

Grant Agreement number: 288899

Project acronym: Robot-Era

Project title: Implementation and integration of advanced Robotic systems and
intelligent Environments in real scenarios for ageing population

Funding scheme: Large-scale integrating project (IP)

Call identifier: FP7-ICT-2011.7

Challenge: 5 – ICT for Health, Ageing Well, Inclusion and Governance

Objective: ICT-2011.5.4 ICT for Ageing and Wellbeing

Project website address: www.robot-era.eu

D7.1

Report on the interoperability aspects of

Robot-Era services

Due date of deliverable: 31/05/2012
Actual submission date: 27/06/2012

Start date of project: 01/01/2012 Duration: 48 months

Organisation name of lead contractor for this deliverable: SSSA
Deliverable author: Massimo Filippi, Alessandro Saffiotti, Filippo Cavallo

Version: 2.0

Project co-funded by the European Commission within the Seventh Framework

Programme (2007-2013)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Service)

RE Restricted to a group specified by the consortium (including the Commission Service)

CO Confidential, only for members of the consortium (including the Commission Service) X

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 2 of
24

Document H is tory

Version Date Author Summary of Main Changes

1.0 23-02-2012
Filippo Cavallo

(SSSA)
First version of the template for Robot-Era

Deliverables

1.1 22-05-2012
Massimo Filippi

(SSSA)
Contribution on middleware and standards

1.2 24-05-2012
Filippo Cavallo

(SSSA)
Structure of the document

1.3 03-06-2012
Alessandro

Saffiotti (ORU)

Created overall system architecture and abstract
robot architecture; wrote Sec 4, 5, 6; comments

to Sec 3.

1.4 22-06-2012
Massimo Filippi

(SSSA)

Integrated contributions in Sec 3; corrections in
the document.

1.5 27-06-2012
Alessandro

Saffiotti (ORU)
Final check on Sec 3,4,5,6; minor corrections.

1.6 27-06-2012

Massimo

Filippi

(SSSA)

Final submitted version

2.0 26-11-2012
Filippo Cavallo

(SSSA)
Project Manager minor refinements

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 3 of
24

Table o f Contents

Executive summary... 4

1. Introduction ... 5

2. Middleware for Robotic Systems ... 6

2.1. Roles of Middleware .. 6

2.2. Existing Middlewares for Robotics ... 7

2.3. Summary table .. 11

3. Robot-Era System Overview ... 13

3.1. Reference Architecture .. 13

3.2. Requirements for the Ecology Layer ... 14

3.3. Requirements for the Device Layer ... 15

4. Interoperability in the Ecology Layer 16

4.1. The PEIS-Kernel ... 16

4.2. The Tuple-Space .. 17

5. Interoperability in the Device Layer 18

5.1. Robot platform architecture ... 18

6. Conclusions .. 20

References .. 22

Appendix A - Electrical Standards ... 24

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 4 of
24

Executive summary

This work introduces the interoperability aspects of Robot-Era services. The term
“interoperability” indicates the ability of independent systems, such as robotic systems, to
exchange meaningful information and initiate actions from each other, in order to operate
together to mutual benefit.
Since in the Robot-Era project different independently developed devices coming from
multiple suppliers and providers are installed in different environments (public and private
spaces, living labs and residential sites), it’s crucial to analyse and define all interoperability
aspects that will favour an easy, scalable, and flexible integration of Robot-Era platforms
and services in all experimental settings.

Many different middlewares have been proposed for robotic networks applications, often
from a different point of view and with different features and applications. The whole Robot-
Era system has demanding requirements in terms of overall software organization and
interoperability. The system must be able to accommodate devices which are highly
heterogeneous.

The Robot-Era consortium has decided to rely on a two-layer reference architecture: at the
upper layer (“Ecology Layer”) a common network-oriented middleware provides seamless
integration among heterogeneous devices, including the Robot-Era robots, while addressing
all the above requirements; at the lower layer (“Device Layer”) each robot and device may
use a specific architecture and middleware internally, while externally it presents a uniform
interface toward the ecology layer.

The Robot-Era partners considered that the PEIS-Middleware satisfies all requirements, it
was therefore chosen by partners to be adopted as the Robotic Ecology middleware in the
Robot-Era project, to provide interoperability among all the robots and devices participating
in the system. The PEIS-Middleware is available open-source, implements a fully
decentralized communication model based on a distributed tuple-space, runs on a wide
range of platforms, and its main developer is a partner of the Robot-Era consortium.

The requirements of the Device Layer depend on each specific robot and device, and they
are therefore discussed in other Deliverables. Robot-Era includes three types of robotic
platforms: domestic robots, condominium robots, and outdoor robots. Although these
platforms will differ both in hardware and software, the Robot-Era consortium agreed that
they should share a similar abstract architecture.

Each robot platform comprises a number of robot components for perception, reasoning,
navigation and manipulation. These components are integrated with the help of a robot
integration framework, or “robot middleware”. In Robot-Era, it has been decided that two
such frameworks will be used: the ROS (Robot Operating System), and MIRA (Middleware
for Robotic Applications). MIRA is the native middleware implemented in the MetraLab
Scitos G5 and G6 robotic platforms, which will be used as basis for the Robot-Era domestic
and condominium robots. ROS is assessing itself as the de-facto standard in robot
middleware, and it will be used for manipulation functionalities.

Not all Robot-Era platform will need to run both the MIRA and ROS robot middleware. If
both MIRA and ROS are needed on the same platform, however, an adaptor needs to be
implemented to ensure the proper exchange of information and coordination between robot
algorithms implemented in the two sides.

The architecture discussed is intentionally abstract. Each concrete Robot-Era robot platform
is discussed in Deliverables D4.1, D5.1 and D6.1, respectively.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 5 of
24

1. Introduction

Since in the Robot-Era project different independently developed devices coming from
multiple suppliers and providers are installed in different environments (public and private
spaces, living labs and residential sites), it’s crucial to analyse and define all interoperability
aspects that will favour an easy, scalable, and flexible integration of Robot-Era platforms
and services in all experimental settings.

The term “interoperability” indicates the ability of independent systems, such as robotic
systems, to exchange meaningful information and initiate actions from each other, in order
to operate together to mutual benefit. In particular, it envisages the ability for loosely-
coupled independent systems to be able to collaborate and communicate.

