
 

 

 

 

 

 

 

 

 

 

 

 

 
Project	
  Reference	
  No.	
   287119	
  

Deliverable	
  No.	
   D	
  3.9	
  

Relevant	
  workpackage:	
   WP	
  3	
  	
  

Nature:	
   Report	
  	
  

Dissemination	
  Level:	
   Public	
  	
  

Document	
  version:	
   FINAL	
  	
  

Editor(s):	
   Nikolaus	
  Rumm,	
  Robert	
  Thaler	
  ,	
  Bernhard	
  Ortner,	
  Hakan	
  Kagitcioglu,	
  Peter	
  
Mairhofer,	
  Anton	
  Jessner,	
  Alexander	
  Kamenicky,	
  Ilja	
  Hönigschnabel	
  

Contributors:	
   Peter	
  Sonntagbauer,	
  Herbert	
  Löw,	
  Susanne	
  Sonntagbauer,	
  Mario	
  Neumann,	
  
Christopher	
  Haigis	
  

Reviewers:	
   Herbert	
  Löw,	
  Oliver	
  Siml,	
  Abdukalikov	
  Bakythzan	
  

Document	
  description:	
   The	
  objective	
  of	
  this	
  document	
  is	
  to	
  provide	
  a	
  supplement	
  to	
  the	
  advanced	
  
prototype	
  release	
  of	
  the	
  FUPOL	
  Core	
  Platform	
  as	
  of	
  September	
  2014.	
  

The	
  document	
  covers	
  the	
  product	
  on	
  the	
  requirements	
  level,	
  adds	
  descriptions	
  
of	
  the	
  new	
  features	
  that	
  were	
  introduced	
  since	
  D3.5	
  and	
  additional	
  information	
  
on	
  tests	
  as	
  long	
  as	
  selected	
  architectural	
  and	
  design	
  decisions.	
  

   

Intelligent Tools for Policy Design 

Deliverable 3.9 
 

FUPOL CORE Platform  
Advanced Prototype Core Platform 



   

  
 

  
Deliverable D3.9          2 

History 
 
Version	
   Date	
   Reason	
   Prepared	
  /	
  Revised	
  by	
  

0.1	
   2014-­‐08-­‐22	
   Initial	
  release,	
  based	
  on	
  D3.5	
   Rumm	
  Nikolaus	
  

0.2	
   2014-­‐09-­‐05	
   Updated	
  the	
  features	
   Thaler	
  Robert,	
  Rumm	
  Nikolaus	
  

0.3	
   2014-­‐09-­‐08	
   Changes	
  to	
  the	
  HTS	
  integration	
   Thaler	
  Robert,	
  Ortner	
  Bernhard,	
  Rumm	
  
Nikolaus	
  

0.4	
   2014-­‐09-­‐15	
   Update	
  to	
  the	
  HTS	
  integration	
  –	
  category	
  tweaking	
   Ortner	
  Bernhard,	
  Rumm	
  Nikolaus	
  

0.5	
   2014-­‐09-­‐22	
   SEMAVIS	
  integration	
  -­‐	
  knowledge	
  base	
  and	
  data	
  
browser,	
  review	
  results	
  

Ortner	
  Bernhard,	
  Rumm	
  Nikolaus	
  

1.0	
   2014-­‐09-­‐26	
   Final	
  release	
   Ortner	
  Bernhard,	
  Thaler	
  Robert,	
  Rumm	
  
Nikolaus	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All rights reserved. No parts of this document may be reproduced without written permission from the 
FUPOL programme steering committee and/or cellent AG. This includes copying, printing, processing, 
duplicating and all other forms of distributing this document on any media. 

Company names, product name, trademarks and brand names used in this document might be 
protected by law and belong to their respective owners. 

We acknowledge that this document uses material from the Volere Requirements Specification 
Template, copyright (c) 1995-2010 the Atlantic Systems Guild Limited. 

We acknowledge that this document uses material from the arc42 template by Peter Hruschka and 
Gernot Starke (http://www.arc42.de). 



   

  
 

  
Deliverable D3.9          3 

  

Table of Contents 

 

1	
   INTRODUCTION AND GOALS ................................................................... 7	
  

2	
   THE PURPOSE OF THE PROJECT .............................................................. 9	
  

3	
   FEATURES .............................................................................................. 10	
  

3.1	
   Product Scope of the Prototype Version .................................................... 11	
  

3.2	
   Business Context .................................................................................... 13	
  

3.3	
   The Hands-On Users of the Product ......................................................... 16	
  

3.4	
   Development Team ................................................................................. 17	
  

4	
   ARCHITECTURE AND DESIGN ................................................................ 18	
  

4.1	
   Architectural Overview ............................................................................ 19	
  

4.2	
   Components and Level of Completion ....................................................... 20	
  

4.2.1	
   Start Screen ..................................................................................... 22	
  

4.2.2	
   Client Management ........................................................................... 23	
  

4.2.3	
   Campaign Management ..................................................................... 24	
  

4.2.4	
   Opinion Maps ................................................................................... 26	
  

4.2.5	
   Text Mining, Topics and Categorization .............................................. 27	
  

4.2.6	
   Campaign Dashboard ........................................................................ 33	
  

4.2.7	
   Campaign Data Browser .................................................................... 37	
  

4.2.8	
   (Social) Media Search ........................................................................ 39	
  

4.2.9	
   Social Media Account Pooling ............................................................. 41	
  

4.2.10	
   Knowledge Base ............................................................................. 41	
  

4.2.11	
   Facts and Figures – the statistical data browser ................................. 42	
  

5	
   DEPLOYMENT VIEW ............................................................................... 44	
  

6	
   TESTS AND QUALITY ............................................................................. 45	
  

7	
   USER MANUAL ....................................................................................... 46	
  

8	
   HOT TOPIC SENSING API ...................................................................... 47	
  



   

  
 

  
Deliverable D3.9          4 

8.1	
   Encoding and general guidelines .............................................................. 48	
  

8.1.1	
   Literals ............................................................................................. 48	
  

8.1.2	
   Empty values .................................................................................... 48	
  

8.1.3	
   Identifiers (Id) .................................................................................. 48	
  

8.1.4	
   Support paging for resultlist on GET requests ..................................... 48	
  

8.2	
   Domain objects used by API methods ....................................................... 50	
  

8.2.1	
   TopicEngineDocument ....................................................................... 50	
  

8.2.2	
   InferredDocuments ........................................................................... 52	
  

8.2.3	
   Category .......................................................................................... 54	
  

8.2.4	
   Topic ............................................................................................... 55	
  

8.2.5	
   TopicWord ........................................................................................ 57	
  

8.3	
   API Methods ........................................................................................... 58	
  

8.3.1	
   Getting categories by index ............................................................... 58	
  

8.3.2	
   Getting document indexes ................................................................. 58	
  

8.3.3	
   Adding Documents ............................................................................ 59	
  

8.3.4	
   Inferring from Existing Documents ..................................................... 60	
  

8.3.5	
   Inferring Documents ......................................................................... 60	
  

8.3.6	
   Create Category ................................................................................ 61	
  

8.3.7	
   Update Category Attributes ................................................................ 62	
  

8.3.8	
   Add Category Words ......................................................................... 62	
  

8.3.9	
   Remove Category Words ................................................................... 63	
  

8.3.10	
   Add Category Documents ................................................................ 64	
  

8.3.11	
   Remove Category Documents .......................................................... 64	
  

8.3.12	
   Merge Category .............................................................................. 65	
  

8.3.13	
   Retrieving Categories Documents ..................................................... 65	
  

8.3.14	
   Get Topics Proposal (with time slices) ............................................... 66	
  

8.3.15	
   Get Topics Proposal on Date ............................................................ 67	
  

8.3.16	
   Get Topics Proposal by Token .......................................................... 67	
  

 

