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1 Executive summary

The efficiency of opportunistic offloading inherently relies on how the proposed strategies get advantage
from the dynamics of the underlying mobile network. The patterns that govern encounters between nodes
have direct influence on the opportunities to implement device-to-device content exchanges, relieving thus
the cellular infrastructure. In this deliverable, we report the main contributions of the MOTO project
to better understand such patterns. We structure our work around complementary points of view,
ranging from the generalization of mobility modeling, to the impact of duty cycling, to a more complete
investigation of node vicinity. For the sake of completeness, we also consider security trends that may
arise when connectivity is intermittent.

2 Introduction

To achieve efficient opportunistic offloading, it is fundamental to understand how nodes move around
and, most importantly, how they meet creating communication opportunities. Research in this area has
been very active in the latest years, leading to both fundamental discoveries and practical observations.
Although the community has achieved a reasonable level of maturity in this area, several fundamental
issues remain open. In fact, most of the related work considers the network as a whole. In a context where
every opportunity for communication counts, it becomes important to capture contact opportunities in
a fine-grained fashion and characterize mobility at the microscopic level. For example, nodes that meet
frequently but apart from the rest of the network have limited contribution to the capacity of the system.
Or nodes may sleep and miss contact opportunities. Similarly, a node that shows strong contact activity
but with the same neighbours might be poor diffusers. Also, in crowded spaces users might switch on
and off their devices, thus generating a non-mobility-induced opportunistic network.

In the MOTO project, we advocate that it is no further sufficient to investigate the average behaviour
of the network. We propose to tackle the problem from a spatiotemporal viewpoint, by considering
contacts not only as individual phenomena but also as an atomic event. This is a very challenging
problem, as it introduces several variables into the equation. In particular, we need to define the role
that a particular node can take in the network by considering its spatial mobility and its interactions
with the other nodes. Last but not least, such a role must take into account the other interactions
happening throughout the network and possibly future events predicted by models based on the history
of the system.

These considerations lead to specific questions that are central to the activities of the MOTO project:

• Would it be possible to create mobility models that easily account for specific requirements and
features, thus better reproducing contact and intercontact patterns?

• What is the impact of duty cycling on contact and intercontact patterns?

• Would it be worth relaxing the definition of “proximity” in opportunistic networks? When two
nodes are not in direct contact, are they nearby or really far away?

Providing answers to these questions can significantly help design protocols and algorithms to achieve
higher offloading gains. In fact, the utility of the MOTO framework is only worth it if encounters
between nodes are sufficient to allow frequent device-to-device exchanges (reducing the load on the cellular
infrastructure).

In this deliverable, we report scientific contributions to fill the gaps described above. In a nutshell,
we describe the following achievements:

• A unifying framework for contact patterns (Section 3). Existing mobility models are limited
in terms of flexibility and controllability. The main reason is that they are in too general (thus
unrealistic) or too specific (thus dedicated), which prevents us to easily adapt their parameters to
any kind of observed mobility. We propose SPoT, a framework that combines social, spatial, and
temporal features to overcome such limitations.
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• Duty-cycling and encounters (Section 4). Device-to-device communications consume signifi-
cant energy, so nodes are typically operated in duty cycling mode. During these periods, nodes may
miss contact opportunities, with potentially severe consequences to the offloading scheme. We in-
vestigate how power saving techniques, which may effectively reduce the number of usable contacts,
affect intercontact times.

• Node proximity beyond one hop (Section 5). Existing analyses of meeting patterns rely on
the binary assumption that nodes are either in contact or in intercontact. We revisit this assumption
and provide arguments toward the adoption of an extended view of the neighborhood. We provide
evidences that considering nodes that are not in contact, but still reachable, can be of great help
in the design of efficient opportunistic networks.

• Predicting node proximity (Section 6). Recent studies have revealed that, under the right
prediction method and predictive features, contacts between mobile users are to a certain extent
predictable. We extend such an analysis to the case of extended neighborhood (previous bullet) and
show that there is a higher potential on relying on extended neighborhood prediction compared to
the traditional one-hop case.

• Security issues (Section 7). As security is an important keyword in the MOTO project, we
decided to investigate the relationships between contact patterns and security trends. In partic-
ular, we are interested in understanding the impact of connectivity disruptions on confidentiality,
integrity, and availability.

For the sake of completeness, we provide a number of research papers related to the different sections
in the Appendix of this deliverable.

3 Contact patterns under a unifying framework

The current approach to human mobility modeling is based on trying to incorporate in the model the
newest features of mobility properties as they come up from trace analysis, typically focusing on just
a few of them. So, for example, the class of social-based mobility models aims to exploit the relation
between sociality and movements, and to formalize social interactions as the main driver of human
movements [1] [2]. The disadvantage of this approach is that the proposed models are intrinsically bound
to the current state of the art on trace analysis, and need to be redesigned from scratch any time a new
discovery is made. In addition, with current mobility models it is typically difficult, if not impossible, to
fine tune the mobility properties (e.g., obtaining intercontact times featuring a probability distribution
with controllable parameters). Overall, flexibility (i.e., allowing for different distributions of mobility
properties – e.g., intercontact times – without redesigning the mobility model) and controllability (i.e.,
obtaining a predictable output starting from a given input) are currently missing from available models
of human mobility.

The goal of this research activity is to address the above limitations. To this aim, we have proposed
a mobility framework (SPoT – Social, sPatial, and Temporal mobility framework) that incorporates
the three dimensions of human mobility and that is flexible and controllable. In the following, we will
summarise the main ideas of SPoT, we will discuss how to configure it relying on the analysis of real
traces of human mobility, and we will show that SPoT is both flexible and controllable [3].1

3.1 The SPoT Mobility Framework

In the following we summarise how the main components of our SPoT mobility framework work. SPoT
is designed around the three main dimensions of human mobility, i.e., the social, spatial and temporal
(see Figure 1). The social dimension is explicitly captured in the framework by taking a graph of human

1Reference available in the appendix.
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Figure 1: Framework overview

social relationships as an input parameter. This graph can be any well known graph, such as random
graphs [4] or scale-free graphs [4], or it can be extracted from real traces. Then, SPoT adds the spatial
dimension to the social ties by generating an arrival network, which is a bipartite graph that connects
users and meeting places. Specifically, user i and a meeting place l are connected in the arrival network
if user i visits meeting place l. Finally, in order to add the temporal dimension to the model, each link in
the arrival network is associated to a stochastic point process that characterises how arrivals of the user
to the meeting place are distributed over time. By sampling from the random variables representing the
time between consecutive arrivals, we obtain the time sequences of the visits of a user to a given location.
Then, the contact network, i.e., the network describing the contacts between nodes, can be obtained by
assuming that two nodes are in contact with each other if they happen to be at the same time in the
same meeting place.

3.1.1 The social and spatial dimensions of human mobility

Social interactions between users have emerged as one of the key factors defining human mobile behavior,
because individuals belong to social communities and their social ties strongly affect their movement
decisions [5] [6]. We consider proximity-based communities, i.e., communities whose members share a
common meeting place (e.g., offices, bars, apartments). Since all members of the community visit a shared
meeting place, it implies that users are socially connected with all other members of the community, and,
therefore, form fully connected components (i.e., cliques) in the social graph. Such cliques in realistic
social networks exhibit an overlapping and hierarchical structure [7] [8]. Each user belongs to several
overlapping cliques, representing different social circles (e.g., friends, relatives, colleagues). On the other
hand, each clique is itself composed of a number of nested cliques, which share additional meeting places
that are not common to all the users of a parent clique. For example, a company shares a set of offices
visited by all its employees, while each subdivision has its own working places.

As anticipated, we represent the relation between the spatial and the social dimension of human
mobility by means of a bipartite graph of users and meeting places, which we call arrival network. In the
algorithm (summarized in Table 1) for generating the arrival network starting from the input social graph
we mainly need two components: a clique finding algorithm (which also detects overlapping cliques) and
a way for reproducing hierarchical cliques.

The first component corresponds to steps 1 and 2 in Table 1. In each round, the social graph is
divided into a set (called cover) of overlapping cliques, such that each link of the social graph is assigned
to exactly one clique. To this purpose, we use the BronKerbosch algorithm [9]. The cover of each round
tries to capture the biggest possible cliques. For each of the newly identified cliques, we create a new
meeting place and assign all members of the clique to that meeting place. In other words, we create a
new meeting place vertex in the arrival network and we add links between this vertex and all members
of the community. As an example, we describe in Figure 2 how cliques identified in the social graph are
reflected into corresponding meeting places. The second component (step 3 in Table 1) of the algorithm
for generating the arrival network allows us to generate nested cliques. More specifically, our algorithm
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Table 1: Algorithm for building the arrival network - Input: social graph G and removal probability α

1. Divide input social graph G into a set of overlapping cliques, such that the sizes of the
cliques are maximum and each link is assigned to exactly one clique. To this aim, the
BronKerbosch algorithm [9] can be used.

2. To each clique assign a separate meeting place, i.e., create a new meeting place and a
set of links between this place and each member of the clique in the arrival network.

3. Remove randomly each link in the social graph with probability α, inducing emergence
of new nested cliques.

4. Proceed to the next round starting from the first step, until there are no links left in
the input graph.
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Figure 2: A round of assigning social cliques to meeting place; cliques are marked with different line
styles

tries to identify cliques of lower size nested into those identified in the previous round. To do so, cliques
are split according to a very simple random process, according to which every link in the social graph
is randomly removed with a constant, configurable, probability α (removal probability). This leads to
the emergence of smaller cliques, which are indeed nested into the original ones. This simple strategy
has also the advantage of allowing for a fine control of the number of meeting places shared by users.
In fact, each link participates into a geometrically distributed (with parameter α) number of rounds of
meeting place assignments. As each link is assigned to at most one clique per round, also the number of
cliques that includes that link will be geometrically distributed. This implies that the pair of users i, j
with which this link is associated will share a number Lij of cliques (and thus of meeting places) that is
itself geometrically distributed with parameter α. The algorithm for generating the arrival network stops
(step 4 in Table 1) when there are no more links in the social graph to be removed.

3.1.2 From meeting places to geographical locations

The analysis of the algorithm in Table 1 reveals that the number of meeting places generated grows with
the number of cliques. Thus, the more cliques in the input social graph, the more meeting places are
required. The proliferation of meeting places is not of big concern as meeting places might correspond
to very small geographic areas (e.g., offices). However, in order to improve the realism of the generated
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scenario, we combine these meeting places into a fixed number L of wider physical locations (e.g., this is
equivalent to combining offices into a business center). To assign meeting places to geographical locations
we explore the observation that, intuitively, the places that share many common frequent visitors should
be located geographically close to each other, like in the case of different buildings of a university campus
or different offices of a company. In [3] we have validated and confirmed this observation using three
datasets extracted from location-based online social networks. In order to quantify the closeness between
two meeting places, we define the strength Fij of ties between a pair of meeting places i and j as the
summary co-appearing frequency across all the users the two places share. More formally, we can write
Fij as follows:

Fi,j =
∑

u∈Ui,j
f iu × f ju (1)

where f iu is the frequency of user u’s visits to location i and Ui,j is the set of all users shared between
place i and j. The higher the arrival frequency of user u to both places i and j, the higher the strength
between the two places.

Our goal now is to distribute meeting places on the 2D plane such that pairs of places with stronger
ties in terms of shared visitors would be located closer. To this aim, we use a variation of the energy
model for graph drawing described in [10, 11]. In this model, the places are represented as particles,
where particles connected with a link attract each other proportionally to the power of the strength of
the link and inversely proportional to the power of the distance between the particles. Similarly, particles
that are not connected with a link repulse each other. The final spatial positioning of the meeting places
is achieved through simulation, where initial positions of the places are selected randomly in a rectangle
of size w× h. As a result of applying attraction and repulsing forces to the nodes, the system eventually
reaches an equilibrium state in which tightly connected meeting places are situated close to each other,
thus achieving our desired goal.

3.1.3 The temporal dimension of user visits to meeting places

The arrival network that we have built in the previous section tells us which are the meeting places visited
by each user. Here we add the temporal properties of such visits. To this aim, we assign to each link in
the arrival network a discrete stochastic point process Ali that describes the arrivals of user i to a meeting
place l over time. In this work, we have considered only discrete point processes, leaving the continuous
case for future work. In a discrete point process, the time is slotted. During a time slot, each node visits
a set of locations, where this set is determined by the evolution of the arrival processes.

We assume that processes Ali are independent, i.e., that nodes arrive to locations independently of
each other. This implies that also the resulting contact processes are independent. In real traces, contacts
can be synchronized [12], but coordination2 between nodes may drastically complicate the mathematical
analysis of mobility frameworks. For this reason, keeping in mind our target of controllability, we decided
to limit the focus to independent arrival processes. The comparison with traces (where these assumptions
in general do not hold) presented in Section 3.3 shows that the accuracy of the model is good, nevertheless.

Once we have characterized the time at which users visit their assigned meeting places, we can build
the contact graph of the network (Figure 1). In fact, a contact between two users happens if the two
users appear in the same meeting place at the same time slot. A contact duration is measured as the
number of consecutive time slots in which two users have at least one commonly visited location. The
contact graph can be fully mathematically characterized (we provide an example of this characterization
in Section 3.4 for the case of arrival processes being heterogenous Bernoulli processes) or it can be obtained
from simulations.

2A weaker coordination involving only pairs of nodes has been sometimes assumed in the literature for modelling
purposes. With pairwise coordination, pairs of nodes can still meet on purpose, but independently of the other pairs.
However, since the tractability of our analytical framework would not benefit from this assumption, we decided to use the
strongest independence condition.
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3.2 Analysis of real user movements

The SPoT framework takes as input the social graph of the network users and the arrival processes
describing how users visit locations. The properties of the user social graph have been extensively studied
in the literature [13, 14], thus making their configuration easy. Instead, the statistical characterisation
of user arrivals has been little explored, especially for what concerns the individual user-pair behavior.
In order to address this open point for realistically configuring the framework, we have considered three
datasets of real user movements, extracted from the location-based online social networks Gowalla [15],
Foursquare [16], and Altergeo [17]. In location-based online social networks, users check-in at places (e.g.,
restaurants, offices) and share their location with their friends. Thus, the concept of check-ins is very
similar to the arrivals considered in the SPoT mobility framework. In fact, both notions represent records
of the time at which users visit particular venues. For this reason, we chose to take check-ins as proxies
for user arrivals at places and to use them to measure the temporal characteristics of arrival sequences.

