

Project	
 Reference	
 No.	
 287119	

Deliverable	
 No.	
 D	
 3.10	

Relevant	
 workpackage:	
 WP	
 3	
 	

Nature:	
 Report	
 	

Dissemination	
 Level:	
 Public	
 	

Document	
 version:	
 FINAL	
 	

Editor(s):	
 Nikolaus	
 Rumm,	
 Robert	
 Thaler,	
 Bernhard	
 Ortner,	
 Andreas	
 Noack,	
 Michael	

Kaufmann,	
 Peter	
 Orgon	

Contributors:	
 Peter	
 Sonntagbauer,	
 Susanne	
 Sonntagbauer,	
 Mario	
 Neumann,	
 Hakan	

Kagitcioglu,	
 Peter	
 Mairhofer,	
 Anton	
 Jessner,	
 Alexander	
 Kamenicky	

Document	
 description:	
 The	
 objective	
 of	
 this	
 document	
 is	
 to	
 describe	
 the	
 core	
 platform's	
 final	

architecture,	
 supplemented	
 by	
 selected	
 design	
 details.	
 	

The	
 document’s	
 structure	
 is	
 aligned	
 with	
 that	
 of	
 its	
 predecessor	
 D3.2	
 and	
 we	

tried	
 to	
 avoid	
 duplication,	
 referring	
 to	
 D3.2	
 where	
 necessary	
 and	
 focusing	
 on	
 the	

changes	
 that	
 were	
 introduced	
 to	
 the	
 system	
 since	
 then.	

Intelligent Tools for Policy Design

Deliverable 3.10

Final Software Design Description

Deliverable D3.10 2

History

Version	
 Date	
 Reason	
 Prepared	
 /	
 Revised	
 by	

0.1	
 2015-­‐07-­‐02	
 Initial	
 release	
 (based	
 on	
 D3.2)	
 Rumm	
 Nikolaus	

0.2	
 2015-­‐07-­‐14	
 Added	
 the	
 SAP	
 HANA	
 parts	
 Rumm	
 Nikolaus,	
 Robert	
 Thaler,	

Bernhard	
 Ortner	

0.3	
 2015-­‐07-­‐22	
 Reworked	
 the	
 HCP	
 details	
 based	
 on	
 feedback	
 Rumm	
 Nikolaus	

0.4	
 2015-­‐08-­‐07	
 Update	
 Rumm	
 Nikolaus	

0.5	
 2015-­‐08-­‐28	
 Final	
 release	
 for	
 internal	
 review	
 Rumm	
 Nikolaus	

1.0	
 2015-­‐08-­‐31	
 Final	
 release	
 Rumm	
 Nikolaus	

All rights reserved. No parts of this document may be reproduced without written permission from the
FUPOL programme steering committee and/or cellent AG. This includes copying, printing, processing,
duplicating and all other forms of distributing this document on any media.

Company names, product name, trademarks, logos and brand names used in this document might be
protected by law and belong to their respective owners.

We acknowledge that this document uses material from the ARC42 template, copyright (c) 2012 by
Dr. Gernot Starke and Dr. Peter Hruschka.

Deliverable D3.10 3

Table of Contents

1	
 INTRODUCTION AND GOALS ... 7	

1.1	
 The Purpose of the Project .. 8	

1.2	
 Requirements Overview ... 9	

1.3	
 Quality Goals .. 10	

1.4	
 Stakeholders ... 14	

1.5	
 The Hands-On Users of the Product ... 15	

2	
 ARCHITECTURE CONSTRAINTS ... 16	

2.1	
 Technical Constraints .. 17	

2.1.1	
 Software Requirements ... 17	

2.1.2	
 System Operations .. 19	

2.1.3	
 Programming Requirements .. 21	

2.1.4	
 Methodical Requirements .. 22	

2.2	
 Organizational Constraints ... 23	

2.2.1	
 Organization and Structure .. 23	

2.2.2	
 Resources .. 23	

2.2.3	
 Organizational Standards ... 25	

2.2.4	
 Legal Factors .. 30	

3	
 SYSTEM SCOPE AND CONTEXT .. 32	

3.1	
 Business Context .. 33	

3.2	
 Technical- or Infrastructure Context ... 34	

4	
 SOLUTION IDEAS AND STRATEGY ... 36	

4.1	
 Architectural Strategy .. 37	

5	
 BUILDING BLOCK VIEW .. 38	

5.1	
 Level 1 ... 39	

5.2	
 Level 2 ... 41	

Deliverable D3.10 4

5.2.1	
 Web Clients .. 41	

5.2.2	
 Access Management (Black Box Description) 42	

5.2.3	
 Account Management (Black Box Description) 42	

5.2.4	
 Campaign Management (Black Box Description) 42	

5.2.5	
 Client Management (Black Box Description) .. 42	

5.2.6	
 Crawler (Black Box Description) ... 43	

5.2.7	
 Data Management (Black Box Description) .. 43	

5.2.8	
 Knowledge Management (Black Box Description) 44	

5.2.9	
 Operational Support (Black Box Description) 45	

5.2.10	
 Social Media Management (Black Box Description) 45	

5.3	
 Level 3 ... 46	

5.3.1	
 Campaign Management (White Box Description) 46	

5.3.2	
 Data Management (White Box Description) ... 46	

6	
 RUNTIME VIEW ... 52	

7	
 DEPLOYMENT VIEW ... 53	

8	
 RECURRING OR GENERIC STRUCTURES AND PATTERNS 56	

9	
 TECHNICAL CONCEPTS AND ARCHITECTURAL ASPECTS 57	

10	
 REFERENCES AND BIBLIOGRAPHY ... 58	

Deliverable D3.10 5

Management Summary

The objective of the FUPOL project is the development of a new governance model

to support the policy design and implementation lifecycle. The innovations are driven

by the demand of citizens and political decision makers to support policy domains in

urban regions with appropriate ICT technologies. Those policy domains are very

important, since more than 80% of the whole population in Europe lives in urban

regions and the share will further grow in the future.

Deliverable D3.10 is the final software design description of the FUPOL Core

Platform. The FUPOL Core Platform is a central module of the FUPOL System,

providing services to the FUPOL users and to the other FUPOL modules:

• Centralized access and account management (security, user management)

• Campaign management (support for research activity)

• Client management (support for multi-client operations)

• Data and knowledge management

• Social media management including content crawling from Twitter,

Facebook and other social media sites

• Operational support (services that support the reliable operations of the

FUPOL System like logging)

• Integration services (messaging middleware, service coupling, …)

An important note is that this document covers the FUPOL Core Platform, but not the

complete FUPOL System. Thus all details mentioned in this document, the

architecture and the design focus on the core platform. Interactions with the other

FUPOL modules are explained on interface level, but lack any further detail, as these

have to be specified for the respective modules separately.

