

Pushing dynamic and ubiquitous interaction between services Leveraged in the
Future Internet by ApplYing complex event processing

Project number: 258659

Instrument: Collaborative Project

Thematic Priority: ICT-2009.1.2: Internet of Services, Software and Virtualisation

Start Date: 01/10/2010 Duration: 36 months

D6.3.1 - DEMO environment for
the telecom use case

WP6 Trials

Due date: M20

Submission Date: 19/06/2012

Organization Responsible for
the Deliverable:

FT

Version: V1.5

Status: Ready for submission

Abstract:

This deliverable aims at describing the demo
environment (smartphones and simulator) deployed
to get the Telecom Use Case operational and
connected to the PLAY platform.

Author(s):
Philippe Gibert, Osvaldo
Cocucci,

FT

Reviewer(s):
Života Janković, Dušan

Zirojević
CIM

D6.3.1 – Demo environment for the Telecom use case

Page 2

Dissemination Level

PU Public X

PP
Restricted to other programme participants (including the Commission
Services)

RE
Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission)

* - put X in proper field

Version History

Version Date Comments, Changes, Status
Authors,

contributors,
reviewers

0.1 30/04/2012 First ToC FT

0.2 14/05/2012 Added main chapters FT

0.3 14/05/2012 Added push + clic2kcall sections FT

0.4 15/05/2012 First Draft FT

1.0 18/05/2012 First readable version, section tests
to be provided,

FT

1.0 23/05/2012 Section 4 modified FT

1.1 24/05/2012 Internal review CIM

1.2 25/05/2012 CIM review + comments included

2.2.4 updated, Section 4 becomes
Section 5, Added Section 4

Connections with the PLAY platform
(to be inline with Armines)