 

  



   

  
 

  
Deliverable D3.9          5 

Management Summary 

The objective of the FUPOL project is the development of a new governance model 

to support the policy design and implementation lifecycle. The innovations are driven 

by the demand of citizens and political decision makers to support policy domains in 

urban regions with appropriate ICT technologies. Those policy domains are very 

important, since more than 80% of the whole population in Europe lives in urban 

regions and the share will further grow in the future. 

Deliverable D3.9 is the advanced prototype version of the FUPOL Core Platform as 

described in this document. Note that due to the nature of this deliverable almost all 

efforts that were necessary to produce it went into software development and that 

this document is only a description of what the software does and does not. So in 

order to benefit most from reading it we strongly suggest to use the software to get 

a better understanding of the features. There’s a user manual available that will 

guide you. 

The FUPOL Core Platform is a central module of the FUPOL System, providing 

services to the FUPOL users and to the other FUPOL modules: 

• Centralized access and account management (security, user management) 

• Campaign management (support for research activity) including tools like 

opinion maps and questionnaires 

• Client management (support for multi-client operations) 

• Data and knowledge management including GIS data, semantic and 

statistical data using semantic web technology 

• Social media management including content crawling from Twitter, 

Facebook and other social media sites 

• Operational support (services that support the reliable operations of the 

FUPOL System like logging, journaling) 

• Integration services (messaging middleware, service coupling, …) 



   

  
 

  
Deliverable D3.9          6 

An important note is that this document covers the FUPOL Core Platform, but not the 

complete FUPOL System. Thus all requirements mentioned in this software 

requirements specification, the architecture and the design focus on the core 

platform. Interactions with the other FUPOL modules are explained on interface level, 

but lack any further detail, as these have to be specified for the respective modules 

separately. 

In order to fully understand the FUPOL Core Platform we recommend reading… 

• D3.6 Revised Requirements Specification and Use Cases (which is the 

successor of D3.1) 

• D3.2 Preliminary Software Design Description to get an understanding of 

the technical design that realizes the requirements from D3.1 

• To a lesser extent we recommend reading D3.7 Test Reports Prototype to 

get an understanding of some user scenarios and workflows 

• …and finally there’s our user manual that describes how to use the 

software product from the civic servant’s point of view 

This deliverable (D3.9) is based on D3.5, D3.6, D3.2 and D3.7, with parts (i.e. 

screenshots) taken over from the user manual, too. 

There are significant dependencies between the content of D3.9 and other 

deliverables, like D2.6/2.19, D3.2/3.5/3.7, D4.1/4.2/4.3/4.3a/4.4, D5.1/5.2/5.3/5.4, 

D6.3/6.4, D7.5/7.6 and D8.5/8.9/8.12 which have been respected to design the 

FUPOL Core Platform based on the requirements as documented in D3.1/D3.6. 

 

While this document’s predecessor (D3.5) was based on the software release from 

late September 2013 this document is based on release 0.51 from the end of 

September 2014. 

  



   

  
 

  
Deliverable D3.9          7 

1 Introduction and Goals 

This is the description of the intermediate version of the FUPOL Core Platform, as 

being under development by the team of work package 3 (WP3), based on the 

project state of late September 2014. 

The FUPOL Core Platform is progressing well and it now provides features of actual 

real-life use for the pilot cities, and the current release is more or less feature 

complete. The product’s quality status can be described as “near production ready”. 

Most insufficiencies are related to non-functional requirements (better usability with 

some features, …), but we had significant progress with NFRs during the last period, 

especially with performance. 

This document shall describe what is available right now, what can be achieved when 

using the software and how it was done on a conceptual and technical level. The 

main focus is on what has been achieved and not on what will be in the future. 

It’s difficult to describe working software using text only, so we added some 

screenshots to this document, but we recommend using the product to get the whole 

user experience. 

For an introduction to the project and the product under development we suggest to 

start with D3.6 Revised Software Requirements Specification and Use Cases. 

Deliverable D3.2 will provide details on the architecture that go beyond the scope of 

this deliverable, while D3.7 will enhance the reader’s experience with test cases and 

exemplary workflows.  

Finally there’s the user manual which gives detailed instructions on how to use the 

software, following a very pragmatic and user-centric approach. 



   

  
 

  
Deliverable D3.9          8 

This deliverable’s structure is based on its predecessor D3.5. In order to deliver a 

more concise document we stripped all ‘generic’ chapters from it (they’re left as 

headers to preserve the chapter enumeration) and refer to D3.5 where necessary. 



   

  
 

  
Deliverable D3.9          9 

2 The Purpose of the Project 

For an introduction to the project’s purpose please refer to D3.1. 



   

  
 

  
Deliverable D3.9          10 

3 Features 

This chapter describes the features that are implemented in release 0.51. 



   

  
 

  
Deliverable D3.9          11 

3.1 Product Scope of the Prototype Version 

As already mentioned the prototype version is not yet the final product, but close to 

it and so not all of the features as listed in D3.5 (chapter 3.1) have been completed 

until now. Some features won’t be completed at all because they could not be 

realised for various reasons (i.e. access to Chinese social media data) or there was 

no need for them any more (i.e. because we access open data online instead of 

importing it). 

 

The main changes to the original scope are: 

• we preferred online data access over import/store functions (statistical 

data, geographical data, semantic data …) 

• not all social media sources could be integrated (i.e. we were never able to 

access Chinese social media content for political/legal reasons), but we 

integrated other sources that were not on our original agenda (i.e. RSS) 

 

For a list of all planned features please consult D3.5 (chapter 3.1). The following 

table lists the differences. 

 

Id Feature Reason 
WP3-338 Push campaign data back to 

the data base 
 

Replaced by accessing Open Data 
online – no local store required 

WP3-337 Pull campaign data from the 
data base 
 

Replaced by accessing Open Data 
online – no local store required 

WP3-77 Import statistical data Replaced by accessing Open Data 
online – no local store required 

WP3-76 Link geographical and 
statistical data 

Replaced by accessing Open Data 
online – no local store required 

WP3-75 Import geographical data Replaced by accessing Open Data 
online (Google Maps or Open 
Streetmaps) – no local store 



   

  
 

  
Deliverable D3.9          12 

required. Public data has advanced to 
a level that is sufficient for our use 
cases. 

WP3-339 Import semantic data Not required any more – knowledge 
base data is accessed online from 
Open Data sources 

WP3-340 Browse data from the data 
base 

Not required any more – statistical 
and semantic data can be browsed 
online using SEMAVIS 

WP3-62 Publish to social media window Not implement – regarded as spam 
by the social media companies and in 
violation of their T&Cs. 