In order to fully understand the FUPOL Core Platform we recommend starting with

D3.6 Revised Requirements Specification and Use Cases in order to get an

understanding of the system's purpose and the requirements that drive this

Deliverable D3.10 6

architecture. The deliverable D3.11, which was published at the same time as this

document, provides an up-to-date description of the final core platform’s features as

of late August 2015, including the results of the benchmark tests that we performed.

This deliverable (D3.10) is based on D3.2.

There are significant dependencies between the content of D3.10 and other

deliverables (mainly from WP2/4, WP5 and WP6) which have to be respected to

design the FUPOL Core Platform based on the requirements as documented in D3.6

and in this deliverable.

Besides describing the architecture and the design of the final core platform we took

the opportunity for some reflection on the design decisions that we made. Most of

them are still valid, but with today’s knowledge and the technologies, services and

products that are available now we’d like to propose changes or enhancements to

our approach for the interested reader. Some of them might be implemented during

the commercialization of FUPOL.

Deliverable D3.10 7

1 Introduction and Goals

This is the final architecture and design documentation of the FUPOL core platform,

based on the project state of late August 2015, just a few months before the

project’s deadline. We don’t expect any changes to the architecture until the project

closes in November 2015.

The final system’s architecture is still based on the descriptions outlined in D3.2

(Preliminary Software Design Description Prototyp), but we had to revoke some of

the assumptions that we made in the project’s early stages and of course we

adapted to the feedback from pilot cities, scientific and engineering work packages

and possible customers.

So overall the system’s architecture, based on SOA (service-oriented architecture),

was stable and defined a technical system that was able to adapt to the changed

requirements throughout the project.

Major design changes included the elimination of the semantic data store (including

other semantic web technology) from the system due to severe stability issues and

several changes to the way in which the system’s modules (text processing,

visualization, simulation) interact with each other. All these changes were

implemented without significant updates to the architecture.

As outlined before the architecture favoured isolation of concerns and extensibility

over performance (one of SOA’s principles), which supported the project’s team in

working locally and integrating the system’s modules later, but impacted the

performance of some functionality, namely text processing.

We added notes and remarks to this document whenever relevant as a critical review

to some of our design decisions and to provide lessons learned for other related

projects.

Deliverable D3.10 8

1.1 The Purpose of the Project

Please refer to D3.2 for an introduction of the project’s scientific and business

background, its goals and its general approach.

Deliverable D3.10 9

1.2 Requirements Overview

For a detailed overview of the requirements of WP3 read the software requirements

specification in D3.6 Revised Requirements Specification and Use Cases.

Note that the project's development schedule is driven by user stories as the team

has chosen Scrum as their project management framework, but the software

requirements specification lists the requirements in form of a concise and consistent

document.

Deliverable D3.10 10

1.3 Quality Goals

The system's overall quality must be optimized to meet quality goals. The following

table was copied from D3.2, but we repeat it here because it was one of the major

driving forces behind the architecture and its understanding is important to get the

idea behind some design decisions. Furthermore we added some notes on the goals

that explain our experience with them.

Priority Quality Goal Rationale

1 Extensibility Social media is in a state of permanent change. During our

project duration it's very likely that i.e. additional social

media will enter the market and the architecture must be

able to extend the system to integrate these newcomers.

The same applies to simulation technologies and products.

The system must be extensible to integrate 3rd party

simulation products.

Notes (2015): extensibility was key to the architecture

throughout the project, as we had many changes related

to the interaction of modules (text processing,

visualization, simulation). In general the coupling of the

core platform to text processing and visualization became

more important than anticipated in the beginning, while

the coupling with the simulation module got looser over

time.

During the project social media underwent a major change

in usage, mostly triggered by the Snowden leaks. While

people were careless to provide personal data in social

networks and their operators supported this with generous

Deliverable D3.10 11

access to personal data, the situation has changed

significantly. As a consequence we had to remove

functionality from the system (i.e. we were unable to

access Chinese social media content and Facebook has

dropped important functions in their API recently).

2 Adaptability The system will be operated as a cloud based service and

must be able to handle various clients (customers) at the

same time providing a virtual partition with exclusive data

storage to them.

Notes (2015): Again, caused by the Snowden leaks the

focus on privacy and data control has increased and this

influenced our cloud strategy, which was postponed

several times during the project. A pure cloud based

system has a much smaller potential for exploitation, as

governments face severe limitations in their ability to

collect, use and share personal data within their

organization. The pilot cities and possible future customers

in general preferred on-premise installations over public

cloud services for this kind of data. So we had to consider

a solution that’s capable of public and private cloud

operations. This was not anticipated in the early project

stages.

3 Accuracy The system must support the users in generating accurate

and useful data describing current trends in social media

and precise simulation results. Accuracy in this sense is

defined as generating business value, i.e. the system must

produce results that are precise and accurate enough to

be of use in real-life policy making scenarios.

4 Privacy In order to be able to reach a high level of user

acceptance (especially among the eCitizens) the system

Deliverable D3.10 12

must protect their privacy with care.

Notes (2015): As already mentioned, the privacy concerns

have significantly changed during the project (more on the

pragmatic level, not so much on the legal, which seems to

be much more constraining to the public administrations).

We had a permanent struggle between what’s technically

possible and what the pilot cities would be able/allowed to

use. For example we decided to anonymize content very

early, but it was very easy to circumvent this obfuscation

strategy by just searching for a tweet in Google. So finally

we gave it up and the system is now to some extent able

to associate content with a user (i.e. to search for content

that was authored by some user).

5 Scalability The pilot scenarios currently cover 5 different clients

(customers) but the final product must scale up to a

significantly larger number than that (see WP3-79 for

details).

Notes (2015): the current pilot system stores several ten

millions of postings (depending on the client), which was

not so much of a limiting factor for the core platform, but

the scalability issues were significant with visualization and

text processing.

6 Internationali-

zation

Our clients (customers) live in different countries using

various languages (see WP3-15 for details) including non-

european languages like Mandarin. The system must be

able to handle them.

Notes (2015): we had no problems with European

languages, but the processing of Chinese content was a

challenge for text processing.

Deliverable D3.10 13

Non-goals

The following quality aspects are considered to be of minor relevance to the system

and its architecture and thus won't be adressed explicitly:

Non-goal Rationale

Look&Feel As this is a research project it's not a primary quality goal to produce a

software system the delivers eye-candy to its users.

The system must be usable, implement a consistent and

understandable user experience, but not necessarily appear super-

attractive.

However it was decided that those parts that are exposed to the public

(eCitizens) must be implemented in a way that is consistent with the

user's expectations of comparable systems. Otherwise we could not

attract enough users and would lose a significant number of opinions.