From a preliminary analysis we observed that across a significant population of user-place pairs the
distribution of inter-arrival times has the shape of a straight line in lin-log scale, which roughly corresponds
to a geometric distribution in the discrete case. Similarly, a preliminary observation of the pairwise
intercontact time yielded again a geometric distribution. We aim to validate this hypothesis by fitting
individual inter-arrival time and intercontact time distribution to a geometric distribution and evaluating
the goodness of fit across all user-place pairs and user-user pairs, respectively, in the dataset. The fitting
is performed using Maximum Likelihood Estimation [18], and we test whether it is plausible that our
data come in fact from such fitted distribution using one of the most popular goodness of fit tests, the
Pearson’s chi-squared test [18].

The percentage Q of user-place pairs for which the assumption on the geometric distribution of inter-
arrival times is not rejected at different significance levels is shown in Table 2. We observe that for the
majority of pairs across all datasets, i.e., QgeomGO = 60%, QgeomFS = 66%, QgeomAG = 54%, the inter-arrival
time distribution follows a geometric distribution. This result is important as a geometric distribution
of inter-arrival times can be modeled with a simple Bernoulli arrival process, which, as we discuss in
Section 3.4, is very convenient for mathematical analysis. The physical implication behind Bernoulli
arrivals is that users tend to visit places with a fixed rate. This matches the common finding [19] that
users tend be quite regular in their movements. Relying on these three datasets, we have also analysed
the pairwise intercontact times. The pairwise results will be later compared against the mathematical
results in Section 3.4, showing that data and model predictions are totally in agreement. The main
obstacle in computing intercontact times in our datasets is that there are no check-out records, i.e., no
records of the time when users leave places. For this reason, we have to make some assumptions about
the duration of the sojourn time at a location. In [12], the intercontact times for the Gowalla trace
(the exact same trace that we consider in this work) were measured assuming that a contact between
two users happen if they have checked-in less than 1 hour apart at the same place. The rationale for
this choice lies behind the nature of location-based online social networks like Gowalla, Foursquare, and
Altergeo. In fact, these applications capture mostly users going out for eating or entertainment, for which
the 1-hour choice appears reasonable. Thus, also in our work we kept the 1 hour assumption. The results
of this analysis are shown in Table 3. Summarizing, the chi-squared test does not reject the geometric
hypothesis for QgeomGO = 80%, QgeomFS = 87%, QgeomAG = 78% of pairs in our datasets.

Table 2: Percentage of pairs for which the geometric distribution hypothesis for arrivals is not rejected,
at different significance levels

α Gowalla (%) Foursquare (%) Altergeo (%)

0.001 0.71 0.77 0.57
0.01 0.60 0.66 0.54
0.05 0.50 0.51 0.49
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Table 3: Percentage of pairs for which the geometric distribution hypothesis for intercontact times is not
rejected, at different significance levels

α Gowalla (%) Foursquare (%) Altergeo (%)

0.001 0.89 0.94 0.84
0.01 0.80 0.87 0.78
0.05 0.51 0.74 0.56

3.3 Testing the framework flexibility

As discussed before, the capability of allowing for different distributions of mobility metrics (which we
have called flexibility) is one of the properties of SPoT. In order to showcase this property, in the following
we show that SPoT, once configured for the settings observed in a real mobility trace, generates the same
aggregate characteristics (aggregate intercontact times, specifically) as those seen in traces. We chose
the aggregate over the pairwise statistics in this case because, from the mathematical characterisation of
the framework (Section 3.4), we know that SPoT, once configured with Bernoulli arrivals, will generate
geometric intercontact times. Since we also know from trace analysis (Section 3.2) that intercontact
times in the dataset can be approximated with a geometric distribution for a large fraction of pairs,
a match between the intercontact times generated by the framework and those seen in traces would be
quite expected. Less obvious, instead, is the capability of reproducing also a realistic aggregate behaviour
starting from pairwise controlled parameters.

In order to use the framework, we need to configure the following quantities: the social graph G, the
removal probability α, and the arrival processes Ali for each user i visiting a location l. We extract this
information from the data traces themselves (details on how this is done can be found in [3]). In Figure 3
we show the aggregate intercontact time generated by SPoT against those observed in the traces. As
we can see from the plot, the aggregate behavior observed in traces (red squares) is in good agreement
with the corresponding results from the simulation (blue crosses). This confirms the flexibility of the
framework to capture a desired realistic behavior seen in real traces.
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Figure 3: Aggregate intercontact times obtained from traces (red squares) and from simulations (blue
crosses)

3.4 Testing the framework controllability

Besides flexibility, the other goal of SPoT is controllability. Thus, in [3] we have derived mathematically
how the SPoT framework is able to produce different, controllable outputs depending on its initial con-
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figuration. To this aim, we exploit the data analysis results and we focus on Bernoulli arrivals, which
we have shown to represent the behaviour of the majority of user-place pairs. Using the Bernoulli as-
sumption, we fully characterise the pairwise dynamics of the framework and we also analytically derive
the conditions under which heavy-tailed and exponentially-tailed aggregate intercontact times, two cases
often observed in real traces, emerge. Below we will summarise the results obtained, whose detailed
description can be found in [3].

We assume that each user Ui visits place Ml according to a Bernoulli process Ali with rate ρAli . Under
this assumption, it can be derived the intercontact times distribution between a pair of users Ui and Uj ,
meeting at a number Lij of meeting places, is geometric with the following rate:

ρ = 1−
Lij∏

l=1

(1− ρAli × ρAlj ). (2)

Please note that the above result is in agreement with what we have seen in traces (Section 3.2).
As for the characterisation of the aggregate, we have derived three conditions under which exponential,

exponentially-tailed, and heavy-tailed aggregate intercontact times emerge in SPoT. More specifically,
when individual arrival processes are independent Bernoulli point processes with homogeneous rates
ρAli = β and the number of shared meeting places Lij between pairs of users is constant, i.e., Lij = L,

then the aggregate intercontact times feature a discrete exponential (i.e., geometric) distribution with
CCDF F (τ) = e−γτ (γ = −L ln (1− β2)). Instead, when individual arrival processes are independent
Bernoulli point processes with homogeneous rates ρAli = β but the number of shared meeting places Lij
between pairs of users is a geometric random variable with parameter α, then the CCDF of the aggregated
intercontact times has an exponential tail, i.e., F (τ) ∼ e−δτ , τ → ∞, where δ = − ln (1− β2). Finally,
if individual arrival processes are independent Bernoulli point processes, the rates ρAli of the processes

are drawn such that ρAli = e−
1
2Y

2

(where Y is a standard normal random variable) and the number of
shared meeting places Lij between pairs of users is a geometric random variable with parameter α, the
CCDF of the aggregated intercontact times is given by Equation 3.

F (τ) =
a+ a2

(τ + a)(τ + a+ 1)

(
x→∞⇒ F (τ) ∼ 1/τ2

)
. (3)

3.4.1 Validation

In this section, we validate the results obtained above comparing analytical predictions against simulation
results. In order to instantiate the proposed framework, we need to define its input parameters: the social
graph G, the removal probability α, and the arrival processes Ali for each user i visiting a location l.
We use the state-of-the-art Barabási-Albert model [20] to generate input social graphs with realistic
characteristics (e.g., scale-free degree distribution, short average path length). Thus we consider the
two graphs Gn1,m1 and Gn2,m2 of n1 = 500 and n2 = 1000 users and growth parameters m1 = 50
and m2 = 30. We evaluate both graphs Gn1,m1 and Gn2,m2 when the removal probability used by the
algorithm for generating the arrival network is α1 = 0.5 and α2 = 0.2. As a result, we obtain four arrival
networks with different structural parameters which we explore in simulations. For each of these arrival
networks, we study the resulting intercontact times obtained changing the characteristics of the arrival
processes Ali of users to meeting places. More specifically, we focus on two cases discussed in the previous
sections, namely, when the arrival processes are homogeneous and when the arrival rates features specific
distribution that leads to the heavy-tailed aggregate intercontact times. Simulations are run for 10000
time units of simulated time, and results are shown with a confidence level of 99.9%.

We start with the heavy-tailed case. To this aim, we assign rates ρAli of the Bernoulli arrival processes

such that ρAli = e−
1
2Y

2

, where Y is a standard normal random variable. These settings correspond to
the case which we have mathematically characterised in the previous section. Figure 4 depicts the result
of simulations for each of the arrival networks. For instance, Figure 4.a depicts simulation results for the
network with parameters n = 500, m = 50 and a = 0.5. As we can see from the figure, the resulting
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aggregate intercontact time CCDF for this network decays as a power law of exponent γ = −2, i.e.,
F (τ) ∼ τ−2. In the other arrival networks we observe similar results, which are in agreement with the
theoretical predictions.
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Figure 4: The aggregate intercontact times distribution for different arrival networks

In the second set of simulations we consider arrival networks where arrival processes are Bernoulli
processes with identical rates. More specifically, we model two networks with same parameters {n = 500,

m = 50, a = 0.5}, in which all the rates of arrival processes are identical and equal to ρ
(1)

Ali
= 1/2 for the

first network, and ρ
(2)

Ali
= 1/3 for the second. From Figure 5 we can see that the resulting distribution

of the aggregate intercontact times decays as an exponential function with exponent δ(1) = 0.29 in the
first case and δ(2) = 0.12 in the second. This result is in agreement with the theoretical prediction
(δ = − ln[1− ρ2], where ρ is the rate of the arrival process).
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Figure 5: The aggregate intercontact times distribution for arrival network with identical arrival rates

3.5 Final remarks

In this section we have discussed SPoT, a mobility framework that incorporates the spatial, social, and
temporal dimensions of human mobility. The social and spatial dimensions are added imposing that peo-
ple belonging to the same social community are assigned to the same location, which is where the people
of that community meet. Then, the way users visit their assigned locations over time (corresponding to
the temporal aspects of mobility) is described by means of a stochastic process. In order to provide a
realistic instantiation of the framework in terms of the arrival process of users to meeting places, we have
analyzed three datasets containing traces of human check-ins at real locations, extracted from the online
location-based social networks Gowalla, Foursquare, and Altergeo. The analysis of these datasets has
revealed that human arrivals to places can be reasonably approximated, for the majority of user-place
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pairs, by Bernoulli processes. In the third part of the section we have focused on the flexibility and
controllability of the framework. First we have shown that the SPoT framework can be easily instanti-
ated to accurately reproduce the mobility behavior seen in the Gowalla, Foursquare, and Altergeo traces.
Second, as far as the controllability is concerned, we have analytically derived the conditions under which
aggregate heavy-tailed and exponentially-tailed intercontact times emerge, and we have shown that these
analytical predictions are totally in agreement with simulation results.

4 Impact of duty cycling on contact patterns

A possible roadblock in the scenario of offloading through ad-hoc WiFi or Bluetooth technologies is the
fact that direct, opportunistic, communications between nodes consume significant energy. To address
this, nodes are typically operated in duty cycling mode, by letting their WiFi (or Bluetooth) interfaces ON
only for a fraction of time. The joint effect of duty cycling and mobility is that devices are able to directly
communicate with each other only when they come in one-hop radio range and both interfaces are ON.
The net effect of implementing a duty cycling scheme is thus the fact that some contacts between nodes
are missed because the nodes are in power saving mode. Hence, detected intercontact times, defined as
the time between two consecutive contact events during which a communication can take place for a pair
of nodes, are longer than intercontact times determined only by mobility, when a duty-cycling policy is
in place. This heavily affects the delay experienced by messages, since the main contribution to message
delay is in fact due to the intercontact times. For this reason, we believe it is of paramount importance
to understand how power saving techniques, which may effectively reduce the number of usable contacts,
affect the intercontact time [21].3

4.1 Problem statement

We assume that user mobile devices alternate between ON and OFF states, whose duration is fixed. We
denote as duty cycle ∆ the ratio between the duration of the ON and OFF states, and as T their sum.
We assume that when a node is in the ON state it is able to detect contacts with other nodes. Please refer
to [21] for a discussion on how to apply this model to popular technologies such as Bluetooth and WiFi
Direct. For the sake of simplicity, coarse synchronisation (e.g., controlled by the cellular infrastructure in
the case of mobile data offloading) can be used to guarantee that ON intervals overlap between any pair
of nodes, such that they can communicate during a contact if this overlaps with their ON phases. In the
following we model the duty cycle function as in Equation 4 and we assume that the first ON interval of
d starts at s0 and ends at s1 (with τ = s1 − s0).

d(t) =

{
1 if t mod T ∈ [s0, s1]
0 otherwise.

(4)

In the following, we focus on the intercontact process between a generic pair of nodes A,B and, to
make the analysis more tractable, we assume that a contact event is detected only if it starts during an
ON period. This is reasonable, since the duration of a contact is typically one-two orders of magnitude
smaller than the intercontact time [22, 23], hence the probability that the contact lasts until the next ON
interval is negligible. We assume that the time between two consecutive contacts between the same pair
of nodes can be modelled as a continuous random variable S, and that intercontact times between a given
pair of nodes are independent and identically distributed (while they can follow different distributions for
different pairs). Hence, the contact process can be modelled as a renewal process, where Si ∼ S denotes
the time between the i-th and the (i+ 1) contact event. Similarly, we denote with S̃ the random variable
representing the detected intercontact times, and with S̃i ∼ S̃ the time between the i-th and the (i+ 1)
detected contact event (Figure 6). In the following, without loss of generality, we assume that there is a
contact event at t0 during the first ON period after t = 0. Consider the case in which i− 1 contacts are
missed after the one happening at t0 and the i-th is detected. If we neglect contact duration, it is clear

3Reference available in the appendix.
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Figure 6: Contact process with duty cycling

that the time between the two detected events is given by the sum of the interarrival times of the events
up to the i-th. Thus, for S̃, the following definition holds.

Definition 1. The detected intercontact time S̃ can be obtained as S̃ =
∑N
i=1 Si, where N is the random

variable describing the number of contacts needed to have one contact detected.

Therefore, S̃ is a random sum of i.i.d. variables. Note that Definition 1 is general, i.e., holds for any
type of continuous intercontact time distribution and for any type of duty cycling policy.

4.2 The case of exponential intercontact times

According to Definition 1, in order to derive the detected intercontact time, we first need to model N
and then to compute the sum

∑N
i=1 Si. In the next sections we will briefly discuss these two points (all

proofs and additional results can be found in [21]).

4.2.1 Computing N

In [21] we have derived the probability distribution of N , defined as the number of contacts needed in
order to detect the first one. Specifically, we have provided a general formulation (i.e., holding for any
distribution of intercontact times Si) for the PDF of N under the assumption that the probability that
two undetected contacts fall in the same OFF interval is very low. Unfortunately, this expression is not in
a closed form and, in general, finding a closed form for the distribution of N might be prohibitive (please
note that numerical solutions can still be obtained). However, when intercontact times are exponential,
a closed form solution is available, as shown below.