FT

1.3 26/05.2012 Section 2.2.8 added ICCS

1.4 28/05/2012 Internal review CIM

1.5 4/06/2012 CIM review + comments included

Added 2.2.5 Adding New Event type

Section 6 Installation Added

FT

D6.3.1 – Demo environment for the Telecom use case

Page 3

Table of Contents

Executive Summary .. 7

1 Introduction .. 8

1.1 Purpose ... 8

1.2 Document outline .. 8

1.3 List of Acronyms .. 8

2 Scenario - Management of calls ... 9

2.1 Overview ... 9

2.2 Missed Calls Management scenario (MCM) .. 11

2.2.1 Sub scenarios details ... 11

2.2.2 MCM – Components .. 12

2.2.3 MCM - Events .. 13

2.2.4 Design-time connection ... 17

2.2.5 Adding New Event type ... 19

2.2.6 Run-time behavior ... 22

2.2.7 MCM – Overall Environment .. 23

2.2.8 MCM – Outgoing calls detailed .. 23

2.2.9 ESR’s Role in the Missed Calls Management Scenario 24

3 Demo Environment .. 27

3.1 Global Description ... 27

3.2 Applications and web services .. 27

3.2.1 Android smartphones Application .. 27

3.2.2 Siafu Simulator Application .. 28

3.2.3 Android Notification push mechanism .. 29

3.2.4 Click2Call Web Service ... 31

4 Connections with the PLAY platform ... 32

4.1 Constraints from the PLAY platform .. 32

4.1.1 Scalability .. 32

4.1.2 Security ... 32

4.2 Requirements for the PLAY platform ... 32

4.2.1 DSB Easy Interfacing ... 32

4.2.2 Definition of business rules: DCEP .. 32

5 Tests ... 33

5.1 Testing environment .. 33

5.1.1 Smartphones pushing events .. 33

5.1.2 Smartphones receiving notifications .. 34

5.2 Basic Unit Testing ... 35

D6.3.1 – Demo environment for the Telecom use case

Page 4

5.2.1 Testing outgoing events (MCM  PLAY) ... 35

5.2.2 Testing incoming events (PLAY  MCM) .. 37

5.3 Validation .. 38

5.3.1 Functional Test – Sub-Scenario 1a) ... 38

5.3.2 Functional Test – Sub-Scenario 1b) ... 38

5.3.3 Functional Test – Sub-Scenario 2 .. 39

5.3.4 Functional Test – Sub-Scenario 3 .. 39

5.3.5 Validation for the whole MCM application .. 40

6 Installation .. 41

6.1.1 Installation procedure .. 41

7 Conclusion ... 45

References .. 46

D6.3.1 – Demo environment for the Telecom use case

Page 5

Figures

Figure 1: Incoming call with built in reject .. 9

Figure 2: Missed Call Manager Description ... 10

Figure 3: Missed Call Manager – Components ... 12

Figure 4: Events In Hierarchy .. 13

Figure 5: Events Out Hierarchy ... 14

Figure 6: Missed Call Manager – Events from UC2PLAY ... 14

Figure 7: Missed Call Manager – Events from PLAY2UC ... 16

Figure 8: GeolocationEvent payload ... 17

Figure 9: Missed Call Manager – Push2Play Android code example 18

Figure 10: new Event type - BatteryEvent ... 19

Figure 11: Android code example – pushing batteryEvent .. 20

Figure 12: Android code example – RDF for batteryEvent .. 21

Figure 13: Missed Call Manager – Overall Environment ... 23

Figure 14: “Communicate with a Friend” SAN ... 24

Figure 15: “Communicate with a Friend” SAN – Graphical representation 25

Figure 16: Screenshot of the Event Subscription Recommendation 25

Figure 17: Screenshot of the “Same Location” Alert .. 26

Figure 18: MCM Service and MCM Set up DSB .. 27

Figure 19: Siafu Simulator .. 28

Figure 20 C2DM protocol - sequence diagram .. 29

Figure 21 C2DM Interface to DSB... 30

Figure 22 click-to-call API ... 31

Figure 23 Siafu simulation – pushing notifications ... 33

Figure 24 Android Emulator .. 34

Figure 25 Android Emulation – Getting notifications .. 34

Figure 26 Android Gingerbread codename (2.3.5) .. 41

Figure 27 Android Menu Settings .. 42

Figure 28 Installing apk ... 43

Figure 29 Inserting Phone Number .. 43

Figure 30 Application ready ... 44

D6.3.1 – Demo environment for the Telecom use case

Page 6

 Tables

Table 1: Test-MCM-outgoing-1 ... 35

Table 2: Test-MCM-outgoing-2 .. 36

Table 3: Test-MCM-incoming-1 ... 37

Table 4: Test-MCM-incoming-2 ... 37

Table 5: Test-MCM Sub-Scenario 1a .. 38

Table 6: Test-MCM Sub-Scenario 1b .. 38

Table 7: Test-MCM Sub-Scenario 2 .. 39

Table 8: Test-MCM Sub-Scenario 3 .. 39

Table 9: Validation-MCM .. 40

D6.3.1 – Demo environment for the Telecom use case

Page 7

Executive Summary

This deliverable describes the demo environment for the Management of Missed Calls
scenario, the involved components and the proposed testing and validation steps. A
quick installation manual is also provided.

The goal of this use-case is to mix Telco Events from smartphones and Web 2.0
information from Social Networks through an Android Application called Missed Calls
Manager (MCM). The MCM is implemented through Android Applications running on
smartphones, a simulation application hosted in a Siafu simulator [5] and Web services
managing the interaction between the PLAY platform DSB and the Orange back-ends.

In order to test and validate the use-case, unit testing and validation testing plans are
described. The execution of these tests and validation plans lead to an operational use-
case connected to the PLAY platform.

D6.3.1 – Demo environment for the Telecom use case

Page 8

1 Introduction

1.1 Purpose

The purpose of this deliverable is:

 To detail the applications and components involved in the Missed Call Manager
(MCM) scenario,

 To describe the demo environment for the Telecom use-case, focusing on this
scenario,

 To describe the tests validation plan and installation of the software application.

 To describe a quick installation manual.

This document will deliver a concrete and detailed view of the MCM application and the
interface of this MCM application with the PLAY platform.

1.2 Document outline

After a description of the MCM scenario in Section 2, Section 3 gives a technical
overview of the demo environment. Then Section 4 describes the Connection with
PLAY and Section 5 contains the description of the tests. Finally Section 6 gives an
overview of the installation process on an Android Smartphone.

1.3 List of Acronyms

Acronym Definition

DCEP Distributed Complex Event Processing

CEPAT Complex Event Pattern

GSM Global System for Mobile Communications

SMS Short Message Service

Outgoing
Calls

Telephone calls dial by the Customer

Incoming
Calls

Incoming Telephone calls for the Customer

Caller The party that originates a call

Callee The called party who answers a telephone call

MCM Missed Call Manager (Application)

WSN Web Service Notification

D6.3.1 – Demo environment for the Telecom use case

Page 9

2 Scenario - Management of calls

2.1 Overview

This Management of Calls scenario is described in [4] paragraph 2.3 and is mainly
implemented through Android applications that intercept missed outgoing and incoming
calls and push event instances respectively CallEvent (Outgoing) and CallEvent
(Incoming) to the PLAY platform. When the Application is running, GeolocationEvent
instances, tracking information on user‘s mobility are also pushed regularly to the PLAY
Platform.

More generally, the goal of this use-case is to mix Telco Events from smartphones and
Web 2.0 information from Social Networks. The challenge for this use-case is to add
value, mixing different event sources and combining event sources in a dynamic, not
hard-wired way. Dynamic patterns taking into account customer’s mood and/or context
and heterogeneous event sources are considered as well, not just telecom events
sources. Telco Operators and smartphones providers already deliver some flavour of
simple rule mechanism with automatic recall and SMS handling but the approach is
static and hard-wired. See below the handling of an incoming call with the possibility to
reject the call and send back an SMS (Android Gingerbread 2.3.5)

Figure 1: Incoming call with built in reject

So, to deal with this challenge the approach is based on a clever middleware Platform
containing a CEP engine. The following picture describes the main idea of the use-
case.

- An Android application is deployed on a smartphone (MCM Application).
This application intercepts events that occur in the smartphone. Some of
them are Telco oriented (Incoming and Outgoing calls), others are Social
Network oriented, such as Twitter and Facebook

- The issue is to mix these different event sources through a DCEP engine
hosted in the PLAY middleware platform. The added value comes from rules
and pattern (CEPAT) mixing these events, detecting complex situations and
contexts and finally triggering actions (for example automatically putting
users in relation or sending ‘New Event’ to the smartphone).

D6.3.1 – Demo environment for the Telecom use case

Page 10

Figure 2: Missed Call Manager Description

D6.3.1 – Demo environment for the Telecom use case

Page 11

2.2 Missed Calls Management scenario (MCM)

2.2.1 Sub scenarios details
The use-case is oriented toward telephone Service available to the customer through
the smartphone. The following assumptions are defined:

- The customer‘s smartphone is connected to GSM Service and Data
Internet Service and it is receiving incoming calls or making outgoing
calls from/to contacts,

- The customer has installed Twitter, Facebook and Google Latitude
applications on his smartphone.

The use-case is divided itself in sub-scenarios listed below:

1. Find and start the best service to put Customer and friend in relation:
a) The customer (Caller) calls a friend. The friend (Callee) does not

answer for whatever reason. The PLAY platform is aware of this
(after a sequence of calls) and detects that this friend is online on
Facebook (or have sent recently tweets on twitter). PLAY informs
him about this and automatically opens Facebook or twitter for the
Caller,

b) The customer calls a friend but the friend is located in a crowd of
people (in a stadium) and so does not answer. The friend has not
started Facebook or Twitter, but the Customer and Friend are using
Google Latitude. After N missed calls, PLAY platform reacts and
proposes to use Google Latitude to localize the friend, and traces
the route between them.