WP3-65 GIS model according to 
INSPIRE 

Not required any more – 
geographical data is accessed online 
from Open Data sources 

WP3-32 Data import from CORINE 
2006 (urban atlas) 

Not required – the simulators access 
their required data online from Open 
Data sources 

WP3-31 LUCAS data import (land use 
data) 

Not required – the simulators access 
their required data online from Open 
Data sources or they’ll implement 
their own data import functions (ie.. 
commercial off-the-shelf simulators) 

WP3-2 Support for importing and 
storing Eurostat data 

Not required – accessed online 

WP3-80 Anonymized citizen data Not implemented because it’s easy to 
search for the data using Google or 
other search engines – however we 
don’t expose the user’s data 
everywhere 

WP3-20 Import of Linkedin data Not implemented – not relevant for 
citizens 

WP3-820 Import if Sina Weibo data Not implemented for legal reasons – 
no access to Chinese social media 
data 

 

 



   

  
 

  
Deliverable D3.9          13 

3.2 Business Context 

For a complete description of the FUPOL core platform's business context, including a 

representative business event list, read D3.6. 

The following diagram illustrates the business context of the FUPOL core platform. 

Note that this is not the context diagram of the FUPOL system, but just the part of it 

covering the important aspects of the FUPOL Core Platform. 

 

 

 

The Business Context shows other systems and units which are connected to the 

FUPOL core platform. In the following the interaction between the FUPOL-system 

and the surrounding systems is described. 

 



   

  
 

  
Deliverable D3.9          14 

External 
System 

Connection to FUPOL 

Decision 
Maker 

The decision maker is one of the most important stakeholders. He is the 
one that is responsible for the policy and uses FUPOL to integrate the 
eCitizen into the policy making process. 

Facilitator The facilititator uses FUPOL for every-day-business. He accesses the 
FUPOL core platform with a web-client and executes campaigns initiated 
by the decision maker. Facilitators are power-users. 

Statistical 
Institutions 

Statistical institutions are collecting and processing statistical data (i.e. 
population per region). Examples are eurostat and the municipality's 
local agencies. They provide their data in SDMX format or – more 
recently – although in RDF. The system is capable of connecting to 
Open Data sources using RDF. 

Institutions 
providing GIS 
data 

GIS-Data-Providers deliver spatial data (i.e. maps, thematic map layers, 
...). This data will be used for visualization, simulation and for 
georeferencing statistical data. 
As public sources provide quite sophisticated data these days we 
decided to access them online and on-the-fly instead of storing the data 
locally. 

Web 2.0 
Community 
and Media 

The web 2.0/3.0 community of eCitizens and citizen organizations is a 
group of (possibly organized) citizens that will be integrated into the 
policy making process either by active eParticipation (the eCitizen 
provides opinions upon request by the policy maker) or by passive 
eParticipation (the eCitizen provides opinions withour an explicit trigger 
from the policy maker). 
Additional input for hot topic sensing is available from traditional media 
(newspapers, TV, radio, …). Spoken language is supported by using a 
third party software (eMedia Monitor) that is capable of transcribing 
news broadcasts to text. 
 
The community of eCitizens uses various social media sites for 
expressing their opinions (i.e. Facebook, Twitter, Blogs, ...).  
 
Using Web2.0-technology and its tools e-citizens have the possibilty to 
take part in governmental processes; for example they can participate in 
online-polls. If available e-citizens can also use city-websites to leave 
messages, as well as they can leave their opinion in blogs.  

Simulator 
Provider 

A simulator provider offers a toolset for simulation purposes. This 
includes the simulation software and the simulation models. Some of 
them will be developed as part of the FUPOL project (WP2/WP4) while 
others will be off-the-shelf software from 3rd parties. Note that building 
those models and configuring them for a municipality's specific situation 



   

  
 

  
Deliverable D3.9          15 

is a very complex task that is performed by the simulation modeler, a 
role that is usually staffed with an external consultant. 

Visual Analytics Visualization tools are used by the facilitator and by the domain expert 
to get insights on relevant data. FUPOL will use SEMAVIS, developed by 
Fraunhofer IGD (WP5). 
Visualization is an important tool for understanding trends and 
correlations in all kinds of data (semantic data, statistical data, geo data, 
…). Despite our original plan we changed the system to support online 
Open Data which better suits the idea of the semantic web. 

Summarization Summarization tools (topic analysis, categorization) use sophisticated 
algorithms to extract various aspects from the (social) media data that 
the FUPOL core platform collects from social media sites and the web 
2.0/3.0 community. 
The HTS module has been reworked by WP6 and thus the API and the 
required procedures to interact with it have changed. 

 

WP3 acts as a middleware, connecting the modules from WP2/WP4, WP5 and WP6 

to form a common service to the user. 

 



   

  
 

  
Deliverable D3.9          16 

3.3 The Hands-On Users of the Product 

For a description of the hands-on users oft he product please read D3.4. 

 



   

  
 

  
Deliverable D3.9          17 

3.4 Development Team 

The WP3 core development team is formed of the following people. All members are 

working on-site in the FUPOL Project Office in Vienna at cellent. Note that as planned 

the team has been reduced at the start of year three. 

Team Member Role Relevant Skills FUPOL Participant 
Bernhard Ortner Team 

Member 
• Developer, Tester • Cellent 

Nikolaus Rumm WP 
Manager 

• Architect 
• Requirements engineer 

• Cellent 

Robert Thaler Team 
Member 

• Developer • Cellent 

Anton Jessner 
(left 2013) 

Team 
Member 

• Developer 

• Scrum master *) 

• Qualysoft 

Ilja Hönigschnabel 
(left 2013) 

Team 
Member 

• Developer 

• GIS Expert 

• Cellent 

Hakan Kagitcioglu 
(left 2013) 

Team 
Member 

• Developer 
• GIS expert 
• Test automation 

• Manual testing 

• Cellent 

Alexander Kamenicky 
(left 2013) 

Team 
Member 

• Test manager 
• Tester 
• Requirements engineer 

• Qualysoft 

Peter Mairhofer 
(left 2013) 

Team 
Member 

• Designer 
• Developer 

• Active Solution 

  



   

  
 

  
Deliverable D3.9          18 

4 Architecture and Design 

For an introduction to the architecture we recommend reading D3.5 (chapter 4). 

A more detailed description can be found in D3.2. 



   

  
 

  
Deliverable D3.9          19 

4.1 Architectural Overview 

The actual architecture is based on an enterprise service bus (ESB). Note that most 

connections between the modules will be (logically) point-to-point, but technically all 

communication will be done through the ESB. 

 

A description of the modules can be found in D3.2. 

As planned (and remarked in last year’s review) the Enterprise Service Bus has been 

re-added to the system, especially to decouple slower modules from the core 

platform (i.e. the text mining services). 