Theorem 1 (N with exponential intercontact times). When real intercontact times Si are exponential
with rate4 λ, the probability density of N can be approximated by:





P{N = 1} = 1 + e−λτ−1
λτ + eλτ (1−e−λτ )2

λτ(eλT−1)

P{N = k} = eλτ (1−e−λτ )2

λτ(1−e−λT )

[
λ(T−τ)
eλT−1

]k−1

, k ≥ 2
(5)

The above result holds when the probability of two consecutive contacts happening during the same
OFF period is small. Due to this approximation, the PDF of N does not adds up to 1 but remains below.
The closer the total probability to 1, the smaller the error that we make. Exploiting these considerations
and the result in Theorem 1, it is possibile to compute the error function E(τ, T, λ) as follows.

Corollary 1. The error E (defined in [0, 1]) introduced by the approximation in Theorem 1 can be
expressed as:

E(τ, T, λ)=
1− e−λτ

λτ
− eλτ (1− e−λτ )2

λτ(eλT − 1)
− eλτ (1− e−λτ )2

1− e−λT
T − τ

τ(eλT − 1− λT + λτ)
. (6)

4For ease of notation, we omit subscript A,B for λ, since it is unambiguous that we are referring to the tagged node
pair A,B. Please note, however, that the network model we are referring to is still heterogenous.
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Let us now derive a condition under which the above error goes to zero. Intuitively, from a physical
standpoint, our approximation holds when the average intercontact time is significantly larger than the
duration of the OFF interval. Under this condition, in fact, the OFF interval is, on average, too short to
accommodate two intercontact times. Thus, the condition under which we expect our approximation to
be very accurate is E[S]� T − τ , or, equivalently, 1

λ � T − τ . The worst case for this condition happens
when τ is very small. In fact, when τ → 0 the OFF interval can be very large (i.e., occupying almost
all T ) and, consequently, the probability that two undetected contacts fall into it maximum. Thus, if
we ensure that 1

λ � T our condition will hold. We have mathematically proved this result in [21], from
which the lemma below follows.

Lemma 1. When λT � 1, the error E introduced by the approximation of Theorem 1 approaches zero.

For the sake of example, let us now explore the parameter space τ , T , λ in order to characterise how
E goes to zero when the condition introduced above is satisfied. At first we set τ = 5 and T = 15 (as
in the RollerNet experiment – see Section 4.2.3) and we plot E varying λ (Figure 7(a)). As 1

λ represents
the mean intercontact time E[S], the smaller λ the bigger the mean intercontact time. And in fact, the
error goes to zero as λ� 1

T−τ = 1
10 and our condition is confirmed. We now keep the same τ value and

increase T , setting it to 120s, which is the value used for the Infocom experiment (Section 4.2.3). We
expect from condition (i) that the error increases for small λ values with respect to the previous case,
and this is confirmed in Figure 7(b).
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Figure 7: E varying λ (logarithmic scale for the x-axis)

4.2.2 Computing the detected intercontact times

Now that we have found the distribution of N , we discuss how to compute the first and second moment
of the detected intercontact time S̃ for a generic node pair A,B. The relation between S and S̃ is stated
by Definition 1, i.e., S̃ =

∑N
i=1 Si. Thus, S̃ is a random sum of random variables, and we can exploit its

well known properties to compute its first and second moment.

Proposition 1. The first and second moment of S̃ are given by E[S̃] = E[N ]E[S] and E[S̃2] =
E[N2]E[X]2 + E[N ]E[X2]− E[N ]E[X]2.

While the above formula holds in general, in the case of exponential intercontact times it is possible
to derive an even stronger result, described in Theorem 2 below. This result is the key derivation of this
work, and it tells us that, under condition λT � 1, exponential intercontact times are modified by duty
cycling only in terms of the parameter of their distribution but they still remain exponential.

Theorem 2. When λT � 1, the detected intercontact times S̃ follow approximately an exponential
distribution with rate λ∆.

4.2.3 Validation

In this section, we consider the average rate measured in real datasets of human mobility and we ver-
ify (i) whether our assumption λT � 1 is reasonable and (ii) whether our model correctly predicts
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the distribution of the detected intercontact times assuming that the original intercontact times were
exponential.

For opportunistic networks, there are several publicly available datasets obtained from experiments
monitoring contacts between device pairs, and in almost all these experiments some simple duty cycling
policies similar to the one described in Section 4.1 were implemented. Here we consider four popular
datasets often used in the related literature: Infocom05 [22], Infocom06 [22], RollerNet [24], and Reality
Mining [25]. In Table 4 we report the average pairwise rate extracted from these traces (corresponding
to λ̃, i.e., to rates after duty cycling) and the associated λ values obtained applying Theorem 2, under
the assumption that the underlying ICT are exponential5 In addition, in Table 4 we also highlight the
duration of the ON period and the period T of the duty cycling process. Using these parameters, we are
able to compute λT and check whether our approximation holds (due to space reasons, here we perform
an average analysis, while a pairwise analysis is provided in [21]). As it can be seen in Table 4, λT is
smaller than 1 in all cases. Clearly, the farther from 1 the better, since we require λT � 1. Thus, we
expect the approximation that we make to be quite good for all datasets except for the Infocom05.

Table 4: Quality of approximation in popular datasets

Dataset T τ λ̃ λ λT

Infocom05 120 5 3.2 · 10−4 7.7 · 10−3 0.92
Infocom06 120 5 1.13 · 10−4 2.7 · 10−3 0.33
RollerNet 15 5 4.07 · 10−3 1.2 · 10−2 0.18
Reality 300 5 1.2 · 10−6 7.2 · 10−5 0.02

In order to complement the theoretical analysis presented above, here we verify that our prediction for
the distribution of S̃ actually matches simulation results exploiting the parameters of real experiments.
Specifically, we take a tagged node pair and we assume that the meeting rate of this pair corresponds
to the average meeting rate (average across all pairs of nodes in the traces) measured from the traces
in Table 4. With this approach we are able to represent the behavior of the average node pair. Then,
we draw 10000 samples (100000 for the Reality Mining case, due to the long duty cycle period which
led to fewer detections) from an exponential distribution, configured with the parameters λ in Table 4.
The sequence of these samples corresponds to the contact process between the tagged node pair. To
this contact process we apply a duty cycling function with ∆ = τ

T , where τ and T are taken again from

Table 4. Then we measure S̃ after each detected contact and we plot its CDF for all the four datasets
in Figure 8. As expected, for the Infocom05 scenario, there are discrepancies between the actual and
predicted values. For the other scenarios, in which the product λT is closer to zero, model prediction are
very close to simulation results.
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Figure 8: CDF of S̃ in the different scenarios

5While this assumption is very strong in general, Tournoux et al. [24] have shown that it is acceptable for a significant
percentage of pairs in some of these datasets.
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4.3 The effect of duty cycling on the delay

The great advantage of knowing how intercontact times are modified by duty cycling is that their dis-
tribution that we have derived can be fed to one of the modelling frameworks available in the literature
in order to compute some important metrics for opportunistic networking. Theorem 2 tells us that the
detected intercontact times are still exponential, so we can choose any of the many modelling frameworks
exploiting exponential intercontact times. In this work we have focused on deriving the first two moments
of the delay and to this aim we have relied on the model that we have presented in [26]. The goal of this
evaluation is to study how the first two moments of the delay are affected by energy saving techniques.
Please note that while the analysis in the previous section focused on a tagged pair of nodes, in this
section we study the whole network. So, assuming exponential intercontact times, we denote their rates
as λij for node pair i, j.

The forwarding model that we exploit represents the forwarding process in terms of a Continuous
Time Markov Chain (CTMC). The chain has as many states as the nodes of the network and transitions
between states depend both on the meeting process between nodes (i.e., their intercontact times) and on
the forwarding protocol in use. Denoting the delay of messages from a generic node i to a tagged node d
as Di, and using standard Markov chain theory, it is possibile to derive the first two moments of Di as
in [26]. In [26], we have defined a set of abstract policies able to capture significant aspects of popular
state-of-the-art forwarding strategies. In the following we will focus on two of these policies, the Direct
Transmission and the Direct Acquaintance (the analysis for other policies is provided in [21]). Under the
Direct Transmission (DT) forwarding scheme, the source of the message is only allowed to hand it over
to the destination itself, if ever encountered. The Direct Acquaintance (DA) is a social-aware policy, in
which each intermediate forwarder hands over the message to nodes that have a higher probability of
bringing the message closer to the destination, according to some predefined forwarding metrics. With
Direct Acquaintance the forwarding metric is the contact rate with the destination ( 1

E[Sid] ): a better

forwarder is one with a higher contact rate with respect to the node currently holding the message.
In the following we assume that nodes intercontact times are exponential. The fitting analysis pre-

sented in [23] has shown that contact rates in the traces already considered in Section 4.2.3 follow a
Gamma distribution. Below, we focus on the distribution parameters for the RollerNet scenario reported
in [27], i.e., shape ξ = 4.43, rate r = 1088. We consider a network made up of 25 nodes and we solve
the forwarding model described above in the case of duty cycle equal to 5

15 , 10
15 and 1 (no duty cycling).

Figures 9(a)-9(d) show the CDF of the moments of the delay in this case. As expected, both the first
and second moment become larger as we reduce the ON interval in the duty cycle. In fact, as discussed
before, the neat effect of duty cycling is to effectively reduce the number of usable contacts to only those
happening during an ON period. The shorter the ON period, the fewer the usable contacts every T ,
the longer the delay. Let us now see what happens to the coefficient of variation of the delay. From
Figures 9(e)-9(f) it can be seen that the coefficient of variation can be either bigger or smaller than
one. This means that the delay can be approximated with a hyper-exponential or a hypo-exponential
distribution [28]. In the next section, we will use this representation of the delay in terms of the hyper-
exponential or hypo-exponential distribution in order to compute the volume of traffic carried by the
network. Another interesting observation from Figures 9(e)-9(f) is that the coefficient of variation does
not depend on the duty cycle ∆ (in fact, all curves overlap). This means that, in the case of exponential
intercontact times, the duty cycle does not affect the variability of the delay experienced by messages.

4.4 Energy, traffic, and network lifetime

In this section we investigate the benefits of implementing a duty cycling policy on the nodes of the
network. These benefits are in terms of energy saved by nodes and, consequently, increased network
lifetime. In fact, assuming that nodes have an energy budget L (expressed as the amount of time they
can be on when no duty cycling is implemented), by definition nodes’ lifetime is extended to L

∆ when
energy saving strategies are in place6. At the same time, however, as we have seen in the previous section,

6We consider only the part of the energy budget related to networking activities.
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Figure 9: CDF of the delay moments and coefficient of variation

the gain in terms of energy is counterbalanced by a loss from the delay standpoint. In fact, the expected
delay increases as ∆ decreases, so the network lifetime is longer but nodes also need more time to deliver
messages. In [21] we have studied the following three aspects. First, what is the relationship between
the energy consumed with and without duty cycling. Second, what is the volume of traffic carried by
the network with and without duty cycling. Third, whether there exists an optimal duty cycle value for
which the loss in terms of delay is minimum and the gain in terms of traffic carried by the network is
maximum.

We first assume that messages are all generated at time t = 0 and that L is very large. The goal
here is to understand how much energy is saved by duty cycling, without considering the limited network
lifetime, i.e., just taking into account the delivery of standalone messages without temporal limitations.
Throughout the section we use a simple energy model in which nodes consume a certain power w (mea-
sured in watts) during ON intervals and zero otherwise. Below we focus on the expected delay across the
whole network, for having a compact representation. Please note however that the behaviour is the same
for the single pairs of nodes. We measure the energy consumed as the product between power w and the
length of the time interval for which the network is ON. Without duty cycling, the network is ON for
the whole time it takes to deliver a message (hence, for E[D]), while in case of duty cycling, the network
is ON only for a fraction ∆ of the time (E[D∆], where we denote with D∆ the delay under duty cycling
∆) it takes to complete the delivery. In order to measure the relationship between the two quantities, we
study the following:

R∆ =
wE[D]

w∆E[D∆]
=

E[D]

∆E[D∆]
. (7)

We find that, exploiting the same parameters of the RollerNet scenario used above, the ratio stays
around 1 independently of the specific duty cycle value ∆ (the plot can be found in [21]). This result is
very interesting, because it shows that under exponential intercontact times the energy consumed for a
standalone message is the same, regardless of the value of ∆. With ∆ = 1 the energy budget needed for
sending the message is simply used all at once, while with ∆ < 1 this budget is spread across different
intervals of duration T , during which the nodes of network are partially turned off. This is consistent
with the assumption of unlimited network lifetime and standalone messages (all generated at t = 0) that
we have made so far.

For a more realistic evaluation, we hereafter assume that messages are generated according to a
Poisson process with rate µ. By definition, the number of messages created in disjoint timeslots are
independent. Thus, the number of messages arriving during a time interval of length dt is given by µdt.
When ∆ = 1 these messages keep arriving until L, after which the network has exhausted all its energy
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budget and turns off indefinitely. Instead, when ∆ < 1 the network takes longer to consume all its energy
budget, thus stays on until L∆ . In the following we study the volume of messages delivered by the network

with and without duty cycling, measured as the number of messages delivered in L
∆ . Then, the following

result holds, whose proof can be found in [21].

Theorem 3. When the coefficient of variation of the delay c belongs to the interval [
√

2
2 , 1], the volume

N∆ of messages delivered by the system under duty cycling ∆ is given by:

N∆=µL
∆ −µE[D∆]·

{
1− 1

4α

[
(1+α)2e−µ1

L
∆−(1−α)2e−µ2

L
∆

]}
, (8)

where α =
√

1 + 2(c2 − 1), µ1 = 2
E[D] (1 + α)−1, µ2 = 2

E[D] (1− α)−1.

