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Spin pumping is the emission of a spin current by a magnetization dynamics while spin transfer
stands for the excitation of magnetization by spin currents. Using Onsager’s reciprocity relations
we prove that spin pumping and spin-transfer torques are two fundamentally equivalent dynamic
processes in magnetic structures with itinerant electrons. We review the theory of the coupled
motion of the magnetization order parameter and electron for textured bulk ferromagnets (e.g.
containing domain walls) and heterostructures (such as spin valves). We present first-principles
calculations for the material-dependent damping parameters of magnetic alloys. Theoretical and

experimental results agree in general well.
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I. INTRODUCTION
A. Technology Pull and Physics Push

The interaction between electric currents and the magnetic order parameter in conducting magnetic micro- and
nanostructures has developed into a major subfield in magnetism!. The main reason is the technological potential
of magnetic devices based on transition metals and their alloys that operate at ambient temperatures. Examples
are current-induced tunable microwave generators (spin-torque oscillators)?2, and non-volatile magnetic electronic
architectures that can be randomly read, written or programmed by current pulses in a scalable manner?. The
interaction between currents and magnetization can also cause undesirable effects such as enhanced magnetic noise
in read heads made from magnetic multilayers®. While most research has been carried out on metallic structures,
current-induced magnetization dynamics in semiconductors® or even insulators’ has been pursued as well.

Physicists have been attracted in large numbers to these issues because on top of the practical aspects the underlying
phenomena are so fascinating. Berger® and Slonczewski? are in general acknowledged to have started the whole field
by introducing the concept of current-induced magnetization dynamics by the transfer of spin. The importance of their
work was fully appreciated only after experimental confirmation of the predictions in multi-layered structuresi®il,
The reciprocal effect, i.e.. the generation of currents by magnetization dynamics now called spin pumping, has
been expected long agol?13 but it took some time before Tserkovnyak et all%15 developed a rigorous theory of
spin-pumping for magnetic multi-layers, including the associated increased magnetization damping6.

B. Discrete versus Homogeneous

Spin-transfer torque and spin pumping in magnetic metallic multi-layers are by now relatively well understood
and the topic has been covered by a number of review articlest®17:18 Tt can be understood very well in terms of
a time-dependent extension of magneto-electronic circuit theoryl”1? which corresponds to the assumption of spin
diffusion in the bulk and quantum mechanical boundary conditions at interfaces. Random matrix theory2? can be
shown to be equivalent to circuit theoryl?:21:22. The technologically important current-induced switching in magnetic
tunnel junctions has recently been the focus of attention??. Tunnel junctions limit the transport such that circuit
issues are less important, whereas the quantum-mechanical nature of the tunneling process becomes essential. We
will not review this issue in more detail here.

The interaction of currents and magnetization in continuous magnetization textures has also attracted much interest,
partly due to possible applications such as nonvolatile shift registers?. From a formal point of view the physics
of current-magnetization interaction in a continuum poses new challenges as compared to heterostructures with
atomically sharp interfaces. In magnetic textures such as magnetic domain walls, currents interact over length scales
corresponding to the wall widths that are usually much longer than even the transport mean-free path. Issues of the
in-plane vs. magnetic-field like torque2® and the spin-motive force in moving magnetization textures?® took some time
to get sorted out, but the understanding of the complications associated with continuous textures has matured by now.
There is now general consensus about the physics of current-induced magnetization excitations and magnetization
dynamics induced currents?”28, Nevertheless, the similarities and differences of spin torque and spin pumping in
discrete and continuous magnetic systems has to our knowledge never been discussed in a coherent fashion. It has
also only recently been realized that both phenomena are directly related, since they reflect identical microscopic
correlations according to the Onsager reciprocity relations?2 31,

C. This Chapter

In this Chapter, we (i) review the basic understandings of spin transfer torque vs. spin pumping and (ii) knit together
our understanding of both concepts for heterogeneous and homogeneous systems. We discuss the general phenomenol-
ogy guided by Onsager’s reciprocity in the linear response regime32. We will compare the in- and out-of-plane spin
transfer torques at interfaces as governed by the real and imaginary part of the so-called spin-mixing conductances
with that in textures, which are usually associated with the adiabatic torque and its dissipative correction?®, usually
described by a dimensionless factor £ in order to stress the relation with the Gilbert damping constant a. We argue
that the spin pumping phenomenon at interfaces between magnets and conductors is identical to the spin-motive force
due to magnetization texture dynamics such as moving domain walls2®. We emphasize that spin pumping is on a
microscopic level identical to the spin transfer torque, thus arriving at a significantly simplified conceptual picture of
the coupling between currents and magnetization. We also point out that we are not limited to a phenomenological



description relying on fitting parameters by demonstrating that the material dependence of crucial parameters such
as o and f can be computed from first principles.

II. PHENOMENOLOGY

In this Section we explain the basics physics of spin-pumping and spin-transfer torques, introduce the dependence
on material and externally applied parameters, and prove their equivalence in terms of Onsager’s reciprocity theorem.

A. Mechanics

On a microscopic level electrons behave as wave-like Fermions with quantized intrinsic angular momentum. However,
in order to understand the electron wave packets at the Fermi energy in high-density metals and the collective motion
of a large number of spins at not too low temperatures classical analogues can be useful.

Spin transfer torque and spin pumping are on a fundamental level mechanical phenomena that can be compared
with the game of billiards, which is all about the transfer of linear and angular momenta between the balls and
cushions. A skilled player can use the cue to transfer velocity and spin to the billiard ball in a controlled way. The
path of the spinning ball is governed by the interaction with the reservoirs of linear and angular momentum (the
cushions and the felt/baize) and with other balls during collisions. A ball that for instance hits the cushion at normal
angle with top or bottom spin will reverse its rotation and translation, thereby transferring twice its linear and angular
moment to the frame of the billiard.

Since the work by Barnett32 and Einstein-de Haas2? almost a century ago, we know that magnetism is caused by the
magnetic moment of the electron, which is intimately related with its mechanical angular momentum. How angular
momentum transfer occurs between electrons in magnetic structures can be imagined mechanically: just replace the
billiard balls by spin polarized electrons and the cushion by a ferromagnet. Good metallic interfaces correspond to a
cushion with high friction. The billiard ball reverses angular and linear momentum, whereas the electron is reflected
with a spin flip. While the cushion and the billiard table absorb the angular momentum, the magnetization absorbs
the spin angular momentum. The absorbed spins correspond to a torque that, if exceeding a critical value, will set
the magnetization into motion. Analogously, a time-dependent magnetization injects net angular momentum into
a normal metal contact. This “spin pumping” effect, i.e. the main topic of this chapter, can be also visualized
mechanically: a billiard ball without spin will pick up angular momentum under reflection if the cushion is rotating
along its axis.

B. Spin-transfer Torque and Spin-pumping

Ferromagnets do not easily change the modulus of the magnetization vector due to large exchange energy costs.
The low-energy excitations, so-called spin waves or magnons, only modulate the magnetization direction with respect
to the equilibrium magnetization configuration. In this regime the magnetization dynamics of ferromagnets can be
described by the Landau-Lifshitz-Gilbert (LLG) equation,

m = —ym X Heg + am X m, (1)

where m (r,t) is a unit vector along the magnetization direction, h = dm/dt, v = ¢g*pp/h > 0 is (minus) the
gyro-magnetic ratio in terms of the effective g-factor and the Bohr magneton up, and & is the Gilbert damping
tensor that determines the magnetization dissipation rate. Under isothermal conditions the effective magnetic field
H.g = —0F [m] /6(Msm) is governed by the magnetic free energy F and M is the saturation magnetization. We will
consider both spatially homogeneous and inhomogeneous situations. In the former case, the magnetization is constant
in space (macrospin), while the torques are applied at the interfaces. In the latter case, the effective magnetic field
H.g also includes a second order spatial gradient arising from the (exchange) rigidity of the magnetization and torques
as well as motive forces that are distributed in the ferromagnet.
Eq. () can be rewritten in the form of the Landau-Lifshitz (LL) equation:

(1 + d2) m=—ym x Heg — yam X (m x Heg) . (2)

Additional torques due to the coupling between currents and magnetization dynamics should be added to the right-
hand side of the LLG or LL equation, but some care should be exercised in order to keep track of dissipation in
a consistent manner. In our approach the spin-pumping and spin-transfer torque contributions are most naturally



added to the LLG equation (), but we will also make contact with the LL equation (2] while exploring the Onsager
reciprocity relations.

In the remaining part of this section we describe the extensions of the LLG equation due to spin-transfer and
spin-pumping torques for discrete and bulk systems in Sec. [IB1] and Sec. [IB2] respectively. In the next section we
demonstrate in more detail how spin-pumping and spin-transfer torque are related by Onsager reciprocity relations
for both discrete and continuous systems.

1. Discrete Systems

Berger and Slonczewski predicted that in spin-valve structures with current perpendicular to the interface planes
(CPP) a dc current can excite and even reverse the reverse the relative magnetization of magnetic layers separated by
a normal metal spacer®?. The existence of this phenomenon has been amply confirmed by experimentst®-11:18.35-39
We can understand current-induced magnetization dynamics from first principles in terms of the coupling of spin-
dependent transport with the magnetization. In a ferromagnetic metal majority and minority electron spins have often
very different electronic structures. Spins that are polarized non-collinear with respect to the magnetization direction
are not eigenstates of the ferromagnet, but can be described as a coherent linear combination of majority and minority
electron spins at the given energy shell. If injected at an interface, these states precess on time and length scales that
depend on the orbital part of the wave function. In high electron-density transition metal ferromagnets like Co, Ni,
and Fe a large number of wave vectors are available at the Fermi energy. A transverse spin current injected from a
diffuse reservoir generates a large number of wave functions oscillating with different wave length that lead to efficient
destructive interference or decoherence of the spin momentum. Beyond a transverse magnetic coherence length, which
in these materials is of the order of the Fermi wave length, typically around 1 nm, a transversely polarized spin current
cannot persist.1? This destruction of transverse angular momentum is per definition equal to a torque. Slonczewski’s
spin-transfer torque is therefore equivalent to the absorption of a spin current at an interface between a normal
metal and a ferromagnet whose magnetization is transverse to the spin current polarization. Each electron carries an
electric charge —e and an angular momentum of +//2. The loss of transverse spin angular momentum at the normal
metal-ferromagnet interface is therefore f [Is — (I, - m) m] /(2e), where the spin-current I is measured in the units of
an electrical current, e.g. in Ampere. In the macrospin approximation the torque has to be shared with all magnetic
moments or M,V of the ferromagnetic particle or film with volume V. The torque on magnetization equals the rate
of change of the total magnetic moment of the magnet 0 (mM,V), /0t, which equals the spin current absorption?
.The rate of change of the magnetization direction therefore reads:

Oom ~vh
Tstt = (E)Stt = _2eMst X (Il’l X IS) . (3)

We still need to evaluate the spin current that can be generated, e.g., by the inverse spin Hall effect in the normal
metal or optical methods. Here we concentrate on the layered normal metal-ferromagnet systems in which the current
generated by an applied bias is polarized by a second highly coercive magnetic layer as in the schematic Fig. [l
Magnetoelectronic circuit theory is especially suited to handle such a problem!? For simplicity we disregard here

Ferromagnet ']‘ Normal metal
Interface

FIG. 1: Hlustration of the spin-transfer torque in layered normal metal|ferromagnet system. A spin accumulation Vg\?) in the
normal metal induces a spin-transfer torque 7st; on the ferromagnet.



extrinsic dissipation of spin angular momentum due to spin-orbit coupling and disorder, which can taken into account

41,42 )

when the need arises We allow for a non-equilibrium magnetization or spin accumulation Vg\? in the normal

metal layer. Vg\?) is a vector pointing in the direction of the local net magnetization, whose modulus V]E,S) is the
difference between the differences in electric potentials (or electrochemical potentials divided by e) of both spin

species. Including the charge accumulation V]E,C) (local voltage), the potential experienced by a spin-up (spin-down)
electron along the direction of the spin accumulation in the normal metal is V]\T, = VJE,C) + VZS,S) (V]f, = VZS,C) — ]gs)).

Inside a ferromagnet, the spin accumulation must be aligned to the magnetization direction V;f) = mV}gs). Since

V}‘” does not directly affect the spin-transfer torque at the interface we disregard it for convenience here (see Ref.
17 for a complete treatment), but retain the charge accumulation VF(C). We can now compute the torque at the

interface between a normal metal and a ferromagnet arising from a given spin accumulation Vg\?). Ohm'’s Law for
the spin-current projections aligned (I;+) and anti-aligned (I}) to the magnetization direction then read!?4° (positive
currents correspond to charge flowing from the normal metal towards the ferromagnet)

=G (V7 = V) +me (VR = mv?)] (4)
1 =G [(V = V) = me (VR = mv?)] (5)

where G4 and G| are the spin-dependent interface conductances. The total charge current 1(¢) = I, + I}, is continuous
across the interface, IJ(\‘,:) = I;,f) = I©). The (longitudinal) spin current defined by Eqs. @) and (@) (I} — I,) m is
polarized along the magnetization direction. The transverse part of the spin current can be written as the sum of two

vector components in the space spanned by the m,Vg\f) plane as well as its normal. The total spin current on the
normal metal side close to the interface reads'?-19:

Igi,bias) =(L—I)m-— 2G1R)m X (m X VS)) - QGY) (m X VS\?)) ’ ©)

(s,bias)
N

where G(LR) and G(f) are two independent transverse interface conductances. 1 is driven by the external bias

VS{;) and should be distinguished from the pumped spin current addressed below. (R) and (I) refer to the real and

imaginary parts of microscopic expression for these “spin mixing” interface conductances G4 = GS_R) + iGS_I).

The transverse components are absorbed in the ferromagnet within a very thin layer. Detailed calculations show
that transverse spin-current absorption in the ferromagnet happens within a nanometer from the interface, where
disorder suppresses any residual oscillations that survived the above-mentioned destructive interference in ballistic
structures??. Spin-transfer in transition metal based multilayers is therefore an interface effect, except in ultrathin
ferromagnetic films?*. As discussed above, the divergence of the transverse spin current at the interface gives rise to
the torque

bias vh R s I s
Tgttas) :—m |:GS_ )I’I’IX (mXVgV)) +GS_) (I’I’IXVEV)):| . (7)
Adding this torque to the Landau-Lifshitz-Gilbert equation leads to the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)
equation

m=—ym x Heg + Tg'ﬁéa” + am X 1h. (8)

The first term in Eq. (@) is the (Slonczewski) torque in the (m, Vg\?)) plane, which resembles the Landau-Lifshitz

damping in Eq. (). When the spin-accumulation VE\?) is aligned with the effective magnetic field Heg, the Slonczewski

torque effectively enhances the damping of the ferromagnet and stabilizes the magnetization motion towards the
equilibrium direction. On the other hand, when Vg\?) is antiparallel to Heg, this torque opposes the damping.
When exceeding a critical value it leads to precession or reversal of the magnetization. The second term in Eq. (7))

proportional to GS_I) modifies the magnetic field torque and precession frequency. While the in-plane torque leads
to dissipation of the spin accumulation, the out-of-plane torque induces a precession of the spin accumulation in the
ferromagnetic exchange field along m. It is possible to implement the spin-transfer torque into the Landau-Lifshitz
equation, but the conductance parameters differ from those in Eq. ().

Since spin currents can move magnetizations, it is natural to consider the reciprocal effect, viz. the generation of
spin currents by magnetization motion. It was recognized in the 1970’s that spin dynamics is associated with spin



6

currents in normal metals. Barnes?® studied the dynamics of localized magnetic moments embedded in a conducting
medium. He showed that the dynamic susceptibility in diffuse media is limited by the spin-diffusion length. Janossy
and Monod{? and Silsbee et al13 postulated a coupling between a dynamic ferromagnetic magnetization and a spin
accumulation in adjacent normal metals in order to explain that microwave transmission through normal metal foils is
enhanced by a coating with a ferromagnetic layer. The scattering theory for spin currents induced by magnetization
dynamics was developed by Tserkovnyak et all? on the basis of the theory of adiabatic quantum pumping6, hence
the name “spin pumping”. Theoretical results were confirmed by the agreement of the spin-pumping induced increase
of the Gilbert damping with experiments by Mizukami et al18. At not too high excitations and temperatures, the

Ferromagnet ']‘ Normal metal
Interface

FIG. 2: Spin-pumping in normal metal|ferromagnet systems. A dynamical magnetization “pumps” a spin current I into an
adjacent normal metal.

ferromagnetic dynamics conserves the modulus of the magnetization Mym. Conservation of angular momentum then
implies that the spin current Ig\s,’pump) pumped out of the ferromagnet has to be polarized perpendicularly to m, viz.
m - Is\i’pump) = 0. Furthermore, the adiabatically pumped spin current is proportional to |th|. Under these conditions,
therefore 14:12

€ 1 (s, R . I,

I = G (mox i) + @i, 9)

where G'F and G are two transverse conductances that depend on the materials. Here the sign is defined to be

negative when Ig\s,’pump) implies loss of angular momentum for the ferromagnet. For || # 0, the right-hand side of

the LLGS equation (8) must be augmented by Eq. ([@). The leakage of angular momentum leads e.g. to an enhanced
Gilbert damping®.