2. Put Customer and friend in relation whatever the service:

The customer calls the friend N times with no answer. The friend has started his
smartphone, but neither Facebook, nor twitter, nor latitude application. The PLAY
platform tries to send 2 times an SMS with acknowledgment from the friend – no
answer - then tries to send twitter messages – no answer - then the same for
Facebook. Finally from the Customer contacts list, the email address for the friend
is extracted and an email is sent.

3. Put Customer and friend in relation whatever the cellular Network status

(overloaded):
The customer’s smartphone is located in an overloaded Cell (cellular Network) for
voice and data. So he cannot normally make a call. The customer tries to call his
friend but the network refused the call because of the overload network. The
network informs the PLAY platform which sends an SMS to the customer with a
proposal: For 0.30 €, the customer can make his outgoing call as soon as a time
slot is available. These exchanges are done by SMS in order to cope with cell load.
If he accepts, a server automatically put them in relation

D6.3.1 – Demo environment for the Telecom use case

Page 12

2.2.2 MCM – Components
The following Figure highlights the different components involved in the MCM scenario:

 MCM Caller: this is the part of the application to be considered to have the role
of managing outgoing calls,

 MCM Callee: this the called part of the application to be considered to have
the role of managing incoming calls,

 Siafu Simulator: This application is useful for sending OutNetwork Events
instances. In one sub-scenario, it is mandatory to send this type of Event for
simulating overloaded cell areas,

 PLAY DSB component: this component, running on the PLAY platform
subscribes incoming events from the use-case and from the platform and
pushes them to subscribers. The DSB must be configured accordingly to push
to/from the use-case applications,

 CEP Engine component: The component that receives and detects situations.
CEPATs regarding the use-case must be provisioned in the DCEP engine ,

 WS Orange push2Android Component: This Web Service component
implements the interface between the PLAY DSB ’ world’ and the Android
‘world’. It receives notifications from the DSB and pushes them to the different
Android instances (specific section on this, see 3.2.3),

 WS Click2call component: This Web Service component implements the
interface between the PLAY DSB ’ world’ and the telephony ‘world’. It is used
to automatically create the call between parties (Caller and Callee).

Figure 3: Missed Call Manager – Components

D6.3.1 – Demo environment for the Telecom use case

Page 13

2.2.3 MCM - Events
Events are pushed from the MCM application to the PLAY ‘world’ thanks to the DSB
component. Events come from smartphones and are pushed to the PLAY platform.
They are classified as Events In from the platform point of view (Event Suppliers).

Events are generated from the PLAY platform and are pushed towards smartphones.
They are classified as Events Out from the platform point of view (Event Consumers).

2.2.3.1 Events type

Thereafter the basic Hierarchy for Events In:

Figure 4: Events In Hierarchy

D6.3.1 – Demo environment for the Telecom use case

Page 14

And the Hierarchy for Events Out:

Figure 5: Events Out Hierarchy

2.2.3.2 Events from use-case to PLAY platform

This figure adds to the previous one (MCM components), the event types involved in
the stream. The point of view is from the use-case to the platform.

Figure 6: Missed Call Manager – Events from UC2PLAY

D6.3.1 – Demo environment for the Telecom use case

Page 15

The involved Events are described in [6] and implemented in the Eclipse Project
commonDataTaxi (see the PLAY Forge [7], inEvents Package).

The different event types pushed to the platform are:

 GeoLocationEvent : indicates regularly the position of the Caller and The
Callee to the PLAY platform,

 CallEvent (Incoming, Outgoing): indicates a missed call to the PLAY platform
with mainly Caller#, Callee#, location and direction of the Call,

 TwitterEvent and FacebookEvent: indicates that a Callee sent tweets or
updates to his Facebook wall. Event instances signaling this are sent to PLAY
Platform,

 OutNetworkEvent: indicates the cellular network status (overloaded, out of
reach)

 AckEvent: it is sent in response to a RecomEvent, when the user acknowledges
or not the proposed recommendation.

D6.3.1 – Demo environment for the Telecom use case

Page 16

2.2.3.3 MCM - Events from PLAY platform to use-case

This figure describes the events involved in the stream from the PLAY platform to the
use-case. The DSB component is involved making the interface with 2 Orange Web
Services: WS Orangepush2Android, WS Click2Call.

Figure 7: Missed Call Manager – Events from PLAY2UC

The involved events are described in [6] and implemented in the Eclipse Project
commonDataTaxi (see the PLAY Forge [7], outEvents package).

The different event instances pushed from PLAY platform to the MCM application are:

 RecomEvent : They indicate recommendation to use an application to the
Caller (Twitter or Facebook, Google latitude)

 Clic2callEvent: They indicate that an automatic call between phones is going to
be operated.

D6.3.1 – Demo environment for the Telecom use case

Page 17

2.2.4 Design-time connection
Taking into account the requirements of the MCM Application, these event instances
are pushed to the PLAY Platform. They are firstly, generated in a bean JAVA format
and secondly transformed to RDF format thanks to textual templates provided by PLAY
(see [3]) .

Thereafter is an example of business message for a GeolocationEvent instance
containing the RDF (in cyan). The RDF message is enclosed with WSN notification
tags + xml glue (in yellow).

Figure 8: GeolocationEvent payload

Then the pushing of events to the PLAY platform is straightforward; the following
snippet of Android Activity code gives the basic sequence for pushing a CallEvent
instance.

1) Instantiate (with the help of a textual template) a CallEvent instance,
2) Set up the SOAP glue: this involves calls to WSN libraries (SOAP message

compliant to WSN) ,
3) Transform the event in RDF and add SOAP glue before and after,
4) Set up the Endpoint,
5) And finally send the event thanks to HTTP in REST mode.

D6.3.1 – Demo environment for the Telecom use case

Page 18

 Figure 9: Missed Call Manager – Push2Play Android code example

This transformation occurs for every event instance that is pushed from Android
phones to the PLAY DSB component in a very lightweight approach.