When the coefficient of variation of the delay c is smaller than one, the volume N∆ of messages delivered
by the system under duty cycling ∆ is given by:

N∆=µL
∆ −µE[D∆]


1− 1

2 e
−L

E[D∆]∆


e

(
1+

√
c2−1

c2+1

)

+e

(
1−
√
c2−1

c2+1

)



. (9)

Basically, N∆ is given by the number of messages generated during the network lifetime (the first term
in the above equations minus the number of messages that are not delivered before the energy budget is
depleted. The latter quantity is a function of the expected value of the delay and of its variability. We
now exploit Theorem 3 in order to study N∆. Specifically, in Figure 10 below we show how N∆ varies
with different duty cycles, where we assume that each node generates 1 message every 10 minutes (so
µ = 1

600 ). The plot is drawn for a tagged node pair for the sake of readability, but the same results hold
for the other pairs. We see that the volume of traffic carried by the network (i.e., the number of messages
delivered on average during network lifetime) increases as the duty cycle ∆ decreases. So, as expected,
increasing the network lifetime more messages get a chance of being delivered but the price to pay, as
seen in Section 4.3, is a larger expected delay.
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Figure 10: N∆ varying ∆ with different forwarding algorithms

In the final part of our evaluation, we study whether it exists an optimal working point that minimises
the expected delay and maximises the volume of messages exchanged. We borrow the definition of power
of the network (which we denote with W) from traditional queueing theory [29]. Quantity W measures
the trade-off between the traffic N∆ carried by the network (function of the message injection rate µ)
and the expected delay E[D∆]. The power is then defined as W = N∆

D∆
. In traditional queueing systems,

the above trade-off was regulated by contention. In fact, under limited resources, we could not increase
indefinitely the quantity of messages successfully delivered without affecting the resulting expected delay
(because, e.g., under heavy traffic, packets start to be discarded from buffers). In our case, we do not have
contention, since we assume that there are no limitations on buffers and bandwidth. Our knob is instead
the duty cycle. When ∆ approaches 1, delays are as short as possible given the underlying mobility, but
a lot of energy is consumed and the network lifetime is shorter. If we want to increase network lifetime,
we have to sacrifice the expected delay.
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Figure 11: W varying ∆ in the different forwarding algorithms (µ = 1
600 )

Figure 11 shows how W varies depending on ∆. It can be clearly seen that W remains practically
constant, which implies that whatever one gains in network lifetime is immediately lost in expected delay.
Thus, under exponential intercontact times, there is no optimal choice of ∆ and all working points are
equivalent. When configuring a duty cycling policy, the operator can thus only maximise one metric at
a time. Note, anyway, that if the total number of messages to be delivered is of primary concern, at the
cost of additional delay, then reducing the duty cycling is clearly effective.

4.5 Final remarks

In this section we have investigated the effects of duty cycling on intercontact times, delay, and energy
consumption in opportunistic networks. To this aim, we have provided a general formula for the derivation
of the intercontact times under duty cycling, and we have specialised this formula obtaining a closed-form
expression for the case of exponential intercontact times. Surprisingly enough, under condition λT � 1
satisfied by most popular contact datasets, the intercontact times after duty cycling can be approximated
as exponentially distributed with a rate scaled by a factor 1

∆ . Exploiting this result, we have then studied
the first two moments of the delay under duty cycling, showing that these moments both increase as ∆
becomes smaller. Finally, we have focused on how the network lifetime is impacted by duty cycling,
highlighting the fact that a larger volume of traffic is handled by the network when a duty cycling policy
is in place, because the network lifetime is increased even if at the expense of the delay experienced by
messages. In addition, we have found that it is not possible to derive an optimal duty cycle value that
maximises the network lifetime while at the same time minimally impacting the expected delay.

As future work, two main different directions can be pursued. First, we plan to extend the analysis
to intercontact times featuring a distribution different from the exponential, e.g., the Pareto intercon-
tact times case, which also represents a popular hypothesis for the intercontact times considered in the
literature [30]. Second, we also plan to evaluate different duty cycling policies, e.g., some in which the
duration of ON and OFF intervals is not fixed but varies according to a specified distribution.

5 Contacts and intercontacts beyond one hop

A common point among these works is that they rely on the binary assumption that nodes are either in
contact or in intercontact. We revisit this assumption and provide arguments toward the adoption of an
extended view of the neighborhood. Let us motivate our work through the example shown in Fig. 12. This
figure represents a snapshot where nodes in “group 1” are in contact with A (i.e., they are within A’s
communication range). In the usual binary vision, all remaining nodes are, by definition, in intercontact.
Still, we notice that there is a fundamental difference among nodes in “group 2”. None of the nodes in
“group 2.a” are in contact with A; nevertheless, they do have a contemporaneous path to A. On the other
hand, nodes in “group 2.b” do not have any path to A. In opportunistic networking, where we need to
gather as much knowledge as possible to achieve efficient communication standards, deeming both cases
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with A
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unreachable

nodes
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nodes in “binary”

intercontact with A

group 2.a
nodes in “binary”
intercontact but
still reachable

Figure 12: Motivating example. From node A’s point of view, we see that nodes in “group 1” are in
contact. Using the usual binary vision, we conclude that all other nodes are in intercontact (i.e., in
“group 2”). However, nodes in “group 2.a” are essentially different from nodes in “group 2.b”. A has
end-to-end paths toward the first and no paths at all to the latter.

of intercontact under the same definition results in waste of information. Suppose A needs to send a
message to one of the nodes in group 2.a. With the binary vision, A does not know that the destination
is nearby, and may miss an opportunity to communicate if, for example, the destination moves after some
time to group 2.b.

We provide evidences that considering nodes that are not in contact, but still reachable, can be of great
help in the design of efficient opportunistic networks. For instance, we show that in some experiments
more than half of the pairs of nodes do come within each other’s vicinity but do not get in direct contact.
Understanding what occurs within this zone as well as between this zone and the rest of the network is
a key to understand the network. To this end, we formally define in this work the notion of κ-vicinity,
which is the extended neighborhood of a node containing all the nodes within κ-hop reach [31].7

As a summary, our contributions are:

• Vicinity definition in opportunistic networks. We formalize the vicinity concept in DTN
and define temporal measures to characterize the interactions within the vicinity and with the full
network.

• The revelation of the binary assertion. We illustrate our plea by showing the importance of
missed transmission possibilities when considering only contacts in opportunistic techniques.

• κ-vicinity analysis and a rule of thumb. We analyze the composition of the vicinity through
various parameters and provide a way to infer vicinity size using only contacts.

We produce results for a wide variety of datasets, from real-world to synthetic ones. Each of them
reflects a situation where opportunistic networking could happen. For instance, we observe how the
κ-contact and κ-intercontact distributions also follow power laws up to a characteristic time then expo-
nentially decay. We also show how local density may influence these distributions. To reduce vicinity
monitoring costs, we also hint how monitoring a {3,4}-vicinity is enough to catch most meaningful events
in a node’s vicinity.

5.1 Defining a new vicinity for opportunistic networks

To formalize the vicinity notion in DTN, we choose to use a node-centered point of view, i.e., they do
not need to rely on any global knowledge to gather vicinity information. The κ-vicinity notion also adds

7Reference available in the appendix.
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j leaves i’s κ-vicinity
(κ-intercontact starts)

κ-vicinity (for κ = 2) j returns to i’s κ-vicinity
(end of κ-intercontact time)

i

Figure 13: Node i’s κ-vicinity and the κ-intercontact phenomenon. For the sake of clarity, we only display
i’s connectivity links within the κ-vicinity.

a hop-based discrimination. This differentiation helps us limit our vision according to our needs as well
as identify neighbor properties. We discriminate a node i’s vicinity according to the number of hops
between i and its surrounding neighbors.

Definition 2. κ-vicinity. The κ-vicinity Viκ of node i is the set of all nodes whose shortest distance to
i is of at most κ hops.

This definition implies that Viκ−1 ⊂ Viκ. In Fig. 13, we illustrate the 2-vicinity of node i. The κ-vicinity
brings the immediate surrounding knowledge. This is an interesting point of view for opportunistic
networks because it extends a node’s knowledge to immediately useable communication opportunities.
The κ-vicinity empowers a node’s reach in the network [32].

Vicinity knowledge may come from different techniques. For instance, we can use link state protocols
to gather information about a node’s connected component. There are many ways to do so, but they all
are costlier than getting information from contacts only. Of course, there is a tradeoff between knowledge
and overhead to collect vicinity information. The good news is that, as we will show later, even only a
few hops around the node (typically 2–4 hops) significantly helps getting representative behavior of the
node’s surroundings.

The κ-vicinity defines a node’s neighborhood, its new zone in the network. To characterize this zone
relationships to node i, we must define some temporal measures relating to times neighbors spend in the
zone and times outside the zone, namely κ-contact and κ-intercontact. We maintain a pairwise definition
for these measures.

Definition 3. κ-contact. Two nodes are in κ-contact when they dwell within each other’s κ-vicinity,
with κ ∈ N∗. More formally, two nodes i and j are in κ-contact when {i ∈ Vjκ} and {j ∈ Viκ}.

In other words, there is a contemporaneous path of length at most κ links i and j. We also need to grasp
the intercontact observations for our vicinity viewpoint. The literature definition of mere intercontact
is when two nodes are not in contact. Therefore, we consider κ-intercontact when two nodes are not in
κ-contact. These are complementary notions. Another way to see it is as follows: if node i maintains
knowledge about its κ-vicinity, it is in κ-intercontact with any node beyond its κ-vicinity. In Fig. 13,
node j leaves i’s κ-vicinity and then gets back some time later, characterizing a κ-intercontact interval.
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Definition 4. κ-intercontact. Two nodes are in κ-intercontact while they do not belong to each other’s
κ-vicinity. Formally speaking, two nodes i and j are in κ-intercontact when {i 6∈ Vjκ} and {j 6∈ Viκ}.
There is no path of length κ or less linking i and j.

Note that 1-contact matches the contact notion and 1-intercontact corresponds to usual binary inter-
contact. Our zone point of view integrates previous binary network vision and also extends it via nearby
nodes. The binary assertion misleads our vision of a network. For huge networks, considering the binary
abstraction that when nodes are not in contact, they are in intercontact and devoid of path between
them may be true in most cases but it is wrong in few cases. These few cases are the ones opportunistic
networking should leverage. In the next section, to better understand the binary assertion, we will focus
on pairwise relationships.
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Figure 14: Example of time-distance distribution from the RT dataset. In Fig. 14(a), nodes spend 10%
the time in contact (1-hop). With the binary vision, we then consider that nodes spend around 90% of
their time in intercontact. Fig. 14(b) shows that in reality, they dwell at a distance 2 for around 10%, at
a distance 3 for 16%. Real intercontact deprived of multi-hop path represents only 50% of the time (∞).

5.2 The limits of the binary assertion

Before investigating where the binary assertion fails to reflect the proximity structure in opportunistic
networks, let us describe the datasets that we will use to illustrate our findings.

5.2.1 Datasets

For our study, we observe the binary assertion and vicinity properties in real-world experiments as well
as synthetic datasets (denoted by (S)) described hereafter. We use realistic measurements to observe the
extent of vicinities in real-life situations. We also confronted the vicinity notion to synthetic datasets to
observe its presence in dedicated mobility patterns.

Infocom05 measurement was held during a 5 day conference in 2005 [33]. 41 attendees carried iMotes
collecting information about other iMotes nearby within a 10 m wireless range. We study a 12-hour
interval bearing the highest networking activity. Each iMote probes its environment every 120 seconds.
Infocom05 represents a professional meeting framework.

Sigcomm09 counted 76 attendees with dedicated smartphones probing their surroundings during 5
days [34]. Smartphones sensed their surroundings using Bluetooth every 120 seconds. Sigcomm09 is
another example of a professional meeting scene.
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Figure 15: Datasets sociostructures presenting the amount of pairs connected by contacts, two-hop
distance, three-hop and so on in a layered mode according to time. We notice the omnipresence of pairs
connected by two or more hops. They often overcome the possibilities offered by contact only (bottom
layer). As a result, contact opportunities only represent a minor part of all end-to-end opportunities
between two nodes. The binary assertion overlooks these possibilities by blending all nodes in intercontact
under a unique concept.

Rollernet had 62 participants measuring their mutual connectivity with iMotes during a 3 hour rollerblad-
ing tour in Paris [35]. These iMotes sent beacons every 30 seconds. This experiment shows a specific
sport gathering scenario.

Shopping used 25 dedicated devices in a shopping mall over 6 days [36]. Galati and Greenhalgh gave
25 devices to shop owners and planted 8 others at various locations in the mall. Devices performed
neighborhood discovery every 120 seconds. Shopping reflects the working day routine of shop owners as
well as some of their customers.

Unimi is a dataset captured by students, faculty members, and staff from the University of Milano in
2008 [37]. The experiment involved 48 persons with special devices probing their neighborhood every
second. Unimi provides a scholar and working environment scenario.

Stanford used TelosB motes – detecting contacts up to a 3 m range [38]. We focus on a set of 200
participants in an U.S. high school. TelosB motes send beacons every 20 seconds. Stanford expresses a
settings with a majority of teenagers who have a tendency to dwell in groups of interests.

RT (S) for RT is a mobility model correcting flaws from the Random Waypoint model [39]. We sampled
the behavior of 20 nodes following this model on a surface of 50 × 60 m2 with speed between 0 and 7
m/s and a 10 m range. We choose to simulate 20 nodes over this surface to recreate office conditions.

Community (S) is a social-based mobility model [40]. It tends to collocate socially related nodes in
specific positions at the same time like groups of friends would do. We simulated 50 nodes with a 10
m wireless range on a 1,500 × 2,500 m2 plane during 9 hours. In Community, we tried to reproduce a
city-wide setting.
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Table 5: Datasets characteristics, where # indicates the number of nodes in the datasets, Length indicates
its duration, Probing presents the probing frequency, Range provides the probing devices wireless range,
and Type presents the scenario type.

Dataset # Length Probing Range Type

Infocom05 41 12h 120s 10 m Conference
Sigcomm09 76 4 days 120s 10 m Conference
Rollernet 61 1h30 30s 10 m Sport
Shopping 25 6 days 120s 10 m Mall

Unimi 50 19 days 1s 10 m Scholar
Stanford 200 1h 20s 3m Scholar

RT (S) 20 9h 1s 10 m Work
Community (S) 50 9h 1s 10 m City

We recapitulate the main datasets characteristics in Table 5. In the following, we use some of the
presented datasets to introduce and illustrate our vicinity concepts.

5.2.2 Binary assertion illustration

Fig. 14 illustrates an example of the binary assertion using the datasets described previously. For a
given pair of nodes of the RT dataset, we compare the amount of time they spend in contact and in
intercontact. They spend around 10% of their time in contact and around 90% in binary intercontact.
Now let us consider the extended vision; for the same pair of nodes, they still spend 10% of their time in
direct contact. However, they also spend around 10% of their time at a 2-hop distance, 18% at 3 hops,
5% at a 4-hop distance, and so on. The actual time they spend without any communication possibility
from one to the other is only around 50% of the experiment duration.

More than just limiting our vision, the binary definition prevents us from leveraging our environments
and performing simple yet efficient nearby end-to-end transmissions. A natural question that arises is
whether our observation is peculiar or not.