   

  
 

  
Deliverable D3.9          20 

4.2 Components and Level of Completion 

The following diagram provides a bird's eye view on the logical components and the 

main data flows in the FUPOL system. Please note that this view doesn't represent 

the choosen architecture but it's here for understanding the relation/interaction 

between the various FUPOL modules and the data flows between them. The actual 

design doesn't use point-to-point-connections but instead of that it's based on a SOA 

architecture using an enterprise service bus. 

The numbers indicate an estimation of the feature completeness of these modules 

(numbers on the interfaces represent the level of the current technical integration) 

based on release 0.51 from September 2014.  

 

 

As illustrated in the diagram the core platform is now nearly feature complete and 

we’ll focus on improving existing functionality in year four. 



   

  
 

  
Deliverable D3.9          21 

 

Social media connectivity is now complete. Content from the following sites can be 

crawled: 

• Facebook (public posts) 

• Facebook groups (wall board including comments) 

• Twitter advanced search 

• Blogspot.com 

• RSS/Atom (including http basic authentication) 

 

As already mentioned support for Sina Weibo has been dropped after several 

attempts to get access to the data were unsuccessful. 

 

 

 

The following chapters show some screenshots of D3.9. We focused on those parts 

that are either new (as compared to D3.5) or that had some significant changes. 

  



   

  
 

  
Deliverable D3.9          22 

4.2.1 Start Screen 

The start screen – which was empty in the previous releases – now shows some 

basic information about the currently ongoing campaigns. 

This information supports the user in understanding the big picture, especially 

related to media analysis. 

 

The diagrams show the following indicators: 

• campaign buzz („last 14 days“, line chart) over time 

• overall number of posts per campaign („my campaign posts“, bar chart) 

• overall number of posts per social media window („my window posts“ bar 

chart) 

The current implementation is just a teaser – more diagrams can be added as the 

pilot cities request them. 



   

  
 

  
Deliverable D3.9          23 

4.2.2 Client Management 

Client management is about managing pilot cities (each pilot city is a client). This 

task is performed by system operators and not up to the city. Therefore we 

developed the FUPOL System Operator Console, a web application that is only to be 

used internally. 

 

The following screenshot shows a pilot city’s detail page including its geographical 

bounding box: 

 

 



   

  
 

  
Deliverable D3.9          24 

What’s new is  … 

• the function to enable/disable the campaign dashboard per client 

• the function to enable/disable the category engine per client 

 

The reason for these changes is that during changes in the HTS engine we turn this 

feature off for selected clients. Furthermore it might be required as part of our 

exploitation strategy (feature based pricing). 

 

4.2.3 Campaign Management 

Campaign managing is about creating, working with and closing campaigns. 

Campaigns can be seen as “policy making projects”. 

 

The following screenshot shows a pilot city’s campaigns… 

 

…and a campaign’s detail page. Note that we’ve added two more sections to it: 

• Dashboard – a collection of figures that illustrate various aspects of the 

campaign’s data in a fast and convenient way 

• Campaign Data – a search facility for finding posts based on various criteria 

 



   

  
 

  
Deliverable D3.9          25 

The campaign detail page’s geovisualization („campaign map“) has been enhanced in 

the following way: 

• the map allows to filter posts by their category (previously: by social media 

target) – so we’re now able to draw i.e. heatmaps of media content according 

to the category learned by the hot topic sensing engine 

• additional controls allow the user to zoom to their city, to open the map in 

fullscreen mode and to turn on/off the text on the map 

• we reworked the pin detail popup to show the full text (previously it was cut 

after a few lines) and fixed some issues with the heatmap 

 

 

In order to get a better understanding of the geographical distribution of the posts 

we added a clustering mechanism (in JavaScript) that collects posts based on their 

proximity. This feature is a nice alternative in-between heatmaps and pins: 



   

  
 

  
Deliverable D3.9          26 

 

The sreenshots above show the clusterer in action (left) and the heatmap of the 

same situation. While the heatmap allows for a finer resolution of the distribution, 

the clusterer provides absolute numbers. Clicking on a cluster sets the zoom level to 

focus on its data. 

As can be seen in the next screenshot, the clusterer won’t add isolated posts to one 

of the adjacent clusters – this depends on the zoom level (the clusters are calculated 

in the client side using JavaScript). 

 

 

4.2.4 Opinion Maps 

As requested by the pilot cities we’ve added an “anonymous mode” to the opinion 

maps so that they can be used without authentication (using OAuth). Some citizens 



   

  
 

  
Deliverable D3.9          27 

felt unsafe when they had to allow the map (or OAuth) to access their Facebook or 

Twitter accounts. 

 

 

Besides that we’ve changed the way how the core platform stores opinions that the 

citizens add to the map: they’re now a special kind of posts (georeferenced of 

course) which allows us to analyze them using FUPOL’s text mining facilities (topics, 

categories). 

4.2.5 Text Mining, Topics and Categorization 

The social media tools have been heavily modified, especially with the integration of 

the functionalities that are developed by WP6 (“hot topic sensing”). 

Due to a change of the algorithm and a new approach (categories in addition to 

topics) the workflow between the core platform and the HTS module has changed. 

This required us to implement a new API for hot topic sensing (including the ESB 

orchestration). Nevertheless the user interface is now fully integrated, as can be 

seen in the following screenshots: 



   

  
 

  
Deliverable D3.9          28 

 

The screenshot above shows the user-defined categories and the words that they’re 

based on. New categories can be created by the facilitator by pressing the “Create 

Category” button, which opens the following popup screen: 



   

  
 

  
Deliverable D3.9          29 

 

This screen is used to define a new category based on either… 

• topics (“topic words”) that were learned from analyzing the campaign’s 

content (posts) – note that all sources are considered (social media posts, 

opinion map posts, …). The topics words are listed, along with the topic’s 

accuracy. 

• manual words (“add category word”) can be added to a category in order to 

adapt it. 

 

In most cases the category will be based on one or more topics and the manual 

addition of single words is just used to improve its accuracy. 

The following screenshot shows a new category that’s based on the “Topic 10” (the 

second one in the list): 



   

  
 

  
Deliverable D3.9          30 

 

Note that the words from “Topic 10” were added to the category’s definition. The 

user can now remove words (by clicking the “x” next to each word) that she thinks 

don’t fit the category (i.e. noise words like “für”; german for “for”). Or she can add 

additional words to it. 

The user might want to combine topics in one category by adding them to the 

category’s definition. 

After that the user assigns a name and description to the category and saves it. The 

category’s definition will then be handed over to the hot topic sensing engine using 

the HTS API and future posts will be categorized using the existing category 

definitions. 

 

Another option with categories is that the user can manually overwrite the 

categorization. The override will be signaled to the hot topic sensing module which 

will use this information to adapt its category definition (the matrix). 



   

  
 

  
Deliverable D3.9          31 

Overwriting category definitions is done on the social media search page. Again, the 

user clicks the “x” next to a category in the tag cloud to unassign the category from 

the posting or she manually assigns a category to the posting by selecting it from the 

dropdown box: 

 

In the example above clicking the “x” right next to the category “Truther Stories” will 

unassign the category “Truther Stories” from the first tweet, while selecting 

“Whatsaboutism” would manually assign the category “Whatsaboutism” to the post. 