D6.3.1 – Demo environment for the Telecom use case

Page 19

2.2.5 Adding New Event type
An important issue in the context of PLAY is to have the capability to add New Event
Type. For example, the goal could be to add a new EventType signaling something
happening on the sensors of the smartphone. We can describe a very simple
BatteryEvent type that will deliver two interesting properties: the level of charge and the
temperature of the battery. The goal is to push these event instances to the PLAY
platform when for example the level is greater than 80% or less than 20%. The
procedure will be

1. Describe the new Event type.

public class BatteryEvent extends inEvent {

protected String level;

protected String temperature;

}

2. Add it the Event type to the EventIn Hierarchy :

Figure 10: new Event type - BatteryEvent

3. Implement a Receiver on the Android smartphone extending the

BroadcastReceiver class (see the Android documentation),

4. Listen to the Intent ACTION_BATTERY_CHANGED (see Android Intent
documentation) to get battery information,

5. Register the Receiver for this Intent. The onReceive operation of the receiver

class will be triggered automatically when there is a battery change and will
send appropriately the event instance in RDF when the battery level is below or

above the required value. The snippet of code for this onReceive operation is
presented below:

D6.3.1 – Demo environment for the Telecom use case

Page 20

Figure 11: Android code example – pushing batteryEvent

The steps numbered in red are 1) import the mandatory Android package and the new
Event type from inEvents, 2) get the battery level and if the condition is true, instantiate
a BatteryEvent with the appropriate properties, 3) convert it to RDF and post it to the
DSB 4) et 5).

6. The RDF output for this new EventType must be written with the help of a
template. For this BatteryEvent, following the approach described in 2.2.4 we
will get something like:

D6.3.1 – Demo environment for the Telecom use case

Page 21

Figure 12: Android code example – RDF for batteryEvent

The steps numbered in red are: 1) the new Event Type (TopicName). The PLAY
platform must be changed to add this new TopicName to the configuration. 2) The
different properties of the batteryEvent wrapped in the RDF.

Finally, these batteryEvents pushed to the PLAY platform can be exploited with a new
CEPAT taking into account battery events.

D6.3.1 – Demo environment for the Telecom use case

Page 22

2.2.6 Run-time behavior
The Events come from the PLAY platform to the use-case when CEPATs have been
triggered in the DCEP engine. These CEPATs have to be provisioned in the DCEP
engine.

When CEPATs are matched, actions are triggered and events are sent back to the
Orange back-ends. Two paths are described below (between the DSB and the WS
Clic2call and between the DSB and the WS Orange Push2Android):

1. The description of the path from the DSB to the WS Clic2Call is:
An instance of the DSB, running in Orange Labs needs to be configured for receiving
events. The following is an excerpt from the configuration file of the Orange Labs DSB
Instance. When this DSB receives a Clic2Call Event, it notifies the

Clic2CallConsumerService which parses the event and then automatically calls the

PSTN network to operate the call between both entities (Caller and Callee)

The endpoint
http://localhost:8089/wsnservices/services/Clic2CallConsumerService

 receives the clic2Call instance, parses the RDF thanks to the adaptors provided by
PLAY and finally makes the call.

2. The description of the path from the DSB to WSOrangePush2Android is:
An instance of the DSB, running locally in Orange needs to be configured for receiving
events. The following is an excerpt from the configuration file of the Orange Labs DSB
Instance. When this DSB receives a recomEvent, it notifies the

push2AndroidConsumerService on the local DSB to parse the event and

automatically pushes it to the WS push2AndroidConsumerService.

The endpoint

http://localhost:8089/wsnservices/services/push2AndroidConsumerService

receives a recomEvent instance, parses the RDF thanks to the adaptors provided by
the PLAY platform and finally pushes the notification to the right smartphone (as
described in the section 3.2.3 , Android Push mechanism).

D6.3.1 – Demo environment for the Telecom use case

Page 23

2.2.7 MCM – Overall Environment
Finally, the following gives an overall description: the main components (applications,
Web Services and Events) and their path from and to applications and services.

Figure 13: Missed Call Manager – Overall Environment

2.2.8 MCM – Outgoing calls detailed
Thereafter a detailed description for the processing for (missed) outgoing calls is
presented:

 Every time the user makes an outgoing or incoming call, the MCM Application
tracks it through opportune Android mechanism (Intents [2]) ,

 At the end of the call the Tracker checks if it was a missed call. In such a case,
it sends a CallEvent to the PLAY DSB, containing all the data related to the
user call (timeStamp, uniqueId, sequenceNumber, callDirection, message,
callerPhoneNumber, calleePhoneNumber, latitude, longitude)

 According to the PLAY DCEP engine and the user-customized (current) profile
configuration, when a specific situation of outgoing missed calls occurs in a
specified time window, PLAY DCEP Engine triggers some CEPAT and
generates a complex event, which activates some actions,

 Actions performed might be for example ‘perform automatically a call when the
Callee is available’ or ‘recommend using twitter to contact the Callee’.

D6.3.1 – Demo environment for the Telecom use case

Page 24

2.2.9 ESR’s Role in the Missed Calls Management Scenario
The Missed Calls Management scenario is considered a good case for providing
dynamic event subscription capabilities through the ESR value added software
component of PLAY. Event subscription recommender can be used for perceiving the
situation in which a user is unable to contact a friend and finds it interesting to
subscribe through a mobile device for the geolocation event stream of his/her friend.
This information could be used by a dedicated mobile application that uses this event
stream in order to constantly present the friend’s position on a map once the 2 mobile
phones appear to be in proximity. This scenario involves outgoing missed calls events
and mobile phone geolocation events that are currently available in PLAY portal.

Figure 14: “Communicate with a Friend” SAN

We have deployed the SAN (Figure 14, Figure 15) “Communicate with a Friend” that
involves the achievement of the two following subgoals:

 “Attempt to Locate Friend” – is considered achieved/successful when ESR
issues a recommendation to the user to subscribe to geolocation events of
his/her friend

 “Check Proximity and Alert” - is considered achieved/successful when ESR
issues a proximity alert once the user and his/her friend are really close (i.e.
less than 100m)

The traversal of the specific SAN results in the following actions from ESR perspective:

1. ESR waits for events that denote that the user (i.e. Caller) is unable to contact a
specific mobile phone (Callee) 3 times in a 60 seconds time window (i.e.
performs topic-based subscription).