5.2.3 Missed transmission possibilities

To quantify how many end-to-end transmission opportunities the binary assertion misses, we present what
we call aggregated network sociostructures in Fig. 15 [41]. For each real life-based dataset, we plotted (in
layered mode) the number of connected pairs for each shortest distance. This means that layer 2 shows
the amount of pairs connected via a two-hop path, layer 3 represents connection via three-hop paths, and
so on. The bottom layer symbolizes the amount of pair of nodes in contact. The binary assertion does
not recognize such relations.

In Fig. 15(a), for Infocom05, we observe several density peaks of connected pairs. Being a conference-
based measurement, these peaks indicate morning arrivals, lunch, afternoon break, and end of sessions.
During high density peaks, an unexpected observation is the large proportion of pairs of nodes connected
by two-hop paths. Places with high density ignite transmission possibilities beyond mere contact.

For Sigcomm09 ’s sociostructure, we focus in the first density peak of this conference dataset (see
Fig. 15(b)). The number of pairs in contact remains non null during the observation. At some point,
like 10,000 seconds, pairs linked by two or more hops represent more than four times the number of pairs
currently in contact. As a result, in such a scenario, 2+-hop transmissions should be more helpful than
mere contact transmissions or pure DTN techniques.

In Fig. 15(c), we witness Rollernet ’s accordion phenomenon, i.e., the stretching and shrinking of the
crowd due to urban obstacles preventing the crowd from moving forward [35]. Rollernet has a dynamic
setting with a compulsory path. Nodes do not have as much movement liberty as they have in other
datasets. Contacts are prominent in Rollernet, but we still observe many pairs of nodes connected by
two or more hops.
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Figure 16: The presence of connected component (CC) of size higher than 2 according to time. As
long as nodes find themselves in their “working” environment, they display numerous simultaneous CC.
The conference datasets Infocom05 and Sigcomm09 due to their specific nature bear the highest number
of concurrent CC (up to 38). The same pattern applies to other datasets but with a lower number of
CC values. Still, they are most of time higher than 10. Community displays a peculiar number of CC
evolution. Note the logscale on the x-axis.

For Shopping and Unimi (Fig. 15(d) and Fig. 15(e)), we notice the omnipresence of pairs connected at
a two-hop distance and how they may overcome contact opportunities. In the Unimi dataset, we notice
even more pairs connected by three or more hops.

The Stanford sociostructure from Fig. 15(f) occurs during a school day and shows the different groups
found in high school. The majority of students stay close enough to be connected via contacts; still, we
can observe the omnipresence of a significant share of two-hop links between nodes.

The aforementioned plots illustrate the limits of the binary assertion. If we maintain contact-only
knowledge in DTN, we miss the omnipresent power of nodes at two or more hops. For all datasets,
contemporaneous multi-hop paths are far from being negligible. These paths are potential transmission
opportunities as they only involve few relays that could reduce significantly end-to-end delays. Consider-
ing only contacts provides a limited vision of what happens in the network. Observing a node’s vicinity
at a two-hop distance may, in some situations, more than double the transmission opportunities (as seen
for example in the Infocom05 dataset at 90,000 seconds).

We advocate that it is important to observe nodes beyond simple contacts. In the next section, we
analyze κ-intercontact distributions to provide vicinity-related temporal characterization of the network.

5.3 κ-vicinity analysis

To uncover vicinity properties in disruption-tolerant networks, we begin by observing all network’s con-
nected components.

5.3.1 The seat of κ-vicinities: connected components

Network connected components are the loci of κ-vicinity. Studying a network’s connected components
is a good indicator of the κ-vicinity. Each node is its own connected component. We use the definition
of connected components by Cormen et al. [42]. Since κ-vicinity need at least two nodes to make sense
(i.e., a contact to happen), we will investigate connected components of size larger than two.
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Table 6: Average size, diameter, and gravity G of dataset’s largest connected component.

Dataset Size (s) Diameter (d) Gravity (G = s/d)

Infocom05 20.2 5.0 4.0
Sigcomm09 16.3 4.5 3.6
Rollernet 12.9 6.0 2.1
Shopping 11.0 4.0 2.7

Unimi 9.1 4.1 2.2
Stanford 6.7 3.2 2.1

RT 12.4 5.9 2.1
Community 13.8 3.6 3.8

Presence. In Fig. 16, we represent the number of connected components (CC) of size larger than two
for each of the datasets. We first observe a wide range of the number of connected components. For each
scenario, there is a clear evolution through time. The size of the CC may be close to zero at night when
people are at home or outside the measurement environment. Conversely, when people find themselves at
work, school or a conference, they bring density to the picture, contributing to the formation of numerous
CC. We often observe more than 10 simultaneous different CC [43].

For both conference datasets (Infocom05 and Sigcomm09 ), we get the highest number of simultaneous
CC. The conference setting where many people stay in different rooms to listen to talks may explain this
high value. People stay together at different places, therefore, we have many small groups instead of
a bigger one. For the sake of clarity, we did not display the Rollernet dataset here (for information,
Rollernet displays between 5 and 35 concurrent CC during its course). Shopping and Unimi have a
conference-like behavior but at a lower level; they show periods of large numbers of CC but still less than
the ones observed in conference datasets. The Stanford dataset has a smaller number of components, but
this stems from the nature of the logging devices used in the experiment. Community has a quasi constant
number of components, which may be due to the synthetic nature of the dataset. The Community mobility
model generates group-based meeting patterns.

There are many simultaneous CC in the observed datasets. Their number show how widespread are
the potential κ-vicinities.

Size and diameter. In opportunistic networks, there are no connectivity graph diameters as such.
The diameter notion only applies on a fully connected graph. However, the notion of diameter is still
meaningful for each network connected component. In Table 6 , we present the average size of the largest
CC, its average diameter for each dataset, and their corresponding “gravity”. The gravity G is defined
as the ratio between the largest connected component average size (CC+

size) and the largest connected
component average diameter (CC+

diameter):

G =
CC+

size

CC+
diameter

· (10)

The gravity is somehow an indicator of how concentrated the largest CC is. Datasets with gravity
values≥ 3, like Infocom05, Sigcomm09, and Community display largest CCs that are more condensed than
in all the other datasets. The distribution of nodes within these CC is tighter than in other situations.
Therefore, their proximity in terms of connectivity is stronger. They form components with stronger
connectivity and allow resulting κ-vicinities to be more redundant link wise. Remaining datasets still
bear a gravity ≥ 2, allowing numerous yet more loosely connected κ-vicinities.

5.3.2 κ-vicinities Viκ local density

With the κ-vicinity, we can measure the potential of such nearby companions in terms of opportunistic
communications. Yet, obtaining a information about a node’s vicinity comes with a cost. To reduce the
tradeoff between additional vicinity information and gathering costs, we can wonder how far a node must
probe its vicinity to obtain the maximum information with the lowest probing cost. We may ponder this
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Table 7: Average number of neighbors Dκ in a node’s κ-vicinity.

κ
Dataset 1 2 3 4 5 6 7 8+

Infocom05 2.4 6.7 9.5 10.7 11.1 11.3 11.4 11.4
Sigcomm09 1.0 2.6 3.7 4.2 4.4 4.4 4.5 4.5
Rollernet 1.2 2.4 3.4 4.0 4.3 4.5 4.6 4.7
Shopping 1.6 3.3 4.3 4.6 4.7 4.7 4.7 4.7

Unimi 0.6 1.3 1.8 2.1 2.3 2.3 2.3 2.3
Stanford 0.5 0.7 0.8 0.8 0.8 0.8 0.8 0.8

RT 2.2 4.3 6.3 7.6 8.4 8.8 9.0 9.0
Community 2.0 4.1 4.7 4.8 4.8 4.8 4.8 4.8

cost by limiting the scope of κ-vicinity to a given κ. To maximize the κ-vicinity utilization, we need to
capture the most closeby nodes and events as possible. The more neighbors and events we observe, the
better we can use them to perform opportunistic operations.

To get more neighbors, we must extend the κ value. The first aspect to analyze is each κ-vicinity
local density. Let Diκ be the density of nodes around i, given by

Diκ =
card(Viκ)

τt
, (11)

where card(Viκ) is the number of nodes in i’s κ-vicinity and τt is the sum of all moments where card(Viκ)
was not null. κ-vicinity internal composition influences a node’s κ-vicinity behavior. For a given prob-
ability p of having nodes at κ + 1 distance when there is a node at κ hops from i, the more κ-contacts
a node has, the more chances it has of getting {κ + 1}-contacts. In Table 7, we present the average Dκ
according to κ. For all datasets except RT and Rollernet, above a certain threshold (κt = {3, 4}), their
Dκ does not increase anymore and is limited by the network diameter. More dynamic or inconsistent
patterns – RT and Rollernet – display logarithmic increase in Diκ. For all cases, we verify card(Viκ)
growth with κ indicating the presence of nearby nodes useable as relays for κ-contacts.

For all datasets, observing only contacts shows limited Dκ. For instance, the average D1 for Info-
com05 and Sigcomm09 is respectively 2.4 and 1.0 neighbors. Observing the κ-vicinity up to a few hops
(κ = {3, 4}) increases Dκ by at least a factor of two. Infocom05 and Rollernet ’s average D4 is 10.7 and
4.2. By observing their four-vicinity, we increased their number by a factor of more than four. For κ > 4,
the increase rate is less striking or even null. Nevertheless, longer κ-contacts in terms of path length
may not be interesting because of potential path inconsistency due to all relays movements. Monitoring
κ-vicinity up to κ = {3, 4} brings most of the local density a node can use.

5.3.3 Not-in-contact neighbors

An interesting situation occurs when pairs of nodes do not come into contact but belong to each other’s
κ-vicinity. Usual protocols miss this knowledge by overlooking the potential of nearby nodes. To analyze
the impact of such situations, we studied the closest distance between nodes for all pairs of nodes.

For Unimi, Infocom05, and Sigcomm09 we find that respectively 92%, 91%, and 80% of the pairs of
nodes come to contact at least once. This can be explained by the nature of the datasets where people
are coworkers. However, we find that even in these cases, some nodes never meet (respectively for 6%,
7%, and 12% of them). Datasets of different nature, like Rollernet, Community, and Shopping show that
contact only represent 31%, 42%, and 61% of the lowest distances. There, respectively more than 51%,
46%, and 35% of the nodes stay, at the closest, between two and four hops. In the Stanford dataset,
around 70 % of pair of nodes come into contact, but the remaining 30% of the nodes come at most at a
two-hop distance (mostly between two and three hops). In RT, all pair of nodes come into contact.

By observing the {3, 4}-vicinity, we manage to monitor additional situations of non-contact between
nodes. As a result, a small value of κ is enough to catch most κ-contacts occurring in a node’s vicinity.
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Figure 17: Contact-based card(Vκ) according to κ for each bin [n:m] (bin size = 5) . The x-axis represents
the considered κ value for the κ-vicinity. The y-axis indicates the κ-vicinity size. For each bin, the
candlebar displays from bottom to top, the lowest vicinity size, the first quartile, the median size, the
third quartile, and the highest size value.

5.3.4 A rule of thumb for card(Viκ)

The strength of κ-vicinity lays in its size and extent. For a given node i, the most straightforward
information relies on its current number of contacts (Ci). To facilitate the deployment of our proposal
without the costly neighborhood probing, we propose an heuristic based on Ci to derive node i’s current
κ-vicinity size – card(Viκ). We want to investigate the relationship between the number of nodes in contact
and the current card(Viκ). To ease data understanding and their representation, we group the number of
nodes in contacts by bins of 5 consecutive values. Fig. 17 presents this bin-based vision of κ-vicinities.
The x-axis indicates the considered κ. The y-axis represents card(Viκ). We observe for each 5-bins the
distributions of κ-vicinity sizes. For its corresponding bin, each candlestick displays from bottom to top:
the lowest vicinity size, the first quartile, the median size, the third quartile, and the highest value.

In the Infocom05 figure, we observe that when nodes have between [1:5] nodes in contacts, they have
a median three-vicinity size of 8 nodes. The minimum size observed was one and the largest three-vicinity
size was 33. The first and third quartiles are respectively 3 and 17. This means that for a node having
one to five nodes in contact, 50% of the corresponding three-vicinities have sizes between 3 and 17.
Considering the second bin value of [6:10] contacts, the interquartile difference becomes more interesting.
If a node has between 6 and 10 nodes in contacts, its median three-vicinity size will be 24, the first and
third quartiles are 21 and 27. As a result, when a node has 6 to 10 nodes in contact, it can quite safely
bet to have at least a 27 nodes in its three-vicinity and all the more neighbors to use. For κ-vicinities
with κ ≥ 3, for the second bin [6:10], the vicinity size the interquartile value is restricted the interval
25±3. The same observation for bin [6:10] holds for Sigcomm09.

The other datasets bear a “low” gravity. Their loosely connected vicinities may explain the low values
we observed here. Shopping is the only dataset to have nodes with more than 10 simultaneous contacts
and therefore, three different contact bins. We notice a logarithmic growth of its median card(Viκ). As
RT, Unimi, and Rollernet had only [1:5] concurrent contacts, we displayed them in a single figure. Their
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average size grow logarithmically with κ. Low gravity values indicate that the most secure connection
occur in contacts, therefore most of the neighbors are located near the considered node.

The Community dataset displays a different behavior. Its synthetic nature provides κ-vicinities for
κ > 2 of constant size whatever the number of current nodes in contact.

As a rule of thumb, for datasets with large gravity values like Infocom05 and Sigcomm09, their
card(Viκ) for κ ≥ 3 is on average at least the double of their ceiling bin value (especially for bin [6:10]).
For low-gravity datasets, most events occur in contacts, so their card(Viκ) for κ ≥ 3 is at least Ci or the
ceiling bin value.

5.4 Final remarks

In this section, we raised the weakness of the binary assertion in disruption-tolerant networking. We
showed how this paradox misleads a node’s vision of its surroundings and quantified how much end-to-
end communication opportunities a node can miss. To address this issue, we defined the notion of vicinity
in opportunistic network as well as temporal measure to characterize this novel vicinity notion. We made
some interesting observations concerning κ-intercontact and κ-contacts. We confirmed previous results
from Karagiannis et al. Aggregated κ-intercontact distributions follow power laws up to a knee point and
decay exponentially afterwards. This allows current DTN protocols to leverage their κ-vicinity without
too much change in their functioning. Concerning κ-contact patterns, they bear two main patterns which
are density-related. Dense settings bring logical results of κ-contact duration extension with higher κ
while light settings present result in paradoxical patterns. For a node, gathering vicinity knowledge comes
with a cost. The resulting give-and-take between gathering costs and additional vicinity information may
become an issue when deploying our proposal.