Onsager’s reciprocity relations dictate that conductance parameters in thermodynamically reciprocal processes
must be identical when properly normalized. We prove below that spin-transfer torque (@) and spin pumping ()
indeed belong to this category and must be identical, wviz. GS_R) = G:(_R) and GS_I) = G/J(_I). Spin-transfer torque
and spin-pumping are therefore opposite sides of the same coin, at least in the linear response regime. Since spin-
mixing conductance parameters governing both processes are identical, an accurate measurement of one phenomenon
is sufficient to quantify the reciprocal process. Magnetization dynamics induced by the spin-transfer torque are not
limited to macrospin excitations and experiments are carried out at high current levels that imply heating and other
complications. On the other hand, spin-pumping can be directly detected by the line-width broadening of FMR
spectra of thin multilayers. In the absence of two-magnon scattering phenomena and a sufficiently strong static
magnetic field, FMR excites only the homogeneous macrospin mode, allowing the measurement of the transverse
conductances GIJ(_R) and, in principle, G/J(_I). G'J(_I). Experimental results and first-principles calculations!®12 agree
quantitatively well. Rather than attempting to measure these parameters by current-induced excitation measurements,
the values G/J(_R) and G:(_I) should be inserted, concentrating on other parameters when analyzing these more complex
magnetization phenomena. Finally we note that spin mixing conductance parameters can be derived as well from

static magnetoresistance measurements in spin valves* or by detecting the spin current directly by the inverse spin
Hall effect?®-77,



2. Continuous Systems

The coupling effects between (spin-polarized) electrical currents and magnetization dynamics also exist in magneti-
zation textures of bulk metallic ferromagnets. Consider a magnetization that adiabatically varies its direction in space.
The dominant contribution to the spin-transfer torque can be identified as a consequence of violation of angular mo-
mentum conservation: In a metallic ferromagnet, a charge current is spin polarized along the magnetization direction
to leading order in the texture gradients. In the bulk, i.e. separated from contacts by more than the spin-diffusion
length, the current polarization is P = (o4 —o0y)/(04 + 0} ), in terms of the ratio of the conductivities for majority and
minority electrons, where we continue to measure spin currents in units of electric currents. We first disregard spin-flip
processes that dissipate spin currents to the lattice. To zeroth order in the gradients, the spin current j*) flowing
is a specified (say z-) direction at position r is polarized along the local magnetization, j*) (r) = m(r);*)(r). The
gradual change of the magnetization direction corresponds to a divergence of the angular momentum of the itinerant
electron subsystem, 9, = j®)9,m 4+ md,j*), where the latter term is aligned with the magnetization direction
and does not contribute to the magnetization torque. This change of spin current does not leave the electron system
but flows into the magnetic order, thus inducing a torque on the magnetization. This process does not cause any
dissipation and the torque is reactive, as can be seen as well from its time reversal symmetry. To first order in the

texture gradient, or adiabatic limit, and for arbitrary current directions7:48
(bias) _ g usl .
T r)=———1((j-V)m 10
st (T) 2e M, (-V)m, (10)

where j is the charge current density vector and the superscript “bias” indicates that the torque is induced by a voltage
bias or electric field. From symmetry arguments another torque should exist that is normal to Eq. (), but still
perpendicular to the magnetization and proportional to the lowest order in its gradient. Such a torque is dissipative,
since it changes sign under time reversal. For isotropic systems, we can parameterize the out-of-plane torque by a
dimensionless parameter § such that the total torque reads242,

(bias)( ) _ g*,U/B
stt 26M5

we have used Ohm’s law, j = cE. In the adiabatic limit, i.e. to the first order in the gradient of the magnetization
0;m;, the spin-transfer torque Eq. (II)) describes how the magnetization dynamics is affected by currents in isotropic
ferromagnets.

Analogous to discrete systems, we may expect a process reciprocal to (1)) in ferromagnetic textures similar to the
spin pumping at interfaces. Since we are now operating in a ferromagnet, a pumped spin current is transformed into
a charge current. To leading order a time-dependent texture is expected to pump a current proportional to the rate
of change of the magnetization direction and the gradient of the magnetization texture. For isotropic systems, we can
express the expected charge current as

oP[(E-V)m+ fmx (E-V)m], (11)

ji(pump) = %aP’ [m x &;m+3'0;m] - m, (12)
where P’ is a polarization factor and 8’ an out-of-plane contribution. Note that we have here been assuming a strong
spin-flip rate so that the spin-diffusion length is much smaller than the typical length of the magnetization texture.
Volovik considered the opposite limit of weak spin-dissipation and kept track of currents in two independent spin
bands*”. In that regime he derived the first term in (I2)), proportional to P’ and proved that P = P’. This results
was re-derived by Barnes and Maekawa2®. The last term, proportional to the S-factor was first discussed by Duine in
Ref. (50) for a mean-field model, demonstrating that 5 = ’. More general textures and spin relaxation regimes were
treated by Tserkovnyak and Mecklenburg??. In the following we demonstrate by the Onsager reciprocity relations
that the coefficients appearing in the spin-transfer torques ([IJ) are identical to those in the pumped current ([I2), i.e.
P=P and f=70.

The proposed relations for the spin-transfer torques and pumped current in continuous systems form a local rela-
tionship between torques, current, and electric and magnetic fields. For ballistic systems, this is not satisfied since the
current at one spatial point depends on the electric field in the whole sample or global voltage bias and not just on the
local electric field. The local assumption also breaks down in other circumstances. The long-range magnetic dipole
interaction typically breaks a ferromagnet into uniform domains. The magnetization gradually changes in the region
between the domains, the domain wall. When the domain wall width is smaller than the phase coherence length or
the mean free path, one should replace the local approach by a global strategy for magnetization textures in which
the dynamics is characterized by one or more dynamic (soft) collective coordinates {£,(7)} that are allowed to vary
(slowly) in time

m(r7) = mg(r; {&a(7)}), (13)



where mg; is a static description of the texture. In order to keep the discussion simple and transparent we disregard
thermoelectric effects, which can be important in principle®!. The thermodynamic forces are —9F/0¢,, where F is
the free energy as well as the bias voltage across the sample V. In linear response the rate of change of the dynamic
collective coordinates and the charge current in the system are related to the thermodynamic forces —9F/9¢ and V

by a response matrix
€\ _ ( Lee Les —0F /0§
(§)=(z 2 (V™). (14)

where Egv describes the bias voltage-induced torque and Elg the current pumped by the moving magnetization
texture. These expressions are general and includes e.g. effects of spin-orbit interaction. Onsager’s reciprocity
relations imply Lre,{m,H} = L¢;{—m,—H} or Li;,{m,H} = L¢,;{—m,—H} depending on how the collective
coordinates transform under time-reversal. The coefficient ilg can be easily expressed in terms of the scattering
theory of adiabatic pumping as discussed below. This strategy was employed to demonstrate for (Ga,Mn)As that the
spin-orbit interaction can enable a torque arising from a pure charge current bias in Ref. 41 and to compute § in Ref.
30.

3. Self-consistency: Spin-battery and enhanced Gilbert Damping

We discussed two reciprocal effects: torque induced by charge currents (voltage or electric field) on the magnetization
and the current induced by a time-dependent magnetization. These two effects are not independent. For instance,
in layered systems, when the magnetization precesses, it can pump spins into adjacent normal metal. The spin-
pumping affects magnetization dynamics depending on whether the spins return into the ferromagnet or not. When
the adjacent normal metal is a good spin sink, this loss of angular momentum affects the magnetization dynamics
by an enhanced Gilbert damping. In the opposite limit of little or no spin relaxation in an adjacent conductor of
finite size, the pumped steady-state spin-current is canceled by a diffusion spin current arising from the build-up of
spin accumulation potential in the adjacent conductor. The build-up of the spin accumulation can be interpreted as
a spin battery®2. Similarly, in magnetization textures, the dynamic magnetization pumps currents that in turn exert
a torque on the ferromagnet.

In the spin-battery the total spin-current in the normal metal consists of the diffusion-driven Eq. (6] and the pumped
Eq. @) spin currents®. When there are no other intrinsic time-scales in the transport problem (e.g. instantaneous
diffusion) and in the steady state, conservation of angular momentum dictates that the total spin-current in the
normal metal must vanish,

Ig\?,bias) + Ig\s]’,pump) -0

3

which from Eqs. (@) and (@) results in a spin accumulation, which can be called a spin-battery bias or spin-motive
force:

eV = hm x . (15)

This is a manifestation of Larmor’ theorem!®. In diffusive systems, the diffusion of the pumped spins into the normal
metal takes a finite amount of time. When the typical diffusion time is longer than the typical precession time, the
AC component averages out to zero®2. In this regime, the spin-battery bias is constant and determined by

(DC) dt

[evﬂ - / L x hui, (16)
Tp Tp

where 7, is the precession period. Without spin-flip processes, the magnitude of the steady-state spin bias is governed

) = hwpymr and is independent of the interface properties.

Spin-flip scattering in the normal metal reduces the spin bias eVg\?) < hwrymr in a non-universal way2%22. The loss
of spin angular momentum implies a damping torque on the ferromagnet. Asymmetric spin-flip scattering rates in
adjacent left and right normal metals can also induced a charge potential difference resulting from the spin-battery,
which has been measured.2:24 The spin-battery effect has also been measured via the spin Hall effect in Ref.23.

In the opposite regime, when spins relax much faster than their typical injection rate into the adjacent normal
metal, ([B]), the net spin-current is well described by the spin-pumping mechanism. According to Eq. (@), in which
primes may be removed because of the Onsager reciprocity,

by FMR frequency of the magnetization precession eVg\?

um hQ
i) = 2 G m oo+ 6| (17)



We use the superscript “pump” to clarify that this torque arises from the emission of spins from the ferromagnet.
The first term in Eq. ([IT) is equal to the Gilbert damping term in the LLG equation (). This implies that the spin
pumping into an adjacent conductor maximally enhances the Gilbert damping by

um 7712 R
PP = M—VG(L ) (18)

This damping is proportional to the interface conductance GS_R) and thus the normal metal-ferromagnet surface area as
well as inversely proportional to the volume of the ferromagnet and therefore scales as 1/dp, where dp is the thickness
of the ferromagnetic layer. The transverse conductance per unit areas agrees well with theory®. The microscopic

expression for GS_R) > 0 and therefore aéftump) > 0. The second term on the right hand side of Eq. (IT7) in (),
modifies the gyro-magnetic ratio and wpyg. For conventional ferromagnets like Fe, Ni, and Co, GS_I) < GS_R) by near
cancellation of positive and negative contributions in momentum space. In these systems GS_I) is much smaller than

GS_R) and the effects of GS_I) might therefore be difficult to observe.
A similar argument leads us to expect an enhancement of the Gilbert damping in magnetic textures. By inserting the
pumped current Eq. ([[2)) into the torque Eq. (), we find a contribution caused by the magnetization dynamics56-58

2
78 () = 42;;\4 P2 [(jm x 8;m+B0;m] - ) + Bmx ([m x d;m+Bd;m] - ;)] d;m, (19)
S
which gives rise to additional dissipation of the order vh?P%g /42 M )\2,, where \,, is the typical length scale for the
variation of the magnetization texture such as the domain wall width or the radius of a vortex. Eq. (I9) inserted
into the LLG equation also renormalizes the gyromagnetic ratio by an additional factor 8. The additional dissipation
becomes important for large gradients as in narrow domain walls and close to magnetic vortex centers26:58,
Finally, we point out that the fluctuation-dissipation theorem dictates that equilibrium spin-current fluctuations
associated with spin-pumping by thermal fluctuations must lead to magnetization dissipation. This connection was
worked out in Ref. |59.

C. Onsager Reciprocity Relations

The Onsager reciprocity relations express fundamental symmetries in the linear response matrix relating thermo-
dynamic forces and currents. In normal metal|ferromagnetic heterostructures, a spin accumulation in the normal
metal in contact with a ferromagnet can exert a torque on the ferromagnet, see Eq. (). The reciprocal process is
spin pumping, a precessing ferromagnet induces a spin current in the adjacent normal metal as described by Eq. ([@).
Both these effects are non-local since the spin-transfer torque on the ferromagnet arises from the spin accumulation
potential in the normal metal and the pumped spin current in the normal metal is a result of the collective magneti-
zation dynamics. In bulk ferromagnets, a current (or electric field) induces a spin-transfer torque on a magnetization
texture. The reciprocal pumping effect is now an electric current (or emf) generated by the texture dynamics. In the
next two subsections we provide technical details of the derivation of the Onsager reciprocity relations under these
circumstance

1. Discrete Systems

As an example of a discrete system, we consider a normal metal-ferromagnet bilayer without any spin-orbit inter-
action (see Ref. |41 for a more general treatment that takes spin-flip processes into account) and under isothermal
conditions (the effects of temperature gradients are discussed in Refs. 31)60,61). The spin-transfer physics is induced
by a pure spin accumulation in the normal metal, whose creation does not concern us here. The central ingredients
for the Onsager’s reciprocity relations are the thermodynamic variables with associated forces and currents that are
related by a linear response I_natriX32. In order to uniquely define the linear response, currents J and forces X have
to be normalized such that F' = Y X J.. This is conventionally done by the rate of change of the free energy in the
non-equilibrium situation in terms of currents and forces32.

Let us consider first the electronic degrees of freedom. In the normal metal reservoir of a constant spin accumulation

VS{;) the rate of change of the free energy Fiy in terms of the total spin sy (in units of electric charge e) reads

Fy=—sy- -V, (20)
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This identifies Vg\?) as a thermodynamic force that induces spin currents Iy = $py, which is defined to be positive
when leaving the normal metal. In the ferromagnet, all spins are aligned along the magnetization direction m.

The associated spin accumulation potential V}gs) can only induce a contribution to the longitudinal part of the spin
current, e.g. a contribution to the spin-current along the magnetization direction m. In our discussion of the Onsager
reciprocity relations, we will set this potential to zero for simplicity and disregard associated change in the free energy,

but it is straightforward to include the effects of a finite V}gs).”
Next, we address the rate of change of the free energy related to the magnetic degrees of freedom in the ferromagnet,

F(m) = —M,VHg - /T,

where F'(m) is the magnetic free energy. The total magnetic moment M,Vm is a thermodynamic quantity and the

effective magnetic field Heg = —0F/9(MsVm) is the thermodynamic force that drives the magnetization dynamics
m.
In linear response, the spin current Iy = § and magnetization dynamics M;Vm are related to the thermodynamic
forces as
Mym '\ L(mm) [ (ms) Hen (21)
Ig\?) - L(sm) E(ss) VS\?) )

where E(mm), i(ms), i(sm), and L(**) are 3 x 3 tensors in, e.g., a Cartesian basis for the spin and magnetic moment
vectors. Omnsager discovered that microscopic time-reversal symmetry leads to relations between the off-diagonal
components of these linear-response coefficients. Both magnetization in the ferromagnet and the spin-accumulation
in the normal metal are anti-symmetric under time-reversal leading to the reciprocity relations

(sm) _ 7 (ms)
Lij (m)—sz' (—m). (22)

Some care should be taken when identifying the Onsager symmetries in spin accumulation-induced magnetization
dynamics. Specifically, the LLGS equation () cannot simply be combined with the linear response relation (2II) and
Eq. [22). Only the Landau-Lifshitz-Slonczewski (LL) Eq. (@) directly relates m to Heg as required by Eq. 2I)). In

terms of the 3 x 3 matrix O e.g.
O~ij (m) = Z €ikj Mk, (23)
k

where €, = 3 (j —4) (k — i) (k — j) is the Levi-Civita tensor, m x Heg = OHegr, and the LLGS (8) equation can be
written as

(1 - aé) ti = O (—yHeg) + Tste. (24)

By Eq. (21)), the pumped current in the absence of a spin accumulation (VE\?) =0) is Ig\?) = L™ H,g. Then, by Eq.
@, IS\?) = X ™, where the 3 x 3 tensor X (5™) has components

¥} e

GER) Z €injMn + Gl([) Z einkmnekljmk] . (25)
n nkl

From the LLG equation (24]) for a vanishing spin accumulation (VS{;) = 0) and thus no bias-induced spin-transfer

. N . -1
torque (réf{as) = 0), the pumped spin current can be expressed as Ig\?) = X6mO [1 — aO} (—vHcg), which

identifies the linear response coefficient L(*™) in terms of X ™) ag

- - -1

Lem = 4 x6mO {1 - aO} . (26)
Using the Onsager relation (22) and noticing that O;;(m) = O;;(—m) and )N(l.(jsm)(m) = Xﬁm)(—m)

L) = 1~ a0 L oxem), (27)
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The rate of change of the magnetization by the spin accumulation therefore becomes

. 1 F(ms S
Mgty = SVL( )ng)a
~71—1 o
- 7M7V {1 *O‘O} OX VLY. (28)

Furthermore, the LLGS equation (24) in the absence of an external magnetic field reads [1 - aé} Mgy = rﬁf{ ife),
Inserting the phenomenological expression for the spin-transfer torque (7)), we identify the linear response coefficient
I(ms)

drift Y ~ sm s
Tl = 7—MSVOX( .
_ MVVe [G’f”m x (m x V§5>) +G D (m x V§§>)} . (29)

This agrees with the phenomenological expression (7] when
R R (1 I
¢ =a ¢ =gl (30)
Spin-pumping as expressed by Eq. (@) is thus reciprocal to the spin-transfer torque as described by Eq. ([@). In
Sec[[ITAT] these relations are derived by first principles from quantum mechanical scattering theory, resulting in.

G:(_R) =G, = (2/h)Y,.. [6,”” -l (T')T],m)*i| for a narrow constriction, where v (r ) is the reflection coefficient

for spin-up (spin-down) electrons from waveguide m to waveguide mode n . For layered systems with a constant cross
section the microscopic expressions of the transverse (mixing) conductances should be renormalized by taking into
account the contributions from the Sharvin resistances?!:™, which increases the conductance by roughly a factor of
two and is important for a quantitatively comparison between theory and experiments.13:17

2. Continuous Systems

The Onsager reciprocity relations also relate the magnetization torques and currents in the magnetization texture
of bulk magnets. Following Refs. (29,30), the rate of change of the free energy related to the electronic freedom in the
ferromagnet is Fp = — J drqV, where ¢ is the charge density and eV = p is the chemical potential. Inserting charge
conservation, ¢ + V - j = 0 and by partial integration

FF:—/drj-E (31)

which identifies charge as a thermodynamic variable, while the electric field E = VV is a thermodynamic force which
drives the current density j. For the magnetic degrees of freedom, the rate of change of the free energy (or entropy) is

F = fMS/drrh(r) -H_g(r). (32)

Just like for discrete systems, Heg(r), is the thermodynamic force and Mgm is the thermodynamic variable to which
it couples. In a local approximation the (linear) response depends only on the force at the same location:

Msﬁ'l _ L(mm) L(mE) MsHeﬁ 33

j —\ j(BEm) [(EE) E ) (33)

where L(mm) [(mi) [Gm) and L5 are the local response functions. Onsager’s reciprocity relations dictate again

that

7 (4m) _ 7(mg)

sz‘ (m) = Lij (-m). (34)

Starting from the expression for current pumping ([I2)), we can determine the linear response coefficient LE™) from

- ~1 ~ h
[L(Em) [1 — 040} Oil} = 7’}/2—60']3/ [ejklmkaimﬁﬂ’&-mj] 5 (35)

)
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where the operator O is introduced in the same way as for discrete systems (23)) to transform the LLG equation into
the LL form (24]). According to Eq. (34)

~ o h
[O_l [1 — aO} L(mj)} = —72—0P' [€ikimi0my—B'0;m;] (36)
ij e
The change in the magnetization induced by an electric field is then Msrhgaias) = LU™)E so that the spin-transfer

torque due to a drift current ré'fjas) = [1 — aON} rhg'fjas) can be written as

(bias) _ ’Yh

Tt 50l P €impnmum [€nimi E;0jmy— B E;0;my,] (37)
r(Pias) _ W%O—P' (E-V)m+fmxE-Vm] . (38)

This result agrees with the phenomenological expression for the pumped current (I2) when P = P’ and 8 = /.
Therefore, the pumped current and the spin-transfer torque in continuous systems are reciprocal processes. The
pumped current can be formulated as the response to a spin-motive force2S.