 

Categories are assigned to each post that’s stored in the campaign’s datastore 

automatically. This information can be used to draw category maps, to calculate 

some indicators (i.e. how the category evolves over time) or to find similar content. 

 

Furthermore the category’s detail page was enhanced in order to show the available 

data – including the changes to the category’s buzz over time and the geographical 

distribution of its related posts. This screen can be accessed by clicking on a 

category’s name in a tag cloud: 



   

  
 

  
Deliverable D3.9          32 

 

 

Furthermore the campaign’s social media section provides a link to open the 

SEMAVIS client in a new browser tab. SEMAVIS will be launched with the campaign’s 

data, so the user can immediately start to analyze the campaign’s content. 

We could’ve embedded SEMAVIS on the same page (i.e. in an iframe), but we felt 

that some users might want to use their available screen estate in a more efficient 

way (full screen) for analyzing content. 



   

  
 

  
Deliverable D3.9          33 

4.2.6 Campaign Dashboard 

The campaign dashboard provides an overview about the campaign’s data and some 

selected details. Its purpose is to give the user information about the campaign’s 

history and some insights. 

Unlike SEMAVIS, which is a visual analytics tool, the campaign dashboard does not 

enable the user to… 

• interact with the visualization (besides setting the timeframe) 

• allow to change the detail level of the visualization (drill down) 

• identify single posts 

• combine more data than the one that’s used to render that specific diagram 

 

However, the dashboard is very fast, as it accesses the underlying data directly 

instead of spooling everything to the SEMAVIS’ Flash client and it provides important 

information for the user. 

 

So the campaign dashboard and SEMAVIS are complementary. 

 

The following widgets have been developed: 

• Major Sources – shows the number of posts per media source (Facebook, 

Twitter, …), independent of any social media window (it uses SIOC’s site 

concept) 

 



   

  
 

  
Deliverable D3.9          34 

• Social Media Windows – shows the number of posts per social media window 

 

• Top Links – shows the order of the 50 most cited links that are extracted from 

the campaign’s posts. This information is important to identify content that 

citizens link to, i.e. a newspaper article, an Instagram picture, … 

 

• Top Authors – shows the order of the top-contributing authors (by their 

number of posts) – this can be used to identify power posters. It uses SIOC’s 

author concept. 



   

  
 

  
Deliverable D3.9          35 

 

• Top Tags – shows the order of the 50 most-used hashtags that were 

extracted from the campaign’s data. This information can be used to 

understand how the citizens self-organize their content and subsequently for 

improving the social media targets. 

 

• Top categories – shows how the distribution of the defined categories evolves 

over time (the empty data around September 15th is caused by a system crash 

on that day). 



   

  
 

  
Deliverable D3.9          36 

 

• Top 10 categories – shows a pie chart of the distribution of categories over all 

posts in that campaign 

 

 

All widgets have some additional functions that can be accessed by clicking on the 

menu icon on the widget’s top right corner: 



   

  
 

  
Deliverable D3.9          37 

 

 

These functions include… 

• Exporting the chart’s content to PNG, JPEG, PDF and SVG 

• Printing the chart 

• Some widgets allow to search for the content that’s shown in the chart 

(timeframe) 

 

The dashboard supports drag & drop of widgets (by dragging a widget using the 

header line), so that the user can build his personal dashboard. 

 

4.2.7 Campaign Data Browser 

The new campaign data browser enables the user to search for content based on 

specific criteria. The search criteria include: 

• text (keywords from the posts’ content) 

• timeframe (timestamp of the post within „from date“ and „to date“) 

• social media target (selectable in a tree control with the social media windows 

on top) 



   

  
 

  
Deliverable D3.9          38 

• category (selectable like the social media targets) – this feature is still under 

development and will be available at the time of the review (the screenshot 

doesn’t show it yet) 

 

The screenshot above shows the „Campaign Data“ screen, including the search 

criteria on top (timeframe, targets, content) and the result’s first post, including the 

categories that it refers to. Note that the user can manually assign/unassign 

categories here. 

 

As requested by the pilot cities we added an export function that can be used to 

export the search result to an Excel-file. The following screenshot illustrates an 

exported result as shown in Excel: 



   

  
 

  
Deliverable D3.9          39 

 

 

4.2.8 (Social) Media Search 

Social media search has been improved as requested by the pilot cities. 

Unfortunately we were not able to fulfill all request, as we’re limited in the API 

functions that the social media vendors provide. 

 

All targets must be named – this name is shown in the various filter options (i.e. for 

content search – „campaign data“ tab) 

• Facebook – additional (post-processing) filter options were added to the 

Facebook search. The user can filter the content that will be stored by adding 

keywords that must, should or must not be contained in the content. 

 



   

  
 

  
Deliverable D3.9          40 

• Twitter – Twitter search was improved by adding more search criteria. We’re 

now using almost all criteria that Twitter’s API provides, including geofencing 

(the user can click the „house icon“ to set the geofence to his city’s bounding 

box). Note that the sentiment criterium is processed by Twitter (actually in a 

rather simple way by counting the smilies in the content), as FUPOL doesn’t 

perform sentiment analysis. 

 

• RSS/Atom – we’ve added a post-processing filter that enables the user to filter 

posts by their content (keyword based). This feature was requested by the 

pilot cities in order to filter newspaper articles, as the RSS streams that many 

newspapers provide are rather generic. For example an RSS stream might 

contain all newspaper articles that are related to the UK, to politics or to 

economy, but the facilitator is only interested in articles that cover the next 

election. The user can now filter the content by any or none of the provided 



   

  
 

  
Deliverable D3.9          41 

words. Note that this filter post-processes the content (so it filters after we’ve 

crawled the content – it just prevents the system from storing it). 

 

 

4.2.9 Social Media Account Pooling 

In order to allow the pilot cities to collect more content than usual, and to distribute 

their searches over more than one requester, we’ve added a social media account 

pooling mechanism. 

While this mechanism is questionable with regard to the T&C of some social media 

sites, it supports the city in obfuscating its requests and to some extent in 

circumventing the sites’ rate limits. 

The mechanism basically allows the administrator to set up more than one social 

media accounts for every site and the system will use all of them (based on a 

randomized round robin mechanism) when accessing the site. 

Of course the legal implications of using this must be considered by the cities before 

using it. 

4.2.10 Knowledge Base 

In order to provide a sophisticated semantic knowledge base SEMAVIS was enabled 

to browse data from Freebase and DBpedia online: 



   

  
 

  
Deliverable D3.9          42 

 

4.2.11 Facts and Figures – the statistical data browser 

Another usage of SEMAVIS within the FUPOL system is to use it as a browser for 

statistical data. Again, the integration point in the core platform is the knowledge 

base: 



   

  
 

  
Deliverable D3.9          43 

 

 

 

 

  



   

  
 

  
Deliverable D3.9          44 

5 Deployment View 

The current pilot system is equal to the proposed “demo system” and hosted on the 

FUPOL virtualized server(s). Cloud hosting is not available yet, but we experimented 

with Microsoft’s Azure cloud. The move from the dedicated servers into the cloud will 

be done in year four. 

 

For a detailed description of the deployed system we refer to D3.2/D3.5. The overall 

setup has not changed (besides that the ESB is part of the implementation again). 

