactional
life-cycle model, possible values of this attribute are “schedule”, “start”, “complete”, “autoskip”, etc.

• The organizational extension defines three standard attributes for events: resource, role, and group.
The resource attribute refers to the resource that triggered or executed the event. The role and group
attributes characterize the (required) capabilities of the resource and the resource’s position in the
organization. For example, an event executed by a sales manager may have role “manager” and group
“sales department” associated to it.

• The time extension defines the timestamp attribute for events. Since such a timestamp is of type
xs:dateTime, both a date and time are recorded.

Users and organizations can add new extensions and share these with others. For example, general
extensions referring to costs, risks, context, etc. can be added. However, extensions may also be domain
specific (e.g., healthcare, customs, or retail) or organization specific.

XES may declare particular attributes to be mandatory. For example, it may be stated that any trace should
have a name or that any event should have a timestamp. For this purpose, a log holds two lists of global
attributes: one for the traces and one for the events.

An XES log may define an arbitrary number of classifiers. Each classifier is specified by a list of attributes.
Any two events that have the identical values with respect to these attributes are considered to be equal for
that classifier. These attributes should be mandatory event attributes. For example, if a classifier is specified
by both a name attribute and a resource attribute, then two events are mapped onto the same class if their
name and resource attributes coincide.

The XES meta model shown in Figure 11 does not prescribe a concrete syntax. In principle many serializations
are possible. However, to exchange XES documents, a standard XML serialization is used. Figure 12
shows a fragment of the XES XML serialization of the event log of Table 1. In the example XES log, three
extensions are declared: Concept, Time, and Organizational. For each of these extensions a shorter prefix is
given. These prefixes are used in the attribute names. For example, the Time extension defines an attribute
timestamp. As shown in Figure 12, this extension uses prefix time, therefore the timestamp of an event is
stored using the key time:timestamp.

3.2 Discovery

The first type of process mining is discovery. A discovery technique takes an event log and produces a model
without using any a-priori information. An example is the α-algorithm [8]. This algorithm takes an event log

17

Project No 257109

Date 03.10.2011

Dissemination Level PU

<?xml version="1.0" encoding="UTF-8" ?>

<log xes.version="1.0" xmlns="http://www.xes-standard.org" xes.creator="Fluxicon Nitro">

<extension name="Concept" prefix="concept" uri="http://www.xes-standard.org/concept.xesext"/>

<extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>

<extension name="Organizational" prefix="org" uri="http://www.xes-standard.org/org.xesext"/>

<global scope="trace">

<string key="concept:name" value="name"/>

</global>

<global scope="event">

<string key="concept:name" value="name"/>

<string key="org:resource" value="resource"/>

<date key="time:timestamp" value="2011-09-08T16:17:41.056+02:00"/>

</global>

<classifier name="Activity" keys="Activity"/>

<classifier name="activity classifier" keys="Activity"/>

<trace>

<string key="concept:name" value="StevenRothery"/>

<event>

<string key="concept:name" value="Receive quotation"/>

<string key="org:resource" value="John"/>

<date key="time:timestamp" value="2010-09-16T09:28:00.000+02:00"/>

<string key="Activity" value="Receive quotation"/>

</event>

<event>

<string key="concept:name" value="Order goods"/>

<string key="org:resource" value="Claire"/>

<date key="time:timestamp" value="2010-09-17T15:15:00.000+02:00"/>

<string key="Activity" value="Order goods"/>

</event>

<event>

<string key="concept:name" value="Receive goods"/>

<string key="org:resource" value="John"/>

<date key="time:timestamp" value="2010-09-18T13:45:00.000+02:00"/>

<string key="Activity" value="Receive goods"/>

</event>

<event>

<string key="concept:name" value="Create invoice"/>

<string key="org:resource" value="Carol"/>

<date key="time:timestamp" value="2010-09-18T14:03:00.000+02:00"/>

<string key="Activity" value="Create invoice"/>

</event>

<event>

<string key="concept:name" value="Send goods"/>

<string key="org:resource" value="Claire"/>

<date key="time:timestamp" value="2010-09-21T09:05:00.000+02:00"/>

<string key="Activity" value="Send goods"/>

</event>

<event>

<string key="concept:name" value="Send invoice"/>

<string key="org:resource" value="Carol"/>

<date key="time:timestamp" value="2010-09-23T09:42:00.000+02:00"/>

<string key="Activity" value="Send invoice"/>

</event>

</trace>

<trace>

<string key="concept:name" value="PeterTrewavas"/>

<string key="creator" value="Fluxicon Nitro"/>

<event>

<string key="concept:name" value="Receive quotation"/>

<string key="org:resource" value="Mike"/>

<date key="time:timestamp" value="2010-09-14T11:38:00.000+02:00"/>

<string key="Activity" value="Receive quotation"/>

</event>

. . .
</trace>

. . .
</log>

Figure 12: Fragment of an XES file
18

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 13: Process model discovered from Table 1

and produces a Petri net explaining the behavior recorded in the log. For example, given the event log as
shown in Table 1, the α-algorithm is able to automatically construct a Petri net without using any additional
knowledge. This Petri net is shown in Figure 13.

Many different algorithms focus on the process perspective, like the genetic miner [9] and the Fuzzy miner [14].
Each of the algorithms focuses on different aspects of process models, and uses different techniques.
Nevertheless, algorithms that take other aspects into account also exist.

For example, if the event log contains information about resources, one can also discover resource-related
models, e.g., a social network showing how people work together in an organization. Figure 14 shows
the hand-over-of-work between the six resources available, where the size of the nodes corresponds to the
amount of work done by the resource and the height/width ratio to the number of incoming/outgoing arcs.
According to this figure, there are two clusters of people (Carol, Claire and John on the one hand and Mike,
Pete, and Sue on the other) who handover work to each other.

Please note that the model obtained by discovery depends heavily on the event log at hand. As mentioned
earlier, data extraction is an important step in process mining, and the question which event log is to be
extracted from the execution data is key. For example, we would have been interested in how the people
actually work on cases (which tasks do they typically execute in which order), we could have selected the
resource as case.