Deliverable D3.10 14

1.4 Stakeholders

A thorough description of this project's stakeholders can be found in D3.6 Revised

Requirements Specification.

Deliverable D3.10 15

1.5 The Hands-On Users of the Product

A thorough description of this project's stakeholders, including archtetypes

representing them, can be found in D3.6 Revised Requirements Specification.

Deliverable D3.10 16

2 Architecture Constraints

We don’t repeat the architectural constraints as outlined in D3.2 here, but add

comments on some of them where necessary on the following pages.

Deliverable D3.10 17

2.1 Technical Constraints

2.1.1 Software Requirements

2.1.1.1 Data Structures

The business data model is explained in D3.6 Revised Requirements Specification.

As we decided not to use proprietary GIS data from the pilot cities and instead rely

on free (Open Street Map) or commercial (Google Maps) data, the requirements for

storing geographical data (i.e. compatibility with INSPIRE) were mostly dropped. The

reason for this is that the simulators didn’t need the local geographical data that we

anticipated in the project’s early stages. Finally GIS data in the core platform is used

in the following contexts:

• for drawing base maps (backgrounds like city maps)

• for drawing the position of a posting in case we know its coordinates

• for expressing/drawing location-related opinions (opinion maps)

The SIOC/FOAF/DC ontology was used to represent social media data, including

relations between eCitizens. This decision was stable throughout the project and the

selected ontologies met our requirements.

Slight adaptations to the founding principles of SIOC had to be added in case of

microblogging (as there’s no concept of “forum” in Twitter), though. Please refer to

D3.6 for details on how each social media network’s data was matched to the FUPOL

ontology. Furthermore the <foaf:Person> was only used as a placeholder for an

(observed) account, as we never unified accounts that relate to the same person. So

a (natural) person still has several <foaf:Person> representations in the system if

the same person uses more than one account. However, this is not an issue for the

business requirements that we identified or to those that were raised by the pilot

cities.

Deliverable D3.10 18

FUPOL uses several social media sites as a data source for opinions, social relations

etc.

When we started the project the social media landscape was different from today’s.

Web based social media sites like Facebook were in heavy use and instant messaging

systems were an idea of the past. Today it seems that the tide is turning and

especially the younger people make heavy use of mobile instant messaging solutions

like WhatsApp, while Facebook’s level of attraction to them is in decline.

We were not able to access social media content from China for political reasons,

even that we tried hard for several months.

Anyway, the current core platform’s design uses point-to-point connections to the

APIs of Facebook and Twitter, which was easy to implement at first, but required

some maintenance over time, as these social media sites change their APIs regularly

based on changes of their business model. Our observation is that in general access

to user generated content is more restricted than it was four years ago. For example

Facebook limited access to personal walls (activity streams) in May 2015 and there’s

no way for us to circumvent this decision, so we had to remove already

implememented functionality from the system.

For future projects we’d recommend to avoid the maintenance-effort that is caused

by directly talking to the vendors’ APIs by using one of the now available social

media data aggregators (i.e. Datasift), thus delegating the maintenance of those

interfaces to an external party. Furthermore these services aggregate much more

data than we could ever do (i.e. some of them have direct access to Twitter’s

firehose).

Deliverable D3.10 19

2.1.1.2 Software Interfaces

All existing applications that are part of FUPOL are loosely coupled (using an

enterprise service bus).

The decision to go the SOA-path was justified by the quality targets as outlined in

1.3 and this decision is still valid, though it imposed several limitations, especially to

text processing and – to a lesser extent – to the visualization.

These limitations mostly relate to the overhead that is required to synchronize copies

of the crawled content between the core platform, the

topic/categorization/summarization system (developed by WP6) and the visualization.

The effect of the limitations is decreased performance and scalability.

We introduced a mechanism to cope with them (so that the system still produces

acceptable results within reasonable time, i.e. by implementing “forgetfulness”), but

we couldn’t overcome the principal limitations. The limitations were verified in our

benchmark tests (see D3.11) and most database traffic relates to synchronizing the

topic/category results with the core platform’s data.

2.1.2 System Operations

2.1.2.1 Batch- or Online Operations

FUPOL is an online processing system.

Batch-like operations are part of the system in some specific modules (i.e. the

crawler and social media management). This is usually done when time-triggered

processing happens. See the use cases in D3.6 Revised Requirements Specification

for details on that.

Batch processing is a practical consequence of the limitations that are imposed by

SOA and the current HTS algorithm (loose coupling between modules, distributed

Deliverable D3.10 20

data store, discrete training of the HTS model instead of streamed training). For

example WP6 originally used a derivative of online-LDA (latent Dirichlet allocation)

for topic extraction, which was better suited for processing streaming data than the

now-in-use NMF (non-negative matrix factorization) algorithm. The switch between

the algorithms had to be performed as LDA produced weak results and NMF was

much better in terms of quality of the generated topics. Anyway, the use of NMF

meant that the topic model’s training had to be triggered at discrete points in time,

and as a consequence of this the learned topics were transfered back to the core

platform in batches. This imposed significant load both on the text processing

module and on the core platform and we suspect that this is one of the triggers of

the instability that we observed with Virtuoso (the RDF store that was used in year

two and three).

In a future project we would add the text processing module directly to the core

platform and thus prevent the overhead that is caused by loosely coupling them. This

is the approach that SAP HANA took internally, where the text mining features are

directly executed in the in-memory database and thus able to process content in

real-time.

The batch processing that is used when learning topics and tagging content with

categories caused some confusion for end users, as they expected that a manually

created category would immediately be used to tag the content, but instead this

happened after some time (i.e. ten minutes). Furthermore it was difficult for the

users to understand that the system didn’t tag the whole content (i.e. all the past)

with their categories. This “forgetfulness” (usually the system considers the previous

three months) had to be added to cope with the data volume and one can argue

about the size of the timeframe, but not about the necessity of such mechanism.

Later in the project WP6 added the notion of “short term topics” and “long term

topics”, which is just another view on the same problem.

Deliverable D3.10 21

2.1.3 Programming Requirements

2.1.3.1 Libraries, Frameworks, Components

The core platform provides a web based user interface. There was and still is a large

number of frameworks available that support the developers in implementing display

and interface logic, including validation.

Such a framework usually provides the following features:

• Separation of concerns (model-view-controller paradigm, where the view and

the controller are supported by the web framework)

• Widget repository

• Support for web 2.0 features, especially deep integration of AJAX (using

JavaScript libraries)

• Support for client-side validation

We decided to use (server-side) Wicket, which was more advanced and flexible than

the other Frameworks that we considered by that time. Unfortunately it was difficult

to learn for new team members (that joined the project later), and in a new project

we’d not use it again and instead go for one of today’s client-side frameworks that is

better suited to support i.e. mobile platforms. Anyway, as client-side technologies

evolve at a high pace, any decision taken would sound suboptimal after four years.