2. If the above situation is detected then ESR checks whether or not this mobile
phone belongs to a friend (i.e. compare against Caller’s favorites list)

3. ESR waits for geolocation events transmitted by friend’s mobile phone (i.e.
content-based subscription). ESR will wait for such events for 30 minutes. After
that period the Callee is considered unreachable.

4. ESR checks whether the two phones are in proximity (i.e. less than 500m)

5. ESR recommends to the Caller to subscribe to friend’s geolocation events
stream

6. After this recommendation ESR still waits for geolocation events transmitted by
friend’s mobile phone

D6.3.1 – Demo environment for the Telecom use case

Page 25

7. If the above situation is detected then ESR checks whether the two phones are
in the same location (i.e. less than 100m). The two last steps are repeated until
the Caller and Callee appear in the same location.

8. ESR issues proximity Alert in order to inform the Caller that they both are in the
same location.

Figure 15: “Communicate with a Friend” SAN – Graphical representation

The recommendations issued by ESR based on the discussed SAN currently appear
as event notifications in PLAY portal under the event topic “ESRRecom”. In the
following Figure 16 and Figure 17 screenshots of ESR recommendations, relevant to
the missed calls scenario, are depicted. Specifically, Figure 16 presents a
recommendation for subscribing to a specific geolocation event stream while in Figure
17 the “same location” alert is depicted.

Figure 16: Screenshot of the Event Subscription Recommendation

D6.3.1 – Demo environment for the Telecom use case

Page 26

Figure 17: Screenshot of the “Same Location” Alert

D6.3.1 – Demo environment for the Telecom use case

Page 27

3 Demo Environment

3.1 Global Description

The demo environment consists of different applications and services deployed on
smartphones devices and Application’s servers. These applications and services are
used during the demo.

3.2 Applications and web services

3.2.1 Android smartphones Application
The MCM Application consists of:

- A background tracker Service that listens to incoming/outgoing calls,
- A GUI form that helps for customization and setup,

 Figure 18: MCM Service and MCM Set up DSB

By using this MCM Application the Caller and Callee are able to set up their personal
context relatively to incoming and outgoing calls.

D6.3.1 – Demo environment for the Telecom use case

Page 28

3.2.2 Siafu Simulator Application
In the MCM scenario #3, the Siafu Simulator is used to generate OutNetwork Events
instances. The simulation must be closely in relation with the Smartphone Caller
context to help testing correctly the scenario #3.

The goal is to gather events coming from ‘real’ sources (Smartphone’s) with events
coming from virtual ones (Siafu simulator).

The Siafu simulation delivers OutNetwork Event instances when the Caller (User #10
below) is moving in the street. For example if the user enters the clear grey area, the
simulation generates and pushes OutNetworkEvent instances with outofRange
information meaning that the user’s Smartphone is out of network. The PLAY platform
receives this event and reacts accordingly, thanks to CEPAT.

Figure 19: Siafu Simulator

D6.3.1 – Demo environment for the Telecom use case

Page 29

3.2.3 Android Notification push mechanism

3.2.3.1 Description/Design

In order to push notifications from the PLAY DSB, an operational solution is needed.
This push mechanism is based on Google Android C2DM see [8]. We started
implementing the whole use case using SMS to push information to the customers. The
problem with SMS could be the latency and the reliability of the service. This is the
reason why we looked for something more reliable and with a better user experience.

The C2DM service stands for Cloud To Device Messaging. It answers our need
offering a possibility to push information to the customer without having to keep a
connection alive on the customer side.

The protocol is quite easy to use, it needs two steps before the applications can
exchange with the mobile application. First the mobile application has to send a
registration request to a Google server then it gets a deviceId. The mobile application
can then provide this deviceId to the application supposed to send the notification
(remote application, see below).

Figure 20 C2DM protocol - sequence diagram

3.2.3.2 Interface to DSB

When the PLAY DSB component wants to communicate with a user it uses the remote
application that exposes a Web Service to push notification through the C2DM service
but providing the phone number instead of the C2DM ID. In fact, the remote application
stores the mapping between phone Number and C2DM ID during the registration. That
way the DSB can push a notification to a mobile device using the phoneNumber.

D6.3.1 – Demo environment for the Telecom use case

Page 30

3.2.3.3 Implementation

A general view describing how the push mechanism has been implemented is
presented below.

Figure 21 C2DM Interface to DSB

D6.3.1 – Demo environment for the Telecom use case

Page 31

3.2.4 Click2Call Web Service

The click to call Web Service is an Orange Enabler available to Orange’s customers
through a SOAP or REST interface. In the case of PLAY usage we decided to make it
simpler and linked it to one of our internal account in order to minimise the number of
parameters. Basically we wrapped a Web Service on top of the official service. That
way our partners can use the ‘new service’ providing the minimum number of
parameters (in this case only two phone numbers).

This Web Service makes a call between two given phone Numbers. The official
description is:

The application can make telephone calls to fix and mobile telephones worldwide

Figure 22 click-to-call API

In the case of PLAY we expose this Web Service through a REST API with only two
parameters:

http://urlOfOurWebService?from=phone1&to=phone2

In this case phone1 and phone2 are the ones used to create the call. The two phones
will ring and the communication will be opened when they both answer.

http://urlofourwebservice/?from=phone1&to=phone2

D6.3.1 – Demo environment for the Telecom use case

Page 32

4 Connections with the PLAY platform

4.1 Constraints from the PLAY platform

4.1.1 Scalability
The telecom use-case through the MCM Application, deployed on a large scale, has
the ability to push a lot of GeoLocation events, with frequent updates for the GPS
position (every 10 sec for example). These flows of events pushed from smartphones
must be absorbed quickly by the PLAY platform.