3.3 Conformance

The second type of process mining is conformance. Here, an existing model is compared with an event log of
the system [27]. Conformance checking can be used to check if reality, as recorded in the log, conforms to the
model and vice versa. For instance, there may be a process model indicating that purchase orders of more
than one million Euro require two checks. Analysis of the event log will show whether this rule is followed
or not. Another example is the checking of the so-called “four-eyes” principle stating that particular activities
should not be executed by one and the same person. By scanning the event log using a model specifying
these requirements, one can discover potential cases of fraud. Hence, conformance checking may be used
to detect, locate and explain deviations, and to measure the severity of these deviations.

19

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 14: Social network model discovered from Table 1

192 7 Conformance Checking

Fig. 7.1 Conformance checking: comparing observed behavior with modeled behavior. Global
conformance measures quantify the overall conformance of the model and log. Local diagnostics
are given by highlighting the nodes in the model where model and log disagree. Cases that do not
fit are highlighted in the visualization of the log

(e.g., 85% of the cases in the event log can be replayed by the model) and local
diagnostics (e.g., activity x was executed 15 times although this was not allowed
according to the model). The interpretation of non-conformance depends on the
purpose of the model. If the model is intended to be descriptive, then discrepancies
between model and log indicate that the model needs to be improved to capture re-
ality better. If the model is normative, then such discrepancies may be interpreted
in two ways. Some of the discrepancies found may expose undesirable deviations,
i.e., conformance checking signals the need for a better control of the process. Other
discrepancies may reveal desirable deviations. For instance, workers may deviate to
serve the customers better or to handle circumstances not foreseen by the process
model. In fact, flexibility and non-conformance often correlate positively. For exam-
ple, in some hospitals the phrase “breaking the glass” is used to refer to deviations
that are recorded but that actually save lives. Nevertheless, even if most deviations
are desired, it is important that stakeholders have insight into such discrepancies.

When checking conformance, it is important to view deviations from two an-
gles: (a) the model is “wrong” and does not reflect reality (“How to improve the
model?”), and (b) cases deviate from the model and corrective actions are needed
(“How to improve control to enforce a better conformance?”). Conformance check-
ing techniques should support both viewpoints. Therefore, Fig. 7.1 shows deviations
on both sides.

In Chap. 1, we related process mining to corporate governance, risk, compliance,
and legislation such as the Sarbanes-Oxley Act (SOX) and the Basel II Accord.
Corporate accounting scandals have triggered a series of new regulations. Although
country-specific, there is a large degree of commonality between Sarbanes-Oxley
(US), Basel II/III (EU), J-SOX (Japan), C-SOX (Canada), 8th EU Directive (EURO-
SOX), BilMoG (Germany), MiFID (EU), Law 262/05 (Italy), Code Lippens (Bel-

Figure 15: Conformance checking compares observed behavior with modeled behavior

20

Project No 257109

Date 03.10.2011

Dissemination Level PU

When checking conformance, it is important to view deviations from two angles: (a) the model is “wrong” and
does not reflect reality (“How to improve the model?”), and (b) cases deviate from the model and corrective
actions are needed (“How to improve control to enforce a better conformance?”). Conformance checking
techniques should support both viewpoints. Therefore, Figure 15 shows deviations on both sides.

Conformance checking is related to corporate governance, risk, compliance, and legislation such as the
Sarbanes-Oxley Act (SOX) and the Basel II Accord. Corporate accounting scandals have triggered a series of
new regulations. Although country-specific, there is a large degree of commonality between Sarbanes-Oxley
(US), Basel II/III (EU), J-SOX (Japan), C-SOX (Canada), 8th EU Directive (EUROSOX), BilMoG (Germany),
MiFID (EU), Law 262/05 (Italy), Code Lippens (Belgium), Code Tabaksblat (Netherlands), and others. These
regulations require companies to identify the financial and operational risks inherent to their business processes,
and establish the appropriate controls to address them. Although the focus of these regulations is on financial
aspects, they illustrate the desire to make processes transparent and auditable. The ISO 9000 family of
standards is another illustration of this trend. For instance, ISO 9001:2008 requires organizations to model
their operational processes. Currently, these standards do not force organizations to check conformance at
the event level. For example, the real production process may be very different from the modeled production
process. Nevertheless, the relation to conformance checking is evident. As auditing is key to the PoSecCo
project, we briefly reflect on the relation between conformance checking and auditing.

The term auditing refers to the evaluation of organizations and their processes. Audits are performed to
ascertain the validity and reliability of information about these organizations and associated processes. This
is done to check whether business processes are executed within certain boundaries set by managers,
governments, and other stakeholders. For instance, specific rules may be enforced by law or company
policies and the auditor should check whether these rules are followed or not. Violations of these rules
may indicate fraud, malpractice, risks, and inefficiencies. Traditionally, auditors can only provide reasonable
assurance that business processes are executed within the given set of boundaries. They check the operating
effectiveness of controls that are designed to ensure reliable processing. When these controls are not in
place, or otherwise not functioning as expected, they typically only check samples of factual data, often in the
“paper world”.

However, today detailed information about processes is being recorded in the form of event logs, audit trails,
transaction logs, databases, data warehouses, etc. Therefore, it should no longer be acceptable to only check
a small set of samples off-line. Instead, all events in a business process can be evaluated and this can be
done while the process is still running. The availability of log data and advanced process mining techniques
enables new forms of auditing. Process mining in general, and conformance checking in particular, provide
the means to do so.

As example of conformance techniques, we mention the token replay and the LTL checker. The first technique
replays the provided log on the provided model, and reports where deviations occur. As mentioned before,
these deviations can either be in the log or in the model. For example, if we replay the log as shown in
Table 1 in the BPMN model as shown in Figure 2, we could discover that none of the traces actually requires
the “Receive order” task more than once. Note that this is reflected by the discovered model as shown in
Figure 13. As a result, the organization could reconsider whether the loop around this task is really necessary.