Deliverable D3.10 22

2.1.4 Methodical Requirements

2.1.4.1 Analysis and Design Methodologies

Analysis and requirements engineering was performed following the Volere

requirements engineering process by Suzanne and James Robertson from The

Atlantic Systems Guilde.

This requirements structure was adequate and of big value to communicate

requirements between cities, the product owner and the developers. The fact that

we maintained it in a wiki added flexibility and transparency to the requirements.

On top of that an agile product planning process - based on Scrum with epics,

themes and user stories - drove the development schedule and the feature

prioritization. By using an agile methodology we were able to change the

development scope frequently while retaining a high quality level at reasonable cost.

Using Scrum for developing the core platform was the right decision, especially as it

practically enforced test automation, but in future projects we’d put more emphasis

on synchronizing the backlogs of the project teams. In fact we developed quite

independently from each other (bound to the negotiated APIs) which sometimes

blew our integration schedule (i.e. if required functionality was delivered later than

anticipated). This lead to delays in the integration of the text processing and

subsequently the visualization functions (which to a large extent depend on the

topics and categories).

Deliverable D3.10 23

2.2 Organizational Constraints

The budget distribution between the WP3 partners is fixed, which limits the

organizational freedom to use these budgets.

Changes to the resource allocation per partner happened and triggered several

changes to the DOW.

2.2.1 Organization and Structure

WP3’s organizational structure includes resources from several project partners,

mainly cellent, Active Solution, Qualysoft and Interfusion for research and

engineering tasks.

This has lead to some confusion at the reviews, as it was unclear to the reviewers

which participant was responsible for which feature or who executed which task.

Although the questions could finally be answered satisfactorily, we didn’t anticipate

them when designing the work package’s organization, which was based on an

integrated team that processed items fom the same backlog, instead of an

organization that is composed of several teams (one team per participant) with each

of them processing their own backlog.

2.2.2 Resources

2.2.2.1 Schedule

The project's top level schedule was as follows and has been granted by the project

sponsor:

Deliverable D3.10 24

As the core platform is central to the FUPOL system we decided to put most

resources in year one and two. This resulted in a usable core platform from year

three on that was used by the other project partners as a foundation and to perform

their pilot tests.

However there were significant delays in text processing and (subsequently)

visualization that we could only solve in year three. Overall the schedule was good

and we still had enough resources in year three and four to fulfill most requests from

pilot cities or to cope with the issues that we faced with the semantic data store.

Deliverable D3.10 25

2.2.3 Organizational Standards

2.2.3.1 Development Process

As already mentioned we used SCRUM as the development process, which worked

just fine.

2.2.3.2 Quality Standards

The project’s software tests were based on the ISTQB standard, which was adequate

and worked well.

The decision to automate most tests added much value to the overall progress.

However, we automated the core platform’s tests only, and not the integration tests

to the other modules (i.e. text processing). In a future project we’d try to improve

the integration by applying principles from test-driven-development here, as we lost

some time in (re-)integrating functionality that was still too buggy to be integrated.

This and the change of the algorithm was one of the causes why the availability of

the text-processing features was delayed to year three.

2.2.3.3 Development Tools

The following toolsuite was used to develop WP3. All of the tools worked well and we

had no major issues.

Tool Product Usage Remarks
Issue
tracking
system

Atlassian
JIRA

• management/tracking
of issues (defects)

• task management
• requirements

management (use
cases, atomic
requirements)

We developed
custom types for
atomic requirements
and use cases, based
on snowcards as
proposed by
IREB/Volere.

Furthermore JIRA is

Deliverable D3.10 26

used for agile
planning (JIRA Agile
Plugin

Test
management
system

Tarantula • test management
• test result

management

Dropped in year two,
as we started to use
JIRA for that purpose

Collaboration
system (wiki)

Atlassian
Confluence

• project communication
• requirements

elicitation &
documentation

• technical
documentation (pre-
official stages)

• glossary

We developed
several templates for
the wiki including a
wiki representation of
the Volere template.

Every work package
has its homepage in
the wiki.

Continuous
integration
server

Jenkins • building of deployables
• automated regression

testing
• generating test

coverage metrics
• performing continuous

integration

Configuration
management
system

Maven • management of the
generated deployables

Document
management
system

Microsoft
Sharepoint

• document
management

• document versioning

Sharepoint holds the
'official'
documentation
(some of it is
generated as PDFs
from pages in the
wiki)

Groupware
system

Microsoft
Exchange

• email (including
mailing lists)

• adress book
• calendar

Deliverable D3.10 27

2.2.3.3.1 Development and Staging Servers

WP3 used the following stages:

• development stage – the developer’s personal PC

• continues integration stage – for building and to perform basic automated

tests (a simplified subset of the automated test suite that produces results

within a few minutes)

• test stage (2) – an on-premise virtualized system for manual tests and

another one for test automation

• demonstration stage – an on-premise virtualized system for the pilot cities and

to support exploitation (demo runs and presentations)

During the project additional stages popped up from time to time for experiments

(i.e. for the benchmarks) and in year four we added a production stage on SAP

HANA Cloud Platform, which is the first cloud based system.

One of the challenges we had was that the maintenance of those server stages was

more time-consuming than anticipated for the developers, as the number of

technologies and products involved was quite high for every stage (i.e. Postgres with

PostGIS extension, Virtuoso, several Tomcat instances, test automation servers, ...)

and in order to generate reliable results (reproducable results) the system had to be

reset to a defined state before any tests could be performed. While this is true with

any software development project we had to perform the same procedure with other

teams as well (i.e. text processing) and the distributed data stores didn’t make this

easier.

In a future project we would put a stronger emphasis on synchronizing the backlogs

and the release schedule, including mandatory tests before the integration can be

started.

Deliverable D3.10 28

2.2.3.4 Configuration and Version Management

We used GIT (SVN in the earlier stages) for source code management and this

worked quite well.

However the work packages maintained their own code base individually and there

was no centralized versioning mechanism in effect. This was largely caused by the

fact that the work packages used different technologies and programming languages

for developing their modules (which is perfectly ok with SOA), and of course by the

background that the project partners brought with them (i.e. Xerox’ text processing

library or Fraunhofer’s SEMAVIS). For example the core platform is developed in

Java, the text processing module in Python and SEMAVIS in Adobe Flash (Action

Script).

An integrated build over all modules would not’ve added much value to the project.

2.2.3.5 Test Tools and Processes

We used a combination of JUnit (test driver), Selenium (http tests and scripting),

JIRA (test definition, test result documentation), Solar (code quality server) and

Jenkins (continuous integration server), together with some plugins, for planning,

documenting, programming, automating and executing the core platform’s tests.