In small systems and thin wires, the current-voltage relation is not well represented by a local approximation.
A global approach based on collective coordinates as outlined around Eq. ([3)) is then a good choice to keep the
computational effort in check. Of course, the Onsager reciprocity relations between the pumped current and the
effective current-induced torques on the magnetization hold then as well3C.

III. MICROSCOPIC DERIVATIONS
A. Spin-transfer Torque
1. Discrete Systems - Magneto-electronic Circuit Theory

Physical properties across a scattering region can be expressed in terms of the region’s scattering matrix, which
requires a separation of the system into reservoirs, leads, and a scattering region, see Fig. [@B]). In the lead with index

FIG. 3: Schematic of how transport between a normal metal and a ferromagnet is computed by scattering theory. The
scattering region, which may contain the normal metal-ferromagnet interface and diffusive parts of the normal metal as well
as ferromagnet, is attached to real or fictious leads that are in contact with a left and right reservoir. In the reservoirs, the
distributions of charges and spins are assumed to be known via the charge potential and spin accumulation bias.

a, the field operator for spin s-electrons is®?

de
V2T

a _1/2 - _(nks . ; »
‘11515) _ {,U((Ins):| Zw((lns)(g)eflgg k)¢ /h [ezkzd((lns)(e) + efzkmb((lns)(e) (39)

in terms of the annihilation operators alrs) (b,(l"s)) for particles incident on (outgoing from) the scattering region

in transverse wave guide modes with orbital quantum number n and spin quantum number s (s =1 or s =]).

Furthermore, the transverse wave function is <p((1m) (0), the transverse coordinate g, the longitudinal coordinate along

the waveguide is z and v&m) is the longitudinal velocity for waveguide mode ns. The positive definite momentum k is
related to the energy € by ik = (2me)/2. The annihilation operators for incident and outgoing electrons are related

by the scattering matrix

b9 (e) = Y SUE™ ) (e)a§" (o). (40)

Bms’
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In the basis of the leads (& = N (normal metal) or « = F' (ferromagnet)), the scattering matrix is

t
=(+4)

where r (t) is a matrix of the reflection (transmission) coeflicients between the wave guide modes for an electron
incident from the left. Similarly, v’ and ¢’ characterize processes where the electron is incident from the right.

In terms of the field operators defined by Eq. ([B9) and the scattering matrix Eq. (@Q]), at low frequencies, the spin
current that flows in the normal metal & = N in the direction towards the scattering region is

I(é) / der / deQZ Z Z exp(i (e1 — e2) t/h)A arzfma:l > )(61’ 62)d(ﬂmaﬁ(€1)dga/) (€2), (41)
By nml oo’

where

af,ay

A("’m nl)(o,0 )( 62) Z |:6 Bé‘(nm)é‘(sa)é‘ 5(nl)6(s ') _ S(%S m”)*(el)sg’zys/,la')(€2) o_(ss')

ss’

and o*) is a vector of the 2 x 2 Pauli matrices that depends on the spin indices s and s’ of the waveguide mode.
The charge current can be found in a similar way. We are interested in the expectation value of the spin-current (ZI))
when the system is driven out-of-equilibrium. In equilibrium, the expectation values are

(alr(@af™ () = dle = )0apd™8™ i (e), (42)

eq

where frp(€) is the Fermi-Dirac distribution of electrons with energy €. A non-equilibrium spin-accumulation in the
normal metal reservoir is not captured by the local equilibrium ansatz in Eq. (42]), however. A spin accumulation in
the normal metal reservoir can still be postulated when spin-flip dissipation is slow compared to all other relevant
time scales. We assume the normal metal and ferromagnet have an isotropic distribution of spins in the orbital space.
The expectation for the number of charges and spins in the waveguide describing normal metal leads attached to the
normal reservoirs are

(a7 (@afy () = ole =€) [5750 fin(e) + 60 7 e)| (13)

The spin-accumulation ng) is related to the 2 x 2 out-of-equilibrium distribution matrix f ; S)(e) by

o) -Vg\?) :/ def(SS (e)/e. (44)

For the spin-transfer physics, a bias voltage in the ferromagnet does not contribute since it only gives rise to a charge
current and a longitudinal spin current. As in the previous section, we therefore set this voltage to zero for simplicity,
so that in the ferromagnetic lead attached to the ferromagnetic reservoir

(af(@ag () = a(e =)o I8 fun (o). (45)
Furthermore, the expectation values of the cross-correlations remain zero also out-of-equilibrium,

<dg\7fls)T(e)d%ms/)(e’)> = 0. The spin current in lead « is then

I(s)( c / dez Z |:5(nm)5(sa) 5(nl)6(s/al) ("S mo)x 5\7;]5\] Lo ):| O'(UU/)f(U/U). (46)

nmlss’oco’

Without spin-flip scattering, the reflection coefficient can be expressed as
rvNe = (TNNT +ryN ¢) 56D /24 m- oy, (rz%’T T’X[%i) /2 (47)
which can be represented in spin space as

premo — gl g o (48)
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since the scattering matrix can be decomposed into components aligned and anti-aligned with the magnetization
direction. These matrices only depend on the orbital quantum numbers (n and m). Using the representation of the
out-of-equilibrium spin density in terms of the spin accumulation (@)12,

h

e2

IE\S[) = (G4 +G))m (m . VE\?)) —QGS_R)m X (m X VE\?)) - QGS_I) (m X Vg\?)) (49)

in agreement with (@) when there is no bias voltage in the ferromagnet (Vy = 0). We identify the microscopic
expressions for the conductances!? associated with spins aligned and anti-aligned with the magnetization direction

Gr=7% > {%m - mﬂ ] : (50)
Gr = N Z {6"7” - TN]\I’T} ] ; (51)
and the transverse (complex valued) spin-mixing conductance
62 nm,T nm,|*
GL:%Z[&W—TNN’ TN } (52)

These results are valid when the transmission coefficients are small such that currents do not affect the reservoirs.
Otherwise, the transverse conductance parameters should be renormalized by taking into account the Sharvin resis-
tances, as described above?l:™, In the limit we considered here, the expression for the spin-current depends only on
the reflection coeflicients for transport from the normal metal towards the ferromagnet and not on the transmission
coeflicients for propagation from the normal metal into the ferromagnet. This follows from our assumption that the
ferromagnet is longer than the transverse coherence length as well as our disregard of the spin accumulation in the
ferromagnet. Both assumptions can be easily relaxed if necessaryt217,

2. Continuous Systems

Spin torques in continuous spin textures can be studied by either quantum kinetic theory,%3 imaginary-time%4

and functional Keldysh®® diagrammatic approaches, or the scattering-matrix formalism.3? The latter is particularly
powerful when dealing with nontrivial band structures with strong spin-orbit interactions, while the others give com-
plementary insight, but are mostly limited to simple model studies. When the magnetic texture is sufficiently smooth
on the relevant length scales (the transverse spin coherence length and, in special cases, the spin-orbit precession
length) the spin torque can be expanded in terms of the local magnetization and current density as well as their
spatial-temporal derivatives. An example is the phenomenological Eq. () for the electric-field driven magnetization
dynamics of an isotropic ferromagnet. While the physical meaning of the coefficients is clear, the microscopic origin
and magnitude of the dimensionless parameter § has still to be clarified.

The solution of the LLG equation (II) appended by these spin torques depends sensitively on the relationship
between the dimensionless Gilbert damping constant « and the dissipative spin-torque parameter 3: the special case
B/a = 1 effectively manifests Galilean invariance®® while the limits 3/a > 1 and 8/a < 1 are regimes of qualitatively
distinct macroscopic behavior. The ratio 3/a determines the onset of the ferromagnetic current-driven instability®?
as well as the Walker threshold®? for the current-driven domain-wall motion*?, and both diverge as 3/a — 1. The
sub-threshold current-driven domain-wall velocity is proportional to 3/a,2% while 3/a = 1 in a special point, at which
the effect of a uniform current density j on the magnetization dynamics is eliminated in the frame of reference that
moves with velocity v o j, which is of the order of the electron drift velocity.%® Although the exact ratio 8/« is a
system-dependent quantity, some qualitative aspects not too sensitive to the microscopic origin of these parameters
have been discussed in relation to metallic systems.53:64:66.69 However, these approaches fail for strongly spin-orbit
coupled systems such as dilute magnetic semiconductors3?.

Let us outline the microscopic origin of § for a simple toy model for a ferromagnet. In Ref. |63, we developed a
self-consistent mean-field approach, in which itinerant electrons are described by a single-particle Hamiltonian

H:[Ho—i—U(r,t)]i-i-%h&-(H—i—HXC)(r,t)—i—?:[a, (53)

where the unit matrix 1 and a vector of Pauli matrices & = (6,8,,5,) form a basis for the Hamiltonian in spin
space. Hg is the crystal Hamiltonian including kinetic and potential energy. U is the scalar potential consisting of
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disorder and applied electric-field contributions. The total magnetic field consists of the applied, H, and exchange,
H,., fields that, like U, are parametrically time dependent. Finally, the last term in the Hamiltonian, H,,, accounts
for spin-dephasing processes, e.g, due to quenched magnetic disorder or spin-orbit scattering associated with impurity
potentials. This last term is responsible for low-frequency dissipative processes affecting dimensionless parameters «
and S in the collective equation of motion.

In the time-dependent spin-density-functional theory:
functional of the time-dependent spin-density matrix

pap(r,t) = (Tf(r)Ta(r))e, (54)

70-72 of itinerant ferromagnetism, the exchange field H,, is a

where ¥’s are electronic field operators, which should be computed self-consistently as solutions of the Schrodinger
equation for 7. The spin density of conducting electrons is given by

Roia s
() = 5 Tr[6(r)] (55)
We focus on low-energy magnetic fluctuations that are long ranged and transverse and restrict our attention to a
single parabolic band. Consideration of more realistic band structures is also in principle possible from this starting
point”®. We adopt the adiabatic local-density approximation (ALDA, essentially the Stoner model) for the exchange
field:

YhH . [p](r, 1) & Agem(r, 1), (56)

with direction m = —s/s locked to the time-dependent spin density (B3]).

In another simple model of ferromagnetism, the so-called s-d model, conducting s electrons interact with the
exchange field of the d electrons that are assumed to be localized to the crystal lattice sites. The d-orbital electron
spins account for most of the magnetic moment. Because d-electron shells have large net spins and strong ferromagnetic
correlations, they are usually treated classically. In a mean-field s-d description, therefore, conducting s orbitals are
described by the same Hamiltonian (53)) with an exchange field (B6). The differences between the Stoner and s-d
models for the magnetization dynamics are subtle and rather minor. In the ALDA/Stoner model, the exchange
potential is (on the scale of the magnetization dynamics) instantaneously aligned with the total magnetization. In
contrast, the direction of the unit vector m in the s-d model corresponds to the d magnetization, which is allowed
to be slightly misaligned with the s magnetization, transferring angular momentum between the s and d magnetic
moments. Since most of the magnetization is carried by the latter, the external field H couples mainly to the d
spins, while the s spins respond to and follow the time-dependent exchange field (B6). As Ay, is usually much larger
than the external (including demagnetization and anisotropy) fields that drive collective magnetization dynamics, the
total magnetic moment will always be very close to m. A more important difference of the philosophy behind the
two models is the presumed shielding of the d orbitals from external disorder. The reduced coupling with dissipative
degrees of freedom would imply that their dynamics are more coherent. Consequently, the magnetization damping has
to originate from the disorder experienced by the itinerant s electrons. As in the case of the itinerant ferromagnets,
the susceptibility has to be calculated self-consistently with the magnetization dynamics parametrized by m. For
more details on this model, we refer to Refs. [74 and [63. With the above differences in mind, the following discussion
is applicable to both models. The Stoner model is more appropriate for transition-metal ferromagnets because of
the strong hybridization between d and s, p electrons. For dilute magnetic semiconductors with by deep magnetic
impurity states the s-d model appears to be a better choice.

The single-particle itinerant electron response to electric and magnetic fields in Hamiltonian (B3) is all that is
needed to compute the magnetization dynamics microscopically. Stoner and s-d models have to be distinguished only
at the final stages of the calculation, when we self-consistently relate m(r,¢) to the electron spin response. The final
result for the simplest parabolic-band Stoner model with isotropic spin-flip disorder comes down to the torque (L))
with o =~ 8. The latter is proportional to the spin-dephasing rate 7, % of the itinerant electrons:

h

B~ .
To Dxe

(57)

The derivation assumes w,7, ! < Ay./h, which is typically the case in real materials sufficiently below the Curie
temperature. The s-d model yields the same result for 3, Eq. (7)), but the Gilbert damping constant

a=np (58)

is reduced by the ratio n of the itinerant to the total angular momentum when the d-electron spin dynamics is not
damped. [Note that Eq. (E8) is also valid for the Stoner model since then 1 = 1.]
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These simple model considerations shed light on the microscopic origins of dissipation in metallic ferromagnet as
reflected in the o and 8 parameters. In Sec. [[V] we present a more systematic, first-principle approach based on the
scattering-matrix approach, which accesses the material dependence of both a and 8 with realistic electronic band
structures.

B. Spin Pumping
1. Discrete Systems

When the scattering matrix is time-dependent, the energy of outgoing and incoming states does not have to be
conserved and the scattering relation (@Q) needs to be appropriately generalized™. We will demonstrate here how
this is done in the limit of slow magnetization dynamics, i.e., adiabatic pumping. When the time dependence of the

scattering matrix S”g;m) [X:(t)] is parameterized by a set of real-valued parameters X;(¢), the pumped spin current in
excess of its static bias-driven value (@) is given byi4

h 8na dXz (t)

L) == 59
0=3 5% g (59)
where the “spin emissivity” vector by the scatterer into lead o is™
811& 1 8»9((;;51”0)* X (ss/) (ms/,no)
D) » ok RS @

B mn ss'oc
Here, ) is again the vector of Pauli matrices. In the case of a magnetic monodomain insertion and in the absence
of spin-orbit interactions, the spin-dependent scattering matrix between the normal-metal leads can be written in
terms of the respective spin-up and spin-down scattering matrices:2

. ./ ]_ / ! ]_ mn ’ N ss/
Sggs,n& )[m] _ isggnﬁ\ (5(55 ) +m- a,(ss )) + §S((1B ) (5(55 ) m - 0,( )) ) (61)

Here, m(t) is the unit vector along the magnetization direction and 1 () are spin orientations defined along (opposite)
to m.

Spin pumping due to magnetization dynamics m(t) is then found by substituting Eq. (€1 into Egs. (€0) and (59).
After straightforward algebra:14

. 1/m\> dm dm
Ia(t) = 5 (g) (G&R)m X E + G(LI)E> . (62)

As before, we assume here a sufficiently thick ferromagnet, on the scale of the transverse spin-coherence length. Note

that the spin pumping is expressed in terms of the same complex-valued mixing conductance G| = GS_R) + iGS_I) as
the dc current ([@9), in agreement with the Onsager reciprocity principle as found on phenomenological grounds in
Sec. [TCl

Charge pumping is governed by expressions similar to Egs. (59) and (60), subject to the following substitutions:
h/2 — e (electron’s charge) and & — 0 (Kronecker delta). A finite charge pumping by a monodomain magnetization
dynamics into normal-metal leads, however, requires a ferromagnetic analyzer or finite spin-orbit interactions and
appropriately reduced symmetries, as discussed in Refs. |41//80-82.

An immediate consequence of the pumped spin current ([62)) is an enhanced Gilbert damping of the magnetization
dynamics.24 Indeed, when the reservoirs are good spin sinks and spin backflow can be disregarded, the spin torque
associated with the spin current (62]) into the a-th lead, as dictated by the conservation of the spin angular momentum,

Eq. @), contributes (c¢f. Eq. [IJ)):

*h,u‘B G(R)
o =95 w0,y (63)

to the Gilbert damping of the ferromagnet in Eq. (). Here, g* ~ 2 is the g factor of the ferromagnet, M,V its total
magnetic moment, and pp is Bohr magneton. For simplicity, we neglected GS_I), which is usually not important for
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inter-metallic interfaces. If we disregard energy relaxation processes inside the ferromagnet, which would drain the
associated energy dissipation out of the electronic system, the enhanced energy dissipation associated with the Gilbert
damping is associated with heat flows into the reservoirs. Phenomenologically, the dissipation power follows from the
magnetic free energy F' and the LLG Eq. (1) as

O[MSV -2
m

P=—0nmFn 1= MVHeg -1 = (64)
Y
or, more generally, for anisotropic damping (with, for simplicity, an isotropic gyromagnetic ratio), by
M
p=MV 4. (65)
Y

Heat flows can be also calculated microscopically by the scattering-matrix transport formalism. At low tempera-
tures, the heat pumping rate into the a-th lead is given by83’85

- g ;’H (é;ﬁéaﬁ) : (66)

where the carets denote scattering matrices with suppressed transverse-channel indices. When the time dependence

(ms ns’

La 47r
B mn ss’

is entirely due to the magnetization dynamics, S, (ms nsl) = 8mSggs’"s/) -m. Utilizing again Eq. (1)), we find for the
heat current into the a-th lead:8¢
I =1a-G, -1, (67)

in terms of the dissipation tensor2®

2 BISYS
i _h af OPaB
G = MReEBjTr(a o, (68)

In the limit of vanishing spin-flip in the ferromagnet, meaning that all dissipation takes place in the reservoirs, we
find

2 aS8! , 68 1 /h\>
i _ VR T a8 05\ _ o1 (P\" (r)s
Gi = Reg "\ Bms D, 5 (5) 617 (69)
Equating this I” with P above, we obtain a microscopic expression for the Gilbert damping tensor @:
- L hus G(R)
“ 22 M,V "’ (70)

which agrees with Eq. (G3). Indeed, in the absence of spin-orbit coupling the damping is necessarily isotropic. While
Eq. (63) reproduces the additional Gilbert damping due to the interfacial spin pumping, Eq. [€9) is more general,
and can be used to compute bulk magnetization damping, as long as it is of a purely electronic origin26:87.

2. Continuous Systems

As has already been noted, spin pumping in continuous systems is the Onsager counterpart of the spin-transfer
torque discussed in Sec. [ITA 222 While a direct diagrammatic calculation for this pumping is possible2?, with re-
sults equivalent to those of the quantum-kinetic description of the spin-transfer torque outlined above, we believe
that the scattering-matrix formalism is the most powerful microscopic approach3?. The latter is particularly suit-
able for implementing parameter-free computational schemes that allow a realistic description of material-dependent
properties.