The second technique is able to check LTL properties on an event log. Example of such properties include
the “four-eyes“ principle as mentioned earlier. For example, for the log as shown in Table 1 we could check
whether the “Receive goods” and “Send goods” tasks are always executed by different persons. Figure 16
shows the results. Apparently, the principle is not violated by any of the traces in the log.

3.4 Enhancement

The third type of process mining is enhancement. Here, the idea is to extend or improve an existing model
using information as recorded in some event log. Whereas conformance checking measures the alignment
between model and reality, this third type of process mining aims at changing or extending the a-priori model.

One type of enhancement is repair, i.e., modifying the model to better reflect reality. For example, if two

21

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 16: Results of checking the “four-eyes” principle on tasks “Receive goods” and “Send goods”

activities are modeled sequentially but in reality can happen in any order, then the model may be corrected to
reflect this. Another type of enhancement is extension, i.e., adding a new perspective to the process model
by cross-correlating it with the log. An example is the extension of a process model with performance data.
For instance, by using timestamps in the event log as shown in Table 1, one can extend Figure 2 to show
bottlenecks, service levels, throughput times, and frequencies. Similarly, this figure can be extended with
information about resources, decision rules, quality metrics, etc.

3.5 Process Mining in PoSecCo

The main focus of PoSecCo is the policy refinement with the goal to design a golden configuration according
to which the service landscape should be configured. In the enactment phase of the service landscape, it
generates execution data. Process mining focuses on the analysis of this data in form of event logs. Figure 17
depicts the relationship between the BPM life cycle, process mining and PoSecCo. Based on the execution
data, parts of the functional system model can be supplemented, like the resources participating in the service
landscape.

Figure 17: Position PoSecCo and process mining in the BPM life cycle

The execution data available in a service landscape gives information about the Infrastructure layer. It
contains data about the resources (software components) and nodes that are running. Based on this data,
parts of the Infrastructure layer of the Functional System model can be directly verified and complemented
if needed. Furthermore, if sufficient execution data is available, process mining can be used to detect the
interaction between services and resources.

22

Project No 257109

Date 03.10.2011

Dissemination Level PU

Table 2: Message log of the TA1 node
Message ID Message Type Time Action Resource Content
...
14534123 RecSAPMsg 2010/9/08 10:25:43 Rec SAPCon1 EDI:1243; ...
14534124 RecSAPMsg 2010/9/08 10:27:04 Rec SAPCon1 EDI:1255; ...
14534125 TAStartJob 2010/9/08 10:27:12 Snd W1 EDI:1255;JOB:12
14534126 TAStartJob 2010/9/08 10:27:23 Snd W1 EDI:1243;JOB:12
14534127 TAJobSuccess 2010/9/08 10:28:42 Rec W1 EDI:1255;JOB:12
14534128 TAJobSuccess 2010/9/08 10:29:21 Rec W1 EDI:1243;JOB:12
14534129 RecSAPMsg 2010/9/08 10:29:25 Rec SAPCon1 EDI:1323; ...
14534130 TAStartJob 2010/9/08 10:30:11 Snd W1 EDI:1255;JOB:14
14534131 TAStartJob 2010/9/08 10:32:15 Snd W1 EDI:1323;JOB:12
14534132 TAJobSuccess 2010/9/08 10:32:34 Rec W1 EDI:1255;JOB:14
14534133 TAStartJob 2010/9/08 10:35:46 Snd W1 EDI:1243;JOB:14
14534137 TAJobSuccess 2010/9/08 10:36:15 Rec W1 EDI:1323;JOB:12
14534134 SendSOAPSign 2010/9/08 10:36:23 Snd http://sign.notary.example.com <soap:Envelope>...<m:EDI>1323</m:EDI>...
14534135 TAJobSuccess 2010/9/08 10:36:35 Rec W1 EDI:1243;JOB:14
14534136 TASndMessage 2010/9/08 10:36:37 Snd SSMTP1 EDI:1243; ...
14534138 TAMessageSend 2010/9/08 10:37:04 Rec SSMTP1 EDI:1243;...
14534139 TASndMessage 2010/9/08 10:37:14 Snd SSMTP1 EDI:1255;...
14534140 TAMessageSend 2010/9/08 10:38:12 Rec SSMTP1 EDI:1255;...
14534141 RecSOAPSign 2010/9/08 10:45:12 Rec http://sign.notary.example.com <soap:Envelope>...<m:EDI>1323</m:EDI>...
14534142 TAStartJob 2010/9/08 10:45:14 Snd W1 EDI:1323;JOB:14
14534143 TAJobSuccess 2010/9/08 10:46:16 Rec W1 EDI:1323;JOB:14
14534144 TASndMessage 2010/9/08 10:48:12 Snd SSMTP1 EDI:1323;...
14534145 TAMessageSend 2010/9/08 10:49:54 Rec SSMTP1 EDI:1323;...
...

Consider again the running example. In the service landscape, the transaction engine records the messages
it sends and receives. The information is stored in a message log as depicted in Table 2. In the content of
each message, an EDI message id can be found. Hence, we can construct an event log in which the EDI

message id is the case identifier, and each sending or receiving of a message becomes an event. The name
of the event can be based upon parts of the content (e.g., JOB:XX) and the resource. This results in an event
log as depicted in Figure 18.

The event log constructed from the message log serves as input for the analysis using ProM. First, we perform
an analysis to conclude what resources are in the log, and which messages they send. This results in the
diagram depicted in Figure 19. Based on this diagram, we can add the resource instances to our functional
system model. Additionally, we can add each message as a data model.

Next, we want to discover the message flow of the messages being sent and received by the different
resources available in the message log. Several process discovery algorithms can be used for this purpose.
For example, the heuristic miner [32] results in a process model as depicted in Figure 20. Based on this
process model we can identify the order in which messages were sent.

To discover which resources communicate, and in which order, we can use the performance sequence
diagram analysis [16], as depicted in Figure 21. Based on this analysis, we can identify two patterns: one in
which the Sign Service is being used, and one without. Based on this diagram, we can enrich the PoSecCo
Functional System model with the different interactions between the different IT resources.