These tools worked quite well, but as already mentioned the maintenance of the test

environment was cumbersome.

2.2.3.6 Acceptance and Release Processes

New releases were shipped after each sprint (every two weeks) during the regular

development time (mostly year one and two) and upon request or when new

features were available during year three and four.

Deliverable D3.10 29

Test automation added significant value to our capability to ship at a fast pace. For

example bugs could be fixed and a new release usually be deployed within short

time.

Deliverable D3.10 30

2.2.4 Legal Factors

2.2.4.1 Data Privacy and Security

Privacy is a major issue in all systems that process personal data, even more in all

domains related to policy making.

Restrictions originate from...

• data protection laws

• copyright laws

• other laws

• terms and conditions of the content providers

• cultural and political expectations

In order to build up trust and to achieve a high degree of acceptance the FUPOL

platform had to meet these expectations.

During the project the political and cultural view on data protection (not so much the

legal one, which was and is very strict) changed significantly, mostly triggered by Mr.

Snowden’s disclosure of the NSA leaks. As already mentioned this lead to changes in

the data sharing policies of some social media sites and prevented us from getting

access to Chinese content, severely hampering pilot operations in Yantai.

Overall, we feel that we couldn’t meet the privacy requirements satisfactory as

they’re highly controversial.

• commercial social media monitoring tools seem to ignore legal restrictions

(privacy, data protection, copyright, ancilliary copyright) until they’re sued and

fly either under the radar or rely on their commercial or market power.

• military or intelligence media monitoring – according to the NSA leaks -

ignores all related laws and applies techniques (signal intelligence, large scale

Deliverable D3.10 31

wire tapping, …) that clearly aim at de-anonymizing users. They use every

technology that’s available to solve their interests.

• municipalities on the other hand are of course obliged to adhere to the law

and thus many of them can’t make use of social media monitoring except

under specific circumstances (that are usually not met in their daily business)

– for example in Austria even the police is not allowed to access Facebook (in

fact they block Facebook access in the interior ministry) for monitoring without

a specific, documented and accepted cause. However, some cities do make

use of social media monitoring, but we’re not sure if this is based on careful

legal analysis or on deliberately avoiding noticing the legal situation.

So there’s a significant mismatch in what’s possible with today’s technology, what’s

allowed (or explicitly forbidden) and what’s finally done, especially for military or

commercial applications. Even if the sensitive data protection and privacy issues are

ignored there’s still the more commercial limitations that copyright or ancilliary

copyright laws impose. For example Germany’s ancilliary copyright prohibits the

viewing of newspaper snippets without prior obtaining a license from the copyright

proprietor.

The solution for this problem is out of the scope of our project, but we tried to avoid

the most obvious and sensitive issues of linking content to a person (de-anonymizing

an account), profiling users (i.e. by extracting features like gender from language

analysis) or analyzing their spatial movement (though we have the data for doing

that).

Deliverable D3.10 32

3 System Scope and Context

Deliverable D3.10 33

3.1 Business Context

An up-to-date description of the business context can be found in D3.11 (final core

platform). The following diagram was copied from that deliverable without further

explanations of the details. Please refer to D3.11 for additional explanations.

Deliverable D3.10 34

3.2 Technical- or Infrastructure Context

FUPOL is a distributed system and a such uses several other (internal) modules for

delegating specific tasks to them. The following diagram shows the main components

of the FUPOL system as seen by the core platform:

The data flows are mostly the same as proposed in D3.2, with the following changes:

• as we phased out the RDF store we had to replace SparQL by REST and RDF

by JSON for communicating with the summarization server and the

visualization (SEMAVIS). The change was trivial, but of course it delayed the

availability of the visualization.

• the relational database that the core platform uses can either be Postgres

(traditional on-premise installation) or SAP HANA (on-premise private cloud or

in the public cloud)

• the data flow between the core platform and the simulator(s) was reduced to

authentication, as the core platform doesn’t use/store the simulation results

(the simulators provide their result data directly to a client-embedded version

of SEMAVIS and store it locally).

Deliverable D3.10 35

More information on the data flows can be found in D3.2 (considering the changes

above).

Deliverable D3.10 36

4 Solution Ideas and Strategy

Deliverable D3.10 37

4.1 Architectural Strategy

The architecture follows a service oriented approach.

The reasons for this are:

• the core platform is the foundation for a homogenous product built from

modules that are implemented in various technologies (Java, Flex, Python,

C++, ...)

• as FUPOL is a research project we had frequent changes (i.e. text processing

changed its data structures, algorithms and the related API several times) in

scope and so we had to go for a high level in architectural flexibility. This rules

out tight coupling.

• the requirement of multi-client support (WP3-33, see D3.1) induces strict

security requirements that are easier to enforce if there's some central

communication middleware

• we must be able to add/remove modules with relative ease

Deliverable D3.10 38

5 Building Block View

Deliverable D3.10 39

5.1 Level 1

The actual architecture is based on an a service oriented architecture using an

enterprise service bus (ESB). Note that most connections between the modules are

(logically) point-to-point, but technically all communication is done through the ESB.

A description of the modules can be found in D3.2. Note that the feedback

community platform was only envisaged, designed and in an experimental stage, but

didn’t make it into the final product.

As already mentioned the SOA had impact on the performance and scalability of the

system (see the benchmark test results).

In a future project we would design a tighter coupling between the chatty

components (core platform to text mining and vice versa) and the visualization

service would get an abstraction layer to reduce the traffic between client and server

(currently all visualized data has to be transferred between the core platform and

SEMAVIS, which limits its use to detailed analysis and leaves the statistical overview

to the simpler visualizations of the core platform or to the currently being under

development self-service BI solution).

Deliverable D3.10 40

D3.11 provides a data flow diagram.

Deliverable D3.10 41

5.2 Level 2

The level 2 of the core platform’s architecture is very similiar to the one outlined in

D3.2 and we only describe the differences here.

5.2.1 Web Clients

The FUPOL Core Platform provides two different clients:

• FUPOL Console

• FUPOL Administration Console

Both consoles are accessible using web browsers.

FUPOL Console

The FUPOL Console provides user access to the core services. This is the application

that the internal users (facilitator, decision maker, domain expert, ...) utilize.

Furthermore it's able to render external content (like the opinion maps) that can be

accessed from third party systems (i.e. the city's blog).

Rendering content that is embedded in external systems (i.e. blogs or Facebook) was

a good decision, as it allowed us to get a higher reach for the citizens. For example

Pegeia used the opinion maps directly in Facebook and was able to generate

significantly better response than the pilot cities that placed their opionion maps just

on web pages.