4.1.2 Security
High level of security regarding GeoLocation Event is required. The Geolocation data is
very sensitive information as it directly concerns the privacy of customers. More
generally, the properties such as PhoneNumber (for Caller and Callee) are also very
sensitive.

4.2 Requirements for the PLAY platform

4.2.1 DSB Easy Interfacing
MCM application instances must be easily connected to the DSB and must be able to
send event to the DSB in the required RDF format (as explained in 2.2.4).

The DSB must offer the publish/subscribe mechanism to MCM applications and orange
Web Service back-ends (Push2Android and Clic2Call WS as explained in 2.2.63.2.3).

4.2.2 Definition of business rules: DCEP
The different scenarios described require the implementation of rules in the DCEP
based on CEPATs. The first described situation concerns the detection of missed calls.
The goal is to detect N missed calls from/to the MCM application in the time window
(60s) and to react accordingly:

The reaction should vary from:

 The PLAY platform detects that this friend is online on Facebook (or have sent
recently tweets on twitter from the Callee MCM application). PLAY informs him
about this and automatically recommend Facebook or Twitter for the Caller,

 The PLAY platform reacts and recommends using Google Latitude to localize
the friend, and traces the route between them,

 The PLAY platform reacts and recommends using Email to the Caller to contact
the Callee,

 The PLAY platform detects that the Caller is located in an area where the
cellular Network is out of reach (thanks to outNetwork Events sent by Siafu
Simulator).

D6.3.1 – Demo environment for the Telecom use case

Page 33

5 Tests

This section provides some basic requirements to answer the issues of testing and
validation. The goal is to describe how to test and validate the use-case connected to
the PLAY platform. The strategy is:

 To test outgoing events from the use-case to the PLAY platform,

 To test incoming events pushed from the PLAY platform to the use-case,

 Finally to validate the whole MCM application connected to the PLAY platform.
These testing steps need some platform-oriented and event-oriented requirements to
be fulfilled (see [1] Section 11).

5.1 Testing environment

5.1.1 Smartphones pushing events
As the testing with many smartphones pushing events is really complex to setup (for
GPS updates especially), virtual smartphones instances will be simulated with a Siafu
simulation. Siafu features have been described in [4] 4.2.1.

Siafu will be customized to the MCM use-case testing requirements:

 Agents will be customers (Caller and Callee) and Location update events are
sent automatically based on the original map of the simulation,

 Places are identified as Points Of Interest on the selected map,

 Overlays will describe where special conditions may occur (OutNetworkEvent or
CallEvent in the context of MCM).

Key input parameters for the simulation will be:

 Number of simulated smartphones,

 GPS location update frequency,

 Duration of the simulation.
By varying these different parameters, the simulation will test various situations
regarding the PLAY platform. For example, considering 50 smartphones with a
frequency of 5 sec and duration of 12 hours, the simulation will be started from the
command line like this: startSiafu.sh –n 50 -f 5 – d 12.

 Figure 23 Siafu simulation – pushing notifications

D6.3.1 – Demo environment for the Telecom use case

Page 34

5.1.2 Smartphones receiving notifications
For the testing of notifications from the PLAY platform towards smartphones, we will
emulate smartphones with the Android Emulator available with the Android SDK [9].

Figure 24 Android Emulator

Instances of the emulator will be started on demand from the command line:
emulator.exe -avd testAVD10  (The targeted device is an Android 2.3.3 (API level
10)).

These different emulator instances will receive notifications from the AndroidPush
mechanism described before in 3.2.3. Key parameters will be:

 Number of emulated smartphones and duration of the emulation.
For example, considering 4 emulated smartphones with emulation duration of 1 hour,
the test will be started from the command- line like this:

startEmulators.sh –n 4 – d 1

Figure 25 Android Emulation – Getting notifications

D6.3.1 – Demo environment for the Telecom use case

Page 35

5.2 Basic Unit Testing

5.2.1 Testing outgoing events (MCM  PLAY)
The goal of this test is to stress the platform with events coming from many
smartphones. The events considered are GeolocationEvent instances and CallEvent
instances. This testing scenario refers to Figure 6: Missed Call Manager – Events from UC2PLAY
and will be implemented using the approach described in 5.1.1.

Test-MCM-outgoing-1

Description Test the pushing of GeolocationEvent instances to the PLAY
platform. The varying parameters for the simulation will be:

 The number of virtual smartphones (Siafu) (5, 10, 50),

 The frequency of GPS updates (ie GeolocationEvent
instances pushed) per virtual smartphones (every 10s, 1
min, 1 hour),

 The duration of the test (1 hour, 12 hours, 1 day),

 The map perimeter will be Paris intra-muros.

Test Type  Performance

Goal  To stress the platform with GeolocationEvent instances,

 To count the number of sent events and compare it with the
number of events received by the platform,

 To get the latency between event generation at the source
and event detection at the platform level

Prerequisites  Siafu simulation ready,

 DSB operational ,

 PLAY monitoring logs available.
Output  The test trace is stored locally. Occurrence time of events is

to be compared with detection time provided by the logs of
the PLAY platform

Table 1: Test-MCM-outgoing-1

D6.3.1 – Demo environment for the Telecom use case

Page 36

The goal of this test is to mix the sending of GeolocationEvent and CallEvent instances
and stress the platform.

Test-MCM-outgoing-2

Description Test the pushing of GeolocationEvent and CallEvent instances
together to the PLAY platform. The varying parameters for the
simulation will be:

 The number of virtual smartphones (5, 10, 50),

 The frequency of GPS updates (ie GeolocationEvent instances
pushed) per virtual smartphones (every 10s, 1min, 1 hour),

 The frequency of CallEvent instances pushed per virtual
smartphones (every 10s, 1mn, 1 hour) ,

 The duration of the test (1 hour, 12 hours, 1 day),

 The map perimeter will be Paris intra-muros.