Last, we consider how the resources cooperate, i.e., how the resources hand over work to each other.
Figure 22 depicts the social network [7] formed by the different resources. From this diagram, we can
conclude that resource SAPCon1 is never called by the resources, but initiates the cooperation. Similarly, we
can conclude that SSMTP1 only receives work, and never initiates new work.

In this section, we showed how current process mining techniques can be used to enrich the functional system
model. In the next section, we will focus on how conformance testing can be used in PoSecCo.

23

Project No 257109

Date 03.10.2011

Dissemination Level PU

<?xml version="1.0" encoding="UTF-8" ?>

<log xes.version="1.0" xmlns="http://www.xes-standard.org" xes.creator="ProM">

<extension name="Concept" prefix="concept" uri="http://www.xes-standard.org/concept.xesext"/>

<extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>

<extension name="Organizational" prefix="org" uri="http://www.xes-standard.org/org.xesext"/>

<global scope="event">

<string key="concept:name" value="name"/>

<string key="org:resource" value="resource"/>

<date key="time:timestamp" value="2011-09-08T16:17:41.056+02:00"/>

</global>

<classifier name="Activity" keys="concept:name"/>

...

<trace>

<string key="concept:name" value="EDI-1323" />

<event>

<string key="concept:name" value="RecSAPMsg" />

<string key="org:resource" value="SAPCon1" />

<string key="sender" value="SAPCon1" />

<string key="receiver" value="TA-1" />

<string key="messageid" value="14.534.129" />

<string key="content" value="EDI:1323; ..." />

<date key="time:timestamp" value="2010-09-08T10:29:25+0200" />

</event>

...

<event>

<string key="concept:name" value="SendSoapSign" />

<string key="org:resource" value="http://sign.example.com" />

<string key="receiver" value="http://sign.example.com" />

<string key="sender" value="TA-1" />

<string key="messageid" value="14.534.134" />

<string key="content" value=">soap:Envelope<...>m:EDI<1323>/m:EDI<..." />

<date key="time:timestamp" value="2010-09-08T10:36:23+0200" />

</event>

...

</trace>

...

</log>

Figure 18: Fraction of event log of message log in Table 2

Figure 19: Resources and their messages available in the message log of Table 2
.

24

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 20: Process model using the heuristic miner of Table 2

25

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 21: Communication patterns found from Table 2

Figure 22: Handover of work of Table 2

26

Project No 257109

Date 03.10.2011

Dissemination Level PU

4 SEMANTIC PROCESS MINING

A service provider offers business services to its customers. These business services are implemented by
business processes. On top of these business processes, the service provider and its customers agree on
the boundaries in which such a business process may be executed. Such boundaries can be external, like
legislation as the Sarbanes Oxley Act (SOX), and legal bodies, such as BASEL II, or internal, like corporate
rules or a code of conduct. Additionally, service level agreements (SLAs) agreed with customers define
boundaries as well. Based on these requirements, a service provider implements a service landscape that
executes the business processes.

In order to assure that the execution of a business process is within its boundaries, a service provider needs
to constantly monitor its service landscape. The activity of checking whether the business execution adheres
to the defined boundaries is called auditing. Traditionally, an audit can only provide reasonable assurance
that a business process is compliant, i.e., that a business process is executed within the given boundaries.
Auditors assess the operating effectiveness of process controls, and when these controls are not in place or
functioning as expected, they typically check samples of factual data.

The omnipresence of execution data, coupled with process mining techniques enable a new form of auditing:
continuous auditing [5], in which the execution data is used to monitor and detect compliance violations.
Continuous auditing implies the automation of the auditing process. It puts high requirements on the execution
data, not only the availability of execution data, but also the right data need to be available for conducting
the audit. Hence, continuous auditing also requires a systematic approach to collect reliable and trustworthy
execution data. This activity is known as Business provenance. As a consequence, business provenance is
mainly an activity on the infrastructure layer of the service landscape. It requires a service provider to inspect
and define at design time which resources and nodes in its infrastructure need to record which execution
data.

A second aspect of automating the auditing process is the formalization of the boundaries of a business
process. In order to be able to automatically verify whether the execution of a business process adheres
to the defined boundaries, these boundaries should be formalized. These boundaries are formalized in
compliance rules [23]. However, formalizing boundaries is not sufficient. Given a service landscape, the
business processes and the compliance rules reside in the business layer, whereas the execution data resides
on the infrastructure level. Hence, to be able to check compliance, we need to link the execution data on the
infrastructure to the concepts available in the business layer. The functional system model as described in
Deliverable D4.2 offers these links.

The functional system model links low level actions implemented in IT interfaces to activities on the business
layer. In this way, it is possible to translate the compliance rules into low level specifications in terms of the
infrastructure. However, according to the functional system model, multiple actions may be linked to many
different activities, and vice versa. As a consequence, an action a of some interface i may be linked to
business activities A, B and C, whereas another action b of some other interface j may be linked to business
activities B,C and D. Hence, if we find in some event log the sequence 〈a, b〉, it can correspond to many
different sequences of business activities: 〈A,B〉, 〈A,C〉, 〈A,D〉, 〈B,B〉, 〈B,C〉, 〈B,D〉, 〈C,B〉, 〈C,C〉,
and 〈C,D〉. Hence, we need to add semantics to the event logs which enables us to link e.g. the sequence
〈a, b〉 in the event log to the sequence 〈A,C〉 of business activities.

4.1 Enriching Logs with Semantics

In semantic process mining, we use additional sources of information to enrich and analyze the event logs,
as shown in Figure 23. Adding semantics to an event log can be done in many different ways. For example,
each resource that raised an event, can be annotated by the department she is working for, or her role within
the organization, as currently being stored using the organizational extension (Section 3.1). Or, the activity
can be annotated with information about the subprocess it belongs to. However, this kind of information is
typically not available in the execution data itself.