An important example is pumping by a moving domain wall in a quasi-one-dimensional ferromagnetic wire. When
the domain wall is driven by a weak magnetic field, its shape remains to a good approximation unaffected, and only
its position r,,(t) along the wire is needed to parameterize its slow dynamics. The electric current pumped by the
sliding domain wall into the a-th lead can then be viewed as pumping by the r,, parameter, which leads to™

767’1” aB 4
Im ZTr(ar St ) (71)
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The total heat flow into both leads induced by this dynamics is according to Eq. (GH)

2 as! ;a8
E_ Mw ap YPaf
"= 47 = Tr < Ory Ory ) ' (72)

Evaluating the scattering-matrix expressions on the right-hand side of the above equations leads to microscopic
magnetotransport response coefficients that describe the interaction of the domain wall with electric currents, including
spin transfer and pumping effects.

These results leads to microscopic expressions for the phenomenological response3? of the domain-wall velocity 7,
and charge current I¢ to a voltage V and magnetic field applied along the wire H:

,flw _ wa L’UJC 2AMSH
()= (e 22) (97) ™

subject to appropriate conventions for the signs of voltage and magnetic field and assuming a head-to-head or tail-
to-tail wall such that the magnetization outside of the wall region is collinear with the wire axis. 2AM H is the
thermodynamic force normalized to the entropy production by the magnetic system, where A is the cross-sectional
area of the wire. We may therefore expect the Onsager’s symmetry relation L., = Ly.. When a magnetic field
moves the domain wall in the absence of a voltage I° = (L¢y / Lyw)7w, which, according to Eq. (T1I) leads to the ratio
Lew/Luyw in terms of the scattering matrices. The total energy dissipation for the same process is T E— 7'“12U / L,
which, according to Eq. (72)), establishes a scattering-matrix expression for L., alone. By supplementing these
equations with the standard Landauer-Biittiker formula for the conductance

G= e—;ﬂ (S*IQS*H) , (74)

valid in the absence of domain-wall dynamics, we find L. in the same spirit since G = Lo, — L2,/ Lyy. Summarizing,
the phenomenological response coefficients in Eq. (73] read3:
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When the wall is sufficiently smooth, we can model spin torques and pumping by the continuum theory based on
the gradient expansion in the magnetic texture, Eqs. (IIl) and (I2)). Solving for the magnetic-field and current-driven
dynamics of such domain walls is then possible using the Walker ansatz8788. Introducing the domain-wall width A:

YA ey Lye

= AL M P= G T

(78)

When the wall is sharp the adiabatic approximation underlying the leading-order gradient expansion breaks down.
These relations can still be used as definitions of the effective domain-wall o and . As such, these could be distinct
from the bulk values that are associated with smooth textures. This is relevant for dilute magnetic semiconductors,
for which the adiabatic approximation easily breaks down3Y. In transition-metal ferromagnets, on the other hand,
the adiabatic approximation is generally perceived to be a good starting point, and we may expect the dissipative
parameters in Eq. (78) to be comparable to their bulk values discussed in Sec.

IV. FIRST-PRINCIPLES CALCULATIONS

We have shown that the essence of spin pumping and spin transfer can be captured by a small number of phe-
nomenological parameters. In this section we address the material dependence of these phenomena in terms of the
(reflection) mixing conductance G , the dimensionless Gilbert damping parameter «, and the non-adiabatic torque
parameter .
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For discrete systems the (reflection) mixing conductance G| was studied theoretically by Xia et al.®?, Zwierzycki et
al®3 and Carva et al?9. G describes the spin current flowing in response to an externally applied spin accumulation
o that is a vector with length equal to half of the spin-splitting of the chemical potentials |p| = (us4 — py)/2. It also
describes the spin torque exerted on the moment of the magnetic layer212:43:89-92 * Consider a spin accumulation in a
normal metal N, which is in contact with a ferromagnet on the right magnetized along the z axis. The spin current
incident on the interface is proportional to the number of incident channels in the left lead, IN = %Gﬁhu, while the
reflected spin current is given by

L (e -c e 0
out = 5~ e e el 0 e (79)
0 0 G- S

where G, are the conventional Landauer-Biittiker conductances. The real and imaginary parts of GY' — G, =
> Tharix  are related to the components of the reflected transverse spin current and can be calculated by consid-
ering a single N|F interface®?. When the ferromagnet is a layer with finite thickness d sandwiched between normal
metals, the reflection mixing conductance depends on d and it is necessary to consider also the transmission mixing
conductance Y., #/7 t74* . In Ref. 43, both reflection and transmission mixing conductances were calculated for
Cu|Co|Cu and Au|Fe|Au sandwiches as a function of magnetic layer thickness d. The real and imaginary parts of
the transmission mixing conductance and the imaginary part of the reflection mixing conductance were shown to
decay rapidly with increasing d implying that the absorption of the transverse component of the spin current occurs
within a few monolayers of the N|F interface for ideal lattice matched interfaces. When a minimal amount of interface
disorder was introduced the absorption increased. The limit G — G%h corresponds to the situation where all of the
incoming transverse polarized spin current is absorbed in the magnetic layer. The torque is then proportional to the
Sharvin conductance of the normal metal. This turns out to be the situation for all but the thinnest (few monolayers)
and cleanest Co and Fe magnetic layers considered by Zwierzycki et al® However, when there is nesting between
Fermi surface sheets for majority and minority spins so that both spins have the same velocities over a large region of
reciprocal space, then the transverse component of the spin current does not damp so rapidly and G can continue
to oscillate for large values of d. This has been found to occur for ferromagnetic Ni in the (001) direction.2

Eq. [T implies that the spin pumping renormalizes both the Gilbert damping parameter o and the gyromagnetic
ratio v of a ferromagnetic film embedded in a conducting non-magnetic medium. However, in view of the results
discussed in the previous paragraph, we conclude that the main effect of the spin pumping is to enhance the Gilbert
damping. The correction is directly proportional to the real part of the reflection mixing conductance and is essentially
an interface property. Oscillatory effects are averaged out for realistic band structures, especially in the presence of

disorder. GS_R) determines the damping enhancement of a single ferromagnetic film embedded in a perfect spin-sink
medium and is usually very close to G for intermetallic interfaces82:2L.

A. Alpha

We begin with a discussion of the small-angle damping measured as a function of temperature using ferromagnetic
resonance (FMR). There is general agreement that spin-orbit coupling and disorder are essential ingredients in any
description of how spin excitations relax to the ground state. In the absence of intrinsic disorder, one might expect the
damping to increase monotonically with temperature in clean magnetic materials and indeed, this is what is observed
for Fe. Heinrich et al.22 developed an explicit model for this high-temperature behaviour in which itinerant s electrons
scatter from localized d moments and transfer spin angular momentum to the lattice via spin-orbit interaction. This s—
d model results in a damping that is inversely proportional to the electronic relaxation time, o ~ 1/7, i.e., is resistivity-
like. However, at low temperatures, both Co and Ni exhibit a sharp rise in damping as the temperature decreases.
The so-called breathing Fermi surface model was proposed? 26 to describe this low-temperature conductivity-like
damping, o ~ 7. In this model the electronic population lags behind the instantaneous equilibrium distribution due
to the precessing magnetization and requires dissipation of energy and angular momentum to bring the system back
to equilibrium.

Of the numerous microscopic models that have been proposed?’ to explain the damping behaviour of metals, only
the so-called “torque correlation model” (TCM)2 is qualitatively successful in explaining the non-monotonic damping
observed for hcp Co that results from conductivity-like and resistivity-like behaviours at low and high temperatures,
respectively. The central result of the TCM is the expression

G =223 [ g o Kl Al 10 W) (50)
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for the damping. The commutator [o_,Hs,] describes a torque between the spin and orbital moments that arises
as the spins precess. The corresponding matrix elements in (80) describe transitions between states in bands n
and m induced by this torque whereby the crystal momentum k is conserved. Disorder enters in the form of a
phenomenological relaxation time 7 via the spectral overlap

Wi (k) = f% /An(s,k)Am(s,k)%ds (81)

where the electron spectral function A, (e,k) is a Lorentzian centred on the band n, whose width is determined by
the scattering rate. For intraband transitions with m = n, integration over energy yields a spectral overlap which is
proportional to the relaxation time, like the conductivity. For interband transitions with m # n, the energy integration
leads to a spectral overlap that is roughly inversely proportional to the relaxation time, like the resistivity.

To interpret results obtained with the TCM, Gilmore et al.22192 ysed an effective field approach expressing the
effective field about which the magnetization precesses in terms of the total energy

poH = - —— (82)

and then approximated the total energy by a sum of single particle eigenvalues £ ~ > | €k fnk, so that the effective
field naturally splits into two parts

1 aEnk afnk
Heﬂ _
/LOM ; |: om fnk + enk Om (83)

the first of which corresponds to the breathing Fermi surface model, intraband transitions and conductivity-like
behaviour while the second term could be related to interband transitions and resistivity-like behaviour. Evaluation
of this model for Fe, Co and Ni using first-principles calculations to determine &, including spin-orbit coupling
yields results for the damping « in good qualitative and reasonable quantitative agreement with the experimental
observations.2?

In spite of this real progress, the TCM has disadvantages. As currently formulated, the model can only be applied
to periodic lattices. Extending it to handle inhomogeneous systems such as ferromagnetic substitutional alloys like
Permalloy (NiggFeqq), magnetic multilayers or heterojunctions, disordered materials or materials with surfaces is far
from trivial. The TCM incorporates disorder in terms of a relaxation time parameter 7 and so suffers from the
same disadvantages as all transport theories similarly formulated, namely, that it is difficult to relate microscopically
measured disorder unambiguously to a given value of 7. Indeed, since 7 in general depends on incoming and scattered
band index n, wave vector k, as well as spin index, assuming a single value for it is a gross simplification. A useful
theoretical framework should allow us to study not only crystalline materials such as the ferromagnetic metals Fe, Co
and Ni and substitutional disordered alloys such as permalloy (Py), but also amorphous materials and configurations
such as magnetic heterojunctions, multilayers, thin films etc. which become more important and are more commonly
encountered as devices are made smaller.

The scattering theoretical framework discussed in section IIIB satisfies these requirements and has recently been
implemented by extending a first-principles scattering formalism123:1%4 based upon the local spin density approxima-
tion (LSDA) of density functional theory (DFT) to include non-collinearity, spin-orbit coupling (SOC) and chemical
or thermal disorder on equal footings.2” Relativistic effects are included by using the Pauli Hamiltonian. To calculate
the scattering matrix, a “wave-function matching” (WFM) schemel®19 implemented with a minimal basis of tight-
binding linearized muffin-tin orbitals (TB-LMTOs)%:197 " Atomic-sphere-approximation (ASA) potentialst®197 are
calculated self-consistently using a surface Green’s function (SGF) method also implemented!®® with TB-LMTOs.

1. NiFe alloys.

The flexibility of the scattering theoretical formulation of transport can be demonstrated with an application to
NiFe binary alloys.®” Charge and spin densities for binary alloy A and B sites are calculated using the coherent
potential approximation (CPA)% generalized to layer structuresi®®. For the transmission matrix calculation, the
resulting spherical potentials are distributed at random in large lateral supercells (SC) subject to maintenance of the
appropriate concentration of the alloy19%:1%4 Solving the transport problem using lateral supercells makes it possible
to go beyond effective medium approximations such as the CPA. As long as one is only interested in the properties
of bulk alloys, the leads can be chosen for convenience and Cu leads with a single scattering state for each value of
crystal momentum, k|| are very convenient. The alloy lattice constants are determined using Vegard’s law and the
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lattice constants of the leads are made to match. Though NiFe is fcc only for the concentration range 0 < x < 0.6,
the fcc structure is used for all values of z.

To illustrate the methodology, we begin by calculating the electrical resistivity of NiggFego. In the Landauer-Biittiker
formalism, the conductance can be expressed in terms of the transmission matrix t as G = (e?/h)Tr {t¢f }11%111 The
resistance of the complete system consisting of ideal leads sandwiching a layer of ferromagnetic alloy of thickness L
is R(L) = 1/G(L) = 1/Gsn + 2Ri¢ + R, (L) where Gs, = (2¢2/h) N is the Sharvin conductance of each lead with N
conductance channels per spin, Rj¢ is the interface resistance of a single N|F interface, and Ry (L) is the bulk resistance
of a ferromagnetic layer of thickness L7194, When the ferromagnetic slab is sufficiently thick, Ohmic behaviour is
recovered whereby Ry, (L) = pL as shown in the inset to Fig. [ and the bulk resistivity p can be extracted from the
slope of R(L). For currents parallel and perpendicular to the magnetization direction, the resistivities are different
and have to be calculated separately. The average resistivity is given by p = (p| + 2p1)/3, and the anisotropic
magnetoresistance ratio (AMR) by (p — p1)/p.

For NiggFegg we find values of p = 3.5 + 0.15 pOhm-cm and AMR = 19 4+ 1%, compared to experimental low-
temperature values in the range 4.2 — 4.8 pOhm-cm for p and 18% for AMRM2. The resistivity calculated as a
function of z is compared to low temperature literature valuest*2 115 in Fig. @l The overall agreement with previous
calculations is good!1%117  In spite of the smallness of the SOC, the resistivity of Py is underestimated by more than
a factor of four when it is omitted, underlining its importance for understanding transport properties.
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FIG. 4: Calculated resistivity as a function of the concentration z for fcc Nij_,Fe, binary alloys with (solid line) and without
(dashed-dotted line) SOC. Low temperature experimental results are shown as symbols’*2 215, The composition NiggFezo is
indicated by a vertical dashed line. Inset: resistance of Cu|NigoFezo|Cu as a function of the thickness of the alloy layer. Dots
indicate the calculated values averaged over five configurations while the solid line is a linear fit.

Assuming that the Gilbert damping is isotropic for cubic substitutional alloys and allowing for the enhancement
of the damping due to the F|N interfaces#43:118.119 " the total damping in the system with a ferromagnetic slab of
thickness L can be written G(L) = Git + Gy(L) where we express the bulk damping in terms of the dimensionless
Gilbert damping parameter Gy(L) = aryMy(L) = aryus AL, where pi, is the magnetization density and A is the cross
section. The results of calculations for NiggFeoy are shown in the inset to Fig. The intercept at L = 0, Gi,
allows us to extract the damping enhancement?3 but here we focus on the bulk properties and leave consideration
of the material dependence of the interface enhancement for later study. The value of o determined from the slope
of G(L)/(yusA) is 0.0046 £+ 0.0001 that is at the lower end of the range of values 0.004 — 0.013 measured at room
temperature for Py8129,

Fig. Bl shows the Gilbert damping parameter as a function of x for Nij_,Fe, binary alloys in the fcc structure.
From a large value for clean Ni, it decreases rapidly to a minimum at z ~ 0.65 and then grows again as the limit
of clean fecc Fe is approached. Part of the decrease in o with increasing x can be explained by the increase in the
magnetic moment per atom as we progress from Ni to Fe. The large values of « calculated in the dilute alloy limits
can be understood in terms of conductivity-like enhancement at low temperatures!3%:131 that has been explained
in terms of intraband scattering?®100:102  The trend exhibited by the theoretical a(x) is seen to be reflected by
experimental results obtained at room temperature. In spite of a large spread in measured values, these seem to be
systematically larger than the calculated values. Part of this discrepancy can be attributed to an increase in a with
temperaturet20:132,

Calculating « for the end members, Ni and Fe, of the substitutional alloy Ni;_,Fe, presents a practical problem. In
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FIG. 5: Calculated zero temperature (solid line) and experimental room temperature (symbols) values of the Gilbert damping
parameter as a function of the concentration x for fcc Ni;_,Fe, binary alloysus*mg. Inset: total damping of Cu|NigoFezo|Cu
as a function of the thickness of the alloy layer. Dots indicate the calculated values averaged over five configurations while the
solid line is a linear fit.

these limits there is no scattering whereas in experiment there will always be some residual disorder at low temperatures
and at finite temperatures, electrons will scatter from the thermally displaced ions. We introduce a simple “frozen
thermal disorder” scheme to study Ni and Fe and simulate the effect of temperature via electron-phonon coupling by
using a random Gaussian distribution of ionic displacements u;, corresponding to a harmonic approximation. This
is characterized by the root-mean-square (RMS) displacement A = /(Ju;|?) where the index 4 runs over all atoms.
Typical values will be of the order of a few hundredths of an angstrom. We will not attempt to relate A to a real
lattice temperature here.
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FIG. 6: Calculated Gilbert damping and resistivity for fcc Ni as function of the relative RMS displacement with respect to the
corresponding lattice constant, ap = 3.524 A.

We calculate the total resistance R(L) and Gilbert damping G(L) for thermally disordered scattering regions of
variable length L and extract the resistivity p and damping « from the slopes as before. The results for Ni are
shown as a function of the RMS displacement in Fig. The resistivity is seen to increase monotonically with A
underlining the correlation between A and a real temperature. For large values of A, « saturates for Ni in agreement
with experiment*2? and calculations based on the torque-correlation model??:101:192 where no concrete scattering
mechanism is attached to the relaxation time 7. The absolute value of the saturated « is about 70% of the observed
value. For small values of A, the Gilbert damping increases rapidly as A decreases. This sharp rise corresponds to the
experimentally observed conductivity-like behaviour at low temperatures and confirms that the scattering formalism

can reproduce this feature.
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B. Beta

To evaluate expressions (78] for the so-called non-adiabatic spin-torque parameter 8 given in Section IIIB requires
modelling domain walls (DW) in the scattering region sandwiched between ideal Cu leads. A head-to-head Néel
DW is introduced inside the permalloy region by rotating the local magnetization to follow the Walker profile,
m(z) = [f(2),0,g(2)] with f(z) = cosh™'[(z — 74)/Aw] and g(z) = —tanh[(z — r,,)/A\w] as shown schematically in
Fig.[(a). 7y is the DW center and A, is a parameter characterizing its width. In addition to the Néel wall, we also
study a rotated Néel wall with magnetization profile m(z) = [g(2), 0, f ()] sketched in Fig. [[(b) and a Bloch wall with
m(z) = [g(z), f(2),0] sketched in Fig. [[(c).
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FIG. 7: (a) Sketch of the configuration of a Néel DW in Py sandwiched by two Cu leads. The arrows denotes local magnetization
directions. The curve shows the mutual angle between the local magnetization and the transport direction (z axis). (b)
Magnetization profile of the rotated Néel wall. (c) Magnetization profile of the Bloch wall.
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FIG. 8: Calculated effective Gilbert damping constant « for Py DWs as a function of A,,. The dashed lines show the calculated
a for bulk Py with the magnetization parallel to the transport direction®’.
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The effective Gilbert damping constant « of permalloy in the presence of all three DWs calculated using (78)) is
shown in Fig. 8 For different types of DWs, « is identical within the numerical accuracy indicating that the Gilbert
damping is isotropic due to the strong impurity scattering!®!. In the adiabatic limit, a saturates to the same value
(the dashed lines in Fig. []) calculated for bulk permalloy using (G8). It implies that the DWs in permalloy have
little effect on the magnetization relaxation and the strong impurity scattering is the dominant mechanism to release
energy and magnetization. This is in contrast to DWs in (Ga,Mn)As where Gilbert damping is mostly contributed by
the reflection of the carriers from the DW .22 At \,, < 5 nm, the non-adiabatic reflection of conduction electrons due
to the rapidly-varying magnetization direction becomes significant and results in a sharp rise in « for narrow DWs.