Test Type  Performance

Goal  To stress the platform with GeolocationEvent instances and
CallEvent instances,

 To count the number of sent events and compare it with the
number of events received by the platform,

 To evaluate the latency between event generation at the
source and event detection at the platform level

Prerequisites  Siafu simulation ready,

 DSB operational,
 PLAY monitoring logs available.

Output  The test trace is stored locally. Occurrence time of events is to
be compared with detection time provided by the logs of the
PLAY platform

Table 2: Test-MCM-outgoing-2

D6.3.1 – Demo environment for the Telecom use case

Page 37

5.2.2 Testing incoming events (PLAY  MCM)
The goal here is to test the events originating from the PLAY platform targeting the
right smartphone. The events considered are RecomEvent instances. As the pushing
of notifications with many smartphones involved is really complex to setup, Android
emulator of smartphones instances will be used. With the emulator we can start up to
10 android virtual smartphones with automatic shell scripts. This testing scenario refers
to Figure 7: Missed Call Manager – Events from PLAY2UC and will be implemented
using the approach described in 5.1.2.

So the test for incoming RecomEvent instances will be:

Test-MCM-incoming-1

Description Test the pushing of RecomEvent instances to the Orange WS
Push2Android. The Orange WS realizes the interface between the
PLAY DSB and android emulator instances

The varying parameters for the simulation will be:

 The number of android emulators (2, 5, 10),

 The duration.

Test Type  Scalability

Goal  Check that RecomEvent instances are correctly delivered
to the right Android virtual smartphone.

 Check the latency between event generation by the
platform and event reception by the Android virtual
smartphone.

Prerequisites  MCM application installed on Android emulator,

 Orange WS operational,

 WS Orange Push2Android operational,
Output  Emulator instances logs the received events

Table 3: Test-MCM-incoming-1

The goal here in this test is to test the events from the PLAY platform targeting the
clic2call Scenario. The events considered are Clic2callEvent instances.

Test-MCM-incoming-2

Description Test the pushing of Click2CallEvent instances to the Orange WS
Clic2call (Caller# and Callee#)

Test Type  Functional

Goal  Check that Click2CallEvent instances arrived correctly
and are processed (with the PTSN network)

Prerequisites  MCM application installed on smartphone

 WS Orange Click2call operational
Output  Communication is automatically established between the

Caller and the Callee
Table 4: Test-MCM-incoming-2

D6.3.1 – Demo environment for the Telecom use case

Page 38

5.3 Validation

The go al is to test each sub-scenario from a functional point of view and then to
validate the whole application.

5.3.1 Functional Test – Sub-Scenario 1a)

Test-MCM-Sub-Scenario 1a

Description 1. Find and start the best service to put Customer and friend in
relation:

The customer (Caller) calls a friend. The friend (Callee) does not
answer for whatever reason. The PLAY platform is aware of this
(after a sequence of calls) and detects that this friend is online on
Facebook (or have sent recently tweets on twitter). PLAY informs
him about this and automatically opens Facebook or twitter for the
Caller

Test Type  Functional

Goal  Testing the situation for Twitter or Facebook
recommendation

Prerequisites  MCM application installed on the Caller Smartphone

 MCM application installed on the Callee Smartphone

 WS Orange Push2Android operational,
 CEPATs (see 4.2.2) operational.

Output  Caller receives recomEvent to use either Twitter either
Facebook on the smartphone

Table 5: Test-MCM Sub-Scenario 1a

5.3.2 Functional Test – Sub-Scenario 1b)

Test-MCM- Sub-Scenario 1b

Description 1. Find and start the best service to put Customer and friend in
relation:

The customer calls a friend but the friend is located in a crowd of
people (in a stadium) and so does not answer. The friend has not
started Facebook or Twitter, but the Customer and Friend are
using Google Latitude. After N missed calls, PLAY platform reacts
and proposes to use Google Latitude to localize the friend, and
traces the route between them

Test Type  Functional

Goal  Testing the situation for Google Latitude recommendation

Prerequisites  MCM application installed on the Caller Smartphone

 MCM application installed on the Callee Smartphone

 WS Orange Push2Android operational,
 CEPATs (see 4.2.2) operational.

Output  Caller receives recomEvent to use Google Latitude on the
smartphone

Table 6: Test-MCM Sub-Scenario 1b

D6.3.1 – Demo environment for the Telecom use case

Page 39

5.3.3 Functional Test – Sub-Scenario 2

Test-MCM- Sub-Scenario 2

Description 2. Put Customer and friend in relation whatever the service:
The customer calls the friend N times with no answer. The
friend has started his smartphone, but neither Facebook, nor
twitter, nor latitude application. The PLAY platform tries to send 2
times an SMS – no answer - then tries to send twitter messages –
no answer - then the same for Facebook. Finally from the
Customer contacts list, the email address for the friend is extracted
and an email is sent.

Test Type  Functional

Goal  Testing the situation “Email sent to the Caller”

Prerequisites  MCM application installed on the Caller Smartphone

 MCM application installed on the Callee Smartphone

 WS Orange Push2Android operational,
 WS Orange Click2call operational (for sending SMS)
 CEPATs (see 0) operational.

Output  Caller receives an Email

Table 7: Test-MCM Sub-Scenario 2

5.3.4 Functional Test – Sub-Scenario 3

Test-MCM- Sub-Scenario 3

Description 3. Put Customer and friend in relation whatever the cellular
Network status:

 The customer tries to call his friend but the network refused the
call because of the overload network. The network informs the
PLAY platform which sends an SMS to the customer with a
proposal: For 0.30 €, the customer can make his outgoing call as
soon as a time slot is available. These exchanges are done by
SMS in order to cope with cell load. If he accepts, a server
automatically put them in relation

Test Type  Functional

Goal  Testing the situation “Email sent to the Caller”

Prerequisites  MCM application installed on the Caller Smartphone

 MCM application installed on the Callee Smartphone

 WS Orange Push2Android operational,
 SiafuSimulator ready (for sending OutNetworkEvent)
 WS Orange Click2call operational (for sending SMS)
 CEPATs (see 0) operational.