FUPOL Administration Console

The FUPOL Administration Console or (FUPOL SysOp Console) is for internal use by

the FUPOL service provider's staff. It's main purpose is the management of the

clients (where a client is a pilot city).

Deliverable D3.10 42

The FUPOL Administration Console can only be accessed by users with the role

'system operator' and it didn’t evolve significantly from the initial release.

5.2.2 Access Management (Black Box Description)

Access management relates to enabling users to access the FUPOL Console or revoke

those rights from them.

FUPOL uses an internal account management system (see the next chapter) and

form based authentication for all internal users. eCitizens access the system by

providing their credentials from other systems (Twitter or Facebook) and we use

OAuth for authenticating them.

Using OAuth proved to be harder than anticipated because the involved callbacks

were limited by the mix of http and https (SSL) when we embedded our content as

iframes on (external) web pages. Some browsers (or versions of them) considered

this mix as unsafe and showed a warning or refused the call back connections.

5.2.3 Account Management (Black Box Description)

Accounts are managed in the FUPOL Console (except for the system operators and

administrators).

There’s currently no enterprise integration (i.e. Active Directory) available, but we

might inherit this feature from HANA.

5.2.4 Campaign Management (Black Box Description)

Campaign management was implemented as planned.

5.2.5 Client Management (Black Box Description)

Clients are managed in the FUPOL Administration Console. This includes

creating/locking them and setting their defaults (i.e. if a client prefers to use Open

Street Maps or Google Maps for the base maps).

Deliverable D3.10 43

5.2.6 Crawler (Black Box Description)

The crawler was implemented on a point-to-point basis so that the core platform

performs calls to each social media API individually. A scheduler (with manual

settings) controls the request frequency.

In a future project we would outsource this function to a social media aggregator

(i.e. Datasift) in order to reduce the effort that is required for developing and

maintaining those indivudual connections.

A special feature of the crawler is that we implemented a generic web reader using

boilerplate code elimination. This is used for extracting newspaper articles that are

linked from RSS streams. Boilerplate code elimination is more CPU-consuming than

interpreting a tweet, which is quantified in our benchmarks, but usually the number

of interpreted pages was much lower than with high volume streaming-data like

Twitter’s posts.

5.2.7 Data Management (Black Box Description)

Data are values of a qualitative or quantitative variables, belonging to a set of

items/themes ("facts of the world"). As an abstract concept data can be viewed as

the lowest level of abstraction from which information and then knowledge are

derived.

The data management as used by FUPOL had to be changed significantly, mainly

caused by the stability issues with the RDF store. However, the final system uses the

SAP HANA in-memory database, which is optimized for analysis and BI and a very

good foundation for later exploitation. With this move we can add self-service real-

time BI solutions to the collected data and provide campaign-individual dashboards

and views on the data, something that most commercial media monitoring tools lack.

This will be one of the competitive advantages that we’ll exploit to sell FUPOL.

Deliverable D3.10 44

5.2.8 Knowledge Management (Black Box Description)

Knowledge is a familiarity with someone or something, which can include

information, facts, descriptions, or skills acquired through experience or education.

Briefly said knowledge is what we know.

Knowledge management has undergone several changes throughout the project. In

the early stages an internal knowledge base, fed with external data and data that

was generated using FUPOL was envisaged (“city knowledgebase”), but this idea

proved to be less relevant for the cities, as there’s plenty of public data available for

their needs.

So we focused on providing (quantified) facts by adding a statistical data layer on

top of our RDF store (Virtuoso) and provided functions for importing statistical data

from Eurostat, while WP5 enhanced SEMAVIS with widgets for viewing numerical

data (SEMAVIS is designed as a semantic data browser). Importing data from

Eurostat worked well, but unfortunately their semantic data format for statistical data

(SDMX) was not adopted by most cities, though the national statistical organizations

started using it. In fact, we were unable to get relevant statistical data from cities in

SDMX format.

So the final solution is that SEMAVIS is directly accessing public data from Eurostat

and others, as storing this public external data in the core platform is quite pointless.

Deliverable D3.10 45

5.2.9 Operational Support (Black Box Description)

Operational support includes access to the log files.

5.2.10 Social Media Management (Black Box Description)

The term social media refers to the use of web-based and mobile technologies to

turn communication into an interactive dialogue.

A social media window is both a concept and an important domain object in FUPOL.

As a concept the term refers to the idea that a facilitator is interested in accessing

several social media sites in a convenient way ("single window to social media"). The

domain object is a container for social media access and the associated results

(content).

Social media management was implemented for the following media:

• Facebook (public pages; support for private pages was dropped by Facebook

in 2015)

• Twitter

• RSS (mostly used for importing newspaper or forum content)

• Sina Weibo (worked technically, but access was revoked by the service’s

operator before we could start any pilot tests)

• Opinion Maps

• Questionnaires

Opinion maps and questionnaires are tools that we added upon request from the

pilot cities, but their data is processed in the same way as the other social media

data.

As an enhancement we added support for EMM’s speech-to-text services which

allowed us to finally support social media, newspapers and broadcasters with the

system, adding the selling point of 24x7 media coverage to the system.

Deliverable D3.10 46

5.3 Level 3

More details on level three of the design can be found in deliverable D3.2. Again, we

just comment on the relevant differences between D3.2 and the final version.

5.3.1 Campaign Management (White Box Description)

As already mentioned we added questionnaires to the campaign’s tools, as a simple

example for a e-participation tool requested by cities.

FUPOL’s questionnaires (and the opinion maps) have the following advantages over

most existing commercial solutions:

• they can be embedded on external sites (as iframes), including social media

sites

• in case of authenticated access users can apply their Facebook/Twitter

credentials and don’t have to create yet another account

• the tools that FUPOL provides can be used on questionnaires and opinion

maps – the data store is integrated

Technically both tools are web pages that are generated by the core platform, which

provides their URL to the user. The URL is then used to insert the FUPOL-generated

content into another site.

Both tools support OAuth 2.0 with Twitter and Facebook. The planned support for

Sina Weibo’s OAuth servers had to be dropped for reasons already mentioned.

5.3.2 Data Management (White Box Description)

FUPOL’s data management has changed as the project progressed. While the initial

idea was to utilize semantic web technology for accessing external data and storing it

internally (RDF store), the available products had serious issues with stability or

performance.

Deliverable D3.10 47

We used...

• Apache JENA SDB/TDB (native or backed by Postgres; mostly for development

in the earlier stages)

• Virtuoso for test and pilot operations

While Apache JENA’s stores were too slow to fit (as we anticipated), we were unable

to operate Virtuoso in a way that fulfilled even our lowest requirements for platform

stability.