The out-of-plane torque is formulated as S(AyP/2eMs)m x (j-V)m in the Landau-Lifshitz-Gilbert (LLG) equation
under a finite current density j. In principle, the current polarization P is required to determine . Since the spin-
dependent conductivities of permalloy depend on the angle between the current and the magnetization, P is not
well-defined for magnetic textures. Instead, we calculate the quantity P#3, as shown in Fig. [0 for a Bloch DW. For
Aw < b nm, Pf decreases quite strongly with increasing A,, corresponding to an expected non-adiabatic contribution
to the out-of-plane torque. This arises from the spin-flip scattering induced by the rapidly-varying magnetization in
narrow DWs!22 and does not depend on the specific type of DW. For )\, > 5 nm, which one expects to be in the
adiabatic limit, P decreases slowly to a constant value22:30:49,:64.73,133-141 " Tt j5 unclear what length scale is varying
so slowly. Unfortunately, the spread of values for different configurations is quite large for the last data point and our
best estimate of P3 for a Bloch DW in permalloy is ~ 0.08. Taking the theoretical value of P ~ 0.7 for permalloy®?,
our best estimate of 3 is a value of ~ 0.01.
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FIG. 9: Calculated out-of-plane spin torque parameter P§ for permalloy DWs as a function of .

V. THEORY VERSUS EXPERIMENTS

Spin-torque induced magnetization dynamics in multilayers and its reciprocal effect, the spin pumping, are ex-
perimentally well established and quantitatively understood within the framework described in this paper, and need
not to be discussed further here.!18 Recent FMR experiments also confirm the spin-pumping contribution to the
enhanced magnetization dissipationi42. Spin-pumping occurs in magnetic insulators as well?-143,

The parameters that control the current-induced dynamics of continuous textures are much less well known. Most
experiments are carried out on permalloy (Py). It is a magnetically very soft material with large domain wall widths
of the order of 100 nm. Although the adiabatic approximations appears to be a safe assumption in Py, many systems
involve vortex domain walls with large gradients in the wall center, and, therefore, possibly sizable nonadiabatic
corrections. Effective description for such vortex dynamics has been constructed in Ref. |58, where it was shown,
in particular, that self-consistent quadratic corrections to damping (which stem from self-pumped currents inducing
backaction on the magnetic order) is generally non-negligible in transition-metal ferromagnets.

Early experimental studiest4414% for the torque-supplemented [Eq. (I))] LLG equation describing current-driven
domain-wall motion in magnetic wires reported values of the 8/« ratios in Py close to unity, in agreement with simple
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Stoner-model calculations. However, much larger values §/a ~ 8 was extracted from the current-induced oscillatory
motion of domain walls.246 The inequality3 # « was also inferred from a characteristic transverse to vortex wall
structure transformation, although no exact value of the ratio was established 14”7 In Ref14® vanadium doping of
Py was shown to enhance 8 up to nearly 10«, with little effect on « itself. Even larger ratios, 5/a ~ 20, were
found for magnetic vortex motion by an analysis of their displacement as a function of an applied dc current in disc
structures.149:150

Eltschka et alX2! reported on a measurement of the dissipative spin-torque parameter 3 entering Eq. (), as
manifested by a thermally-activated motion of transverse and vortex domain walls in Py. They found the ratio
Bv/ P ~ T for the vortex vs transverse wall, attributing the larger 5 to high magnetization gradients in the vortex wall
core. Their ratio 8;/a ~ 1.3 turns out to be close to unity, where « is the bulk Gilbert damping. The importance of
large spin-texture gradients on the domain-wall and vortex dynamics was theoretically discussed in Refs. 56,58.

The material dependence of the current-induced torques is not yet well investigated. A recent study on CoNi and
FePt wires with perpendicular magnetization found 8 = «, in spite of the relatively narrow domain walls in these
materials.252 Current-induced domain-wall dynamics in dilute magnetic semiconductorsi®® generally exhibit similar
phenomenology, but a detailed discussion, especially of the domain wall creep regime that can be accessed in these
systems, is beyond the scope of this review.

Finally, the first term in the spin-pumping expression (I2) has been measured by Yang et al+>* for a domain wall
moved by an applied magnetic field above the Walker breakdown field. These experiments confirmed the existence
of pumping effects in magnetic textures, which are Onsager reciprocal of spin torques and thus expected on general
grounds. Similar experiments carried out below the Walker breakdown would also give direct access to the 5 parameter.
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VI. CONCLUSIONS

A spin polarized current can excite magnetization dynamics in ferromagnets via spin-transfer torques. The reciprocal
phenomena is spin-pumping where a dynamic magnetization pumps spins into adjacent conductors. We have discussed
how spin-transfer torques and spin-pumping are directly related by Onsager reciprocity relations.

In layered normal metal-ferromagnet systems, spin-transfer torques can be expressed in terms of two conductance
parameters governing the flow of spins transverse to the magnetization direction and the spin-accumulation in the nor-
mal metal. In metallic systems, the field-like torque is typically much smaller than the effective energy gain/damping
torque, but in tunnel systems they might become comparable. Spin-pumping is controlled by the same transverse
conductance parameters as spin-transfer torques, the magnetization direction and its rate of change. It can lead to
an enhanced magnetization dissipation in ultra-thin ferromagnets or a build-up of spins, a spin-battery, in normal
metals where the spin-flip relaxation rate is low.

Spin-transfer torque and spin-pumping phenomena in magnetization textures are similar to their counterparts in
layered normal metal-ferromagnet systems. A current becomes spin polarized in a ferromagnet and this spin-polarized
current in a magnetization texture gives rise to a reactive torque and a dissipative torque in the lowest gradient
expansion. The reciprocal pumping phenomena can be viewed as an electromotive force, the dynamic magnetization
texture pumps a spin-current that in turn is converted to a charge current or voltage by the giant magnetoresistance
effect. Naturally, the parameters governing the spin-transfer torques and the pumping phenomena are also the same
in continuously textured ferromagnets.

When the spin-orbit interaction becomes sufficiently strong, additional effects arise in the coupling between the
magnetization and itinerant electrical currents. A charge potential can then by itself induce a torque on the ferro-
magnet and the reciprocal phenomena is that a precessing ferromagnet can induce a charge current in the adjacent
media. The latter can be an alternative way to carry out FMR measurements on small ferromagnets by measuring
the induced voltage across a normal metal-ferromagnet-normal metal device.

These phenomena are well-know and we have reviewed them in a unified physical picture and discussed the con-
nection between these and some experimental results.
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This is a brief overview of the state of the art of spin caloritronics, the science and technology of
controlling heat currents by the electron spin degree of freedom.

I. INTRODUCTION

The coupling between spin and charge transport in condensed matter is studied in the lively field referred to
as spintronics. Heat currents are coupled to both charge and spin currents [1, 2]. ‘Spin caloritronics’ is the field
combining thermoelectrics with spintronics and nanomagnetism, which recently enjoys renewed attention [3]. The
term “caloritronics” (from ‘calor’, the Latin word for heat) has recently been introduced to describe the endeavor to
control heat transport on micro- and nanometer scales. Alternative expressions such as “(mesoscopic) heattronics”
or “caloric transport” have also been suggested. Specifically, spin caloritronics is concerned with new physics related
to spin, charge and entropy/energy transport in materials and nanoscale structures and devices. Examples are spin
dependence of thermal conductance, Seebeck and Peltier effects, heat current effects on spin transfer torque, thermal
spin and anomalous Hall effects, etc. Heat and spin effects are also coupled by the dissipation and noise associated
with magnetization dynamics.

The societal relevance of the topic is given by the imminent breakdown of Moore’s Law by the thermodynamic
bottleneck: further decrease in feature size and transistor speed goes in parallel with intolerable levels of Ohmic
energy dissipation associated with the motion of electrons in conducting circuits. Thermoelectric effects in meso- [4]
and nanoscopic [5] structures might help in managing the generated heat. Spin caloritronics is intimately related to
possible solutions to these problems by making use of the electron spin degree of freedom.

Spin caloritronics is as old as spin electronics, starting in the late 1980’s with M. Johnson and R.H. Silsbee’s
[1] visionary theoretical insights into the non-equilibrium thermodynamics of spin, charge and heat in metallic het-
erostructures with collinear magnetization configurations. Except for a few experimental studies on the thermoelectric
properties of magnetic multilayers in the CIP (currents in the interface plane) configuration [6] in the wake of the
discovery of the giant magnetoresistance, the field remained dormant for many years. The Lausanne group started
systematic experimental work on what we now call spin caloritronics in magnetic multilayer nanowires and further
developed the theory [7].

Several new and partly unpublished discoveries in the field of spin caloritronics excite the community, such as the
spin (wave) Seebeck effect in and signal transmission through magnetic insulators, the spin-dependent Seebeck effect
in magnetic nanostructures, the magnonic thermal Hall effect, giant Peltier effect in constantan/gold nanopillars,
and the thermal spin transfer torque. After a brief introduction into the basics of how the spin affects classical
thermoelectric phenomena, these topics will appear in the following sections.

II. BASIC PHYSICS

We learn from textbooks that the electron-hole asymmetry at the Fermi energy in metals generates thermoelectric
phenomena. A heat current Q then drags charges with it, thereby generating a thermopower voltage or charge current
J for open or closed circuit conditions, respectively. Vice versa a charge current is associated by a heat current, which
can be used to heat or cool the reservoirs. In a diffusive bulk metal the relation between the local driving forces, i.e.
the voltage gradient or electric field E = V.V and temperature gradient VT reads

<é>_a(l}llja><VVr:/T>' (1)

where o is the electric conductivity, S the Seebeck coefficient and  the heat conductivity [8]. The Kelvin-Onsager
relation between the Seebeck and Peltier coefficients II = ST is a consequence of Onsager reciprocity [9]. In the
Sommerfeld approximation, valid when the conductivity as a function of energy varies linearly on the scale of the
thermal energy kT or, more precisely, when £o7T2 \830 () |5F| < o(erp),

0
S = —eCOTg Ino(e)lep, (2)
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where the Lorenz constant Lo = (7%/3) (kp/ e)? and o (¢) is the energy-dependent conductivity around the Fermi
energy £p. In this regime the Wiedemann-Franz Law

k=0LyT (3)

holds. Thermoelectric phenomena at constrictions and interfaces are obtained by replacing the gradients by differences
and the conductivities by conductances.

The spin dependence of the thermoelectric properties in isotropic and monodomain metallic ferromagnets can be
expressed in the two-current model of majority and minority spins [1, 7, 12, 13]:

Je 1 P S Vefic/e
Js | =0 P 1 P'S Ves/2e |, (4)
Q ST P'ST LoT V. T

where J.) = I £ JW) and Q = QD + QY are the charge, spin and heat currents, respectively. P and P’ stand
for the spin-polarization of the conductivity and its energy derivative

P oM gM . 0.00 —9.6(D .

T teM| T T BeD t o | (5)
fle = (,um + u(i)) /2 is the charge electrochemical potential and s = pu(" — u(Y) the difference between chemical
potentials of the two-spin species, i.e. the spin accumulation. The spin-dependent thermal conductivities obey the
Wiedemann-Franz law £(®) ~ LoTo(® when ST « /L, and the total thermal conductivity x = (1) + k! = LoTo.
In Eq. (4) the spin heat current QS = Q(T) — Q(l) does not appear. This is a consequence of the implicit assumption
that there is no spin temperature (gradient) Ts = T —7W due to effective interspin and electron-phonon scattering
[12]. This approximation does not necessarily hold at the nanoscale and low temperatures [14, 15]. Although initial
experiments were inconclusive, a lateral spin valve device has been proposed in which it should be possible to detect
spin temperatures.

Above equations presume that the spin projections are good quantum numbers, which is not the case in the presences
of non-collinear magnetizations or significant spin-orbit interactions. Both complications give rise to new physics in
spintronics, such as the spin Hall effect and current-induced spin transfer torques. Both have their spin caloritronic
equivalents.

Lattice vibrations (phonons) provide a parallel channel for heat currents, as, in magnets, do spin waves (magnons).
The study and control of spin waves is referred to as ‘Magnonics’ [17]. The coupling of different modes can be very
important for thermoelectric phenomena, causing for instance the phonon-drag effect on the thermopower at lower
temperatures. The heat current carried by magnons is a spin current and may affect the Seebeck coefficient [18]. In
metallic ferromagnets the spin wave heat current appears to be smaller than the thermoelectric heat current discussed
above, but is the dominant mode of spin transport in magnetic insulators [19, 20]. The coupling between magnons
and phonons has been recently demonstrated in the spin Seebeck effect (see Sec. VII and the Chapter by E. Saitoh).

III. SPIN-DEPENDENT THERMOELECTRIC PHENOMENA IN METALLIC STRUCTURES

A consequence of the basics physics sketched above is the existence of thermoelectric generalizations of the giant
magnetoresistance (GMR), i.e. the modulation of the electric charge and heat currents by the spin configuration of
magnetic multilayers, spin valves and tunneling junctions as well as a family of thermal spin Hall effects.

A. Magneto-Peltier and Seebeck effects

The magneto-Peltier and magneto-Seebeck effects are caused by the spin-dependence of the Seebeck/Peltier coeffi-
cients in ferromagnets [1, 7, 12]. The magnetothermopower has been observed in multilayered magnetic nanowires [7].
A large Peltier effect in constantan (CuNi alloy)/Au [21] has been associated with magnetism in the phase-separation
magnetic phase [22].

A magneto-Seebeck effect in lateral spin valves has been demonstrated [23]. Here a temperature gradient is inten-
tionally applied over an intermetallic interface. The spin-dependence of the Seebeck coefficient induce a spin-polarized
current into the normal metal, in which Slachter et al. [23] detect the accompanying spin accumulation by an an-
alyzing ferromagnetic contact. A spin-dependent thermopower has been predicted for molecular spin valves from



FIG. 1: A sketch of the configuration of anomalous (left figure) and planar (right figure) Hall effects in ferromagnets. S and D
denote source and drain contacts and L and R left and right Hall contacts. The arrow denotes the magnetization direction.

first-principles theory [25]. A magneto Seebeck effect in magnetic tunnel junctions has been observed [26, 27] and
modelled by ab initio calculations [28]. A spin-dependent Seebeck effect in Py|Si tunneling junctions has been ob-
served by Le Breton et al. [24] by analyzing the magnetic field dephasing (Hanle effect) of a thermally injected spin
accumulation. The thermoelectric figure of merit can possibly be improved by employing the conducting edge and
surface states of topological insulators [29].

B. Thermal Hall effects

Thermal Hall effects exist in normal metals in the presence of external magnetic fields and can be classified into
three groups [30]. The Nernst effect stands for the Hall voltage induced by a heat current. The Nettingshausen
effect describes the heat current induced transverse to an applied charge current. The Hall heat current induced by a
temperature gradient goes by the name of Righi-Leduc. The spin degree of freedom opens a family of spin caloritronic
Hall effects in the absence of an external field which are not yet fully explored. We may add the label spin in order to
describe effects in normal metals (spin Hall effect, spin Nernst effect, etc.). In ferromagnets we may distinguish the
configuration in which the magnetization is normal to both currents (anomalous Hall effect, anomalous Nernst effect,
etc.) from the configuration with in-plane magnetization (planar Hall effect, planar Nernst effect, etc.) as sketched
in Figure 1. Theoretical work has been carried out with emphasis on the intrinsic spin-orbit interaction [31-33].

Seki et al. [34] found experimental evidence for a thermal Hall effect in Au|FePt structures, which can be due either
to an anomalous Nernst effect in FePt or a spin Nernst effect in Au. In GaMnAs the planar [35] and anomalous
[36] Nernst effects have been observed, with intriguing temperature dependences. Slachter et al. [37] identified the
anomalous Nernst effect and anisotropic magnetoheating in multiterminal permalloy|copper spin valves.

IV. THERMAL SPIN TRANSFER TORQUES

A spin current is in general not conserved. In a metal, angular momentum can be dissipated to the lattice by spin-
flip scattering. In the presence of a non-collinear magnetic texture, either in a heterostructure, such as a spin valve
and tunnel junction, or a magnetization texture such as a domain wall or magnetic vortex, the magnetic condensate
also absorbs a spin current, which by conservation of angular momentum leads to a torque on the magnetization that,
if strong enough, can lead to coherent magnetization precessions and even magnetization reversal [38]. Just like a
charge current, a heat current can exert a torque on the magnetization as well [11], which leads to purely thermally
induced magnetization dynamics [39]. Such a torque can be measured under closed circuit conditions, in which part
of the torque is simply exerted by the spin-dependent thermopower, and in an open circuit in which a charge current
is suppressed [11].

A. Spin valves

The angular dependence of the thermal torque can be computed by circuit theory [11, 12]. Thermal spin transfer
torques have been detected in nanowire spin valves [40]. Slonczewski [47] studied the spin transfer torque in spin
valves in which the polarizer is a magnetic insulator that exerts a torque on a free magnetic layer in the presence of a
temperature gradient. He concludes that the thermal torque can be more effective in switching magnetizations than
a charge current-induced torque. Note that the physics of heat current induced spin injection by magnetic insulators
is identical to that of the longitudinal spin Seebeck effect as discussed briefly in Sec. VII.



B. Magnetic tunnel junctions

Large thermal torques have been predicted by first-principles calculations for magnetic tunnel junctions with thin
barriers that compare favorable with those obtainable by an electric bias [45], but these have as yet not been confirmed
experimentally.