An important takeaway of our work is that monitoring a node’s κ-vicinity with small values of κ
is enough to benefit from most κ-vicinity advantages. Finally, we focused in the κ-vicinity notion by
analyzing their seat in the considered datasets and presenting the gravity measure. To ease the early
stage deployment of our proposal, we also presented a rule of thumb to infer the number of neighbors in
a node’s κ-vicinity based only on its contacts. As future work, we plan to analyze the improvements of
vicinity integration in several opportunistic approaches.

6 On the predictability of contact patterns in the vicinity of a
node

Recent studies have addressed the problem of contact prediction – predict if two nodes are going to be
in direct transmission range – and have revealed that, under the right prediction method and predictive
features, contacts between mobile users are to a certain extent predictable [44]. This result is valuable
as it allows one to predict the evolution of the network of human interactions that can be used to design
more effective DTN communication protocols.

But contacts between nodes are not the only type of relationship between mobile users. Often, users
may find themselves not in direct transmission range but still in the nearby vicinity. Thus, to have
a broader view on the available communication opportunities, the extended notion of contact, namely
κ-contact, has recently been proposed [32]. Previous analyses showed that considering only contacts
between nodes ends up in a biased suboptimal network understanding while studying κ-contacts provides
a more complete understanding on the available end-to-end communication opportunities.

In this work, we study the predictability of extended contact opportunities in DTNs. Using data
from three human-based contact traces, we show that κ-contact opportunities are more predictable than
direct contact relationships. To measure the possible impact of this finding in a real-world application,
we propose an experimental setting that supports the idea that κ-contact prediction has an interesting
potential usage [45].8

Our contributions can be summarized as follows:

8Reference available in the appendix.
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Table 8: Distance average duration (in seconds).
κ

Dataset 1 2 3 4 5 6 7

Infocom05 399 296 224 175 131 154 212
Sigcomm09 149 83 41 25 18 13 11

Rollernet 48 65 76 89 105 114 129
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Figure 18: Pairwise minimum distance for Infocom05, Sigcomm09, and Rollernet.

• We provide insights on the κ-contacts relationships between mobile nodes and show that considering
only direct contacts covers a limited part of the end-to-end transmission possibilities. We reveal the
instability of periods of time nodes stay at the same distance, and that κ-contact intervals display
better predictability characteristics: intervals frequency and length.

• Using a supervised prediction framework, we study the predictive nature of κ-contacts and compare
it with the traditional case of predicting contacts between nodes. Our results indicate that, in
highly dynamic mobile settings (e.g. rollerblading scenario), predicting that nodes will remain at a
distance of at most two hops from one another, can attain twice the performance of a direct contact
prediction.

• Through simulations, we evaluate the impact of κ-contact prediction in a service that would benefit
from predicting contacts between mobile users. The experimental results show that there is a higher
potential on relying on κ-contact prediction compared to the traditional contact case.

6.1 Pairwise interactions under the κ-contact case

Given the new definitions of contact and intercontact we analyze different characteristics of the pairwise
interactions. For more detailed information concerning κ-contact and κ-intercontact, please refer to [31].

6.1.1 Pairwise minimum distance

We begin by studying the pairwise minimum distance, i.e., how close nodes come to each other during
the duration of a trace. For instance, if two nodes meet at least once, we mark this distance as 1. If
they come as close as 3 hops, we consider the minimum distance to be 3. For nodes that never come in
κ-contact, we consider this distance as ∞.
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Table 9: κ-contact average duration (in seconds).
κ

Dataset 1 2 3 4 5 6 7

Infocom05 399 322 274 247 230 224 224
Sigcomm09 149 101 72 60 54 51 50

Rollernet 48 61 68 75 81 86 90

We represent the results in Fig. 18. In terms of pairs of nodes that come in direct contact, we observe
that in conference settings, characterized by a high number of nodes in restricted physical spaces, the
number of connected pairs is reasonably high: 49% for Sigcomm09 and 73% for Infocom05. Rollernet on
the other hand shows a lower network connectivity, with only 33% of nodes coming in a direct contact.
But the analysis of contact alone yields an incomplete picture as there is a considerable amount of nodes
who come close to each other but never in direct contact. For example, the percentage of pairs that come
at a distance of 2 is 5% for Infocom05, 16% for Sigcomm09, and 41% for Rollernet. For Rollernet the
percent of nodes that come at a 2-hops distance is even higher than the nodes that come in direct contact
and one can observe that a non negligible amount of nodes advance up to a distance 3 (6%) and 4 (16%).

6.1.2 Average distance duration

In Table 12, we present the average duration of an interval during which nodes remain at a distance of
κ-hops from one another. For Infocom05 and Sigcomm09, we observe that close connections are more
stable, with smaller average durations as the distance between nodes increases. This shows how for
conference settings, network stability comes from the core of the κ-vicinity. However, we observe the
opposite phenomenon for Rollernet dataset. With larger κ we have an increase of the average duration
that nodes spend at a certain distance from one another. Thus, due to nodes’ movement in a highly
dynamic scenario, meeting between users lasts for very short periods of time but nodes spend a significant
amount of time in the nearby vicinity.

6.1.3 Average κ-contact duration

We also study the average κ-contact durations (see Table 9), i.e., we observe the average duration of
any κ-contact interval. Following our logic, since we cover a wider spatial range with our κ-vicinity,
nodes coming closer are likely to be in κ-contact earlier and leave the κ-contact later, therefore we should
obtain longer κ-contact intervals. With Rollernet, we observe that the greater the value for κ, the longer
the durations. Surprisingly for Infocom05 and Sigcomm09, this is not the case, we actually notice the
opposite phenomenon. With larger κ, we seem to have smaller κ-contact intervals. So does that mean
that increasing our network vision with the κ-vicinity reduces the duration of end-to-end transmission
possibilities?

Table 10 shows how wrong this conclusion may be. In this table, we show the actual number of
κ-contact intervals for each κ and each dataset. For all of them, the greater the value of κ, the greater
the number of κ-contact intervals. So, with higher κ values, we multiply the possibility of observing
a κ-contact interval. They may be on average of shorter length (for Infocom05 and Sigcomm09 ) yet
we multiply the possibility of having pairwise end-to-end paths. In addition, the cumulated κ-contact
duration grows with larger κ.

6.2 Predicting κ-contact encounters

6.2.1 Dynamic graph representation

The mobile traces analyzed in this work represent dynamic networks composed of a set of mobile users
that sporadically come in contact. We represent this network using a dynamic graph structure, G0,T =
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Table 10: κ-contact number of intervals (×1, 000).
κ

Datasets 1 2 3 4 5 6 7

Infocom05 3.7 14.7 28.9 40.0 46.7 50.3 51.9
Sigcomm09 13.3 49.7 96.9 131.6 152.2 163.4 168.8

Rollernet 2.6 9.4 18.4 27.5 35.2 41.3 45.7
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Figure 19: Prediction performance for different time-window durations and by varying the number of
training time-windows (past intervals).

(V,E0,T ), with V the set of mobile users observed during a finite period of time [0, T) and E0,T the
set of temporal edges between them. We consider an edge euv ∈ E0,T if any two users u, v ∈ V have
been at least once into contact during the period [0, T). To analyze the evolution of this network over
time, we split time into fixed time-windows of duration w and represent the dynamic network as a time
series of network snapshots Gt1 , Gt2 , ..., Gtn , with n = dTw e. Gti represents the aggregate graph Gti−1,ti

that records the contacts between mobile users during the period [ti−1, ti). In a dynamic network, the
future changes of the network may depend not only on the most recent state of the network but also
on older ones. To model the dynamic evolution and catch possible periodicities in human encounters,
the data used as input in the prediction process is represented as a successive series of static snapshots
Gti−m , ..., Gti−2

, Gti−1
. Thus, given data from the previous m time-windows our objective is to predict

the κ-contacts during the next target period Gti . We will later discuss how the choice of w and m affect
the prediction performance.

6.2.2 κ-contact prediction problem

We formulate the prediction task as a binary classification problem where, given past data recorded until
a moment in time ti−1, the goal is to predict if any two mobile nodes will be in κ-contact during the
subsequent period [ti−1, ti).

We rely on two types of information in the prediction model: the frequency of κ-contact occurrences
and the structural properties of the connectivity network. The first type of information measures the
strength of κ-contact relationships, quantified by the duration and the number of times any pair of nodes
has been in κ-contact in the past. A longer duration and a greater number of κ-contacts can provide
stronger evidence that two nodes will be in κ-contact in the future. For the second type of information, to
quantify the structural properties of the network, we extract various features that capture the proximity
between nodes in the graph of past interactions. These features showed predictive power in various
applications such as collaborative filtering and link prediction problems [46, 47, 48]. In this work we use
four common proximity measures:

• Common neighbors (CN). For each pair of nodes u, v ∈ V , CN represents the number of common
neighbors:
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Table 11: Notation for the binary classification confusion matrix
Predicted value

predicted = 1 predicted = 0

Actual value
actual = 1 TP FN
actual = 0 FP TN

CN(u,v) = | Vu1 ∩ Vv1 |. (12)

• Adamic Adar [49]. This measure extends the notion of common neighbors by weighting each
neighbor by the inverse logarithm of its degree centrality:

AdamicAdar(u,v) =
∑

x∈{Vu1 ∩Vv1 }

1

| Vx1 |
. (13)

• Katz [50]. This feature counts all the paths between any pair of nodes, giving a higher weight to
shorter paths. If pathlu,v represents the set of paths of length l between two nodes u and v, and β
is a damping factor (set to 0.05 in our evaluation), the Katz score is calculated using the following
formula:

Katz(u,v) =

∞∑

l=1

βl × | pathlu,v |. (14)

• Preferential attachment [51]. This feature is built on the premise that the probability of a new
contact is correlated with the product of nodes’ degree.

PA(u,v) = | Vu1 | × | Vv1 | (15)

The two types of features provide complementary information about nodes’ contact patterns. The
frequency of interactions catches the persistence of κ-contact relationships but its predictive power is
conditioned by the past contact occurrences (using these features one can only predict the reoccurrence
of a κ-contact). Topological features, on the other hand, allow us to capture complex data patterns about
the structure of the network of interactions. We build the prediction model and report the results using
the entire set of features as we observed that taking these features together achieves a higher performance
than using them separately.

We adhere to a supervised learning procedure in our evaluation. Each mobile trace is split in two
equal-sized temporal parts: the first period is used as the training set and the remaining part serves to
report the prediction performance. We examined two classification algorithms: SVM (using LIBSVM
library [52]) and logistic regression, under different parameter settings and used a validation set to avoid
overfitting. We report the quality of the prediction using the F1 score (also called F -measure), expressed
as the harmonic mean between precision ( TP

TP+FP ) and recall ( TP
TP+FN ) as defined by the confusion matrix

(Table 11).

6.2.3 The effect of time-window duration and past data

The prediction performance is influenced by the duration of the time-window. Aggregating data over
longer durations may lose useful temporal information about the structure of the dynamic network.
Another important aspect is given by the number of training time-windows. Including more information
from the past may capture important temporal patterns but also increase the computational cost.

To evaluate the impact of past information in the prediction performance we vary the amount of
data used in the prediction model and include information from the previous {1, 3, 5, 7, 9} time-windows.
We illustrate the results for the 1-contact case as we observed that the remarks made on this value are
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consistent with other κ values as well. For the size of the time-window we select the most granular
duration (the scanning rate used in the mobile trace) and two other values that represent 5× and 10×
this duration. Thus, we consider time-windows of duration {120, 600, 1200} seconds for Sigcomm09 and
Infocom05 and use {15, 75, 150} seconds for Rollernet (which has a more granular frequency).

The results are presented in Fig. 19 by means of 3D plots that represent the F1 score as a function
of the time-window duration and the number past time-windows used in the prediction model. On the
x-axis we examine different time-window durations and the y-axis (labeled past intervals in Fig. 19)
denotes the number of time-windows used in the prediction model. For example, a past interval of length
9 for a time-window of 1200 seconds means that, based on the contacts recorded during the previous 9
intervals of 1200 seconds, we predict contacts during the next time-window.

The figure illustrates that the most recent information plays the most important role in the prediction
performance. For all three datasets, using data from the latest three time-periods achieves the highest
performance and older information has little predictive power. This indicates that the most recent inter-
actions are the most important in predicting the immediate future. We can also observe that the longer
the duration of the time-window, the less accurate the prediction performance. This suggests that aggre-
gating data over longer durations is prone to larger errors. Taking the example of Infocom05 (Fig. 19(a)),
the results show that predicting the contact opportunities during the next 2 minutes shows an F1 score
of 0.8 and the performance drops with 50% when trying to predict what will happen during the next
20 minutes. For Rollernet, which represents a more dynamic scenario, the drop of performance is even
higher with a 70% decrease when trying to predict the contacts during the next 150 seconds compared
to a 15-seconds time-window.

6.2.4 κ-contact prediction results

● ● ● ● ● ● ●

1 2 3 4 5 6 7

0.
0

0.
4

0.
8

k−Contact

F
1

●
●

●
● ● ● ●

●

●
● ● ● ● ●

●

●

●

120 sec
600 sec
1200 sec

(a) Infocom05

●
● ● ● ● ● ●

1 2 3 4 5 6 7

0.
0

0.
4

0.
8

k−Contact

F
1

● ● ● ● ● ● ●

●
● ● ● ● ● ●

●

●

●

120 sec
600 sec
1200 sec

(b) Sigcomm09

●
● ● ● ● ● ●

1 2 3 4 5 6 7

0.
0

0.
4

0.
8

k−Contact

F
1

●

●
● ● ● ● ●

●

● ● ● ● ● ●

●

●

●

15 sec
75 sec
150 sec

(c) Rollernet

Figure 20: The efficiency of predicting κ-contact relationships for different durations of the time-window.
On the y-axis we represent the prediction performance and on the x-axis we vary the value of κ-contact
from 1 to 7.

Based on the previous observations of the optimal number of past intervals we assess the performance
of predicting κ-contact relationships. We vary the value of κ from 1 to 7 and consider three durations
for the time-window: {120, 600, 1200} seconds for Infocom05 and Sigcomm09 and {15, 75, 150} seconds
for Rollernet. The results are illustrated in Fig. 20. First, we observe that predicting that two nodes will
be in direct communication range shows particularly poor results in very dynamic mobile settings (e.g.
Rollernet that describes a rollerblading activity) and for longer durations of the time-window. Thus, in
situations that involve important changes in the network topology, predicting that nodes will be in direct
contact is prone to large errors.