Networked robotic systems consist of a collection of interconnected components, and in the
Robot-Era project different robotic platforms work together and with external systems such
as Wireless Sensor Networks (WSN), wearable devices, actuators or servers. These
components require cooperation and collaboration to achieve a common goal.

However application development for such collaborative distributed systems composed of
many robots with sensors, embedded computers, and human users is very difficult.

Therefore, middleware services can provide advanced approaches offering many possibilities
and drastically enhancing the development process and the overall functionalities needed
for networked robotic systems [1].

Robotics middleware is an abstraction layer that resides between the operating system and
software applications (Figure 1). It is designed to manage the heterogeneity of the
hardware, improve software application quality, simplify software design, and reduce
development costs [2]. In particular, a middleware could be based on a two-layer reference
architecture: the upper layer for seamless integration among heterogeneous devices, and
the lower layer in which each device may use a specific architecture and middleware
internally, while externally it presents a uniform interface toward the upper layer.

Figure 1. Middleware Layers

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 6 of
24

Due to their high components heterogeneity and unique characteristics, networked robotic
systems in general pose considerable impediment and make the development of networked
robot applications non-trivial. Therefore, there must be new software services, middlewares,
that act as the glue to link everything together in an efficient manner, supporting
concurrency-intensive operations, enhancing collaboration, and insuring efficiency and
robustness.

Robotics middleware should be instrumental to make the robot system customizable to
different scenarios, applications and environments, and to enable advanced properties like
self-configuration, self-adaptation, and self-optimization.

2. Middleware for Robotic Systems

Middleware can play an important role in developing and operating networked robots. As
with many other distributed systems, middleware can provide abstractions, hide
heterogeneity, facilitate applications development, and provide several value-added
functionalities [1][3].

While the older generations of robots were designed to achieve specific tasks and
manufactured as one unit, the new generations of robots are diverse and ubiquitous. New
robotic applications, such as the Robot-Era system, are composed of multiple robots and
other devices (such as ZigBee sensors and actuators) that are connected through wireless
networks. These robots and devices are usually controlled by software modules developed
by different manufactures using different programming languages. Robots and other devices
may use different communication mechanisms. Software modules are also needed to
process sensor information and control actuators for performing computational and
cognitive tasks like navigation, localization, planning and interaction.

Although utilizing networked robots for some applications have many efficiency and
accuracy advantages, it raises some integration issues, first of all the interoperability. These
issues could be solved by including a middle layer, that is middleware.

2.1. Roles of Middleware

Generally, middlewares are used in distributed systems to reduce development time and
cost. This is achieved by providing well-structured and well-tested services for often-needed
functionalities. In addition, it provides some functions that cannot be added to the operating
system such as reliability, security, and abstraction.

The design and development of middleware for Robot-Era system needs to deal with many
challenges dictated by the robotics platforms and other devices characteristics on one hand,
and the scenarios needs on the other.

Middleware for the Robot-Era system, but the same goes generally for robotics middleware,
have several roles:

− Support communication and interoperability: Robots and other devices are designed and
implemented by different manufactures. In Robot-Era scenarios, among robots and
other devices (such as WSN, wearable device,…), efficient communication and simple
interoperability mechanisms are needed. Therefore, middleware should provide these
functions. In addition, multiple robots may be arranged in ad hoc manner in which they
cannot directly communicate with each other. In this case, communication support for
ad hoc networks is needed. This type of support can be provided by middleware.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 7 of
24

− Provide automatic discovery and self-configuration of new devices: Networked robots
are considered dynamic systems due to the mobility of robots, the different operating
environments and their changes. In Robot-Era system, external devices can be
dynamically available/unavailable for a robot’s use. These external resources can be
utilized by robotic platforms to enhance processing power, accuracy or some
functionalities, when they are available. Hence, automatic and dynamic resource
discovery and configuration is needed.

− Simplify the development process: Application development is not easy for networked
robotic platforms. The middleware should simplify the development process by providing
higher-level abstractions with simplified interfaces (APIs) that can be used by all partner
researchers. In addition, the middleware should promote for software integration and
reuse.

− Provide collaborative operations among robotics platforms: Robot-Era system relies on
different robotic platforms to achieve specific tasks, so these robots must be able to
work together efficiently. Robotics middleware must provide some functionalities and
high-level abstractions to facilitate the development of the collaboration mechanisms.
Tools and APIs are necessary to support the development and utilization of specialized
collaboration functionalities.

− Provide heterogeneity abstractions: Robot-Era system contains heterogeneous hardware
and software components, communication and cooperation among these components is
an important aspect. The abstraction role is played by middleware which acts as a
collaboration software layer among all involved components, hiding the complexity of
the low-level communication and the heterogeneity of the components.

− Provide integration mechanisms with other systems: Robot-Era robotic platforms need
to interact with other systems such as WSN. Most of these interactions should be done
in an abstract way and in real-time. Middleware should provide real time interaction
services with other systems and devices in different environments.

− Offer often-needed robot services: A great deal of effort is spent writing new
implementations of existing algorithms and control services for networked robotic
applications multiple times. The same algorithms/services may be rewritten several
times due to changes in the robotic platform’s hardware, the development of new
services and applications, changes in the operating systems, changes of technical staff,
or just for adding new functionalities. These often-needed robot services should be
provided by robotics middleware which allows for reuse of the modules offering these
functionalities.

All these fundamental roles of middleware are needed in the Robot-Era system, and they
were analysed by partners in order to define the middleware.

2.2. Existing Middlewares for Robotics

Many different middlewares have been proposed for robotic networks applications, often
from a different point of view and with different features and applications.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 8 of
24

Robotics middleware can be based on standard or nonstandard communication models.
Some middleware are based on a standard distributed object model, CORBA (Common
Object Request Broker Architecture), allowing interprocess and cross-platform
interpretability for distributed robot control. The main motivation of using the distributed
object model is to improve the software development process for robotic systems and to
enable the interaction among robots and other systems.

Miro [4] is an object-oriented middleware for robots. The main features of this middleware
are improving the software development process for mobile robots and enabling the
interaction between the robots and enterprise information systems. It is open source, and it
has no explicit fault handling capabilities. Miro is designed and implemented by applying
object-oriented design and implementation approaches using the common object CORBA
standard. This allows inter-process and cross-platform interoperability for distributed robot
controls. Miro was implemented using multiplatform libraries for easy portability, both for
Windows and Linux. It has high flexibility but no automatic discovery and configuration.