27

Project No 257109

Date 03.10.2011

Dissemination Level PU

links tolinks to

external

sources

uses

Figure 23: The use of external sources in process mining

Instead, other sources of information exist, like the information systems at the HR department, or a high-level
architecture of the software system. For checking compliance, all these sources must be connected, as
these additional sources contain data essential to check compliance rules. As shown in [4], a specific data
model, depicted in Figure 24, together with first order logic can be used to express all kinds of compliance
rules. These rules are first expressed using a fixed vocabulary, which is then translated into SQL queries
on this data model. Rules like the four eyes principle, i.e., “two tasks in the same process instance should
be performed by different agents”, and the rule “task X can only be performed by some manager” can easily
be expressed in first order predicate logic, and then translated into an SQL query. If such a query yields an
empty result, the rule holds. Preliminary results [19] show that the approach works in practice. On the other
hand, having a fixed vocabulary limits the flexibility to add new sources of information.

Knowledge-based techniques, and more recently, semantic web techniques like the Rich Description Format
(RDF) [30] and the Ontology Web Language (OWL) [31] are designed to link sources in an open world, and
allow to define and infer all kinds of rules and queries. An important difference between the semantic web
paradigm and classical knowledge-based paradigm, is their view on the world. The former has an open-world
assumption, meaning that if a property is missing, it is assumed to be unknown, whereas the latter has a
closed-world assumption: if a property is not known to be true, it is false. The open world assumption of the
semantic web allows to connect many different sources at run time, meaning that it is always possible to add
new sources of information during the process of compliance checking.

As an example, consider a compliance rule that limits node access to highly qualified engineers only. The
execution data only stores which user accessed a node and which actions this user performed. One solution
is to store explicitly the role of the user in the log, as done in the organizational extension. Another option
would be to translate the rule to the same low level as the execution data by listing all user names that
represent highly qualified engineers, and state that only these users are allowed to log on. Each time this
rule needs to be checked, the set of user names of allowed engineers should be retrieved, and the rules
updated accordingly. Therefore, we propose a novel way to store and link data sources using the semantic
web paradigm.

4.1.1 Transform Event Logs into a Semantic Model

In order to link the elements in an event log to elements in other sources of information, we translate event logs
into a knowledge model, more specifically, an ontology. We base ourselves on the data model as proposed
by the XES standard.

In the XES standard, we identify six main classes, which we transform into concepts in the knowledge model:
Log, Extension, Attribute, Trace, Event and Value. Each of these classes becomes a concept in the ontology.
As all but the Extension concept can have attached a value, we add a super concept Attributable. Next, we
add the relations to these concepts. We identify the following relations:

28

Project No 257109

Date 03.10.2011

Dissemination Level PU

EntityType

Relationship

Task

FormLink

 type

Entity

 value

Process

TransitionPlace
pre

post

UpdateEntity

Case

Role

Agent

Permission

 start

 end

tr

tp

h*

pred

src tar

t

e

hh

f

e

p

c

c

execBy

t

Runtime

Organizational

DefinitionProcess Definition

Business Data

Definition

prev

Event

 timestamp

u

u*

Association

src

tar

r t p

cp

t

r

to

from

Assignment

 start

 end

rp

a

Figure 24: Initial data model for compliance checking, as proposed in [4]

Figure 25: Ontology model of an event log

29

Project No 257109

Date 03.10.2011

Dissemination Level PU

extension_of(Extension, Log) : Extension is an extension of Log.

attribute_of(Attribute, Extension) : Attribute is an attribute of Extension.

element_of(Value, Attribute) : Value is an element of Attribute.

trace_of(Trace, Log) : Trace is a trace of Log.

event_of(Event, Trace) : Event is an event of Trace.

value_of(Value, Attributable) : some Attributable (i.e., a Log, Trace, Event or Value) has value Value.

Besides, we define some derived relations. For each ‘_of’ relation, we add the inverse ‘has_’ relation, like
‘has_extension(Log, Extension)’ for the relation ‘extension_of(Extension, Log)’.

Note that we only store that an Attributable has some Value. The XES standard enforces that each attribute
occurs at most once for each log, trace and event. Hence, a Value is uniquely related to an Attribute via
the element_of relation. Hence, we do not need to store the corresponding attribute to the Attributable. As
a consequence, the attribute can also be used as a relation from the attributable to its value. For example,
an event e with attribute name from the concept extension with value A is represented in the ontology with
individual e of concept Event, individual A of concept Value, and a relation has_concept_name(e,A). In this
way, expressions become more intuitive.

For the event ordering we not only store the next event relation, but also the previous event (prev_event),
and their transitive closures allnext_event and allprev_event, respectively. In order to traverse the events in
a trace, we also store the first and last event of a trace.

next_event(Event1, Event2) : Event2 is the next event of Event1

allnext_event(Event1, Event2) : Event2 is a successor of Event1

prev_event(Event1, Event2) : Event1 is the next event of Event2

allprev_event(Event1, Event2) : Event1 is a successor of Event2

first_event(Trace, Event) : Event is the first event of Trace

last_event(Trace, Event) : Event is the last event of Trace

The resulting conceptual knowledge model is depicted in Figure 25. In the remainder of this deliverable, we
refer to this ontology as the log ontology. Based on this model, we are able to transform any event log into an
instance of the log ontology, by instantiating the appropriate concepts. Figure 26 depicts a part of an instance
for some event log.

4.1.2 Semantic Extension to Event Logs

In the previous section, we have shown how to transform an event log into a knowledge model, more
specifically an ontology. In order to relate individuals of the event log with other models, we need to relate
the individuals of the log ontology instance with elements in other ontologies. Each instance in an ontology
has a unique resource identifier (URI). Using this URI for individuals of an instantiated log ontology, we are
able to relate elements between different sources. These relations can either be stored in the instantiated log
ontology itself, or in the other sources. In this section, we propose an extension to the XES log format to store
these relations directly in an event log. We distinguish three different ways to relate information sources. The
new XES extension for adding semantics should allow to relate information in each of the three ways.

A first possibility is to directly relate individuals of the log ontology with individuals of other models, using the
object property mechanism available in ontologies. In this way, these properties can be used in reasoning.