As outlined in D3.11, the issues can be summarized as:

• availability decreased over time – the response time increased significantly

under heavy load and the system was unable to restore normal operations

once the load was reduced, so we had to restart it almost daily

• under certain circumstances that we were unable to understand fully the

stored data became inconsistent, which was detected and reported by the

datastore, leading to labour-intensive clean-up operations

• furthermore we faced issues with Virtuoso’s JDBC driver that we had to fix

manually

The observed effects increased under heavy load, especially when concurrently

inserting RDS triples/quads to the same resource. Coping with these issues

consumed too many resources, so we had to drop Virtuoso in year three and

substituted the RDF store with a simple relational database (Postgres), preserving

the overall data structure, which is based on FOAF, SIOC and DC. The Postgres

based version was used for the pilot tests in year four.

However, during year four we took the opportunity to migrate the core platform to a

more advanced database system (SAP HANA), which solved several project issues for

us and which provides a solid basis for future development and commercialization,

and – given the possibilities that HANA provides – another selling point:

Deliverable D3.10 48

• By using SAP HANA, which is a platform-as-a-service product, we are able to

operate the core platform as a cloud based service, even to a very large scale

(i.e. the NSA uses HANA)

• FUPOL can be offered and sold in SAP’s cloud store, which provides an

additional sales channel and supports exploitation

• By operating the core platform on the HANA cloud platform we make use of a

very advanced in-memory database which is optimized for analytics (though

our benchmark tests showed that the overall speed of the current core

platform’s data processing is comparable to the less advanced Postgres

version of FUPOL). However, using the column-oriented store adds the ability

to perform real-time analytics to the collected data. This is something that

can’t be done with the Postgres-based version, as the analytics tools usually

work on a copy of the root dataset that’s cloned at discrete points in time (i.e.

daily).

• For future exploitation HANA – being a platform-as-a-service solution –

provides platform services that might be used to extend FUPOL’s functionality

to areas that were not covered by the project (i.e. sentiment analysis) at low

cost (as compared to develop it by the consortium)

To get a better understanding of the potential that this move brought into the FUPOL

system, a technical introduction to SAP HANA is provided.

According to SAP, HANA is based around „a common database approach for OLTP

and OLAP using an in-memory columnar database“. The business driver behind that

is that data management for today’s analytics applications requires real-time data

processing, while most existing solutions work on an isolated copy of some database.

So HANA implements the move from batch-based analytics (which is decoupled

regarding to time) to real-time analytics.

The following table illustrates this paradigm change:

Deliverable D3.10 49

Aspect	
 Traditional	
 Analytics	
 Real-­‐time	
 analytics	

Data	
 stores	
 1.	
 transaction	
 store	
 (=root	
 data)	

2.	
 analytics	
 store	
 (copy	
 of	
 1)	

3.	
 acceleration	
 store	
 (copy	
 of	
 2)	

Data	
 is	
 moved	
 from	
 1-­‐>2	
 at	
 discrete	
 points	

in	
 time	
 (i.e.	
 hourly)	
 and	
 from	
 2-­‐>3	
 upon	

request	

1.	
 transaction	
 store	
 (=all	
 data)	

	

	

There’s	
 only	
 one	
 source	
 for	
 the	
 data	
 and	
 the	

in-­‐memory	
 data	
 store	
 is	
 fast	
 enough	
 to	
 fulfill	

the	
 requirements	
 for	
 storing,	
 analyzing	
 and	

caching	
 the	
 data	

Latency	
 High	

Depending	
 on	
 the	
 data	
 store	
 (1,	
 2	
 or	
 3)	

Very	
 low	
 (random	
 access)	

Cost	
 per	
 byte	
 Low	
 High	
 (but	
 decreasing	
 and	
 already	
 low	
 enough	

for	
 many	
 applications)	

Besides the in-memory database HANA provides additional application services and

most of them are directly running in the in-memory database platform, making the

overall system very fast.

These services include (those that we deem to be relevant for extending FUPOL are

in italics letters):

• operational analytics (analyzing existing data, comparable to the core

platform’s campaign dashboard)

• predictive analytics (anticipating future changes in the data, i.e. events)

• machine learning (learning i.e. decision trees from the data)

• prescriptive analytics (scenario-based predictions)

• text processing (supporting many languages and with features that are out of

the scope of our project)

• sentiment analysis (supporting many languages)

• data streaming

• planning

• transations

• geospatial analytics and GIS

Deliverable D3.10 50

FUPOL currently only uses the HANA database and the platform’s Java runtime

(including the Tomcat server), but we might extend the system later to make use of

some of these services (i.e. sentiment analysis). Note that by integrating the services

from the datastore we could overcome some of the limitations that are imposed by

our SOA architecture, especially in text processing. Migrating the HTS functions from

Python to Java and executing them closer to the database should give the system a

huge performance boost (note that most of our database traffic is related to HTS –

see the benchmarks in D3.11 for details) and thus open the system to near real-time

topic extraction and categorization.

So the overall idea of HANA is that it’s not only a database, but a platform and the

application layer (which is for most part the core platform, the visualizations and the

simulators) operates on a rich set of database-bound services, delegating the

database-intensive work to optimized off-the-shelve services.

The defining features of the database (that we already use) are:

• data is kept in-memory as long as possible and the available DRAM is „huge“

(there’s a transparent paging mechanism available that moves data to slower

storage if it doesn’t fit into the DRAM). Thus no aggregates need to be

precalculated – all data models are calculated on-the-fly

• the data is organized in columns instead of rows, thus eliminating the need for

indices. Columnar data access is optimal for most analytics applications, i.e.

aggregations of column values and well suited for our data semantics (i.e.

tagging).

• the columnar data store is auto-compressing (data is only stored once; copies

refer to the single instance).

• data access can be parallelized (over CPUs, processes and machines) and is

thus much faster for processing big data

The following table shows the progression of the FUPOL platform over time, starting

with the Postgres-based version of year three, moving on to the HANA based version

Deliverable D3.10 51

of year four (which is the final version) and a potential future version (which might

be developed after the project ends):

Architectural	
 Layer	
 Classic	
 FUPOL	

(Postgres)	

Current	
 FUPOL	

(Hana	
 Db)	

Future	
 FUPOL	

(Hana	
 	
 Db	
 +	
 Services)	

User	
 interface	
 Wicket	
 +	
 browser	

SEMAVIS,	
 simulators	

Wicket	
 +	
 browser	

SEMAVIS,	
 simulators	

QlikView	

Wicket	
 +	
 browser	

SEMAVIS,	
 simulators	

QlikView	
 or	
 Lumira	

Service	
 Logic	
 core	
 platform	
 core	
 platform	
 core	
 platform	

Data-­‐centric	
 logic	
 core	
 platform,	
 text	

processing,	
 simulators	

core	
 platform,	
 text	

processing,	
 simulators	

core	
 platform,	
 text	

processing,	
 simulators,	

Hana	
 services	

Database	
 Postgres	
 Hana	
 HCP	
 Hana	
 HCP	

Besides the database FUPOL uses HANA’s Tomcat application server, so the whole

core platform is now available in the cloud.