Another middleware based on standard communication model is RT (Robot-Technology)-
Middleware [5]. The main goal of this middleware is to build robots and their functional
parts in a modular structure at the software level and to simplify the process of building
robots by simply combining selected modules. Another important goal is to make robots
more intelligent by distributing their necessary resources over a network. RT-Middleware
provides the necessary services to enable implementing robotic applications that need these
types of distributed systems. It6 provides automatic discovery and configuration, and high
flexibility in adding new services.

Universal Plug and Play (UPnP) was developed to offer peer-to-peer network connectivity
among PCs, wireless pervasive devices, and intelligent appliances [6]. The UPnP has
automatic discovery and configuration mechanisms. UPnP Robot middleware was developed
to configure robot components and to allow ubiquitous robots to discover and interact with
other devices like sensor networks, cameras and electromechanical devices. Using UPnP
mechanics robots are able to configure their internal components to interact with external
devices based on the specific goals or services they should provide. This is an essential
feature for the implementation of intelligent robotics. The intelligence component can be
internal or external since software components can cooperate with each other regardless of
their location. This approach provides a simple scheme for building intelligent robots with a
lot of hardware and software components, but it has low flexibility in adding new services.

The Player/Stage system provides infrastructure, drivers and some algorithms for mobile
robotic applications [7]. This middleware has two major components: Player and Stage.
Player is a device repository server for actuators, sensors, and robots. Stage is a graphical
simulator that models devices in a user defined environment. The Player/Stage system is
implemented as a three-tier architecture in which the first-tier is the clients which are
software components developed for specific robot applications, the middle-tier is the Player
which provides common interfaces for different robot devices and services, and the third-
tier is the actual robots, sensors, and actuators. Player's modular architecture makes it
flexible to support new hardware, it provides high flexibility, but it is not designed for
automatic discovery and configuration.

MARIE (Mobile and Autonomous Robotics Integration Environment) is a middleware created
for developing and integrating new and existing software components for robotic systems
[8]. MARIE provides high flexibility in adding new services and devices, it aims to create a
flexible distributed components system that allows robotic systems developers to share,
reuse, and integrate robotic software programs for rapid robots application development.
MARIE middleware provides some services that allow the adaptation of different
communication protocols and applications which make it very flexible, but it doesn’t provide
automatic discovery and self-configuration.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 9 of
24

The middleware of AWARE is a data centric middleware for the integration of WSN and
mobile robots [9]. The main aim of this middleware is to provide simplified mechanisms for
integrating information gathered by various types of sensors including WSN and mobile
robots. This type of integration is needed for applications where robots are used to obtain
and process data from their environment through a WSN. It provides high flexibility in
adding new functionalities, but no automatic discovery and configuration of new devices.

RSCA (Robot Software Communication Architecture) is a middleware for networked service
robots [10]. Its main feature is the real-time support. It provides a standard operating
environment and development framework for robot applications. The operating environment
consists of a Real-Time Operating System, communication middleware, and deployment
middleware. The operating system provides an abstraction layer that makes robot
applications both portable and reusable on different hardware. The communication
middleware is compliant to minimum CORBA and RT-CORBA and provides mechanisms for
distributed heterogeneous components to communicate in real-time.

The PEIS Middleware is an open source middleware that provides a nonstandard
communication model [11]. The PEIS Middleware provides a shared memory model and
supports heterogeneous devices. This middleware is designed to implement the concept of
Ecology of Physically Embedded Intelligent Systems (PEIS-Ecology), in which many robotic
devices, pervasively embedded in real environments, cooperate in performing some tasks in
the service of people. In this approach, complex robotic functionalities are not achieved via
the implementation of extremely advanced robots, but rather through the cooperation of
many simple robotic components. The main aim of the PEIS Middleware is to provide a
common communication and cooperation model that can be shared among heterogeneous
robotic devices such as mobile complex robots, sensors or actuators, and automated home
appliances. With this middleware, any robot device with software controls in the
environment is defined as PEIS; each PEIS is a set of inter-connected software components
developed to control sensors or actuators. All PEIS can communicate and cooperate each
other using a uniform communication and cooperation model. In this model, each
participating PEIS can use functionalities from other PEIS in the ecology in order to
complement its own. PEIS-Middleware provides automatic discovery of new devices,
introspection, and run-time self-configuration capabilities.

Sensory Data Processing Middleware [12] is developed to provide abstracted services for
accessing sensor information to support service mobile robots. Two types of services were
implemented to provide obstacle information and to localize the robot position using
landmark observations from multiple external sensors. This middleware provides a unified
model for different configurations of external sensors on a service mobile robot. The unified
model abstracted from sensors can be used in any service mobile robot application
independent of the sensors configuration. The developed services can be reused in multiple
applications without dealing with individual sensors.

A Layer for Incorporations among Ubiquitous robots [13] is developed to enable
communication among ubiquitous robots which are usually of different types. These types
can be software robots, mobile robots, and embedded robots. Software robots are similar to
mobile agents while mobile robots are usually hardware robots controlled by software. This
middle layer is mainly designed to allow software robots and mobile robots to communicate
even when they use different communication mechanisms. The middle layer consists of two
mappers: sensor mapper and behavior mapper. The sensor mapper helps software robots
get physical sensor information from mobile robots; while the behavior mapper helps
software robots make physical behavior using the actuators of the mobile robots.

Orca [14] is an open source middleware framework for developing component-based
robotics. It is designed to target applications from single vehicles to distributed sensor
networks, and his main aim is to enable software reuse in robotics. Orca enables
implementing a distributed component-based robotic system by allowing the user to define

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 10 of
24

interfaces and communication mechanisms. It was implemented using CORBA. It doesn’t
provides real-time capabilities, and it has no explicit fault handling capabilities.

The MIRA framework, for instance, provides a middleware that allows to compose different
modules dynamically at runtime to form the final complex application [15]. This middleware
handles the communication between the modules efficiently and transparently. It allows the
modules to be freely distributed - no matter if they are located within a single process, in
different processes or even on different machines. MIRA is designed to allow fast and easy
creation and testing of new distributed software modules. The interface is very lightweight
and fully transparent. Mira middleware allows a fast and efficient development of (robotic)
applications, and it provides stability and reliability, and the usage of C++ language-
constructs only, without the need of a meta-language or meta-compilers. For
communication the MIRA framework offers message passing by implementing the
publisher/subscriber pattern as well as Remote Procedure Calls (RPC).