Output  Communication is automatically established between the
Caller and the Callee after some SMS exchanges between
Caller and PLAY platform.

Table 8: Test-MCM Sub-Scenario 3

D6.3.1 – Demo environment for the Telecom use case

Page 40

5.3.5 Validation for the whole MCM application
The goal is to validate the whole MCM application. The MCM application is installed on
both Caller and Callee smarpthones.

Validation-MCM

Description The MCM application is installed for the Caller and for the Callee

Test Type  Validation

Goal  To Validate the whole Application

Prerequisites  MCM application installed on the Caller Smartphone

 MCM application installed on the Callee Smartphone

 WS Orange Push2Android operational,
 WS Orange Click2call operational
 Siafu simulation ready,

 DSB operational,
 PLAY monitoring logs available.
 CEPATs (see 0) operational.

Output  MCM Caller and Callee applications are operational on
smartphones. Different situations described are
experimented by the Caller and Callee.

Table 9: Validation-MCM

D6.3.1 – Demo environment for the Telecom use case

Page 41

6 Installation

6.1.1 Installation procedure
This procedure describes how to install manually the MCM.apk application on a
Samsung S1 Android Smartphone.

Prerequisite: Firmware version should be > 2.3.5 (Gingerbread codename). Go to
general Menu Settings -> AboutPhone and please check it.

Figure 26 Android Gingerbread codename (2.3.5)

D6.3.1 – Demo environment for the Telecom use case

Page 42

 Then

1. Allow your phone to install android Applications from “Unknown Sources” (i.e.
non-Market apps). To do this, navigate to Menu -> Settings -> Applications and
check the box marked “Unknown Sources“.

Figure 27 Android Menu Settings

2. Then either
a. Copy the mcmVx.y.apk file you want to install to your phone's memory

card and insert the card into your Android phone,
b. Go to Android Market and search for the Fast Installer application,
c. Open it and click on the Install button,
d. After it is installed, just open it. It will show you all the apk files stored

directly in the root directory of your memory card,
e. Just click on the mcmVx.y.apk application to install it.

 or

a) Install the Android SDK on your PC (You should get something like
C:\Program Files\Android\android-sdk-windows\ for the default
installation folder).

b) Connect your phone to the computer with your USB cable
c) Next, just open Command Prompt on the PC and type:

 adb install path/ mcmVx.y.apk

 adb.exe is located in C:\Program Files\Android\android-sdk-
windows\platform-tools (by default).

http://maketecheasier.com/install-applications-without-the-market/2011/01/28

D6.3.1 – Demo environment for the Telecom use case

Page 43

 path it the full path on your PC to reach your mcmVx.y.apk.

d) Your mcmVx.y.apk application is now installed. (See below the trace for
adb.exe installation on a PC, taking the mcmV1.3.apk file from the
c:\tmp folder

Figure 28 Installing apk

3. Then

a) Check that you have Data Internet Access and GPS activated on your
smartphone,

b) Now open the application on your phone and use it. You should get
something like the following MCM application asking for your local
phone number with international prefix (33 for France, 6 for mobile in the
example). This step is mandatory. Then the MCM Application will be
ready (fig Figure 30 Application ready)

 Figure 29 Inserting Phone Number

D6.3.1 – Demo environment for the Telecom use case

Page 44

 Figure 30 Application ready

c) The Online status means that the background Service is running, ready
to intercept calls (incoming and outgoing). It can be unchecked by the
user.

D6.3.1 – Demo environment for the Telecom use case

Page 45

7 Conclusion

The MCM scenario has been described and a technical view of the demo environment
presented.Then the tests and validation to be passed have been listed. A quick
installation manual has been described.

The execution of these tests and validation plans will lead to an operational MCM
application connected to the PLAY platform.

D6.3.1 – Demo environment for the Telecom use case

Page 46

References

[1] D1.3 PLAY Requirements Analysis:

http://www.play-project.eu/index.php/documents/doc_download/106-play-d13-
requirements-analysis-final.html

[2] Android Intents

http://developer.android.com/reference/android/content/Intent.html

[3] PLAY Event Adaptors
http://research.petalslink.org/display/play/Event+Adapter

[4] D6.1.1 Scenario of the Telecom Use-Case
http://www.play-project.eu/documents/viewdownload/3-deliverables-final/24-play-
d611-scenario-of-the-telecom-use-case

[5] Siafu
 http://siafusimulator.sourceforge.net/

[6] Telco Event Types

 http://research.petalslink.org/display/play/Event+Types

[7] Eclipse commonDataTaxi
 https://svn.petalslink.org/svnroot/trunk/research/projects/play/play-
usecases/play-usecase-telecom/commonDataTaxi/

[8] Android push C2DM
 https://developers.google.com/android/c2dm/

[9] Android Emulator
http://developer.android.com/guide/developing/tools/emulator.html

http://www.play-project.eu/index.php/documents/doc_download/106-play-d13-requirements-analysis-final.html
http://www.play-project.eu/index.php/documents/doc_download/106-play-d13-requirements-analysis-final.html
http://developer.android.com/reference/android/content/Intent.html
http://research.petalslink.org/display/play/Event+Adapter
http://www.play-project.eu/documents/viewdownload/3-deliverables-final/24-play-d611-scenario-of-the-telecom-use-case
http://www.play-project.eu/documents/viewdownload/3-deliverables-final/24-play-d611-scenario-of-the-telecom-use-case
http://siafusimulator.sourceforge.net/
http://research.petalslink.org/display/play/Event+Types
https://svn.petalslink.org/svnroot/trunk/research/projects/play/play-usecases/play-usecase-telecom/commonDataTaxi/
https://svn.petalslink.org/svnroot/trunk/research/projects/play/play-usecases/play-usecase-telecom/commonDataTaxi/
https://developers.google.com/android/c2dm/
http://developer.android.com/guide/developing/tools/emulator.html