30

Project No 257109

Date 03.10.2011

Dissemination Level PU

Figure 26: Instantiation of a log as an ontology

31

Project No 257109

Date 03.10.2011

Dissemination Level PU

Table 3: Access log of server TA-C of running example
session action user timestamp
...
SSH-1021 login John 2010/9/08 10:30:11
SSH-1022 login John 2010/9/08 10:39:42
SSH-1023 login Alice 2010/9/08 10:43:11
SSH-1022 logout John 2010/9/08 10:44:53
SSH-1021 logout John 2010/9/08 10:45:12
SSH-1023 logout Alice 2010/9/08 13:13:43
SSH-1024 login Bob 2010/12/01 05:45:14
SSH-1024 logout Bob 2010/12/04 18:34:12
SSH-1025 login Charley 2010/12/07 13:25:12
TTY-1254 login root 2010/12/14 13:11:12
TTY-1254 logout root 2010/12/14 13:35:56
...

Secondly, the open world architecture of ontologies allows to distribute knowledge over different models.
Rephrased, it is possible to have an individual that occurs in multiple ontologies. In this way, we are able to
link individuals in the log ontology directly with individuals in other sources, by stating they are equivalent.

Thirdly, ontologies allow for multiple inheritance, i.e., an individual can be an instance of different concepts.
In this way, we can relate individuals of an instantiated log ontology with concepts of other sources. For
example, given a source ontology in which the concept Manager exists, we can express that an originator
in the instantiated log ontology is not only a value, but also a manager. In this way, we can reason about
elements of the event log as if it was a Manager.

4.2 Semantical Conformance Checking

In the previous section, we introduced a translation from event logs into ontologies, and showed how the
individuals in the log ontology can be related to other sources of information. In this section, we introduce
how we can use these semantic aspects in process mining.

Conformance focuses on the question whether the execution adheres to some specification. Classical
conformance techniques focus on testing on the same layer of abstraction. In this section, we show how
the addition of semantics help in bridging high level specifications and low level event logs.

Consider again the running example introduced in Section 2. As an example, we consider the next compliance
rules:

1. No direct root access is allowed.

2. Only highly qualified engineers are allowed to access nodes of customer C.

For both rules, we need the access logs of each of the systems, i.e., the access log of DB-C, TA-C, W-C,
SAPConn-C and S-SMTPmailer-C. As the sign service is outsourced, no access log exists. An example of
such a log for a single system is displayed in Table 3. Based on the access logs of each of the systems, we
can create an event log. As case identifier we choose the session identifier, together with an identifier for the
server, e.g., the first case of the access log of Table 3 is “SSH-1 on TA-C”, as activity we choose the action.
This results in an event log as shown in Figure 27.

Based on the constructed event log, we are able to check the compliance rules. The first rule can be checked
using the existing LTL checker, by verifying the rule:

�((Activity =′ login′) =⇒ (Resource 6=′ root′))

32

Project No 257109

Date 03.10.2011

Dissemination Level PU

<?xml version="1.0" encoding="UTF-8" ?>

<log xes.version="1.0" xmlns="http://www.xes-standard.org/" xes.creator="ProM">

<extension name="Concept" prefix="concept" uri="http://www.xes-standard.org/concept.xesext"/>

<extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>

<extension name="Organizational" prefix="org" uri="http://www.xes-standard.org/org.xesext"/>

<extension name="Semantic" prefix="semantic" uri="http://www.xes-standard.org/semantic.xesext" />

<global scope="trace">

<string key="server" value="server" />

<string key="session" value="session" />

</global>

<global scope="event">

<string key="concept:name" value="name"/>

<string key="org:resource" value="resource"/>

<date key="time:timestamp" value="2011-09-08T16:17:41.056+02:00"/>!
</global>

<classifier name="Activity" keys="concept:name"/>

...

<trace>

<string key="server" value="TA-C" >

<string key="semantic:equivalent" value="http://example.com/customerC.owl#node-TA-C" />

</string

<string key="session" value="SSH-1021" />!
<event>

<string key="concept:name" value="login" />

<string key="org:resource" value="John" />

<date key="time:timestamp" value="2010-9-8T10:30:11+0200" />

</event

<event>

<string key="concept:name" value="logout" />

<string key="org:resource" value="John" />

<date key="time:timestamp" value="2010-9-8T10:45:12+0200" />

</event>

</trace>

...

</log>

Figure 27: Part of the event log for checking access control of Table 3

33

Project No 257109

Date 03.10.2011

Dissemination Level PU

qualification qualification

Member_of Member_of Member_of

qualification

high

Department

Employee

Engineering Consultancy

Charley Bob John Alice

Figure 28: Ontology of user management

The LTL checker returns that instance “TTY-1254 on TA-C” violates the compliance rule.

To check the second compliance rule, we need additional information: which nodes are specific for customer
C, and which users are highly qualified engineers. The information about which nodes to use can be inferred
from the instance of the functional system model, which has been translated into an ontology (cf. Deliverable
D3.2). In the event log, the attribute “server” is annotated with its equivalent counter part in the functional
system model. In this way, we are able to express that we are only interested in traces that relate to a server
that is part of the service landscape for customer C, by stating that the server of that trace runs some IT
Resource that provides an IT service used by customer C, which results in the following query:

Trace and has_server some (
Node and inverse runs_on some (

ITResource and inverse provided_by some (
ITService and inverse uses some (

Institution and name value ‘C’))))

The information which users are highly qualified engineers needs to come from a user management system,
like an LDAP or active directory server. An example is depicted in Figure 28. Again, we need to enrich the
event log by stating which user in the event log corresponds to which user in the user management system.
This can be done by adding an equivalence relation between the users of the event log and the users in the
user management system. After establishing the equivalence, we are able to express the desired compliance
rule, such that it returns all violating traces:

Trace and has_server some (
Node and inverse runs_on some (

ITResource and inverse provided_by some (
ITService and inverse uses some (

Institution and name value ‘C’))))
and has_event some (

Event and not (has_org_resource some (
Employee and member_of some (Department and name value ‘Engineering’)

and qualification value ‘high’)))

Although this query can be executed by any ontology reasoner, the result using the ontology of Figure 28
is not as expected. As user ‘Alice’ is not a member of the Engineering department, trace “SSH-1023 on
TA-C” is a counter example of this compliance rule. The problem lies in the relation ‘member_of between the
concepts ‘User’ and ‘Department’. As this relation is many-to-many, information is missing: although Alice
is not member of the Engineering department, this is not stated explicitly. As a consequence, the reasoner
cannot conclude that trace “SSH-1023 on TA-C” is a counter example. To resolve this, a reasoner with the
closed world assumption is required [33].