ROS provides the operating system’s services such as hardware abstraction, low-level
device control, implementation of commonly-used functionality, message-passing between
processes, and package management [16]. ROS is an open source metaoperating system
for robot software consisting of many small tools designed to work together. It supports
distributed environment. The ROS system is a computation graph consisting of a set of
nodes communicating with one another over edges It consists of nodes (software modules),
messages (passed peer to peer), topics, and services (analogous to web services). Nodes
communicate together by passing messages through publish/subscribe model. Messages are
not based on a specific programming language. A node sends a message by publishing it to
a given topic, which is simply a string. A node that is interested in a certain kind of data will
subscribe to the appropriate topic.

LIME (Linda in a Mobile Environment) is an open source model and middleware supporting
the development of applications that exhibit physical mobility of hosts, logical mobility of
agents, or both [17]. Lime adopts a coordination perspective inspired by work on the Linda
model [18], such as the PEIS middleware. The context for computation, represented in
Linda by a globally accessible, persistent tuple space, is refined in Lime to transient sharing
of identically-named tuple spaces carried by individual mobile units. Tuple spaces are also
extended with a notion of location and programs are given the ability to react to specified
states. The resulting model provides a minimalist set of abstractions that facilitate rapid and
dependable development of mobile applications.

OROCOS (Open Robot Control Software) is an open source middleware based on a standard
communication model (CORBA model). The main goal is to develop a general purpose
modular framework for robot and machine control [19]. It is a Real-Time Toolkit that
provides the components to be able to run on a real-time operating system. It consists of
the following libraries: the OROCOS Components Library (OCL) that provides some ready-
to-use control components, the OROCOS Kinematics and Dynamics Library (KDL) that
provides the real-time calculation of kinematic chains, and the Orocos Bayesian Filtering
Library. OROCOS does not support distributed environment. OROCOS was implemented
using multiplatform libraries (C++ libraries) for easy portability, both for Windows and
Linux. It has high modularity and flexibility but no automatic discovery and configuration.

URBI is a software platform used to develop portable applications for robotics and artificial
intelligence. It is based on a parallel and event-driven script language, and on a distributed
component architecture [20]. Urbi is based on a standard communication model, and it
consists in a non-modular architecture. It consists essentially of software libraries, but not
components, that wrap accesses to physical devices; it defines a scripting language to
access sensors and actuators. The Urbi platform sits on top of the large variety of software
and/or hardware components for robotics, and provides the user with a unified,
standardized, interface with which complex and portable applications can be developed.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 11 of
24

2.3. Summary table

Table 1 shows a list of main networked robotic middleware platforms for networked robots,
with a brief list of their characteristics and technologies/standards used.

Platform Main Objectives
Comm.
Model

Standards/
Technology
followed

Service
provided

Automatic
discovery &
configuration

Flexibility
of adding
new
services

Miro

To improve the
software
development
process for
mobile robots and
enable interaction
between robots
and enterprise
systems using
the distributed
object paradigm

Standard CORBA, ACE Generic No High

RT-
Middleware

To make robots
and their
functional parts
in a modular
structure at the
software level
and to simplify
the process of
building robots by
simply combining
selected modules

Standard CORBA Generic Yes High

UPnP Robot

To enable
automatic
discovery,
configuration,
and integration
for robot
components in
both modular and
ubiquitous robots

Non
Standard

UPnP
For
automatic
integration

Yes Low

Player /
Stage System

To provides a
development
platform that
supports different
robotic hardware
and provides
common services
needed by
different robotic
applications

Non
Standard

Three-tier
architecture,
Proxy objects

Generic No High

PEIS Kernel

To provide a
common
communication
and cooperation
model that can
be shared among
multiple robots
and devices

Non
Standard

Uniform
communication
& cooperation
models,
Distributed
tuple-space,
fully
decentralized

Generic Yes High

MARIE

To create flexible
distributed
components that
allows developers
to share, reuse,

Non
Standard

Mediator
interoperability
technology, ACE

Generic No High

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 12 of
24

and integrate
new or existing
software
programs for
rapid robotic
application
development

RSCA

To provide real-
time support for
robotic
applications and
to provide
abstractions that
makes robotic
applications both
portable and
reusable on
different
hardware
platforms

Standard RT-CORBA
Generic and
for QoS
support

Yes High

AWARE

To provide data-
centric
capabilities for
the integration of
wireless sensor
networks and
mobile robots

Standard

TinyOS,
TinySchema,
Publish/
subscribe

For sensory
service

Yes Low

Sensory Data
Processing

To provide
abstracted
services for
accessing
external sensor
networks
information to
support service
mobile robots

Non
Standard

N/A
For sensory
service

No Low

Layer for
Incorporation

To enable
communication
among ubiquitous
robots which are
usually of
different types

Non
Standard

Sensor and
behavior
mappings

incorporation
among
different
robot types

No Medium

Orca

To enable
software reuse in
robotics using
component-based
development.

Standard CORBA

developing
component-
based
robotics

Yes Medium

MIRA

To compose
different modules
dynamically at
runtime to form
the final complex
application

Standard
Publish/
subscribe

Generic No Yes

ROS

To provide the
OS services (e.g.
hardware
abstraction, low
level device
control, message-
passing between
processes,
package
management)

Standard

Message
oriented

RPC services

Generic No Yes

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 13 of
24

LIME

To develop
applications that
exhibit physical
mobility of hosts,
logical mobility of
agents, or both

Non
Standard

Distributed
tuple-space,
fully
decentralized

Generic No Yes

OROCOS

To develop a
general purpose
modular
framework for
robot and
machine control

Standard
CORBA

ACE/TAO
Generic No Yes

Urbi

To develop
portable
applications for
robotics and
artificial
intelligence

Standard

Non-modular,
distributed
component
architecture

Generic No No

Table 1. Summary of list of main robotics middleware

3. Robot-Era System Overview

The whole Robot-Era system has demanding requirements in terms of overall software
organization and interoperability. The system must be able to accommodate devices which
are highly heterogeneous, ranging from the computational powerful domestic, condominium
and outdoor robots; to relatively simpler devices like hand-held tablet computers or robotic
vacuum cleaners; all the way down to the very simple (wired or wireless) sensors and
actuators that form the fabric of the Ambient Intelligence infrastructure. The system must
afford seamless distribution of information and cooperation among devices, irrespective of
the differences in hardware and software across devices. It must allow the dynamic
insertion and removal of devices into and from the overall Robot-Era robotic ecology with no
need for human intervention. Finally, the system must be open to the introduction of new
devices in the future, again with no or minimal human intervention.