 

As WP6 moved their implementation from the now ageing WP3 servers to the more 

powerful Xerox-servers (connected over https/JSON) we were able to split their 

environment into a dedicated test and another demo stage. This has allowed us to 

progress without affecting the pilot city  operations. 

 

All system components have been updated to newer versions over year three (i.e. 

the relational database). 

 



   

  
 

  
Deliverable D3.9          45 

6 Tests and Quality 

For a list of test cases please refer to D3.5. 

 

As new features were added to the system we’ve added additional test cases as well. 

Maintaining the automatic regression test suite however was quite time consuming, 

so some parts lack the high test coverage that we had before. 

 

The pilot cities reported some problems with the system’s stability. Almost all of 

them were caused by Virtuoso (crashes under heavy concurent writing load, memory 

leaks in the JDBC driver, …). We had to patch the JDBC driver which solved some 

cases, but in general we were forced to restart Virtuoso. 

 



   

  
 

  
Deliverable D3.9          46 

7 User Manual 

In order to support the users in the pilot city (and to prevent resource drain caused 

by personal phone/email support) WP8 wrote a user manual. 

This manual is available in electronic form (as a set of wiki pages) and as printed 

documentation. 



   

  
 

  
Deliverable D3.9          47 

8 Hot Topic Sensing API 

This chapter provides a description of the API that is used to support the workflows 

between the core platform and the hot topic sensing API. 

We decided to use a REST/JSON based http-implementation as it’s network-friendly, 

easy to distribute and provides a good tradeoff between readability (for debugging) 

and efficiency.  

 



   

  
 

  
Deliverable D3.9          48 

8.1 Encoding and general guidelines 

 

8.1.1 Literals 

Timestamp: currently timestamp values are represented as Unix/Posix time values 

(numerical litererals; number of seconds since 1970-01-01). We recommend to 

switch to more user-readable and exact format that includes timezone information 

(i.e. ISO 8601 encoding, "2014-01-01T23:00+01"). 

Values: Please use an uniform format. For example, if you decide to encode numeric 

values in long, try to stick every value to that format. 

8.1.2 Empty values 

Attributes that have no value assigned don't have to be included in the JSON 

encoded object. 

8.1.3 Identifiers (Id) 

Identifiers must be unique (at least within the set of objects of that domain type) 

and must not change at any time. 

8.1.4 Support paging for resultlist on GET requests  

Basically it would be good practice, if GET requests returning lists as results support 

paging. In fact paging support is common practice and many REST frameworks 

already support building pageable results out of the box. 

Instead of returning a list/array as result a structured object is returned. Besides the 

actual data, this object contains metadata about the queryresult - query parameters 

allow to specify and limit the date returned. The current implementation of HTS 

already supports this for retrieving resources. Below a sample request and result 

using paging. 

 

 



   

  
 

  
Deliverable D3.9          49 

Request: http://fupol-1.fupol.eu/hts/api/v1/topicengine/?limit=10 

Paging Result 
{ 
    "meta": { 
        "limit": 10,  
        "next": "/hts/api/v1/topicengine/?offset=10&limit=10",  
        "offset": 0,  
        "previous": null,  
        "total_count": 16 
    },  
    "objects": [ 
        {  
            "id": "52987acbf8e31529e08e262e", 
            "name": "test language",  
            ... 
        }, 
        { 
            "id": "52987acbf8e31529e08e262f/", 
            "name": "London_NMFTE_20_topics", 
            ... 
        } 
        ... 
    } 
} 

Omitting paging parameters leads to using default values, using a limit value of 0 

returns the whole resultset of data. 



   

  
 

  
Deliverable D3.9          50 

8.2 Domain objects used by API methods 

The following diagram illustrates the most important domain classes that are related 

to the HTS functionality: 

 

8.2.1 TopicEngineDocument  

A topic engine document is the representation of a post collected from (social) 

media. 

Attribute Type Required Description 



   

  
 

  
Deliverable D3.9          51 

Attribute Type Required Description 

doc_id String yes The document's unique identifier - usually an 

uri. 

name String   The name or title of the document (currently 

not set for any type of post) 

text String   The content of the document. A document's 

content should be represented in plain text 

without any formatting or structural 

information. 

site_uri String   A URI pointing to the document's origin (site, 

i.e. http://www.twitter.com) 

forum_uri String   A URI pointing to the document's forum 

(i.e. http://www.facebook.com/user/234324) 

crawled_at Timestamp yes Timestamp when the document has been 

created at the given site. In case that the 

create timestamp is unknown we try to guess 

it (usually we take the timestamp when we 

observed the post for the first time) 

post_type String   The type of the post that contains the 

content. Currently the following types are 

known: 

• sioc:Post (generic post) 
• sioc:MicroblogPost (i.e. Twitter) 
• sioc:Comment (i.e. a Facebook comment) 
• sioc:WeblogPost (i.e. Blogspot) 

geolocation Point   The geographical position that relates to this 



   

  
 

  
Deliverable D3.9          52 

Attribute Type Required Description 

post encoded in GeoJSON format. A 

specification of GeoJSON can be found here. 

Depending on the social media site only about 

5% of posts will have a geolocation. 

index Int   The row index of the document in its 

corresponding TopicEngine in any future 

matrix returned by "Inferring Categories 

Documents". 1-1 relationship with doc_id 

Sample TopicEngineDocument 
{ 
    "doc_id": ", 
    "create_time": 1392108158, 
    "forum_uri": ", 
    "geolocation": { "type": "Point", "coordinates": [47.5678,16.7893] }, 
    "name": "What a good story!", 
    "post_type": "sioc:Post", 
    "site_uri": ", 
    "text": "This story is about....", 
    "index": 0 
}  

  

8.2.2 InferredDocuments 

An inferred documents is the representation of a sparse matrix of documents X 

categories matching probability. 

We implement it here as an array of dictionnaries, where the array is indexed by the 

index of the documents, and the inner dictionnaries are indexed by the index of 

categories. 

Unfotunately, JSON does not support integer keys for dictionnaries, so we will use 

the string representation of the indexes for the inner dictionnaries, it will still be 

much more compact than the full ids. 



   

  
 

  
Deliverable D3.9          53 

Only matches greater than a given threshold (for example 0.5) will be present in the 

inner dictionnaries (sparsity), thus absent indexes of a category for a document can 

be interpreted as 0. 

 

This will be the return of the 3 functions:"Inferring from Existing Documents" 

"Inferring Documents" and "Inferring Categories Document". 

In the first case, only the categories of the asked documents will be present in the 

array, and the order will be the same than the order in which they where provided in 

input. 

In the second case, the documents are not added to the TopicEngine, the indexes 

will also match with the order in which they where provided in input. 

In the third case, all the documents are present and in the order of their predefined 

index. 

If a document has no category that match higher than the threshold, at its index the 

inner dictionnary will be empty. 

 

Attribute Type Required Description 

Does not really have an object formalism, 

this is just an array of dictionnaries.  