C. Textures

Charge current-induced magnetization in magnetic textures have enjoyed a lot of attention in recent years. Domain
wall motion can be understood easily in terms of angular momentum conservation in the adiabatic regime, in which
the length scale of the magnetization texture such as the domain wall width is much larger than the scattering mean
free path or Fermi wave length, as appropriate for most transition metal ferromagnets. In spite of initial controversies,
the importance of dissipation in the adiabatic regime [46] is now generally appreciated. In analogy to the Gilbert
damping factor « the dissipation under an applied current is governed by a material parameter . that for itinerant
magnetic materials is of the same order as « [48]. In the case of a heat-current induced domain wall motion, the
adiabatic thermal spin transfer torque [11] is also associated with a dissipative Sr-factor that is independent of the
charge-current (. [49, 50]. S has been explicitly calculated by Hals for GaMnAs [52]. Non-adiabatic corrections to
the thermal spin transfer torque in fast-pitch ballistic domain walls have been calculated by first-principles [53]. Laser
induced domain wall pinning might give clues for heat current effects on domain wall motion [41].

In insulating ferromagnets, domain wall still be moved since part of the heat current is carried by spin waves, and
therefore associated with angular momentum currents. In contrast to metals in which the angular momentum current
can have either sign relative to the heat current direction, in insulators the magnetization current flows always against
the heat current, which means that the adiabatic torque moves the domain wall to the hot region [42-44].

V. MAGNETO-HEAT RESISTANCE

The heat conductance of spin valves is expected to depend on the magnetic configuration, similar to the GMR,
giving rise to a giant magneto-heat resistance [11] or a magnetotunneling heat resistance. In contrast to the GMR,
the magnetoheat resistance is very sensitive to inelastic (interspin and electron-phonon) scattering [14, 15].

Inelastic scattering leads to a breakdown of the Wiedemann-Franz Law in spin valves. This is most easily demon-
strated for half-metallic ferromagnetic contacts as sketched in Fig. 2 for a finite temperature bias over the sample. In
the figure the distribution functions are sketched for the three spatial regions. Both spins form eigenstates in N, but
in F only the majority spin exists. In Fig. 2(a) we suppose absence of inelastic scattering between the spins, either
by direct Coulomb interaction or indirect energy exchange via the phonons. When a strong interaction is switched
on both spins in N will adopt the same temperature as sketched in Fig. 2(b). The temperature gradient on the right
interface will induce a heat current, while a charge current is suppressed, clearly violating the Wiedemann-Franz Law.
A spin heat valve effect can therefore only exist when the interspin and spin-phonon interactions are sufficiently weak.

The heat conductance of tunnel junctions is expected to be less sensitive to inelastic scattering. A useful application
for on-chip heat management could be a tunneling heat valve, i.e. a switchable heat sink as illustrated in Fig. 3.

VI. SPIN CALORITRONIC HEAT ENGINES AND MOTORS

Omnsager’s reciprocal relations [9] reveal that seemingly unrelated phenomena can be expressions of identical micro-
scopic correlations between thermodynamic variables of a given system [10]. The archetypal example is the Onsager-
Kelvin identity of thermopower and Peltier cooling mentioned earlier. We have seen that spin and charge currents are
coupled with each other and with the magnetization. Furthermore, mechanical and magnetic excitations are coupled
by the Barnett and Einstein-de Haas effects [54, 55]. The thermoelectric response matrix including all these variables
can be readily formulated for a simple model system consisting of a rotatable magnetic wire including a domain wall
as sketched in Fig. 4. The linear response matrix then reads J = LX, where the generalized currents J and forces X

I=(Jey Jor & )’ (6)
X = (—AV, —AL gmech 9 AN H.o ) (7)
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FIG. 2: A temperature difference over a spin valve with half-metallic contacts and an antiparallel configuration of the magnetic
contacts. Plotted are the electron distribution functions in the ferromagnets and the normal metal spacer (u is the chemical
potential). In (a) the spins in the spacer are non-interacting, in (b) they are strongly interacting, thereby allowing a heat
current flow through the left interface.
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FIG. 3: The dependence of the heat conductance of a magnetic tunnel junction or spin valve on the magnetic configuration can
be used to control possible overheating of a substrate, such as a hot spot in an integrated circuit, when the necessity arises.

are related by the response matrix
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Onsager reciprocity implies that L;, = £+L,,. The elements can be computed by scattering theory [50].

The matrix relation between generalized forces and currents implies a large functionality of magnetic materials.
Each of the forces can give rise to all currents, where a temperature gradient is especially relevant here. The response
coefficient L.q clearly represents the Seebeck effect, Lgg the heat conductance, L,g a thermally driven (Brownian)
motor, and L, a heat current driven domain wall motion [49]. Onsager symmetry implies that L, = Lgw and
L,g = —Lge. E.g. a Peltier effect can be expected by moving domain walls [49, 50] and mechanical rotations [50].

VII. SPIN SEEBECK EFFECT

The most spectacular development in recent in years in the field of spin caloritronics has been the discovery of
the spin Seebeck effect, first in metals [59], and later in electrically insulating Yttrium Iron Garnet (YIG) [60] and
ferromagnetic semiconductors (GaMnAs) [61, 62]. The spin Seebeck effect stands for the electromotive force generated
by a ferromagnet with a temperature bias over a strip of metal normal to the heat current. This effect is interpreted
in terms of a thermally induced spin current injected into the normal metal that is transformed into a measurable



FIG. 4: Magnetic nanowire of length [ in electrical and thermal contact with reservoirs. A domain wall is centered at position
rw. The wire is mounted such that it can rotate around the z-axis. A magnetic field and mechanical torque can be applied
along x.

voltage by the inverse spin Hall effect [63-65] metals. A separate Chapter of this book is devoted to the spin Seebeck
effect, so the present section is kept brief.

It is important to point out the difference between the spin Seebeck effect and the magneto- or spin-dependent
Seebeck effect measured by Slachter et al. [23] (see Sec. IITA). Both are generated at an interface between a
ferromagnet and a metal. In the magneto-Seebeck effect a temperature gradient is intentionally applied over an
intermetallic interface, which is quite different from the spin Seebeck effect, and it can be explained by traditional
spin caloritronics concepts Johnson and Silsbee [1]. On the other hand, in the spin Seebeck effect the ISHE contact
is thermally floating and a standard thermoelectric explanation fails [66] (see, however, [67]).

There is consensus by now that the origin of the spin Seebeck effect is a net spin pumping current over the
ferromagnet /metal interface induced by a non-equilibrium magnon distribution [68, 69]. Furthermore, the phonon-
magnon drag has been found to be very important [70-72]. In magnetic insulators conventional thermoelectrics cannot
be applied. A longitudinal configuration in which a temperature gradient is intentionally applied over the interface
[73] can therefore be classified a spin Seebeck effect. The Slachter experiments [23] might also be affected by the spin
Seebeck effect, although the effect is probably overwhelmed by the spin-dependent thermoelectrics.

As mentioned in Sec. IV A, the physics of the thermal torque induced by heat currents in spin valves with an
insulator as polarizing magnet as proposed by Slonczewski [47] is identical to the longitudinal spin Seebeck effect [73],
as explained theoretically by Xiao et al. [68]. The “loose” magnetic monolayer model hypothesized by Slonczewski
appears to mimic the solution of the Landau-Lifshitz-Gilbert equation, which predicts a thin magnetically coherent
layer that effectively contributes to the spin pumping. Slonczewski’s claim that the heat current-induced spin transfer
torque through magnetic insulators should be large has been confirmed by first-principles calculations that predict
that the spin-mixing conductance at the interface between YIG and silver is close to the intermetallic value [74].
This results is in stark contrast to the expectations from a Stoner model for the magnetic insulator [68], but can be
explained by local magnetic moments at the interface [74].

From the discussion of the Onsager relations one might expect a spin Peltier effect. To date no reports have been
published on this topic, however.

VIII. CONCLUSIONS

The field of spin caloritronics has gained momentum in recent years since experimental and theoretical groups have
newly joined the community in the last few years. It should be obvious from the above summary that many effects
predicted by theory have not yet been observed. The smallness of some effects are also a concern. If spin caloritronics
is to become more than a scientific curiosity, the effects should be large enough to become useful. Therefore more
materials research and device engineering, experimental and theoretical, is very welcome.
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The magnetization dynamics of ferromagnets are often formulated in terms of the Landau-Lifshitz-
Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetiza-
tion in terms of effective fields, whereas the dissipative part is parameterized by the Gilbert damping
tensor. We formulate a scattering theory for the magnetization dynamics and map this description
on the linearized LLG equation by attaching electric contacts to the ferromagnet. The reactive part
can then be expressed in terms of the static scattering matrix. The dissipative contribution to the
low-frequency magnetization dynamics can be described as an adiabatic energy pumping process
to the electronic subsystem by the time-dependent magnetization. The Gilbert damping tensor
depends on the time derivative of the scattering matrix as a function of the magnetization direction.
By the fluctuation-dissipation theorem, the fluctuations of the effective fields can also be formulated
in terms of the quasistatic scattering matrix. The theory is formulated for general magnetization
textures and worked out for monodomain precessions and domain wall motions. We prove that the
Gilbert damping from scattering theory is identical to the result obtained by the Kubo formalism.

PACS numbers: 75.40.Gb,76.60.Es,72.25.Mk

I. INTRODUCTION

Ferromagnets develop a spontaneous magnetization
below the Curie temperature. The long-wavelength mod-
ulations of the magnetization direction consist of spin
waves, the low-lying elementary excitations (Goldstone
modes) of the ordered state. When the thermal energy is
much smaller than the microscopic exchange energy, the
magnetization dynamics can be phenomenologically ex-
pressed in a generalized Landau-Lifshitz-Gilbert (LLG)
form:

m(r,t) = —ym(r,t) x [Heg(r,t) + h(r,t)] +
m(r,t) X /dr’ [@[m] (r,")m(’', )], (1)

where the magnetization texture is described by m(r,t),
the unit vector along the magnetization direction at po-
sition r and time ¢, m(r,t) = Om(r,t)/0t, v = gup/h is
the gyromagnetic ratio in terms of the g-factor (= 2 for
free electrons) and the Bohr magneton pp. The Gilbert
damping & is a nonlocal symmetric 3 x 3 tensor that is
a functional of m. The Gilbert damping tensor is com-
monly approximated to be diagonal and isotropic (i), lo-
cal (1), and independent of the magnetization m, with
diagonal elements

aj(r,r’) = ad(r —1'). (2)

The linearized version of the LLG equation for small-
amplitude excitations has been derived microscopically.?

It has been used very successfully to describe the mea-
sured response of ferromagnetic bulk materials and thin
films in terms of a small number of adjustable, material-
specific parameters. The experiment of choice is fer-
romagnetic resonance (FMR), which probes the small-
amplitude coherent precession of the magnet.? The
Gilbert damping model in the local and time-independent
approximation has important ramifications, such as a lin-
ear dependence of the FMR line width on resonance fre-
quency, that have been frequently found to be correct.
The damping constant is technologically important since
it governs the switching rate of ferromagnets driven by
external magnetic fields or electric currents.2 In spatially
dependent magnetization textures, the nonlocal charac-
ter of the damping can be significant as well.2 8 Moti-
vated by the belief that the Gilbert damping constant is
an important material property, we set out here to under-
stand its physical origins from first principles. We focus
on the well studied and technologically important itiner-
ant ferromagnets, although the formalism can be used in
principle for any magnetic system.

The reactive dynamics within the LLG Eq. () is de-
scribed by the thermodynamic potential Q[M] as a func-
tional of the magnetization. The effective magnetic field
Hg[M](r) = —6Q/6M(r) is the functional derivative
with respect to the local magnetization M(r) = M,m(r),
including the external magnetic field Heyt, the magnetic
dipolar field Hg, the texture-dependent exchange energy,
and crystal field anisotropies. M is the saturation mag-
netization density. Thermal fluctuations can be included
by a stochastic magnetic field h(r,t) with zero time av-
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FIG. 1: Schematic picture of a ferromagnet (F) in contact
with a thermal bath (reservoirs) via metallic normal metal
leads (N).

erage, (h) = 0, and white-noise correlation:

<hi (I‘, t)hj (I‘/, tl)> = Qi [m] (I‘, rl)é(t - t/)v (3)

¥ M
where M; is the magnetization, ¢ and j are the Cartesian
indices, and T is the temperature. This relation is a con-
sequence of the fluctuation-dissipation theorem (FDT) in
the classical (Maxwell-Boltzmann) limit.

The scattering (S-) matrix is defined in the space of
the transport channels that connect a scattering region
(the sample) to real or fictitious thermodynamic (left
and right) reservoirs by electric contacts with leads that
are modeled as ideal wave guides. Scattering matri-
ces are known to describe transport properties, such as
the giant magnetoresistance, spin pumping, and current-
induced magnetization dynamics in layered normal-metal
(N)|ferromagnet (F).&19 When the ferromagnet is part
of an open system as in Fig. [l also £ can be expressed
in terms of the scattering matrix, which has been used
to express the non-local exchange coupling between fer-
romagnetic layers through conducting spacers.t! We will
show here that the scattering matrix description of the
effective magnetic fields is valid even when the system is
closed, provided the dominant contribution comes from
the electronic band structure, scattering potential disor-
der, and spin-orbit interaction.

Scattering theory can also be used to compute the
Gilbert damping tensor & for magnetization dynamics.13
The energy loss rate of the scattering region can be ex-
pressed in terms of the time-dependent S-matrix. To this
end, the theory of adiabatic quantum pumping has to be
generalized to describe dissipation in a metallic ferromag-
net. The Gilbert damping tensor is found by evaluating
the energy pumping out of the ferromagnet and relat-
ing it to the energy loss that is dictated by the LLG
equation. In this way, it is proven that the Gilbert phe-
nomenology is valid beyond the linear response regime
of small magnetization amplitudes. The key approxima-
tion that is necessary to derive Eq. () including & is the
(adiabatic) assumption that the ferromagnetic resonance
frequency wpnmr that characterizes the magnetization dy-
namics is small compared to internal energy scale set by
the exchange splitting A and spin-flip relaxation rates
Ts. The LLG phenomenology works well for ferromag-
nets for which wpmr < A/h, which is certainly the case
for transition metal ferromagnets such as Fe and Co.

Gilbert damping in transition-metal ferromagnets is
generally believed to stem from the transfer of energy
from the magnetic order parameter to the itinerant quasi-

particle continuum. This requires either magnetic disor-
der or spin-orbit interactions in combination with impu-
rity /phonon scattering.? Since the heat capacitance of
the ferromagnet is dominated by the lattice, the energy
transferred to the quasiparticles will be dissipated to the
lattice as heat. Here we focus on the limit in which elas-
tic scattering dominates, such that the details of the heat
transfer to the lattice does not affect our results. Our ap-
proach formally breaks down in sufficiently clean samples
at high temperatures in which inelastic electron-phonon
scattering dominates. Nevertheless, quantitative insight
can be gained by our method even in that limit by mod-

elling phonons by frozen deformations.12

In the present formulation, the heat generated by the
magnetization dynamics can escape only via the contacts
to the electronic reservoirs. By computing this heat cur-
rent through the contacts we access the total dissipa-
tion rate. Part of the heat and spin current that es-
capes the sample is due to spin pumping that causes
energy and momentum loss even for otherwise dissipa-
tion less magnetization dynamics. This process is now
well understood.L? For sufficiently large samples, the spin
pumping contribution is overwhelmed by the dissipation
in the bulk of the ferromagnet. Both contributions can
be separated by studying the heat generation as a func-
tion of the length of a wire. In principle, a voltage can be
added to study dissipation in the presence of electric cur-
rents as in , but we concentrate here on a common
and constant chemical potential in both reservoirs.

Although it is not a necessity, results can be simpli-
fied by expanding the S-matrix to lowest order in the
amplitude of the magnetization dynamics. In this limit
scattering theory and the Kubo linear response formal-
ism for the dissipation can be directly compared. We
will demonstrate explicitly that both approaches lead to
identical results, which increases our confidence in our
method. The coupling to the reservoirs of large samples
is identified to play the same role as the infinitesimals in
the Kubo approach that guarantee causality.

Our formalism was introduced first in Ref. [15 lim-
ited to the macrospin model and zero temperature. An
extension to the friction associated with domain wall mo-
tion was given in Ref. [13. Here we show how to handle
general magnetization textures and finite temperatures.
Furthermore, we offer an alternative route to derive the
Gilbert damping in terms of the scattering matrix from
the thermal fluctuations of the effective field. We also
explain in more detail the relation of the present theory
to spin and charge pumping by magnetization textures.

Our paper is organized in the following way. In Sec-
tion [[Il we introduce our microscopic model for the fer-
romagnet. In Section [Tl dissipation in the Landau-
Lifshitz-Gilbert equation is exposed. The scattering the-
ory of magnetization dynamics is developed in Sec. [Vl
We discuss the Kubo formalism for the time-dependent
magnetizations in Sec.[V] before concluding our article in
Sec.[VIl The Appendices provide technical derivations of
spin, charge, and energy pumping in terms of the scat-



tering matrix of the system.

II. MODEL

Our approach rests on density-functional theory
(DFT), which is widely and successfully used to describe
the electronic structure and magnetism in many fer-
romagnets, including transition-metal ferromagnets and
ferromagnetic semiconductors.L® In the Kohn-Sham im-
plementation of DFT, noninteracting hypothetical par-
ticles experience an effective exchange-correlation poten-
tial that leads to the same ground-state density as the in-
teracting many-electron system.A? A simple yet successful
scheme is the local-density approximation to the effective
potential. DFT theory can also handle time-dependent
phenomena. We adopt here the adiabatic local-density
approximation (ALDA), i.e. an exchange-correlation po-
tential that is time-dependent, but local in time and
space 812 Ag the name expresses, the ALDA is valid
when the parametric time-dependence of the problem is
adiabatic with respect to the electron time constants.
Here we consider a magnetization direction that varies
slowly in both space and time. The ALDA should be
suited to treat magnetization dynamics, since the typical
time scale (tpmr ~ 1/ (10 GHz) ~ 1071%) is long com-
pared to the that associated with the Fermi and exchange
energies, 1 —10 eV leading to /A ~ 10~ s in transition
metal ferromagnets.