Deliverable D3.10 52

6 Runtime View

The runtime view provides some insights on how the FUPOL Core Platform works

dynamically. A comprehensive description can be found in D3.2.

Deliverable D3.10 53

7 Deployment View

Technical- or Infrastructure Context

FUPOL is a distributed system and a such uses several other (internal) modules for

delegating specific tasks to them. The following diagram shows the main components

of the FUPOL system as seen by the core platform:

Note that the Postgis-extension to the FUPOL database, which we used in year one

and two, was removed from the system, as it was no longer necessary.

Both versions (Postgres and HANA) use Tomcat as a web/application server, with the

Postgres system on Tomcat 8 and the HANA system on Tomcat 7 (as Tomcat 8 is not

yet available on HANA).

Deliverable D3.10 54

Physical Servers and Development/Test/Demo Hardware

The Postgres-version is currently hosted on our virtualized on-premise server

(located at cellent’s office in Vienna). All stages (test, demonstration, …) are hosted

here.

The HANA version is hosted in SAP’s datacenters, which are distributed around the

globe:

Note that SAP offers a service that allows their cloud customers to limit the

geographical regions that their data is moved to. For example a German city might

be obliged that their data doesn’t leave Germany or the EU. We were asked for such

a service by potential customers several times.

The hardware that runs the Postgres version of FUPOL is now outdated, but still

strong enough to perform comparably to out (free) HANA instance in our

benchmarks:

 The physical server stage includes the following hardware...

• 2x Server IBM System x3550

CPU: Intel Xeon E5659 2,64GHZ

Deliverable D3.10 55

RAM: 65GB

• 1x IMB Storage TS2900 Tape Autoloader

• 1x IMB DS3500

12x 800 GB SAS harddisks (RAID)

• 2x SmartUPS 3000 XL (USV)

• 3x Cisco Catalys 2950 (Switch)

...and the following software components:

• VMWare Essentials

• Veeam Backup & Replication

Deliverable D3.10 56

8 Recurring or Generic Structures and Patterns

Generic UI Components

All user interface components are based on the light-weight component-based web

application framework Apache Wicket 6.0 (http://wicket.apache.org/, [Igo11],

[Joc12], [Mic09], [Ola09], [Ken10], [Ken12]) that we customized to fit our needs.

For reuse we developed many components as part of the FUPOL framework, which

was surprisingly difficult, especially for new team members.

Deliverable D3.10 57

9 Technical Concepts and Architectural Aspects

Deliverable D3.2 covers some design topics like inter-module communications,

coupling, physical distribution of the system’s nodes, exception and error handling,

logging, configurability, multi-threading (especially in the GUI), internationalization

(we developed localized versions for English, German and Slowak).

Please refer to D3.2 for further details.

Deliverable D3.10 58

10 References and Bibliography

Continous Integration

[Sim10] Wiest, Simon. Continuous Integration mit Hudson. 2010.

Geomatics

[Ant12] Perez, Antonio Santiago. Openlayers Cookbook. 2012.

[Nor05] Lange, Norbert de. Geoinformatik in Theorie und Praxis. 2005.

[Nor051] Bartelme, Norbert. Geoinformatik: Modelle, Strukturen, Funktionen. 2005.

[Dav10] David J. Maguire, Michael F. Goodchild, Paul A. Longley. Geographic

Information Systems & Science. 2010.

[Eri11] Hazzard, Erik. Openlayers 2.10 Beginner's Guide. 2011.

Hibernate

[Ric08] Richard Oates, Thomas Langer, Stefan Wille, Torsten Lueckow, Gerald

Bachlmayr. Spring & Hibernate: Eine praxisbezogene Einführung. 2008.

Maven

[Mar09] Spiller, Martin. Maven 2: Konfigurationsmanagement mit Java. 2009.

Mule

[Joh10] John D'Emic, David Dossot. Mule in Action. 2010.

PostgreSQL

Deliverable D3.10 59

[Leo12] Leo Hsu, Regina O. Obe. PostGIS in Action. 2012.

Scrum

[Bor11] Gloger, Boris. Scrum: Produkte zuverlässig und schnell entwickeln. 2011.

[Rom09] Pichler, Roman. Scrum: Agiles Projektmanagement erfolgreich einsetzen.

2009.

Social Media

[Mic12] Kamleitner, Michael. Facebook-Programmierung. Entwicklung von Social

Apps & Websites. 2012.

Software Architecture

[Dir05] Dirk Slama, Karl Banke, Dirk Krafzig. Enterprise SOA: Service-Oriented

Architecture Best Practices. 2005.

Test Automatisation

[Tho11] Thomas Bucsics, Manfred Baumgartner, Richard Seidl. Basiswissen

Testautomatisierung: Konzepte, Methoden und Techniken. 2011.

UML

[Iva05] Ivar Jacobson, James Rumbaugh, Grady Booch. The Unified Modeling

Language User Guide. 2005.

Java

[Cra12] Walls, Craig. Spring im Einsatz. 2012.

[Gar08] Mak, Gary. Spring Recipes: A Problem-Solution Approach. 2008.

Deliverable D3.10 60

[Jos08] Bloch, Joshua. Effective Java (Second Edition): A Programming Language

Guide. 2008.

JavaScript

[Kar12] Karl Swedberg, Jonathan Chaffer. JQuery lernen und einsetzen. 2012.

[Oli12] Ochs, Oliver. JavaScript für Enterprise-Entwickler. 2012.

[Sto11] Stefanov, Stoyan. JavaScript Patterns. 2011.

Web

[Avi09] Kaushik, Avinash. Web Analytics 2.0: The Art of Online Accountability and

Science of Customer Centricity. 2009.

[Pas08] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph. Semantic Web.

Grundlagen. 2008.

Wicket

[Igo11] Vaynberg, Igor. Apache Wicket Cookbook. 2011.

[Joc12] Mader, Jochen. Wicket: Komponentenbasiert und objektorientiert - das

alternative Java-Webframework. 2012.

[Mic09] Mosmann, Michael. Praxisbuch Wicket: Professionelle Web-2.0-Anwendungen

entwickeln. 2009.

[Ola09] Olaf Siefart, Carl-Eric Menzel, Roland Förther. Wicket: Komponentenbasierte

Webanwendungen in Java. 2009.

[Ken10] Tong, Kent Ka Iok. Developing Web Services with Apache Axis. 2010.

[Ken12] Tong, Kent Ka Iok. Enjoying Web Development with Wicket. 2012.