      

Sample InferredDocument 
[ 
        { 
            "2" : 0.95, 
            "17" : 0.68, 
            "29" : 0.7 
        }, 
        { 
            "0" : 0.65, 
            "15" : 0.99 
        }, 
    ... 
] 

  



   

  
 

  
Deliverable D3.9          54 

8.2.3 Category 

Attribute Type Required Description 

id String true The unique identifier of this category. It is 

also the column index of the category in 

its corresponding TopicEngine in any 

future matrix returned by "Inferring 

Documents" or "Inferring from Existing 

Documents" or "Inferring Categories 

Documents" 

resource_uri String true The full path for accessing the category 

through the TopicEngine (finally come 

back, quite necessary to access all the 

category related functions and will be 

easier for you if we want to test differents 

apis (beginning of the path changes)) 

name String true Name of this category that is used to label 

the category. Would be set by the 

facilitator. 

description String   A brief description of the category. Empty 

by default the value can be changed by 

the user in the core platform. 

words Array words||doc_ids 

required 

Array of strings 

doc_ids Array words||doc_ids 

required 

Array of document ids 

Sample Category 
{ 
    "id": 7, 



   

  
 

  
Deliverable D3.9          55 

    "uri": "/hts/api/v1/topicengine/527bb851f8/category/7", 
    "name": "economy", 
    "description": "This category aims to capture document talking about local economic problems in Barnsley", 
    "words": [ 
        "unemployment", 
        "jobs" 
    ], 
    "doc_ids": [ 
        ", 
        " 
    ] 
 } 

  

8.2.4 Topic  

A Topic does not have a stable Id. Topics can only be addressed by their index 

position in the list of topics of a TopicEngine.  

 

Attribute Type Required Description 

id String true Indexing by position is not relevant since the 

next time the engine runs, it might be another 

topic at this position. Finally, an id come back, 

but it will valid for a given time after the 

proposal is made (24h for example). During this 

time, a category can be created from this topic 

by providing its id in the "Create Category" 

function. 

resource_uri String true Corresponding uri 

quality Float   for later use: A score to rank topics in order to 

present 'the most relevant ones' to the user 

firsts .. 



   

  
 

  
Deliverable D3.9          56 

Attribute Type Required Description 

summary Array   An array of Strings containing sentences taken 

from the document. The summary must be 

calculated as part of the topic training process 

in HTS. We'd like to avoid an additional call to 

generate summaries and assume that once a 

topic is available the summary is available as 

well. 

Currently we expect to get up to 10 sentences 

per topic. 

words Array true Array of TopicWords   

doc_ids Array true Array of documents ids of selected documents 

that are representative of this topic. 

Sample Topic 
{ 
    "id": a52b4fe541, 
    "uri": "/hts/api/v1/topicengine/527bb851f8/topic/a54b2c4ea", 
    "quality": 37.04, 
    "summary": [  
        { "sentence": "The arts exhibition in Paris was a great success." }, 
        { "sentence": "Paintings of dutch masters were in high demand during the auction." } 
    ], 
    "words" : [ 
        { "word" : "painting", "probability" : 0.48, }, 
        { "word" : "exhibition", "probability" : 0.42, }  
    ] 
    "doc_ids" : [ 
        ", 
        " 
    ] 
 } 



   

  
 

  
Deliverable D3.9          57 

8.2.5 TopicWord  

Simple object that holds the attributes of a topic's top word or with a category 

Attribute Type Required Description 

word String yes   

probability Float     



   

  
 

  
Deliverable D3.9          58 

8.3 API Methods 

The API is REST-based with some exceptions. 

 

As a general design principle the calls should return as fast as possible. All of them 

are synchronous until we’re back on the ESB, so the core platform will be blocked 

until the calls terminate on the HTS side. If a call triggers a long-running task then 

the long-running task must be executed after the (triggering) call has terminated. 

 

8.3.1 Getting categories by index 

Retrieve categories from their indexes 

HTTP method POST 

Request path /topicengine/<id>/_get_cats_by_index/ 

Request path 

parameters 

• id - string - identifier of the topicengine 

Request 

represention 

An array of categories indexes (integers) 

Result • HTTP 200 - returns an array of the categories of the 
corresponding indexes  

• HTTP 404 - if the topicengine does not exist 

8.3.2 Getting document indexes 

Retrieve document indexes from their doc_ids 

HTTP method POST   

Request path /topicengine/<id>/_get_docs_in

dexes/ 

  



   

  
 

  
Deliverable D3.9          59 

Request path parameters • id - string - identifier of the 
topicengine 

  

Request represention An array of doc_ids see TopicEngineDocument 

Result • HTTP 200 - returns an array of 
the indexes of the corresponding 
documents  

• HTTP 404 - if the topicengine 
does not exist 

  

  

8.3.3 Adding Documents 

Adds a collection of documents to the corpus and returns the related topics for each 

document. As a side effect this call might trigger a retraining of the topic engine. 

It's important for the core platform that this method returns quickly, so depending on 

the time that retraining takes it might be a good idea to infer the topics based on the 

pre-trained topic engine and train the topic engine after this call has terminated. 

HTTP method POST   

Request path /topicengine/<id>/_add_documents/   

Request path parameters • id - string - identifier of the 
topicengine 

  

Request represention An array of TopicEngineDocuments see TopicEngine

Document 

Result • HTTP 200 - returns an array of ints, 
the indexes of the added documents  

• HTTP 404 - if the topicengine does 
not exist 

  

  



   

  
 

  
Deliverable D3.9          60 

8.3.4 Inferring from Existing Documents 

Returns the related categories for every requested doc_id. Corresponding document 

must have been added to the TopicEngine beforehand. This function have been 

created for two purposes: separate 

 adding documents and inferring their categories, thus giving the possibility to infer 

categories later and many times; and to separate with the next function that infer 

categories on not added documents. 

HTTP method POST   

Request path /topicengine/<id>/_infer_doc_ids/   

Request path 

parameters 

• id - string - identifier of the 
topicengine 

  

Request 

representation 

An array of doc_ids see TopicEngineDocument 

Result HTTP 200 - An InferredDocuments 
object 
HTTP 404 - If the topicengine does 
not exist 

see InferredDocument 

  

8.3.5 Inferring Documents 

Returns the related categories for every requested document. Unlike addDocuments 

this function doesn't add the documents to the corpus, but instead it just uses the 

knowledge that is contained inside the topic engine for labeling the documents. 

For the sake of uniformity this API call basically has the same method signature as 

_add_documents. 

HTTP method POST   

Request path /topicengine/<id>/_infer_documents/   

Request path parameters • id - string - identifier of the   



   

  
 

  
Deliverable D3.9          61 

topicengine 

Request representation An array of TopicEngineDocuments see TopicEngine

Document 

Result • HTTP 200 - An  InferredDocuments 
object 

• HTTP 404 - If the topicengine does not 
exist 

see InferredDocu

ment 

 

WP3 main use cases related to the HTS engine are interactive search: the user 

searches for content on Facebook, Twitter etc. and we show him a list of search 

results, but those posts are not added to the corpus. Each post shall be labelled 

based on the existing topic engine. Is this possible with the proposed matrix 

approach, as it contains the links between the categories and the existing documents. 