In the ALDA, the system is described by the time-
dependent effective Schrodinger equation

HaLpa¥(r,t) = ih%kﬂ(r, t), (4)

where ¥(r,t) is the quasiparticle wave function at posi-
tion r and time t. We consider a generic mean-field elec-
tronic Hamiltonian that depends on the magnetization
direction Harpa [m] and includes the periodic Hartree,
exchange and correlation potentials and relativistic cor-
rections such as the spin-orbit interaction. Impurity scat-
tering including magnetic disorder is also represented by
Harpa. The magnetization m is allowed to vary in time
and space. The total Hamiltonian depends additionally
on the Zeeman energy of the magnetization in external
H..; and dipolar H; magnetic fields:

H = Happa[m] — M, / drm - (Heo +Hy).  (5)

For this general Hamiltonian (), our task is to de-
duce an expression for the Gilbert damping tensor &. To
this end, from the form of the Landau-Lifshitz-Gilbert
equation (), it is clear that we should seek an expansion

in terms of the slow variations of the magnetizations in
time. Such an expansion is valid provided the adiabatic
magnetization precession frequency is much less than the
exchange splitting A or the spin-orbit energy which gov-
erns spin relaxation of electrons. We discuss first dissi-
pation in the LLG equation and subsequently compare
it with the expressions from scattering theory of electron
transport. This leads to a recipe to describe dissipation
by first principles. Finally, we discuss the connection to
the Kubo linear response formalism and prove that the
two formulations are identical in linear response.

III. DISSIPATION AND
LANDAU-LIFSHITZ-GILBERT EQUATION

The energy dissipation can be obtained from the solu-
tion of the LLG Eq. (@) as

E = —M, / dr [ra(r, t) - Heg(r, t)] (6)

J\js /dr/dr'rh(r) -&[m] (r,r’) - m(r). (7)

The scattering theory of magnetization dissipation can be
formulated for arbitrary spatiotemporal magnetization
textures. Much insight can be gained for certain special
cases. In small particles or high magnetic fields the col-
lective magnetization motion is approximately constant
in space and the “macrospin” model is valid in which
all spatial dependences are disregarded. We will also
consider special magnetization textures with a dynamics
characterized by a number of dynamic (soft) collective
coordinates &,(t) counted by a:2%:2%

m(r, ) = mg (r; {&a(t)}), (8)

where myg; is the profile at ¢ — —oo. This representation
has proven to be very effective in handling magnetiza-
tion dynamics of domain walls in ferromagnetic wires.
The description is approximate, but (for few variables)
it becomes exact in special limits, such as a transverse
domain wall in wires below the Walker breakdown (see
below); it becomes arbitrarily accurate by increasing the
number of collective variables. The energy dissipation to
lowest (quadratic) order in the rate of change &, of the
collective coordinates is

B Y Fubids )

ab

The (symmetric) dissipation tensor I'y; reads



oo = ]\js /dr/dr’a%gjr)a[m] (r,r')-
[

The equation of motion of the collective coordinates un-
der a force

o0
§—-% (1)

i+ [F+ (1) —T€=0, (12)

introducing the antisymmetric and time-independent gy-
rotropic tensor:

~ _% . Omg(r)  Omg(r)
Tab = 5 /drmst(r) [ 2%, X 2%,

We show below that § and I’ can be expressed in terms
of the scattering matrix. For our subsequent discussions
it is necessary to include a fluctuating force f(t) %Vith
(5(t)) = 0), which has not been considered in Refs. [20/21.
From Eq. @) if follows the time correlation of f is white
and obeys the fluctuation-dissipation theorem:

FaO)fp(t")) = 2kpTT o0 (t — t'). (14)

In the following we illustrate the collective coordinate
description of magnetization textures for the macrospin
model and the Walker model for a transverse domain
wall. The treatment is easily extended to other rigid
textures such as magnetic vortices.

] . (13)

A. DMacrospin excitations

When high magnetic fields are applied or when the
system dimensions are small the exchange stiffness dom-
inates. In both limits the magnetization direction and
its low energy excitations lie on the unit sphere and its
magnetization dynamics is described by the polar angles
6(t) and o(t):

m = (sin # cos @, sin 6 sin ¢, cos 6) . (15)

The diagonal components of the gyrotropic tensor vanish
by (anti)symmetry 7s9 = 0, 7y, = 0. Its off-diagonal
components are

S

Moy = sinf = —1ny0. (16)

V' is the particle volume and MV the total magnetic
moment. We now have two coupled equations of motion

MSV .« . 89 - A = . -
Ttpsm@ — % - (FGGG + FG«p‘P) - Oa (17)
MV, 00 o s o\

— ~ 931119 — 6_90 — (ngeo + nggpw) — O

Omyg; (r/)

) (10)

The thermodynamic potential €2 determines the ballistic
trajectories of the magnetization. The Gilbert damping
tensor I'yp will be computed below, but when isotropic
and local,

I =16(r — )M/, (18)

where 1 is a unit matrix in the Cartesian basis and «
is the dimensionless Gilbert constant, I'py = M;Va/7,
I, =0=Typ, and 'y, = sin® OMVa/y.

B. Domain Wall Motion

We focus on a one-dimensional model, in which the
magnetization gradient, magnetic easy axis, and external
magnetic field point along the wire (z) axis. The mag-
netic energy of such a wire with transverse cross section
S can be written as??

Q= MSS/dng(z), (19)

in terms of the one-dimensional energy density

2

K
_Hamz + _1

=3 2

€T

A’&m

K.
e (1-m?) +72m2 (20)

where H, is the applied field and A is the exchange stiff-
ness. Here the easy-axis anisotropy is parametrized by
an anisotropy constant K. In the case of a thin film
wire, there is also a smaller anisotropy energy associated
with the magnetization transverse to the wire governed
by Ks. In a cylindrical wire from a material without
crystal anisotropy (such as permalloy) Ko = 0.

When the shape of such a domain wall is pre-
served in the dynamics, three collective coordinates
characterize the magnetization texture: the domain
wall position &;(t) = ry(t), the polar angle &(t) =
ow(t), and the domain wall width Ay (¢). We con-
sider a head-to-head transverse domain wall (a tail-

to-tail wall can be treated analogously). m(z) =
(sin By, €O @y, sin Oy, sin @y, cos Oy, ), where
cos By, = tanh w2 (21)
W
and
csc By, = cosh fw =2 (22)

W

minimizes the energy (20) under the constraint that the
magnetization to the far left and right points towards the



domain wall. The off-diagonal elements are then 7,; =

0 = 7 and 7, = —2M,/y = —fjyr. The energy (20)
reduces to

Q= M,S[A/ Ay — 2Hr + K1 dy + Kao)y cos® o] -
(23)
Disregarding fluctuations, the equation of motion Eq.
(@) can be expanded as:

Vg 4 Qoo + WprT + Wprdw = YKy 5in 204,

(24)
2% + Qg + Qo + Ay = 27Hy, (25)
A/)\‘Q,V + QT F o + on/.\w = K| + Ky cos? ¢y,
(26)
where aqp = Y/ MS.

When the Gilbert damping tensor is isotropic and local
in the basis of the Cartesian coordinates, I' = 15(r —
v')Mya/y

2a T2
Oy = E; Qpp = 20Ay; oy = o (27)

whereas all off-diagonal elements vanish.

Most experiments are carried out on thin film ferro-
magnetic wires for which K5 is finite. Dissipation is es-
pecially simple below the Walker threshold, the regime
in which the wall moves with a constant drift velocity,
Pw = 0 and?3

w = —2vH, /. (28)

The Gilbert damping coefficient .. can be obtained di-
rectly from the scattering matrix by the parametric de-
pendence of the scattering matrix on the center coordi-
nate position ry. When the Gilbert damping tensor is
isotropic and local, we find 7y, = A\yyH,/@. The domain
wall width )\, = \/A/(Kl + K5 cos? py) and the out-
of-plane angle py, = 5 Larcsin2yH, /aK,. At the Walker-
breakdown field (H,)wp = a2/ (27) the sliding domain
wall becomes unstable.

In a cylindrical wire without anisotropy, Ko = 0, ¢y, is
time-dependent and satisfies

. 2+ agr) .
Pw = —Mrw (29)
Qpp
while
2vH,
F e (30)
2 (2= ) +a,
)

For isotropic and local Gilbert damping coefficients,22

Tw avH,
— = . 31

In the next section, we formulate how the Gilbert scatter-
ing tensor can be computed from time-dependent scat-
tering theory.

IV. SCATTERING THEORY OF MESOSCOPIC
MAGNETIZATION DYNAMICS

Scattering theory of transport phenomena?? has
proven its worth in the context of magnetoelectronics.
It has been used advantageously to evaluate the non—
local exchange interactions multilayers or spin valves
the giant magnetoresmtance spin-transfer torque,? and
spin pumping.1? We first review the scattering theory
of equilibrium magnetic properties and anisotropy fields
and then will turn to non-equilibrium transport.

A. Conservative forces

Considering only the electronic degrees of freedom in
our model, the thermodynamic (grand) potential is de-
fined as

Q = —kpT In Tre~ Harpa—ul), (32)

while g is the chemical potential, and N is the number
operator. The conservative force

5=-5 (33)
can be computed for an open systems by defining a scat-
tering region that is connected by ideal leads to reservoirs
at common equilibrium. For a two-terminal device, the
flow of charge, spin, and energy between the reservoirs
can then be described in terms of the S-matrix:

s=(1v). 39

where v is the matrix of probability amplitudes of states
impinging from and reflected into the left reservoir, while
t denotes the probability amplitudes of states incoming
from the left and transmitted to the right. Similarly,
v/ and t' describes the probability amplitudes for states
that originate from the right reservoir. t, v/, t, and t’ are
matrices in the space spanned by eigenstates in the leads.
We are interested in the free magnetic energy modulation
by the magnetic configuration that allows evaluation of
the forces Eq. (33). The free energy change reads

AQ = —kBT/deAn(e) In {1 +elemm/ksT] = (35)

where An(e)de is the change in the number of states at
energy € and interval de, which can be expressed in terms
of the scattering matr1x45

An(e) = —%%mw( ) (36)

Carrying out the derivative, we arrive at the force

I



where f(e) is the Fermi-Dirac distribution function with
chemical potential p. This established result will be re-
produced and generalized to the description of dissipation
and fluctuations below.

B. Gilbert damping as energy pumping

Here we interpret Gilbert damping as an energy pump-
ing process by equating the results for energy dissipa-
tion from the microscopic adiabatic pumping formalism
with the LLG phenomenology in terms of collective co-
ordinates, Eq. [@). The adiabatic energy loss rate of a
scattering region in terms of scattering matrix at zero
temperature has been derived in Refs. &Jﬁ In the ap-
pendices, we generalize this result to finite temperatures:

. h af BS(e t) 6ST(€ t)

Since we employ the adiabatic approximation, S(e,t) is
the energy-dependent scattering matrix for an instanta-
neous (“frozen”) scattering potential at time ¢. In a mag-
netic system, the time dependence arises from its magne-
tization dynamics, S(e,t) = S[m(t)](¢). In terms of the
collective coordinates &(t), S(e,t) = S(e, {£(¥)})

~—&a, (39)

where the approximate sign has been discussed in the
previous section. We can now identify the dissipation
tensor (I0) in terms of the scattering matrix

e o () [55) o

In the macrospin model the Gilbert damping tensor can
then be expressed as

o=z (-5 m (Bl @

where m; is a Cartesian component of the magnetization
direction..

C. Gilbert damping and fluctuation-dissipation
theorem

At finite temperatures the forces acting on the mag-
netization contain thermal fluctuations that are related
to the Gilbert dissipation by the fluctuation-dissipation
theorem, Eq. (I4)). The dissipation tensor is therefore ac-
cessible via the stochastic forces in thermal equilibrium.

The time dependence of the force operators

§(0) - - apaln) (42)
is caused by the thermal fluctuations of the magneti-
zation. It is convenient to rearrange the Hamiltonian
Happa into an unperturbed part that does not de-
pend on the magnetization and a scattering potential
Harpa(m) = Hp + V(m). In the basis of scattering
wave functions of the leads, the force operator reads

/de/de ea| |e B)d (e)ag (e/)ei(e_él)t/h, (43)

where ag annihilates an electron incident on the scatter-
ing region, § labels the lead (left or right) and quantum
numbers of the wave guide mode, and |¢/8) is an associ-
ated scattering eigenstate at energy ¢’. We take again the
left and right reservoirs to be in thermal equilibrium with
the same chemical potentials, such that the expectation
values

(@l ()as(€)) = bapdlc — €)f(c). (44)

The relation between the matrix element of the scattering
potential and the S-matrix

95(e) B :
8—5] = —2m<ea|— eB) (45)

{ST(E) 0€

follows from the relation derived in Eq. (@I below as
well as unitarity of the S-matrix, STS = 1. Taking these
relations into account, the expectation value of § is found
to be Eq (BZ) We now consider the fluctuations in the

force §(t) = F(t) — (§(t)), which involves expectation
values

(al, (ex)ag, (€1)al, (e2)as, (e3))
_< 011 61 G’B E/1)>< Ot2 62 a:@2 62)>

= 5a1[52 (61 - /2) 5[51a2 ( 62) f(el) [1 - f(eQ)] )
(46)

where we invoked Wick’s theorem. Putting everything



together, we finally find
(Fa()fs(t)) = 2kpT0(t — t')Tas, (47)

where Ty, has been defined in Eq. (@0). Comparing with
Eq. (M), we conclude that the dissipation tensor Ty
governing the fluctuations is identical to the one obtained
from the energy pumping, Eq. (@Q), thereby confirming
the fluctuation-dissipation theorem.

V. KUBO FORMULA

The quality factor of the magnetization dynamics of
most ferromagnets is high (¢ < 0.01). Damping can
therefore often be treated as a small perturbation. In
the present Section we demonstrate that the damping ob-
tained from linear response (Kubo) theory agrees?® with
that of the scattering theory of magnetization dissipation
in this limit. At sufficiently low temperatures or strong
elastic disorder scattering the coupling to phonons may
be disregarded and is not discussed here.

The energy dissipation can be written as

. dH
e () "

where () denotes the expectation value for the non-
equilibrium state. We are interested in the adiabatic
response of the system to a time-dependent perturba-
tion. In the adiabatic (slow) regime, we can at any time
expand the Hamiltonian around a static configuration at
the reference time ¢ = 0,

H=Hy+ Zéfa(t) <2TH> . (49)
a %/ m(r)—mg (r)

The static part, ﬁst, is the Hamiltonian for a magneti-
zation for a fixed and arbitrary initial texture myg;, as,
without loss of generality, described by the collective
coordinates &,. Since we assume that the variation of
the magnetization in time is small, a linear expansion in
terms of the small deviations of the collective coordinate
0, (t) is valid for sufficiently short time intervals. We can
then employ the Kubo formalism and express the energy
dissipation as

: : OH
E=Y"68&(1) (8_£a> : (50)
a m(r)—mg(r)

where the expectation value of the out-of-equilibrium
conservative force

of =0,H (51)
O&a
m(r)—mg(r)

consists of an equilibrium contribution and a term linear
in the perturbed magnetization direction:

<aaﬁ> (1) = <aasz>st +3 / Tt xn(t — )0t
~ ) s

(52)
Here, we introduced the retarded susceptibility

Xab(t—t'):—%e(t—t')<[aaf1(t),abH(t')}> . (33)

st

where (), is the expectation value for the wave functions
of the static configuration. Focussing on slow modula-
tions we can further simplify the expression by expand-
ing

06, (1) m 66, (t) + (' —t) &4 (1), (54)

so that

<aa1§l> - <aal§l>st + /Oo At xan (t — 1')0,(£)+

— 00

/Oo dt' xap(t — ') (' — 1) 6&,(1). (55)

— 00

The first two terms in this expression, <8afl st +
ffooo dt' xap(t — t')0&(t), correspond to the energy vari-
ation with respect to a change in the static magnetiza-
tion. These terms do not contribute to the dissipation
since the magnetic excitations are transverse, m-m = 0.
Only the last term in Eq. (B3 gives rise to dissipation.
Hence, the energy loss reduces to2?

; (56)

w=0

. .S
E:zZé{a&b%
ij

where x3,(w) = [0 dt [xab(t) + Xba(t)] €7/2.  The
symmetrized susceptibility can be expanded as

N~ o = fin) (0l8aH m)(m|0y H ) + (a + b)
ng_z 2 hw +in — (€n — €m)

)

nm

(57)

where |n) is an eigenstate of the Hamiltonian Hy, with

eigenvalue €,, fn, = f(€n), f(€) is the Fermi-Dirac distri-

bution function at energy €, and 7 is a positive infinites-
imal constant. Therefore,



(%) =n > (<5 ot mloniinte, — e (58)

nm

and the dissipation tensor

Afn

Loy = wz (—E> (n|Og Hm) (m|0y H|n)d(en, — €m)- (59)

We now demonstrate that the dissipation tensor obtained
from the Kubo linear response formula, Eq. (@9, is
identical to the expression from scattering theory, Eq.
0, following the Fisher and Lee proof of the equiv-
alence of linear response and scattering theory for the
conductance.26 . . .

The static Hamiltonian Hg () = Ho + V(&) can be
decomposed into a free-electron part Hy = —h2V2/2m

and a scattering potential V(¢). The eigenstates of Hy
are denoted |ps 4(€)), with eigenenergies €, where s = +
denotes the longitudinal propagation direction along the
system (say, to the left or to the right), and ¢ a trans-
verse quantum number determined by the lateral con-
finement. The potential V(&) scatters the particles be-

Tw=m Z /de (—%) <¢£E)

sq,8’'q’

where wave functions should be evaluated at the energy e.

tween the propagating states forward or backward. The
outgoing (+) and incoming (—) scattering eigenstates

of the static Hamiltonian Hy, are written as ‘1/)§f1)(e)>,

which form another complete basis with orthogonality re-
lations ({5 (¢ ’zp(i; (€)) = Go,000q,08(¢ — )32 These
+

@@)=n+
Giti)f/] |¢s,q), where the retarded (+) and advanced (—)

Green’s functions read Gi;t)(e) = (e+in— Hy)™'. By
expanding 'y, in the basis of outgoing wave functions,

wave functions can be expressed as

|1/1§7Jf1)> , the energy dissipation (9] becomes

Oult [ ) (v | ot

), (60)

Let us now compare this result, Eq. ([@0), to the direct scattering matrix expression for the energy dissipation,
Eq. 0). The S-matrix operator can be written in terms of the T-matrix as S(e; &) = 1 — 2miT(e;£), where the
T-matrix is defined recursively by 7' = V|1 + ééj )T] We then find

oT
0,

e [1+f/é§j>} 0. H [1+é§j>f/} .

The change in the scattering matrix appearing in Eq. ([@0) is then

0S¢ .sq
0¢,

Since

(v () (62)

= Z Ssq,s'q/ <1/’§’J;)f (€)
s'q’

and SST = 1, we can write the linear response result,
Eq. (@0), as energy pumping (@0). This completes our
proof of the equivalence between adiabatic energy pump-
ing in terms of the S-matrix and the Kubo linear response
theory.