Relaxing the prediction objective beyond direct contact relationships reveals more accurate predictive
power. Overall, the greater the value for κ the more effective the prediction performance. On average
(for all mobility traces and different time-window durations) predicting that nodes will be at most at a
distance 2, 3, and 4 shows an improvement of 7%, 10%, and 11% compared to the case where we want
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Figure 21: The percent of traffic with the infrastructure that can be reduced through κ-contact prediction
and mobile opportunistic communications. On the y-axis we represent the traffic reduction compared to
the case where content is sent to mobile users using only the infrastructure. On the x-axis we present
different values for κ-contact.

to predict direct meetings between mobile users. While the improvement is important for small values
of κ we notice that there is little benefit in extending the prediction for a κ greater than 3. The most
significant increase, compared to the direct contact case, can be observed for κ = 2 with an average
increase of 10% for Rollernet, 7% for Infocom05, and 6% for Sigcomm09. The benefit is negligible when
trying to predict the network change in the immediate horizon but it becomes significant when trying to
make predictions over longer periods of time. Taking the case of Infocom05 for a time-window of 1200
seconds and Rollernet for 150 seconds, predicting that nodes will be separated by at most two nodes
(κ-contact = 3) reveals an improvement of 60% for Infocom05 and 74% for Rollernet compared to the
direct contact prediction case.

While we leave a more detailed analysis of these findings for future work, we give two plausible
explanations for these results. First, as we showed in Fig. 18, a non-negligible number of nodes, although
never in direct contact, they come at a 2-hop distance. By extending the prediction objective to 2-hop
contacts, we include these potential events into consideration, which appear to have a more predictable
nature. Then, as showed in Section 6.1 direct contacts between mobile users are scarce and short-lived,
which makes them more difficult to predict in very dynamic scenarios and for longer time horizons.
This explains the low prediction effectiveness observed with Rollernet and for longer time-windows for
Sigcomm09 and Infocom05. Thus, extending the notion of contact to κ-contact gives us access to more
stable connections (nodes leave direct connectivity but remains in κ-contact for longer durations) that
reveal a more predictable nature.

6.3 Practical implications

To capture the possible benefit that κ-contact prediction would bring in practical scenario we propose
and evaluate the following use-case example.

We consider a content producer, located on the Internet, that regularly publishes content for a known
group of collocated mobile users that communicate with the server using the cellular infrastructure.
Content is categorized in topics. Users subscribe to these topics and content is pushed to users upon
creation. We also consider that, in order to reduce the amount of cellular traffic caused by content delivery,
the content producer collects data about the mobile contact traces and relies on a κ-contact prediction
functionality when transmitting information to users. More specifically, at the publication of a content,
instead of individually transmitting the content to each subscriber, the content producer optimizes the
delivery process based on the predicted κ-contact opportunities. For example, if the server predicts that
two users, interested in the same content, will be in κ-contact, a message is sent to only one of these
nodes which will opportunistically forward the message to the other node when they will be κ-contact.
We also assume that nodes are capable of sensing their κ-vicinity and can detect when a targeted user is
in κ-contact. To collect nearby topological knowledge, we assume the existence of a link-state protocol
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gathering nearby knowledge under the form of a connectivity graph. The implementation itself is beyond
the scope of our study, yet a previous analysis studied the impact of monitoring overhead [32].

We design the experimental setting using ONE simulation environment [53]. In our experiments we
set the number of topics to 100. Each mobile node randomly subscribes to 20 up to 100 topics. For the
prediction module, we use a time-window of 75 seconds for Rollernet, and 600 seconds for Infocom05 and
Sigcomm09. Content is uniformly created throughout the duration of the experiments (that covers the
duration of a mobility trace) and the results are averaged over 10 simulation runs. We also consider an
infinite cache size at the user side and assume that the content is small enough to fit into one message in
the communication between content producer and the users and between the mobile users. To measure the
impact of κ-contact prediction we report the reduction in the number of messages in the communication
between the content producer and the mobile users when using κ-contact prediction module compared
to a case where the content is individually sent to each user using the cellular infrastructure.

The results are presented in Fig. 21. First, we observe that the greater the value of κ-contact, the
greater the potential of traffic reduction. The biggest improvement of predicting beyond direct neighbors
is noticed for κ = 2, that shows an improvement of 6% for Sigcomm09, 7% in Infocom05, and 30% for
Rollernet. The potential traffic reduction is directly affected by the characteristics of the traces: κ-vicinity
properties (presented in Fig. 18) and prediction performance (presented in Fig. 20). Taking the example
of Sigcomm09, even if the effectiveness of the prediction showed little improvement for κ = 2 compared to
κ = 1 the potential reduction is nevertheless important (6%). This is explained by the significant number
of nodes located at a 2-hop distance detected with the κ-contact prediction. The benefit is even more
substantial in the case of Rollernet. By counting on the pairs of nodes connected at a 2-hop distance
(that exceed the number of direct contact opportunities), the traffic reduction attains a performance of
33% compared to 5% when using only direct contact prediction.

6.4 Final remarks

In this section, we addressed the problem of predicting κ-contact opportunities between mobile users –
predict if users will find themselves at a distance of at most κ-hops from one another. By analyzing
three real-world contact traces, we observed that one can obtain better performances when predicting
2+-contacts compared to the direct contact case. To assess the impact of these findings in a real-world
application, we proposed a simulation experiment in which, by combining mobile opportunistic commu-
nications with κ-contact prediction one can reduce the amount of traffic used in the communication of
mobile nodes with the infrastructure. Our results suggest that services benefiting from contact predictions
can efficiently exploit the predictable nature of κ-contacts.

Research in the area of κ-contact prediction and its applications is an open subject with many possible
extensions. First, as the observations are based on specific mobility settings (conferences and rollerblad-
ing) more work is needed in order to understand to what extend these observations can be generalized to
other mobility scenarios. The quality of the prediction shows promising performances, yet not optimal,
and suggests there is still room for improvement. One way to increase the prediction performance is to
consider additional features in the prediction model. This includes information about the geographical
co-location patterns of nodes (not available in the traces used in this work) that showed strong predictive
power in the link prediction problem [44, 48]. Then, in this study, we only consider a one-step ahead pre-
diction problem (we use information received in the previous m time periods to predict what will happen
during m + 1 period). To cover a larger range of situations the prediction objective can be extended to
further time periods, i.e. predict contacts during subsequent time periods m+ 1, m+ 2, . . ., m+n. This
can be particularly favorable in situations where collecting and processing data adds a significant delay,
for which immediate prediction can be considered outdated.

Finally, the current evaluation of the applicability of κ-contact prediction in real-world scenarios
considers some simplifying assumptions and more work would be needed to assess the benefit of κ-
contact prediction in practice. This includes an evaluation of the additional cost of collecting data about
nodes’ mobility and the feasibility of implementing a mechanism capable of detecting the κ-contact
communication opportunities.
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7 Contact patterns and security concerns

7.1 The security challenges of a fickle environment

In the communication scheme proposed in MOTO, the network is intrinsically dynamic, that is, users and
their roles, the topology, the offloading technology used, etc. are susceptible to change at any moment,
while the transport medium is considered open (wireless) and highly fickle (opportunistic).

The contact pattern of this type of communication is mainly driven by the mobility of the MOTO
users. Contact patterns in such a scheme, suppose relatively short interaction times between different
nodes and no reliability in user’s continuity in the network. Users can drop off the network at any
moment, both intentionally (e.g. Turning off their UE wireless capabilities) or unintentionally (leaving
the range of coverage from the device they are communicating with at a given moment). In such an
environment where nodes enter and leave the network at any time, it is likely that they will not be able
to provide strong evidence of their identity and intentions.

This, despite being necessary to achieve the expected QoE for the user, the increase of efficiency
and the reduction of costs and bandwidth occupation for the operators, sets an enormous challenge for
the security. The dynamic yet vulnerable nature of an ad hoc network presents many new security and
privacy challenges [54].

Furthermore, lifetime of links and routes is not only determined by user mobility but also by different
sources of failures like packet collisions, or interference from any sender emitting at the same frequency
band [55].

On the other hand, the specific communication scheme that has been set in MOTO, which can be
considered a special type of Mobile Ad Hoc NETworks (MANETS) as there is a centralized management
node available (MOTO platform), which is responsible for the definition of a dissemination strategy,
brings the necessity for the UE to share its location, in order to enable the management of the content
distribution. This sets on its own another challenge for security, as location privacy has become a greater
concern than in traditional networks and it is particularly difficult to achieve a satisfactory level of
location privacy in situations where nodes rely on location-based services (LBS) [56].

In this sense, the MOTO proposed network can be considered as a hybrid MANET network, where
part of the communications are performed through the traditional channel (LTE and Wi-Fi operator’s
infrastructure), but the bulk of communications rely in the wireless capabilities of the UEs (Ad Hoc).
MOTO proposes the migration from an operator infrastructure centred communication, to a hybrid
communication, which will rely mostly in user equipment in order to decongest operator’s bandwidth.

Therefore, the main aim of the proposed MOTO security approach will be focused on accomplishing
users’ concerns about security as well as providing the expected security demanded by the rest of the
communications actors: legislators, operators and Internet-based service providers.

The main concerns in the adoption of the MOTO proposition from the user point of view are: (i)
confidentiality regarding both, sensible information stored in their mobile device and information they
exchange with other users, (ii) integrity perceived as the detection of the manipulation of UE stored or
transmitted information, and (iii) availability, understood as users being able to perform communication
under all circumstances.

This affirmation is reinforced by recognized security institutions such as the NIST (National Institute
of Standard and Technology) of the U.S. Department of commerce in their Guidelines for managing and
securing mobile devices in enterprises, where the NIST states: Mobile devices, such as smartphones and
tablets, typically need to support multiple security objectives:

• Confidentiality: ensure that transmitted and stored data cannot be read by unauthorized parties.

• Integrity: detect any intentional or unintentional changes to transmitted and stored data.

• Availability: ensure that users can access resources using mobile devices whenever needed.

In this same line, ENISA (European Network and Information Security Agency) in its publication
“Smartphones secure development guidelines for app developers” recommends that “Adequate protection
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should be built in order to minimize the loss of sensitive data on the device”. ENISA also advices about
the necessity of ensuring that sensitive data transmitted is protected, and warns against the interception
of communications through insecure channels.

In the scope of the security approach in MOTO, and attending to user’s main concerns, users will have
to be guaranteed that all their personal information, the one stored in the UE and the one transmitted
through the proposed communication scheme remain secured and that the service is accessible and usable
under demand. All these conditions will shape the specific security objectives for the MOTO security
approach:

• User’s trust related to privacy and integrity of personal data:

– Content protection end-to-end.

– Strong Access Control Mechanisms.

• User’s trust in the service:

– Availability in all cases.

– Accomplishment of Users QoE (maximum delay).

In order to analyse the security in such fickle environment, and identify the main threats that may
threaten the achievement of the proposed objectives, it is necessary to first understand the proposed
communication strategy proposed.

7.1.1 MOTO content dissemination strategy

In MOTO, content is disseminated in two ways, through the primary channel (LTE or Wi-Fi) or through
the alternative channel (Wi-Fi Ad Hoc). MOTO dissemination strategy is based in the delivery of the
content to a reduced number of MOTO users, that will afterwards disseminate it within other MOTO
users using UE own Wi-Fi capabilities (Ad Hoc) with the objective of leveraging the operator’s network
bandwidth by reducing congestion. In order to assure the reception of the content by all the intended
users, a panic zone (maximum delay time) has been defined, that when reached will trigger the direct
delivery of the content through the primary channel to those users who have not sent a positive content
tracking feedback.

Regarding to the contact patterns of MOTO, user’s mobility will affect mainly the following commu-
nications:

1. Authentication of UE to core MOTO services: This communication encompasses the interaction of
the UE with the core MOTO service so that the UE can start using MOTO services. Information
exchanged in this communication may include credential expedition.

2. Offloading instructions delivery: this communication encompasses the delivery of instructions of
the dissemination to be accomplished by MOTO users. The information exchanged can include
location and identification of users.

3. Content download: this communication deals with the delivery of content from the Internet or core
MOTO services CDM to the UE.

4. Authentication between UEs: this communication defines the exchange of credentials between
MOTO users for identification and trust purposes before the exchange of content or other data.
Information exchanged in this communication includes credentials.

5. Content offloading: this communication is defined as the transmission of content from one UE to
another through the alternative (Ad Hoc/Wi-Fi) channel.
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6. Content tracking feedback: this communication is the acknowledgement of a UE for the content
received to be sent to the core MOTO services.

7. Topological information: this communication although it is not defined in the use case sequences,
is defined in the description of the terminal architecture. It is defined as the delivery of topological
information from the topological information building block in the UE to the LOC module of the
MOTO architecture in the operator core network.

For the scope of this analysis, it is going to be supposed that communications ongoing through the
primary channel are secured, understanding that:

1. In LTE: communications are encrypted with the Authentication and Key Agreement (AKA) pro-
tocol, and that integrity and confidentiality are granted through the implementation of the UIA2
and UEA2 algorithms and the underlying primitive SNOW 3G stream cipher.

2. In Wi-Fi: communications are secured using the WPA2 (Wi-Fi Protected Access2) protocol, em-
ploying the Counter Cipher mode with Message Authentication Code Protocol (CCMP), and an
encryption scheme that uses AES in CCM offering both, message privacy and message authentica-
tion.

Under these assumptions, the challenges to achieve the defined security objectives rely on the secur-
ization of the alternative channel.

7.1.2 Confidentiality of the alternative channel communications

Confidentiality regarding the transmitted data is a major security concern in MOTO. Taking into account
the typology of the communication scheme proposed in MOTO, where ideally the communication bulk
relies within UEs, with or without central entity intervention (MOTO platform), it is necessary to propose
a security scheme that can assure the confidentiality of the personal information that can be transmitted
through any possible communication situation.

It is convenient to define a relation between the communications that occur through the alternative
channel and their main threats:

• Authentication between UEs. Authentication between users may pose a threat to confidentiality
depending on the authentication mechanism that is used. In the proposed security approach for
MOTO, exposed in section 7.2, X509 v3 certificates will be used for authentication between MOTO
users, and revocation of these certificates are granted through lightweight OSCP protocols. In such
an authentication scheme, as users are likely to get in contact with any other MOTO users, and as
certificates are considered publicly available between them, no personal unauthorized information
will be disclosed. It is important to take into account that in order to avoid personal information
disclosure, MOTO certificates should not contain Personally Identifiable Information (PII) about
the MOTO user.9

• Content offloading. Content to be transmitted through this channel can encompass Personally
Identifiable Information (e.g., emails). Therefore, it is imperative that content only is accessible to
the actual intended receiver and that disclosure to unauthorized users is avoided. The main threat
to this communication will be that a malicious node can also receipt the message, which is very
likely given the openness of the channel and extract information from it. This might be done by
listening to all communications in the channel (eavesdropping), impersonating the actual intended
receiver or the MOTO platform (e.g. by a man-in-the-middle attack or by manipulating the users
applications configuration). In order to avoid this threat, communications through the alternative
channel SHOULD be encrypted and users UE should confirm other MOTO user’s identities when
requesting MOTO certificates revocation to the MOTO platform through the primary channel.