3.1. Reference Architecture

To accommodate the above requirements, the Robot-Era consortium has decided to rely on
a two-layer reference architecture, shown in Figure 2. In this architecture:

• at the upper layer, called “Ecology Layer”, a common network-oriented middleware
provides seamless integration among heterogeneous devices, including the Robot-Era
robots, while addressing all the above requirements;

• at the lower layer, called “Device Layer”, each robot and device may use a specific
architecture and middleware internally, while externally it presents a uniform interface
toward the ecology layer, possibly through a gateway.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 14 of
24

Figure 2: Reference architecture of the whole Robot-Era system.

Sections 4 and 5 below will discuss the Ecology and Device layers in more detail.

3.2. Requirements for the Ecology Layer

For the purposes of the Robot-Era system many requirements have been posed by partners
on the infrastructure to be used. The requirements are different for the Ecology Layer and
for the Device Layer.

For the Ecology Layer, the middleware that implements it should:

• provide a shared memory model, that allows seamless sharing of information and
content-based access to information;

• be fully decentralized, to minimize the infrastructure requirements and hence reduce
cost to the user while improving robustness;

• provide simple mechanisms for introspection and dynamic configuration;
• have a small footprint, suitable both for smaller devices and for larger embedded

computers;
• expose a minimalistic API easily usable by both expert as well as component

programmers with little expertise in middleware and network design;
• support heterogeneous devices ranging from simple sensors, tiny embedded devices,

and household appliances to complex robots (the three robotic platforms);
• provide a simple way to interface with the device-specific middleware which will be used

inside each single robotic platform, e.g., ROS, Player or MIRA;

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 15 of
24

• afford automatic discovery, configuration and interconnection of different devices to
realize dynamic, task-based ecologies, with no need of manual intervention;

• handle the dynamic appearance and disappearance of devices, or group of devices, from
the network;

• allow devices to operate both in isolation as well as in ad-hoc groups formed when
devices come within communication range;

• smoothly scale as the number of devices increase;
• be easily available to the Consortium, ideally through an open-source licence.

From the study of many classical middleware described in Section 2.2 above, the Robot-Era
partners considered that the PEIS-Middleware satisfies the above requirements. The PEIS-
Middleware was therefore chosen by partners to be adopted as the Robotic Ecology
middleware in the Robot-Era project. The PEIS-Middleware is available open-source, and its
main developer is a partner of the Robot-Era consortium.

The PEIS-Middleware is implemented without following a standard communication model.
This allows for providing some advanced functions that are specifically needed by the
Robot-Era scenarios and applications. Other middlewares, for example RT or RSCA
middleware, also satisfy many of the above requirements, but they are implemented
following a standard communication model, which makes them less suitable than PEIS-
Middleware in order to perform some specific tasks.

In particular, automatic discovery, configuration and integration of new services and devices
are important features that the Robot-Era middleware has to satisfy. The automatic
discovery and configuration mechanisms are appropriate for dynamic computing
environment such as ubiquitous robots in Robot-Era system. Mobile robots can discover the
existence of external devices and can configure themselves to interact with them. These
devices can be WSN, wearable devices, and controllable electromechanical devices. The
PEIS-Middleware provides a simple dynamic model for self-configuration and introspection.
All devices (PEIS, in the PEIS-Middleware terminology) are connected by a uniform
communication model that allows dynamic joining and leaving of PEIS.

3.3. Requirements for the Device Layer

The requirements of this layer depend on each specific robot and device, and they are
therefore discussed in the Deliverables dealing the AmI devices and infrastructure (D3.1),
and with the domestic / condominium / outdoor robots (D4.1 / D5.1 / D6.1). From the point
of view of interoperability, which is the central concern of the present document, the
following general observations can be made:

• Some devices will be capable of running the PEIS-kernel, the core part of the PEIS-
Middleware, and therefore they can be directly integrated in the Robot-Era system
through the PEIS-Middleware functionalities. Examples of these devices depicted in
Figure 2 above include a tablet PC for user interface and a robotic vacuum cleaner.

• Other devices may not be capable of running the PEIS-kernel, because of severe
computational limitations. These include WSN (wireless sensor network) nodes, which
incorporate the sensors and actuators embedded in the smart environment. These
devices will be connected to one or more base stations, which will provide a gateway
toward the PEIS-Middleware to allow interoperation with any other device in the Robot-
Era system via the PEIS-Middleware mechanisms.

• Robotic platforms use a specific robot middleware internally, and this may be different
from the PEIS-Middleware. The purpose of the robot middleware is to integrate robotic
components within the platform itself, e.g., components for perception, reasoning,
navigation and manipulation, as well as components that provide access to the robot’s
hardware – see Figure 2. The robot middleware concerns the implementation of a given

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 16 of
24

robot, and it should not be confused with the Ecology Layer middleware which concerns
the orchestration of the whole Robot-Era system. In particular, the robot middleware
should address typical robotic issues, e.g., availability of reusable robotic components,
real- or near-real-time performance, and smooth integration with robotic hardware.
These issues are different from the requirements for the Ecology Layer middleware listed
above.

• The Robot-Era consortium has decided to adopt ROS and MIRA as robot middleware
inside the robotic platforms. A gateway between ROS/MIRA and the PEIS-Middleware
must therefore be created. This will be further discussed in Section 5 below.

4. Interoperability in the Ecology Layer

At the Ecology Layer, a Robot-Era system will rely on the PEIS-Middleware to provide
interoperability among all the robots and devices participating in the system. The PEIS-
Middleware implements a fully decentralized communication model based on a distributed
tuple-space, and runs on a wide range of platforms. Below, we recall the main features of
the PEIS-Middleware. A more comprehensive description can be found in the literature
[11,21,22].