= —2mi (pugl [1+ VEL ] 0uH [14 GOV lpwrr) = —2mi (017,

Outt [}, ) (61)

VI. CONCLUSIONS

We have shown that most aspects of magnetization
dynamics in ferromagnets can be understood in terms of
the boundary conditions to normal metal contacts, 7.e.
a scattering matrix. By using the established numerical
methods to compute electron transport based on scatter-
ing theory, this opens the way to compute dissipation in
ferromagnets from first-principles. In particular, our for-



malism should work well for systems with strong elastic
scattering due to a high density of large impurity poten-
tials or in disordered alloys, including Ni;_, Fe, (x = 0.2
represents the technologically important “permalloy”).

The dimensionless Gilbert damping tensors ({II) for
macrospin excitations, which can be measured directly
in terms of the broadening of the ferromagnetic reso-
nance, have been evaluated for Ni; _,Fe, alloys by ab ini-
tio methods.#2 Permalloy is substitutionally disordered
and damping is dominated by the spin-orbit interaction
in combination with disorder scattering. Without ad-
justable parameters good agreement has been obtained
with the available low temperature experimental data,
which is a strong indication of the practical value of our
approach.

In clean samples and at high temperatures, the
electron-phonon scattering importantly affects damping.
Phonons are not explicitly included here, but the scat-
tering theory of Gilbert damping can still be used for
a frozen configuration of thermally displaced atoms, ne-
glecting the inelastic aspect of scattering.12

While the energy pumping by scattering theory has
been applied to described magnetization damping® it
can be used to compute other dissipation phenomena.
This has recently been demonstrated for the case of
current-induced mechanical forces and damping, 23 with
a formalism analogous to that for current-induced mag-
netization torques.2:14
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Appendix A: Adiabatic Pumping

Adiabatic pumping is the current response to a time-
dependent scattering potential to first order in the time-
variation or “pumping” frequency when all reservoirs are
at the same electro-chemical potential 28 A compact for-
mulation of the pumping charge current in terms of the
instantaneous scattering matrix was derived in Ref. 139.
In the same spirit, the energy current pumped out of the
scattering region has been formulated (at zero tempera-
ture) in Ref. 27. Some time ago, we extended the charge
pumping concept to include the spin degree of free-
dom and ascertained its importance in magnetoelectronic
circuits.2? More recently, we demonstrated that the en-
ergy emitted by a ferromagnet with time-dependent mag-
netizations into adjacent conductors is not only caused

by interface spin pumping, but also reflects the energy
loss by spin-flip processes inside the ferromagnet!® and
therefore Gilbert damping. Here we derive the energy
pumping expressions at finite temperatures, thereby gen-
eralizing the zero temperature results derived in Ref. 27
and used in Ref. [15. Our results differ from an earlier ex-
tension to finite temperature derived in Ref. and we
point out the origin of the discrepancies. The magneti-
zation dynamics must satisfy the fluctuation-dissipation
theorem, which is indeed the case in our formulation.

We proceed by deriving the charge, spin, and energy
currents in terms of the time dependence of the scattering
matrix of a two-terminal device. The transport direction
is « and the transverse coordinates are ¢ = (y,z). An
arbitrary single-particle Hamiltonian can be decomposed
as

h? 02
H(r):_%@+HJ_(xvg)u (A1)
where the transverse part is
n? 92
H(z,0) = “om o +Vi(z, 0). (A2)

V(p) is an elastic scattering potential in 2 x 2 Pauli
spin space that includes the lattice, impurity, and
self-consistent exchange-correlation potentials, including
spin-orbit interaction and magnetic disorder. The scat-
tering region is attached to perfect non-magnetic electron
wave guides (left & = L and right « = R) with constant
potential and without spin-orbit interaction. In lead «,
the transverse part of the 2 x 2 spinor wave function
cpg[") (x,0) and its corresponding transverse energy 6((177,)
obey the Schroédinger equation

H.(e)pi (0) = eVel (e), (A3)
where n is the spin and orbit quantum number. These
transverse wave guide modes form the basis for the ex-

pansion of the time-dependent scattering states in lead
a=L,R:

. > dk . (k)
\I]a _ E (n) ezokxe i€y t/ﬁé(nka)7 A4
/0 V2T = va(e) o (A4)

~(nk . . ..
where ¢"*%) annihilates an electron in mode n incident

(o = +) or outgoing (¢ = —) in lead «. The field opera-
tors satisfy the anticommutation relation

~(nko) ~t(n'k'c’
{¢k>¢§ >}:&w%w&wak_y)

The total energy is e&nk) = h%k?/2m + 6((1")- In the leads

the particle, spins, and energy currents in the transport



direction are

. LLOU QT .
(p) — " 72 727
I 2mz/dgTrS (\IJ 9 On ), (Aba)
(s . T
Ve g faom (w15t S amy
2mai T T
I = i,/dgTrS (\iJTHa—\IJ — 8£H\il> + H.c.,
4mi T T
(A5c)

where we suppressed the time ¢ and lead index o, o =
(0z,0y,0) is a vector of Pauli matrices, and Try denotes
the trace in spin space. Note that the spin current I
flows in the z-direction with polarization vector I/I.
To avoid dependence on an arbitrary global potential
shift, it is convenient to work with heat I@ rather than

10

uide representation (A4) into (AZ]), the particle current
reads?!

. h o
»=_"_ / dkdk’ k+ o'k
o T ) Z (ck +o'k") x

noo’

ei(ak_a/k')me—i[eg"’”—e&"’“’)}t/hégnk'o/)égnkw. (A7)

We are interested in the low-frequency limit of the Fourier
transforms 18" (w) = e dtet IS (t). Following Ref.
we assume long wavelengths such that only the inter-
vals with k ~ k’ and o = ¢’ contribute. In the adiabatic
limit w — 0 this approach is correct to leading order in
hw/ep, where ep is the Fermi energy. By introducing the

(current-normalized) operator

energy currents (<) : &) (enk)y = %égﬂm), (A8)
déan o
19ty = 1(t) - uIP(1), (A6) v
where p is the chemical potential. Inserting the waveg- which obey the anticommutation relations
J
{égw) (€a)s é}‘s(n/dl) (65)} = 5aﬁ5nn’5oo/5(ea - Eﬁ)' (A9)

The charge current can be written as

o 1 o0 : /

(c) - / —i(e—€")t/hat(no) ( 1\ a(no)
IE9(t) 27 J.oo dede ;ge el (e ) (e). (A10)

We operate in the linear response regime in which applied
voltages and temperature differences as well as the exter-
nally induced dynamics disturb the system only weakly.
Transport is then governed by states close to the Fermi
energy. We may therefore extend the limits of the en-

ergy integration in Eq. (AIQ) from (e((xn),oo) to (—oo

to 00). We relabel the annihilation operators so that
d&"k) = é((l"f ) denotes particles incident on the scattering

region from lead « and l;((l"k) = é&”_’“’ denotes particles

leaving the scattering region by lead . Using the Fourier
transforms

G = [ e e, (A1)
1 o .
el () = — dee(m) (€)e /P, (A12)
2rh J_ o
we obtain in the low-frequency limit4!
9(t) = 2mh [af, (0aa(t) - B 0ba()] . (A13)

where b, is a column vector of the creation operators for

all wave-guide modes {l;((ln)} Analogous calculations lead
to the spin current

(s)

P = omn (a;aaa - B;ai)a) (A14)
and the energy current
. dio ;1 Ob
I =irh? | af, =2 — b1 =2 | + He.. Al
) i (aa 5 o« +Hc (A15)

Next, we express the outgoing operators IS(t) in terms
of the incoming operators a(t) via the time-dependent
scattering matrix (in the space spanned by all waveguide
modes, including spin and orbit quantum number):

ba(t) =Y / dt' Sep(t,t)as(t"). (A16)
B

When the scattering region is stationary, S,a(¢,t") only
depends on the relative time difference ¢t — ¢, and its
Fourier transform with respect to the relative time is
energy independent, i.e. transport is elastic and can



be computed for each energy separately. For time-
dependent problems, S 3(t,t") also depends on the total
time ¢ +t" and there is an inelastic contribution to trans-
port as well. An electron can originate from a lead with
energy €, pick up energy in the scattering region and end
up in the same or the other lead with different energy €.

The reservoirs are in equilibrium with controlled lo-
cal chemical potentials and temperatures. We insert the
S-matrix (AI6) into the expressions for the currents,

11

Eqgs. (A13), (A14), (A1), and use the expectation value

at thermal equilibrium
(al)(12)a§" (1)) = Gumapfalts = t2)/27h, (A1T)
eq

where fg(t1 — t2) = (2mh)™! [demicti=t)/hf (¢) and
fale) is the Fermi-Dlrac dlstrlbutlon of electrons with
energy € in the a-th reservoir. We then find

2 (B, (0)ba(1)) = Z [ dtrdeais(t.t2)Sus(t, 005301 1) (A18)
ot <Bg(t)aéa(t)> - Z / dtrdtsS? 5t 1) Sap(t ) fa(ts — t), (A19)
eq
27Th<hath Z/dtldtg h@t a,@(t tg)} Sa,@(t,tl)f,@(tl —tg). (AQO)
Next, we use the Wigner representation (BIl):
o0 !/
S(t ) = — des EHT o) emict—t/n, (A21)
27h

and by Taylor expanding the Wigner represented S-matrix S((t + t')/2,¢) around S(t,¢),

SO0 RS (L€)' — )™/ (2"n)), we find

S((t + t)/2,¢e) =

1 o0 . , .
S(t,t') = 3 h/ dee et )/hemaea‘/2S(t,e) (A22)
T
and
o0 . , . 1
N —ie(t—t")/h ih0.0¢ /2 [ — _
hopS(t,t") P dee e (2h8t ze) S(t,e). (A23)

The factor 1/2 scaling the term %0;S(t, €) arises from commuting e with e

as

190) %hz/ de :(e—iaeathﬂS;a(E,tD (eiaeat/zhsaﬁ(eat)) fale) — fa(e)}
1 (t) %h Z / de [ (7021280 (e,6)) & (92 Sus(e,)) (o))

(e) —i0.8, /2R _;
16 4%2/ de _(e (—ihdy/2 + €)

1 o0

=l de Ke—weat/%sga(e, t)) (eiaeat/zh(mat/Q + e)Saﬂ(e,t)) fale) — Efa(e)} ,

where the adjoint of the S-matrix has elements S, f(n'n) _

ih9:8:/2  The currents can now be evaluated

(A24a)
(A24b)
Shalet) (720 Sag(e,0)) Fa() = efule)]
(A24c)
= 5

We are interested in the average (DC) currents, where surnphﬁed expressions can be found by partial integration

over energy and time intervals. We will consider the total DC currents out of the scattering region, I(°"t) =

_Zalﬂﬂ

when the electrochemical potentials in the reservoirs are equal, f,(€) = f(€) for all . The averaged pumped spin and
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energy currents out of the system in a time interval 7 can be written compactly as

7l _

out -

oo

2mht
(s) _

out —

I(E)

out

o [nfon
[ o ferl

where Tr is the trace over all waveguide modes (spin
and orbital quantum numbers). As shown in Ap-
pendix [(] the charge pumped into the reservoirs vanishes
for a scattering matrix with a periodic time dependence
when,integrated over one cycle:

2th

I(P) =0.

out

(A26)

This reflects particle conservation; the number of elec-
trons cannot build up in the scattering region for peri-
odic variations of the system. We can show that a similar
contribution to the energy current, i.e. the first line in
Eq. (A25d), vanishes, leading to to the simple expression

Tdt
yOPSIENE
o T
Expanded to lowest order in the pumping frequency the
pumped spin current (A250) becomes

STo, f> o'}

T dt :
i 7/deTr{<SS f-
(A28)

This formula is not the most convenient form to com-
pute the current to specified order. SST also contains
contributions that are linear and quadratic in the pre-
cession frequency since S(t, €) is the S-matrix for a time-
dependent problem. Instead, we would like to express the
current in terms of the frozen scattering matrix Sg.(t, €).
The latter is computed for an instantaneous, static elec-
tronic potential. In our case this is determined by a mag-
netization configuration that depends parametrically on
time: Sg(t,€) = S[m(t),e]. Using unitarity of the time-

05T

A27)

ot
(

in o
2 0t

7 i

out —

1
2mh

ith oS

2 ot

(s) _

out

in o
2 Ot

85’
ot

(- 25) 5] oo

and the unitarity condition from Appendix [C]
T dt )
[feliss
o T

2 0t f

)

i [ oo

(6_

SIAF PR 25
20Yg] s} sy

22)s(c-22)s] 1)

(- 42)4 (o)}

dependent S-matrix (as elaborated in Appendix [C]), ex-
pand it to lowest order in the pumping frequency, and

insert it into (A28)) leads to3?
i T dt af :
g (YL .
2”;/0 T/ €< (96) { S0 }
(A29)

We evaluate the energy pumping by expanding (A27)
to second order in the pumping frequency:

108 05T
20t ot [

/ = [ Tr{—ZfS -~ (05
(A30)

As a consequence of unitarity of the S-matrix (see Ap-
pendix [()), the first term vanishes to second order in the

precession frequency:
b

a9
where, at this point, we may insert the frozen scattering
matrix since the current expression is already propor-
tional to the square of the pumping frequency. Further-
more, since there is no net pumped charge current in
one cycle (and we are assuming reservoirs in a common
equilibrium), the pumped heat current is identical to the
pumped energy current, I((,u)t I(Si)t
Our expression for the pumped energy current (A3T])
agrees with that derived in Ref. 27 at zero temperature.
Our result ([(A3T) differs from Ref. @ at finite tempera-
tures. The discrepancy can be explained as follows. In-
tegration by parts over time ¢ in Eq. (A27), using

aSfr

I(S)
ot

out

out

95y 8S]

(e) _
1,
ot ot

out T

_> 5} St _9 [(6 _ %;) 7 (6 ’;;) s} st (A32)



the DC pumped energy current can be rewritten as

(€) 1 T dt ih O
Ik = /deTr{[ef <e—5&> S} ST—ef(e)}.

13

(A34)

Next, we expand this to the second order in the pumping frequency and find

. 1 T dt
119 = / deTr{

This form of the pumped energy current, Eq. (A33]),
agrees with Eq. (10) in Ref. if one (incorrectly) as-
sumes SST = 1. Although for the frozen scattering ma-
trix, S’er’gr = 1, unitarity does not hold for the Wigner
representation of the scattering matrix to the second or-
der in the pumping frequency. (SST — 1) therefore does
not vanish but contributes to leading order in the fre-
quency to the pumped current, which may not be ne-
glected at finite temperatures. Only when this term is
included our new result Eq. ([(A3])) is recovered.

Appendix B: Fourier transform and Wigner
representation

There is a long tradition in quantum theory to trans-
form the two-time dependence of two-operator correla-
tion functions such as scattering matrices by a mixed
(Wigner) representation consisting of a Fourier transform
over the time difference and an average time, which has
distinct advantages when the scattering potential varies
slowly in time.24 In order to establish conventions and no-
tations, we present here a short exposure how this works
in our case.

The Fourier transform of the time dependent annihi-
lation operators are defined in Eqs. (A11) and (AI2).

Bn’s’

(88T —1) -

(' ty) =

Z /dt S(alﬁ) , / t Jt )S(Otzﬂ)*/ ,
nisi,n's nz282,n's

ih 35’

€(0ef)5 (A35)

hZ)S
— (@ f)8 o2 }

Consider a function A that depends on two times t;
and ty, A = A(t1,t2). The Wigner representation with
t=(t1 +t2)/2 and t' = t1 — to is defined as:

1 e -
Altr,t2) = %/ deA (t, ) e~ieti—t2)/h (B1)

oo / /
At,e) = / dt'A (t + %,t - %) et/ (B2)

— 0o

We also need the Wigner representation of convolutions,
(A® B)(t1,t2) =/ dt' A(t1,t)B(t', t2). (B3)

By a series expansion, this can be expressed as

(A® B)(t,¢) = e~i(0107=0702)/2 A4 \B(t,6) (B4)
which we use in the following section.
Appendix C: Properties of S-matrix

Here we discuss some general properties of the two-
point time-dependent scattering matrix. Current conser-
vation is reflected by the unitarity of the S-matrix which
can be expressed as

5n1n2551525a1a25(t1 - t2) (C]‘)

Physically, this means that a particle entering the scattering region from a lead o at some time ¢ is bound to exit the
scattering region in some lead 3 at another (later) time #'. Using Wigner representation (BI)) and integrating over
the local time variable, this implies (using Eq. (B4))

. T +
1= (S® S (te) = (o702 —070%) 12 gy gty ) (C2)

where 1 is a unit matrix in the space spanned by the wave guide modes (labelled by spin s and orbital quantum
number n). Similary, we find

o705 05" 0%) /2

1= (5" ®S) (te) = SHt St ). (3)

To second order in the precession frequency, by respectively subtracting and summing Egs. (C2)) and (C3)) give
{65’ ost 0S8 08T }

ot ac acar " (C4)



and

9?5 st

14

925 9*St

Tr{SST—1}=Tr{

Ot Oe2

20 92af
8585} (C5)

Otde Otde ' Oe2 Ot2

Furthermore, for any energy dependent function Z(€) and arbitrary matrix in the space spanned by spin and transverse

waveguide modes Y, Eq. (C2) implies

l/ dt/deZ(e)Tr
T Jo

Integration by parts with respect to ¢ and e gives

{ {{48565*-65*85)/25(15, O)SH(t,¢) - 1} Y} —0. (C6)

/ it / deTrH (07027 -0202%") 264 ) 70151 (1, ¢) — Z(e)} y} —o, 1)

which can be simplified to

%/OT dt/deTr {<[z <e+ %%) S(t,e)} St(t,e) — Z(f)) Y} = 0. (C8)

Similarly from (C3]), we find

%/()Tdt/deTr{<ST(t,e) {Z<

Using this result for Y = 1 and Z(¢) = f(e) in the
expression for the DC particle current (A25a]), we see
that unitarity indeed implies particle current conserva-
tion, > Ia () = 0 for a time- periodic potential. However,
such a relation does not hold for spins. Choosing Y = o,
we cannot rewrite Eq. (C3) in the form (A25H), unless
the S-matrix and the Pauli matrices commute. Unless
the S-matrix is time or spin independent, a net spin cur-
rent can be pumped out of the system, simultaneously
exerting a torque on the scattering region.

Furthermore, choosing Z(e) = [ de'f(¢/), Y = 1 and
expanding the difference between (?@I} and (CY) to sec-
ond order in frequency gives

/ dt/deTr{

which we use to eliminate the first term in the expression
for the energy pumping, Eq. (A30).

9510,
st} =0
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