34

Project No 257109

Date 03.10.2011

Dissemination Level PU

Let us consider another example. Table 2 is part of a message log of the transaction engine. It contains
information about which messages have been sent to which machines. In the running example of Section 2,
the business process ‘Sign’ needs to be executed if the EDI message represents an invoice. This compliance
rule can be checked by transforming the message log into an event log, as shown in Figure 18.

As it is not possible to deduct from the content of the messages whether a message is an invoice or not,
we need to add additional sources of information. In this case, we need information about the kind of EDI
message being processed. As a consequence, we need to process the log first to add information about the
type of message, in order to check the compliance rule. Given an EDI ontology containing the different types
of EDI messages, the event log can be enriched by adding for each EDI message the concept the message
belongs to, as is done in the event log depicted in Figure 29.

Next, the activity ‘Sign’ in the business layer needs to be linked to actions in the event log. Based on the
message log, we are able to relate the resource to or from which a message is sent or received to the IT
Service model on the IT layer, and hence, to the business process involved. In the event log we only state for
each resource to which element in the functional system model it links. In this way, we are able to formulate
a query to verify the compliance rule:

Trace and has_EDIMessage some (EDIInvoice)
and has_resource some (ITResource and providedBy some

(ITService and inverse uses some
(Instutition and name value ‘C’)))

and not (has_event some (Event and has_resource some
(ITResource and inverse implements some

(ITResourceModel and exposes some
(ITInterfaceModel and inverse composes some

(ITServiceModel and realizes some
(BusinessProcess and name value ’Sign’)))))))

35

Project No 257109

Date 03.10.2011

Dissemination Level PU

<?xml version="1.0" encoding="UTF-8" ?>

<log xes.version="1.0" xmlns="http://www.xes-standard.org" xes.creator="ProM">

<extension name="Concept" prefix="concept" uri="http://www.xes-standard.org/concept.xesext"/>

<extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>

<extension name="Organizational" prefix="org" uri="http://www.xes-standard.org/org.xesext"/>

<extension name="Semantic" prefix="semantic" uri="http://www.xes-standard.org/semantic.xesext" />

<global scope="event">

<string key="concept:name" value="name"/>

<string key="org:resource" value="resource"/>

<date key="time:timestamp" value="2011-09-08T16:17:41.056+02:00"/>

</global>

<classifier name="Activity" keys="concept:name"/>

...

<trace>

<string key="concept:name" value="EDI-1323">

<string key="semantic:elementof" value="http://example.com/edifact/#INVOIC"/>

</string>

<event>

<string key="concept:name" value="RecSAPMsg" />

<string key="org:resource" value="SAPCon1">

<string key="semantic:equivalent" value="http://example.com/customerC.owl#resource-SAPCon1" />

</string>

<string key="sender" value="SAPCon1">

<string key="semantic:equivalent" value="http://example.com/customerC.owl#resource-SAPCon1" />

</string>

<string key="receiver" value="TA-1">

<string key="semantic:equivalent" value="http://example.com/customerC.owl#resource-TA-1" />

</string>

<string key="messageid" value="14.534.129" />

<string key="content" value="EDI:1323; ..." />

<date key="time:timestamp" value="2010-09-08T10:29:25+0200" />

</event>

...

<event>

<string key="concept:name" value="SendSoapSign" />

<string key="org:resource" value="http://sign.example.com">

<string key="semantic:equivalent" value="http://example.com/customerC.owl#resource-SignService" />

</string>

<string key="receiver" value="http://sign.example.com">

<string key="semantic:equivalent" value="http://example.com/customerC.owl#resource-SignService" />

</string>

<string key="sender" value="TA-1">

<string key="semantic:equivalent" value="http://example.com/customerC.owl#resource-TA-1" />

</string>

<string key="messageid" value="14.534.134" />

<string key="content" value=">soap:Envelope<...>m:EDI<1323>/m:EDI<..." />

<date key="time:timestamp" value="2010-09-08T10:36:23+0200" />

</event>

...

</trace>

...

</log>

Figure 29: Fraction of event log of message log in Table 2, extended with semantic annotations

36

Project No 257109

Date 03.10.2011

Dissemination Level PU

5 CONCLUSIONS

This deliverable discussed the use of process mining in the scope of PoSecCo. Behavioral aspects exists on
all three architectural layers of a service landscape. They can be characterized as interaction of IT resources
or the choreography of services and described by standard languages like BPMN or WS-CDL.

PoSecCo focuses on the design of policy and security configuration, resulting in a golden configuration of a
service landscape. The service landscape is configured according to this configuration using a configuration
management system. During the enactment phase of the service landscape, execution data is collected in
order to be able to audit the system. The execution data may be very diverse, like the access logs of a server,
or the message log of a transaction engine.

Process mining analyzes this execution data in the form of event logs. It offers the functionality to extract the
behavioral information from the logs and to automatically enrich the structural landscape description. This
decreases the manual effort for model population significantly. However, sufficient data is needed of a high
quality. In order to use process mining within PoSecCo, a clear case and task identifier should be present in
the execution data. When the data is of sufficient quality, process mining allows the PoSecCo Architecture
tools to:

1. discover the different elements available on the infrastructure and IT layer, and how these elements
communicate.

2. to verify whether the service landscape adheres to the configuration in the functional system model.

Whereas the enrichment of the functional system model is subject to more classic process mining techniques,
semantic process mining has improved capabilities to combine the information of several event logs with other
information sources. These additional information sources, together with the enriched event logs are the basis
for reasoning and conformance checking.