4.1. The PEIS-Kernel

The PEIS-Middleware is a set of software libraries and tools that allow a developer to
implement a robot ecology, to visualize its state, and to debug it. The tools and libraries are
available for many platforms and programming languages (C/C++, Java, LISP). They are
organized in the PEIS-Kernel software stack, which is visualized in Figure 3.

Figure 3: The software stack of the PEIS-Middleware

At the bottom of the stack, we rely on a standard POSIX compliant operating system and
hardware. Above this lays the PEIS-Kernel library. This library utilizes the available
communication devices, such as network cards or bluetooth interfaces, to establish a peer-
to-peer (P2P) network between all components running on the different machines in the

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 17 of
24

neighbourhood. This allows even components without a direct means of communication to
communicate.

The decentralized nature of this P2P network allows for dynamically changing topology and
devices appearing/disappearing from the network. The primary interface to this network is
the capability of detecting devices, routing unicast and broadcast messages reliably at
different virtual ports. In this multi-hops routing we use the standard weighted random
early detection (WRED) congestion control algorithm to ensure a higher QoS for control
messages and meta data. Interestingly, this routing allows devices which have mutually
exclusive communication methods such as wireless LAN (802.11) and ZigBee (802.15.4) to
still communicate using any set of intermediate nodes as a bridge. Additionally, this layer
provides a mechanism for registering callable functions as hooks to be invoked periodically,
or upon different events such as receiving specific messages.

At the next layer, we utilize this P2P network to implement a number of different services.
The most important of these is a distributed tuple-space, which is described in detail in the
next subsection. Other services include synchronization of a decentralized network clock,
and various debugging functionalities. The P2P layer together with this service layer
constitute the PEIS-Kernel library. Any component that should participate in a robot ecology
is run as a normal user-space process linked to this library.

In addition to the basic functionalities implemented in the PEIS-Kernel, the PEIS-Middleware
includes a number of standardized components such as a visualization and debugging
components, automatic configurators, and the PeisInit component. The latter component
plays a critical role in the introspection and dynamic configuration capability of the PEIS-
Middleware. It is started on boot-time on every platform; it provides information about all
the components which may run on that platform; and it dynamically starts, stops and
monitors the execution of those components.

4.2. The Tuple-Space

As a shared memory model for communication and coordination, the PEIS-Middleware
implements a Linda-type distributed tuple-space, augmented with an event mechanism. In
a Linda-space, tuples containing keys and other data can be stored and retrieved by any
participating process. In our version of this space, a PEIS-tuple consists of a name-space,
key, data as well as several meta-attributes such as timestamps and expiration date – see
Figure 4. A component corresponding to the name-space is called the owner of the tuple.
The key is a string consisting of dot-separated fields (currently up to seven), e.g.,
“camera.position”. Wild-cards are allowed in fields, e.g., “*.position” to allow associative

searches.

Figure 4: Format of a PEIS-Tuple

We also allow the use of abstract tuples, that is, tuples in which one or more fields contain a
wild-card value. An abstract tuple is said to match a concrete (fully instantiated) tuple if all
the non wild-card fields are equal to the corresponding fields of the concrete tuple. Abstract
tuples allow us to make associative searches in the distributed tuplespace. These searches
result in the subset of all tuples that is generalized by the given abstract tuple.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 18 of
24

In addition to reading, the PEIS-Middleware allows remote components to update tuples in
the tuplespace. This capability is pivotal to enable actuation over the network. When a
component writes a tuple with a specific name-space and key, the kernel sends a message
with a write request to the owner of that tuple. The owner is responsible for
synchronization, serving requests in FIFO order: this circumvents many problems with
decentralized databases and provides some load balancing. The tuple owner commits the
write in its local memory and sends a notification to all components which have registered
an interest in this tuple. Components can register an interest in specific tuples by means of
a subscription mechanism, making sure that they will continuously receive updates
whenever that tuple is written. Subscriptions are typically made using abstract tuples
containing wild-cards that match zero or more specific tuples. Subscriptions and
notifications are transmitted over the P2P network and are guaranteed to be delivered in
order. Whenever a component receives a tuple change notification, it invokes any user
specified hook associated with a tuple generalizing the updated tuple, and stores the tuple
in a local cache. Retrievals from the local cache of tuples are instantaneous, and do not
incur any network overhead. This allows the use of both asynchronous and instant read by
value (polling) access to the tuples, as well as callback access, again using abstract tuples
matching zero or more specific tuples.

To establish a given pattern of communication and collaboration between a given set of
components, a robot ecology designer typically creates the right set of tuple subscriptions
and callbacks among those components. This set is called a configuration of the robot
ecology. The PEIS-Middleware allows a dynamic configuration mechanism, in which a
designer as well as any software component can create and remove subscriptions at run-
time. This mechanism is based on the notion of meta tuples, which contain a reference by
name to other tuples.

5. Interoperability in the Device Layer

To support interoperability at the Ecology Layer, each robot and device in a Robot-Era
system must appear as a PEIS device to the PEIS-Middleware. At the Device Layer,
however, some robots and device may not be natively implemented in such a way to
support the PEIS-Middleware. From this point of view, we distinguish three types of devices
participating in a Robot-Era system (see Figure 2 in Section 4 above):

1. Devices which can run the PEIS-Kernel; these devices can be integrated into the overall
system through the PEIS-Middleware.

2. Devices which are too limited to run the PEIS-Kernel, e.g., wireless sensor networks;
these devices are integrated into the overall system through one or multiple dedicated
base stations, which include a gateway toward the PEIS-Middleware.

3. Devices which internally use a different middleware, e.g., robotic platforms.

Integration of devices of the first type is obviously straightforward. The integration of
devices of the second type will be discussed in Deliverable D3.1 “Report on the
implementation of the AmI infrastructure modules”. In the next section, we focus on the
integration of devices of the third type.

5.1. Robot platform architecture

Robot-Era includes three types of robotic platforms: domestic robots, condominium robots,
and outdoor robots. Although these platforms will differ both in hardware and software, the
Robot-Era consortium agreed that they should share a similar abstract architecture. This
architecture is shown in Figure 5 below.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 19 of
24

Figure 5: Abstract architecture of a Robot-Era robotic platform.