  

8.3.6 Create Category 

Creates a new category with a given parent category 

HTTP method POST 

Request path /topicengine/<id>/_create_category/ 

Request path parameters • id - string - identifier of the topicengine 

Request represation •  topic_id - String - Topic from which the Category is 
built from (see Topic). 

• name - string - required - The name of the Category 
• words - Array - Optional - The selected words by the 

annotator (from the topic proposal) 
• doc_ids - Array - Optional - The selected documents 

by the annotator (from the topic proposal) 

{ "name": "my first category", "topic_id": "a45bc24eff", "words": [ "riot", "ukraine" ], "doc_ids": [ ", " ]  } 
 

Result HTTP 200 : The category object is returned with its id 



   

  
 

  
Deliverable D3.9          62 

and uri fields filled 

HTTP 404 - Topicengine doesn't exist, or Topic doesn't 

exist or is no more valid. 

  

8.3.7 Update Category Attributes 

Allows the caller to modify the attributes of a topic.  

HTTP method POST 

Request path /category/<category_id>/_update_category/ 

Request path parameters • id - string - identifier of the topicengine 
• category_id - string - identifier of the category 

Request representation • name - string - the new name for the category 
• description - string - the new description for the category 

{ 
    "name": "the categories new name", 
    "description": "the categories new description" 
} 
 

Result • HTTP 200 - Successfully updated the category 
• HTTP 404 - If the topicengine or the category does not exist 

  

8.3.8 Add Category Words 

Add several words to a specific category. The request might contain words that have 

already been added to the category. The server has to silently ignore those word - 

no error is expected by the client. 

HTTP method POST 

Request path /category/<category_id>/_add_words/ 



   

  
 

  
Deliverable D3.9          63 

Request path parameters • id - string - identifier of the topicengine 
• category_id - string - identifier of the category 

Request representation an array of strings (words) 
[ 
    "arts", "politics", "sports" 
] 
 

Result • HTTP 200 - Success 
• HTTP 404 - Either the topicengine or the category does not 

exist 

  

8.3.9 Remove Category Words 

Removes several words from a specific category. If the request contains words that 

are not associated with the category, the server has to silently ignore those words - 

no error is expected by the client. 

HTTP method POST 

Request path /category/<category_id>/_remove_words/ 

Request path parameters • id - string - identifier of the topicengine 
• category_id - string - identifier of the category 

Request representation An array of strings (words) 
[ 
    "arts", "politics", "sports" 
] 
 

Result • HTTP 200 - Success 
• HTTP 404 - Either the topicengine or the category does not 

exist 



   

  
 

  
Deliverable D3.9          64 

8.3.10 Add Category Documents 

Adds several document ids to a specific category. The request might contain ids for 

documents that already have been associated to the category. The server has to 

silently ignore those document ids withouth raising an error. 

HTTP method POST 

Request path /category/<category_id>/_add_docs/ 

Request path parameters • id - string - identifier of the topicengine 
• category_id - string - identifier of the category 

Request representation An array of strings describing the document ids 
[ 
    ", 
    " 
] 
 

Result • HTTP 200 - Success 
• HTTP 404 - Either the topicengine or the category does not 

exist 

  

8.3.11 Remove Category Documents 

Removes several document ids from a specific category. If the request contains ids 

for documents that have not been associated to the category, the server has to 

silently ignore those document ids withouth raising an error. 

HTTP method POST 

Request path /category/<category_id>/_add_docs/ 

Request path parameters • id - string - identifier of the topicengine 
• category_id - string - identifier of the category 

Request representation An array of strings describing the document ids 



   

  
 

  
Deliverable D3.9          65 

[ 
    ", 
    " 
] 
 

Result • HTTP 200 - Success 
• HTTP 404 - Either the topicengine or the category does not 

exist 

  

8.3.12 Merge Category 

Merge Categories and create a root category. Envisaged later 

  

HTTP Method Post 

Request Path /topicengine/<id>/_merge_category/ 

Parameters An Array of CategoryID=String 

Result A new category ID 

 

  

8.3.13 Retrieving Categories Documents 

Return the matrix Doc x Category with predictions scores for all documents in the 

campaign 

HTTP method GET 

Request path /topicengine/<id>/_document_categories/?limit=100&offset=0 

Request path 

parameters 

• id - string - identifier of the topicengine 

Request query • optional paging parameters - see paging get result (Paging) 



   

  
 

  
Deliverable D3.9          66 

parameters 

Result • HTTP 200 - An InferredDocumentS object (see new definition) 
• HTTP 404 - If the specified topicengine does not exist 

 

I decided to split the Get Topic Proposal function in two (actually three, but we'll get 

there soon) in order to match your needs and computation time reality as much as 

possible. 

Here is the thing: we will constantly update a few topic models for each topic engine, 

which will be computed on the last hour, day, week and month for example. 

Through the first function, Get Topics Proposal, you can retrieve topic proposals on 

one of these pre-specified time slices. The goal is to match with your granularity 

needs, like getting very specific topics on very recent documents, for example if a big 

car accident just happened on the beltway. 

The bigger the time slice is, the broader the generated topics will be. On the last 

month, you're more likely to get topic proposals that encompasses all traffic aspects. 

This is a best effort service, it means that it will not provide topics exactly on the last 

hour for example, but rather on the last result on the hour time slice, which might 

have been computed 10 minutes ago for example (because the next one is not 

finished yet), and thus provide topic proposals from T-10min to T-1h10. 

 

But if it happens you want to get topic proposals on a specific time slice, you can use 

the Get Topics Proposal on Date function, where you can specify 

this time slice, you will receive a token for the corresponding future topic proposals 

that will be generated, and come back later to ask if it is ready (the third function). 

 

Here is the new spec: 

8.3.14 Get Topics Proposal (with time slices) 

  

HTTP method GET   



   

  
 

  
Deliverable D3.9          67 

Request path /topicengine/<id>/_get_topic_proposals/    

Request path parameters • id - string - identifier of the topicengine   

Request query parameter • slice - string - Can only be "hour", "day", "week" or "month" 
(to be defined) 

  

Result • HTTP 200 - An array of TopicS 
• HTTP 404 - If the specified topicengine does not exist  

8.3.15 Get Topics Proposal on Date 

  

HTTP method GET   

Request path /topicengine/<id>/_get_topic_proposals_ondate/    

Request path parameters • id - string - identifier of the topicengine   

Request query parameter • start_time - Timestamp - Required 
• end_time - Timestamp -Optional 

  

Result • HTTP 200 - A string, the identifier of the future proposal 
• HTTP 404 - If the specified topicengine does not exist  

8.3.16 Get Topics Proposal by Token 

  

HTTP method GET   

Request path /topicengine/<id>/_get_topic_proposals_ondate/    

Request path parameters • id - string - identifier of the topicengine   

Request query parameter • proposal_token - string - Required - Identifier of a previously 
asked proposal, (have been returned by the Get Topics Porposal 

  



   

  
 

  
Deliverable D3.9          68 

on Date function) 

Result • HTTP 200 - An array of TopicS 
• HTTP 202 - The topic proposal is not ready yet. 
• HTTP 404 - If the specified topicengine does not exist or the 

provided proposal_token is invalid. 
 

  
 

 

 

  