To support the use cases described in this deliverable, we need to implement additional plugins for the open
source tool ProM [3]. At least the following will be implemented during the project:

• Support to load and store ontologies;

• Support to transform event logs into ontologies;

• Support to link elements within an event log to existing elements within ontologies;

• Support for reasoning over ontologies using existing state-of-the-art reasoners, like HermiT [21], Pellet [24]
and Thea [29];

• Support to verify high-level policies using ontology reasoners;

With the proper tool support implemented in ProM, semantic process mining techniques can be used to
prove the conformance of the system’s behavior to a given model at this given point of time. Furthermore,
in combination with continuous event logging, it can deliver the conformance proof over a whole period
and therefore realize an important step towards continuous auditing, as requested from customers and
regulations.

37

Project No 257109

Date 03.10.2011

Dissemination Level PU

REFERENCES

[1] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer-Verlag, Berlin-Heidelberg, 2011.

[2] W.M.P. van der Aalst, M. Beisiegel, K.M. van Hee, D. König, and C. Stahl. An SOA-Based Architecture
Framework. International Journal of Business Process Integration and Management, 2(2):91–101, 2007.

[3] W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, et al. ProM 4.0: Comprehensive Support for
Real Process Analysis. In Petri Nets and Other Models of Concurrency Ű ICATPN 2007, volume 4546
of Lecture Notes in Computer Science, pages 484–494. Springer-Verlag, 2007.

[4] W.M.P. van der Aalst, K.M. van Hee, J.M.E.M. van der Werf, A. Kumar, and M.C. Verdonk. Conceptual
model for on line auditing. Decision Support Systems, 50(3):636 – 647, 2011.

[5] W.M.P. van der Aalst, K.M. van Hee, J.M.E.M. van der Werf, and M.C. Verdonk. Auditing 2.0 using
process mining to support tomorrow’s auditor. IEEE Computer, 43(3):90 – 93, 2010.

[6] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Advanced workflow
patterns. In 7th International Conference on Cooperative Information Systems (CoopIS 2000), volume
1901 of Lecture Notes in Computer Science, pages 18 – 29. Springer-Verlag, 2000.

[7] W.M.P. van der Aalst, H. Reijers, and M. Song. Discovering social networks from event logs. Computer
Supported Cooperative Work, 14(6):549 – 593, 2005.

[8] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering Process Models
from Event Logs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[9] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic Process Mining: An
Experimental Evaluation. Data Mining and Knowledge Discovery, 14(2):245–304, 2007.

[10] A. Alves, A. Arkin, S. Askary, et al. Web Services Business Process Execution Language Version
2.0 (OASIS Standard). WS-BPEL TC OASIS, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html,
2007.

[11] G. Decker, H. Overdick, and M. Weske. Oryx Ű An Open Modeling Platform for the BPM Community.
In Business Process Management, number 5240 in Lecture Notes in Computer Science, pages 382 –
385. Springer-Verlag, 2008.

[12] IEEE Task force on Process Mining. http://www.win.tue.nl/ieeetfpm/doku.php.

[13] C.W. Günther. XES Standard Definition. www.xes-standard.org, November 2009.

[14] C.W. Günther and W.M.P. van der Aalst. Fuzzy mining: Adaptive process simplification based on
multi-perspective metrics. In BPM 2007, volume 4714 of Lecture Notes in Computer Science, pages
328 – 343. Springer-Verlag, 2007.

[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, 1985.

[16] P. Hornix. Performance analysis of business processes through process mining. Master’s thesis,
Technische Universiteit Eindhoven, 2007.

[17] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto. Web Services Choreography
Description Language Version 1.0. http://www.w3.org/TR/ws-cdl-10/, November 2005.

[18] G. Keller, N. Nüttgens, and A.W. Scheer. Semantische Process- modellierung auf der Grundlage
Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für Wirtschaftsinformatik,
Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

[19] J.H.W. van Loon. Design of a monitor for on-the-fly checking of business rules. Master’s thesis,
Technische Universiteit Eindhoven, 2011.

38

Project No 257109

Date 03.10.2011

Dissemination Level PU

[20] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science.
Springer-Verlag, 1980.

[21] B. Motik, R. Shearer, and I. Horrocks. A Hypertableau Calculus for SHIQ. In Proc. of the 20th Int.
Workshop on Description Logics (DL 2007), pages 419–426. Bozen/Bolzano University Press, 2007.

[22] Object Management Group. Business Process Modeling Notation, V2.0.
http://www.omg.org/spec/BPMN/2.0/PDF/, 2008.

[23] Object Management Group. Semantics of Business Vocabulary and Business Rules (SBVR), v1.0.
http://www.omg.org/spec/SBVR/1.0/PDF/, 2008.

[24] Clark & Parsia. Pellet: Owl 2 reasoner for java. http://clarkparsia.com/pellet/.

[25] A. Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium on Foundations of Computer
Science, pages 46–57. IEEE, 1977.

[26] W. Reisig. Petri Nets: An Introduction, volume 4 of Monographs in Theoretical Computer Science: An
EATCS Series. Springer-Verlag, 1985.

[27] A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based on Monitoring Real
Behavior. Information Systems, 33(1):64–95, 2008.

[28] A.W. Scheer. ARIS Business Process Modelling. Springer, 1999.

[29] V. Vassiliadis, Wielemaker J., and C. Mungall. Processing OWL2 Ontologies using Thea: An Application
of Logic Programming. In OWLED, 2009.

[30] W3C. Resource description framework (rdf): Concepts and abstract syntax, 2004.

[31] W3C. Owl 2 web ontology language, 2009.

[32] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-Based Data
Using Little Thumb. Integrated Computer-Aided Engineering, 10(2):151 – 162, 2003.

[33] J. Wielemaker, M. Hildebrand, and J. van Ossenbruggen. Using Prolog as the fundament for applications
on the semantic web. In Proceedings of the 2nd Workshop on Applicatiions of Logic Programming and
to the web, Semantic Web and Semantic Web Services, volume 287 of CEUR Workshop Proceedings,
pages 84–98. CEUR-WS.org, 2007.

39