Each robot platform comprises a number of robot components for perception, reasoning,
navigation and manipulation. These components are integrated with the help of a robot
integration framework, or “robot middleware”. In Robot-Era, it has been decided that two
such frameworks will be used: the ROS (Robot Operating System) created by Willow
Garage, and MIRA (Middleware for Robotic Applications) developed by MetraLab in
cooperation with the Ilmenau University of Technology. The rationale for using both
frameworks is as follows.

MIRA is the native middleware implemented in the MetraLab Scitos G5 and G6 robotic
platforms, which will be used as basis for the Robot-Era domestic and condominium robots.
MIRA includes stable drivers for the sensors and actuators in those robots, as well as a
mature navigation software, called Cognidrive, geared toward operation of these robots.
Using MIRA will therefore allow us an optimal reuse of existing results when developing the
needed navigation functionalities for the Robot-Era platforms.

ROS is assessing itself as the de-facto standard in robot middleware. It has an impressive
and rapidly growing user base, and a correspondingly very large repository of robotic
algorithms which have been packaged for easy deployment using ROS. These include
algorithms needed for navigation, like mapping, localization and path planning; but also
algorithms needed for object manipulation, like 3D scene interpretation, manipulation
planning, and visual servoing. In particular, ROS packages are available for processing 3D
point clouds acquired by the Kinect sensor, and for controlling the Kinova Jaco robot arm:
both of these devices will be part on the Robot-Era domestic robots. Using ROS will
therefore allow us an optimal reuse of existing results when developing the needed
manipulation functionalities for the Robot-Era platform.

Not all Robot-Era platform will need to run both the MIRA and ROS robot middleware. For
example, the condominium robot, which does not have a manipulator, may only need MIRA.
If both MIRA and ROS are needed on the same platform, however, an adaptor needs to be

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 20 of
24

implemented to ensure the proper exchange of information and coordination between robot
algorithms implemented in the two sides.

Irrespective on how the individual robotic algorithms are implemented, the whole robot
platform should appear to the overall Robot-Era system as one PEIS device able to provide
a certain number of services and functionalities. To achieve this abstraction, each Robot-Era
robot system will include a Robot Supervisor module. The role of the Robot Supervisor is to
implement the abstract services and functionalities that the whole robot is meant to
provide, by coordinating the activation of the needed robotic components in the MIRA side,
in the ROS side, or in both. For instance, a “navigate to (x,y)” service can be implemented
by first using the arm controller in the ROS side to fold the arm in a safe position, and then
invoking the relevant localization, path planning and path following modules in the MIRA
side. In general, the Robot Supervisor must be able to interact both with MIRA and with
ROS. It will be implemented as a PEIS software component, in order to interact with the
other robots and devices in the Robot-Era system using the PEIS Middleware. In this sense,
the Robot Supervisor will cover the role of “PEIS Gateway” for the robot, as indicated in the
whole Robot-Era system architecture depicted in Figure 2 above. The Robot Supervisor will
also advertise to the rest of the Robot-Era system the services and functionalities that its
robot can provide.

The architecture discussed above is intentionally abstract. Each concrete Robot-Era robot
platform will implement a concrete version of this abstract architecture. The concrete
architectures for the domestic, condominium and outdoor robots are discussed in
Deliverables D4.1, D5.1 and D6.1, respectively (“Report on specifications and middleware
architecture of the domestic / condominium / outdoor robotic platform”).

6. Conclusions

This work has introduced the interoperability aspects of Robot-Era services. Since in the
Robot-Era project different independently developed devices coming from multiple suppliers
and providers will be installed in different environments (public and private spaces, living
labs and residential sites), it was crucial to analyse and define all interoperability aspects
that will favour an easy, scalable, and flexible integration of Robot-Era platforms and
services in all experimental settings.
All participating partners in the project have discussed the requirements of the whole
Robot-Era system in terms of overall software organization and interoperability, to
accommodate devices which are highly heterogeneous.
Many different middlewares have been proposed for robotic networks applications, often
from a different point of view and with different features and applications. These
middlewares were studied by partners in order to evaluate their main features and possible
applications, related to the Robot-Era project.

The Robot-Era consortium has discussed the whole architecture of the system, and decided
to rely on a two-layer reference architecture: at the upper layer (“Ecology Layer”) a
common network-oriented middleware provides seamless integration among heterogeneous
devices, including the Robot-Era robots, while addressing all the above requirements; at the
lower layer (“Device Layer”) each robot and device may use a specific architecture and
middleware internally, while externally it presents a uniform interface toward the ecology
layer.

The Robot-Era partners considered that the PEIS-Middleware satisfied all requirements, it
was therefore chosen by partners to be adopted as the Robotic Ecology middleware in the

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 21 of
24

Robot-Era project, to provide interoperability among all the robots and devices participating
in the system.

The requirements of the Device Layer depend on each specific robot and device, and they
are therefore discussed in other Deliverables. Robot-Era includes three types of robotic
platforms: domestic robots, condominium robots, and outdoor robots. Although these
platforms will differ both in hardware and software, the Robot-Era consortium agreed that
they should share a similar abstract architecture.

Each robot platform comprises a number of robot components for perception, reasoning,
navigation and manipulation. These components are integrated with the help of a robot
integration framework, or “robot middleware”. In Robot-Era, it has been decided that two
such frameworks will be used: the ROS (Robot Operating System), and MIRA (Middleware
for Robotic Applications). MIRA is the native middleware implemented in the MetraLab
Scitos G5 and G6 robotic platforms, which will be used as basis for the Robot-Era domestic
and condominium robots. ROS is assessing itself as the de-facto standard in robot
middleware, and it will be used for manipulation functionalities.

Not all Robot-Era platform will need to run both the MIRA and ROS robot middleware. If
both MIRA and ROS are needed on the same platform, however, an adaptor needs to be
implemented to ensure the proper exchange of information and coordination between robot
algorithms implemented in the two sides.

The architecture discussed is intentionally abstract. Each concrete Robot-Era robot platform,
and their architecture, is discussed in Deliverables D4.1, D5.1 and D6.1, respectively.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 22 of
24

References

[1] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “A review of middleware for networked
robots,” International Journal of Computer Science and Network Security, vol. 9, no.
5, pp. 139-148, 2009.

[2] A. Elkady and T. Sobh, “Robotics Middleware: A Comprehensive Literature Survey and
Attribute-Based Bibliography,”

[3] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for robotics: a survey,” in
Proceedings of the IEEE International Conference on Robotics, Automation and

Mechatronics (RAM '08), pp. 736–742, September 2008.

[4] H. Utz, S. Sablatnög, S. Enderle, G. Kraetzschmar, “Miro - Middleware for Mobile
Robot Applications,” IEEE Transactions On Robotics And Automation, vol. 18, no. 4,
August 2002.

[5] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, W. Yoon, "RT-Middleware: Distributed
Component Middleware for RT (Robot Technology)”, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 3555-3560, Aug. 2006.

[6] S. Ahn, K. Lim, J. Lee, H. Ko, Y. Kwon and H. Kim, "UPnP Robot Middleware for
Ubiquitous Robot Control," The 3rd International Conference on Ubiquitous Robots and
Ambient Intelligence (URAI 2006), Oct. 2006.

[7] M. Kranz, R. Rusu, A. Maldonado, M. Beetz, A. Schmidth, "A Player/Stage System for
Context-Aware Intelligent Environments," in Proc. of the System Support for
Ubiquitous Computing Workshop (UbiSys), Sep. 2006.

[8] C. Côté, Y. Brosseau; D. Létourneau; C. Raïevsky, F. Michaud, "Robotic Software
Integration Using MARIE," International Journal of Advanced Robotic Systems, Vol. 3,
No. 1, pp. 55-60, March 2006.

[9] Gil, P., I. Maza, A. Ollero, P. Marrón, “Data centric middleware for the integration of
wireless sensor networks and mobile robots,” in proc. 7th Conference on Mobile
Robots and Competitions, ROBOTICA 2007. April 2007.

[10] J. Yoo, S. Kim, and S. Hong, "The Robot Software Communications Architecture
(RSCA) QoS-Aware Middleware for Networked Service Robots," in Proc. International
Join Conference SICE-ICASE, pp. 330- 335, Oct. 2006.

[11] Broxvall, M., B.S. Seo, W.Y. Kwon, “The PEIS Kernel: A Middleware for Ubiquitous
Robotics,” in proc. IROS-07 Workshop on Ubiquitous Robotic Space Design and
Applications, Oct. 2007.

[12] E. Takcuchi and T. Tsubouchi, "Sensory Data Processing Middlewares for Service
Mobile Robot Applications", in Proc. International Join Conference SICE-ICASE, Oct.
2006.

[13] T. Kim, S. Choi, and J. Lim, "Incorporation of a Software Robot and a Mobile Robot
Using a Middle Layer," IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, Vol. 37, No. 6, pp. 1342-1348, November 2007.

[14] M. Henning, "A New Approach to Object-Oriented Middleware," IEEE Internet
Computing, pp. 66-75, Jan.-Feb. 2004.

[15] MIddleware for Robotic Applications (MIRA) , http://www.mira-project.org/joomla-
mira.

[16] Robot Operating System (ROS), 2011, http://www.ros.org.

[17] A.L. Murphy, G.P. Picco and G.C. Roman, “Lime: A Coordination Model and Middleware
Supporting Mobility of Hosts and Agents,” ACM Transactions on Software Engineering,
Vol. X, No. X, X 2006, Pages 1–49.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 23 of
24

[18] D. Gelernter, “Generative communication in linda,” ACM Trans. Program. Lang. Syst.,
vol. 7, no. 1, pp. 80–112, 1985.

[19] P. Soetens, RTT: Real-Time Toolkit, 2010, http://www.Orocos.org/rtt.

[20] J.C. Baillie, A. Demaille, Q. Hocquet, M. Nottale and S. Tardieu, “The Urbi Universal
Platform for Robotics”, in Workshop Proceedings of SIMPAR 2008, ISBN 978-88-
95872-01-8, pp. 580-591.

[21] A. Saffiotti and M. Broxvall. PEIS Ecologies: Ambient Intelligence meets Autonomous
Robotics. Proc. of the Int. Conf. on Smart Objects and Ambient Intelligence (sOc-
EUSAI) pp. 275-280. Grenoble, France, 2005.

[22] M. Bordignon, J. Rashid, M. Broxvall and A. Saffiotti. Seamless Integration of Robots
and Tiny Embedded Devices in a PEIS-Ecology. Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS). San Diego, CA, 2007.

D7.1 – Report on the interoperability

aspects of Robot-Era services

File name: robot-era_d7.1_interoperability_rev2.0_20121126.doc
Lead contractor: SSSA
Participant contractors: ORU

Page 24 of
24

Appendix A - Electrical Standards

Many different issues were studied in order to favour an easy, scalable, and flexible
integration of Robot-Era platforms and services in all experimental settings. Therefore many
aspects, such as electrical issues, were studied and faced to avoid error-prone and time-
consuming situations during the set-up of the experimental sites, and to favour an easy
upgradeability and extendibility of the Robot-Era services along the entire project and
beyond.

An important studied aspect was the electrical standards used in Italy and Sweden, the two
countries in which the experimental sites of Robot-Era system will be set up.

The plugs, voltages and frequencies they use for providing electrical power to electrical
appliances were considered. Every country has differing rules regarding distribution of
electricity for appliances. Voltage, frequency, and wall socket type vary widely, but large
regions may use common standards. In some areas, older standards may still exist, and
physical compatibility of receptacles may not ensure compatibility of voltage and frequency.

In both countries, Italy and Sweden, the electrical voltage and frequency are the same: 230
V (formerly 220 V) @ 50 Hz; this is the most important aspect for the power supply of
robotic platforms and the other devices in the Robot-Era services during the experimental
tests.

About the wall sockets, the lettering system used here is from a U.S. government document
[1], which defines the letter names and gives a list of what plug types are used where.

In Italy the C, F, L types are used. In Italy common sockets have 8-shaped holes to accept
both 16A and 10A version of the L plug, but in hotels 10A sockets are still common. Schuko
sockets are unusual, but adaptors rated up to 1500 Watt are widespread. C sockets are not
used in modern installations. Italian wall-boxes are similar to American ones, but are
usually horizontally mounted.

In Sweden the C and F socket types are used; non-grounded sockets are prohibited in new
installations. 400 V for some washing machines and other fixed installations. In bathroom
etc. 110-115 socket can be found and used for shavers and other “bathroom tools”.

[1] U.S. Department of Commerce, International Trade Administration, Electric Current
Abroad, 2002.