9As used in US privacy law and information security, is information that can be used on its own or with other information
to identify, contact, or locate a single person, or to identify an individual in context.
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7.1.3 Integrity of the alternative channel communications

At the time of this analysis, the communication terminal to terminal protocols and the control and
coordination protocols are under development. Therefore, the integrity of the communications between
MOTO UEs will be based in the following assumptions:

• MOTO applications in the UE authenticate successfully using the proposed authentication scheme
(x509 v3 certificates exchange and lightweight OSCP revocation confirmation) before starting.

• Identity of users is confirmed through the revocation certificate request to the MOTO platform.

• MOTO applications in the UE agree in a session key to be used using asymmetric cryptography.

Under these assumptions, it can be supposed that the integrity of data transmitted through the
alternative channel is granted. As the proposed security of this channel encompasses WPA2 connections
and the exchange of certificates and asymmetric cryptography, data tampering is unlikely. Data tampering
is always detectable in this type of protocols, as Message Authentication Codes are used.

Therefore, for communications through the alternative channel, a major threat for integrity will be
the nodes themselves. A misconfiguration or an erroneous implementation in the MOTO application of
the security of one of the nodes could habilitate threats for security concerning the communication by
reducing the strength of the encryption. Another threat for integrity could be that a malicious node
performs a man-in-the-middle attack and impersonates one of the legitimate nodes.

The impact of the corruption of the integrity in this communication could suppose the impossibility
of the user to access the real content transmitted, the disclosure of personal information (when accepting
the offloading of malware from an mistakenly considered trust user or when sending this information
through the communication, or even the disruption of the MOTO services for the user.

7.1.4 Availability of the alternative channel communications

Availability stands for the normal service provision in face of all kinds of attacks. The availability of
services through the alternative channel relies on the availability in turn, of several services and assets.
In particular, service availability of the alternative channel, relies in UEs access to MOTO’s core platform
services (offloading instructions, OSCP, etc.), wireless capabilities of MOTO UE and UEs access to other
legitimate MOTO UEs.

The main threat for the services availability is related to the openness of the transmission channel,
interferences or massive data transmission can collapse the transmission channel, thus disrupting MOTO
services. To attempt an attack in this sense, it is necessary to either overload the network with data packet
transmission or use a device that interferes, introducing signals in the same frequencies of transmission in
order to decrease signal to noise ratio (jamming) [57]. On the other hand, as each of the elements of the
UE architecture has their own functionality in the communication scheme, the effect of the disruption of
any of them will have an effect to a greater or lesser extent.

In deliverable D2.2.1 (General Architecture of the Mobile Offloading System Release A), a detailed
explanation about the different building blocks of the architecture is done, which will be used as a base
for this analysis. In Table 12, a description of the impact of disruption of each of these building blocks
is given.

The main threat that could enable the corruption of the elements listed before is that an attacker
introduces some type of malware in the Moto UE that allow him to access the application.

7.2 Proposed MOTO security

Regarding the authentication between users, MOTO considers the secure exchange of credentials and the
trust acknowledgement from previous connections.

The MOTO project is investigating the performance of different types of protocols and certificates
under different mobility patterns. The initial assumption is that these credentials will be based on the
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Table 12: Disruption of building blocks at a MOTO terminal.
Building
block

Description of Impact if disruption Impact range

Flow iden-
tification

If this element of the user’s terminal is corrupted, the MOTO appli-
cation will not be able to distinguish between packages intended for
control issues and data packages corresponding to the content. De-
pending on how the configuration is settled in this element, this could
affect severely the service availability.

MOTO application services
availability

Topological
informa-
tion

If this element of the user’s terminal is corrupted, the terminal might
have problems to be located by the core MOTO services. Under
these circumstances, other MOTO nodes will not receive offloading
instructions to send them the requested content. Therefore, the user
will not be able to participate through the alternative channel and
will have to receive the content through the primary channel.

Terminal participation in the
alternative channel (ad hoc
network).

Content
tracking
feedback

If this element of the user’s terminal is corrupted, the MOTO platform
will not receive appropriate feedback from the communications of the
UE. This may cause that content already received through the alter-
native channel is sent again to the user through the primary channel,
or it can cause the user to send acknowledgement of content when
it has not really received the content. This presumably will affect
content reception, so it will have an effect on service availability.

Terminal participation in the
alternative channel (Ad Hoc
network) Content reception
duplicity or no reception at all.

Diffusion
Instruc-
tions

If this element of the user’s terminal is corrupted and the information
it stores (instructions) is corrupted or deleted, the MOTO application
will forward the content erroneously or even do not forward it. It
will affect the dissemination strategy stated by the MOTO platform.
Presumably, although this will mainly affect content delivery, it will
not have an effect on service availability, unless the corruption affects
a large number of UE, thus causing a meltdown of the ad hoc network.

Terminal participation in the
alternative channel (ad hoc
network) Content reception
duplicity or no reception at all.

Cache If this element of the user’s terminal is corrupted and the information
it stores (content) is corrupted or deleted, the MOTO application will
forward an erroneous content or even do not forward it. Presumably,
although this will affect content delivery, it will not have effect on
service availability for the user.

No effect on Users participa-
tion through the alternative
channel.

Routing If this element of the MOTO platform is corrupted, the MOTO appli-
cation will not perform correctly the dissemination strategy instruc-
tions sent by the MOTO platform, which could affect the content
forwarding. Presumably, although this will mainly affect content de-
livery, it will not have effect on service availability for the user.

No effect on user participation
through the alternative chan-
nel.

Auth If these element of the UE terminal is corrupted, the MOTO applica-
tion could be unable to authenticate to another MOTO application,
or even to the MOTO platform, or could accept connection from an
untrusted user (potentially malicious). All of which could affect the
access to the service (availability).

Terminal participation in the
alternative channel (Ad Hoc
network). Unable to access the
MOTO service.

third generation of X.509 certificates, as they provide much more flexibility than the traditional certificates
by allowing the introduction of new fields, which would be really useful in MOTO, for instance for the
incorporation of users’ trust level. This trust level is intended to indicate the updated user’s reputation
at a certain moment, as it varies dynamically depending on the trust feedbacks received after every
communication they are involved in with other users.

Furthermore, MOTO will study the use of certificate’s revocation request protocols, like the on demand
OCSP protocol (Online Certificate Status Protocol), which determines the status of the digital certificates
in a more agile and efficient way than the traditional CRLs (Certificate Revocation Lists), thus leading
to a minimization of the communication bandwidth and client-side processing consumption and enabling
the identity confirmation of the users.

As it is true that security and trust will have an impact in the overall architecture in terms of oppor-
tunistic communication efficiency, the right balance in terms of credential management complexity and
communication efficiency is being investigated. For this purpose, the use of flexible security technolo-
gies and lightweight protocols is a key target for the definition of the security approach in the MOTO
environment.
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8 Conclusion

We have presented in this deliverable several contributions that help us better understand the phenom-
ena and possibilities behind contact and intercontact patterns in opportunistic networks. This step is
fundamental to evaluate the potential gains that we may obtain by offloading cellular traffic onto device-
to-device communications.

Our work put light on a number of elements that seem to strongly influence the way protocols and
algorithms could better benefit from contact opportunities. In particular, the compound of individual
and collective behaviors seem to be an important condition to this end. Our contributions in the context
of the MOTO project makes a step forward to allow opportunistic offloading techniques generate de
necessary savings to push network operators to adopt this technique.
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a b s t r a c t

Modeling human mobility is crucial in the analysis and simulation of opportunistic net-
works, where contacts are exploited as opportunities for peer-to-peermessage forwarding.
The current approach to human mobility modeling has been based on continuously mod-
ifying models, trying to embed in them the mobility properties (e.g., visiting patterns to
locations or specific distributions of inter-contact times) as they arose from trace analysis.
As a consequence, with these models it is difficult, if not impossible, to modify the features
ofmobility or to control the exact shape ofmobilitymetrics (e.g.,modifying the distribution
of inter-contact times). For these reasons, in this paper we propose a mobility framework
rather than a mobilitymodel, with the explicit goal of providing a flexible and controllable
tool for modeling mathematically and generating simulatively different possible features
of human mobility.

Our framework, named SPoT, is able to incorporate the three dimensions – spatial, so-
cial, and temporal – of humanmobility. The way SPoT does this is bymapping the different
social communities of the network into different locations, whose members visit with a
configurable temporal pattern. In order to characterize the temporal patterns of user visits
to locations and the relative positioning of locations based on their shared users, we ana-
lyze the traces of real user movements extracted from three location-based online social
networks (Gowalla, Foursquare, and Altergeo). We observe that a Bernoulli process effec-
tively approximates user visits to locations in the majority of cases, and that locations that
share many common users visiting them frequently tend to be located close to each other.
In addition, we use these traces to test the flexibility of the framework, and we show that
SPoT is able to accurately reproduce the mobility behavior observed in traces. Finally, re-
lying on the Bernoulli assumption for arrival processes, we provide a thorough mathemat-
ical analysis of the controllability of the framework, deriving the conditions under which
heavy-tailed and exponentially-tailed aggregate inter-contact times (often observed in real
traces) emerge.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the widespread diffusion of personal handheld devices such as smartphones and tablets, emerging wireless ad
hoc networks are characterized by high user mobility, which ultimately leads to intermittent connectivity and end-to-end
paths that are continuously changing or even completely lacking. Reversing the traditional approach, these potentially
disconnected networks benefit from the exploitation of user mobility to bridge disconnected users in the network, and
for this reason they are often referred to as opportunistic networks [1]. In opportunistic networks, messages are routed by
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the users of the network (which exchange them upon encounters with other users) and are eventually delivered to their
destinations. The delay experienced by messages is thus a function of the users’ mobility process. In particular, pairwise
inter-contact times (i.e., the time intervals between consecutive contacts of a pair of nodes) are very important, since they
characterize the temporal distance between two consecutive forwarding opportunities. Inter-contact times are determined
by themovement patterns of users: users visiting the same locationswill meetmore frequently, and their inter-contact time
will be shorter. Given the dependence of the delay on inter-contact times, characterizing the inter-contact time is therefore
essential for modeling the performance of opportunistic networking protocols.

The first step in modeling human mobility is to understand how users move. Recently, starting from traces of real user
movements, there has been a huge research effort in order to characterize the spatio-temporal (i.e., how users travel across
locations [2–4]) and social (i.e., how the nature of a social relationship impacts on, for example, inter-contact times between
two users [5,6]) properties of humanmobility. There is a general agreement that users tend to travel most of the time along
short distances while only occasionally following very long paths. In addition, user movements are generally characterized
by a high degree of predictability: users tend to visit the same locations frequently, and to appear at them at about the same
time. Less clear is how inter-contact times are characterized. Many hypotheses have been made (about them featuring an
exponential distribution [7], a Pareto distribution [5], a Pareto with exponential cut-off distribution [8], and a lognormal
distribution [6]), but the problem has yet to be solved. The fact is that inter-contact times are by nature heterogeneous, and
trace analysis suggests that a one-distribution-fits-all approach is probably wrong.

Building upon the above findings, the current approach to human mobility modeling has so far been based on trying
to incorporate in the model the newest features of mobility properties as they arose from trace analysis. Typically, each
model focuses on just a few properties of human mobility. The class of location-based mobility models aims to realistically
represent user mobility patterns in space. They are typically concerned with the regular reappearance to a set of preferred
locations [9] orwith the length of paths traveled by the users [10]. Similarly, there aremodelsmostly focused on the accurate
representation of the time-varying behavior of users, often relying on very detailed schedules of human activities [11,12].
Finally, the class of social-based mobility models aims to exploit the relation between sociality and movements, and to
formalize social interactions as the main driver of human movements [13,14].

The disadvantage of the current approach to modeling human mobility is that the proposed models are intrinsically
bound to the current state of the art on trace analysis, and typically need to be redesigned from scratch any time a new
discovery ismade. In addition,with currentmobilitymodels it is typically difficult, if not impossible, to fine tune themobility
properties (e.g., obtaining inter-contact times featuring a probability distribution with controllable parameters). Overall,
flexibility and controllability are currently missing from available models of human mobility. Flexibility implies allowing
for different distributions of mobility properties (e.g., return times to locations or inter-contact times) to be used with the
model. The importance of flexibility is twofold. First, it gives the opportunity to evaluate networking protocols in different
scenarios, and to test their robustness to different mobility behaviors. Second, it allows for changing the model upon new
discoveries from trace analysis without the need to start over from a clean slate. On the other hand, controllability relates
to the capability of obtaining a predictable output starting from a given input. This can be done only at a coarse granularity
with the majority of available mobility models. For example, in social-based mobility, where social relationships determine
the shape of inter-contact times, an appropriate configuration can lead to heavy-tailed inter-contact times [13]. However,
there is no direct way for quantitatively controlling the parameters characterizing this distribution, and a fine tuning can be
attempted only with a trial-and-error approach.

In light of the above discussion, the contribution of this paper is threefold. First, we propose (Section 3) a mobility frame-
work (SPoT—Social, sPatial, and Temporal mobility framework) that incorporates the three dimensions of human mobility,
while at the same time being flexible and controllable. SPoT takes as input the social graph representing the social relation-
ships between the users of the network and the stochastic processes characterizing the visiting patterns of users to locations.
Based on the input social graph, communities are identified and are assigned to different locations. Thus, people belonging
to the same community share a common location where the members of the community meet. Then, users visit these lo-
cations over time based on a configurable stochastic process. The proposed framework thus builds a network of users and
locations (called the arrival network), where a link between a generic user i and a location l characterizes theway user i visits
location l. Overall, SPoT aims at being as accurate as possible in matching the real behavior of human movements while at
the same time being tractable for mathematical analysis. In addition, the fact that it links together the three dimensions
of human mobility provides a complete knowledge on the main mobility drivers, which are often exploited by networking
protocols for opportunistic networks. For example, SPoT is superior to the direct generation of inter-contact times, since it
also provides information on the social structure of the network. Knowing that a user belongs to a specific community can be
very helpful when evaluating the performance of community detection schemes for opportunistic networks or social-aware
forwarding protocols.

The second contribution of this work lies in studying themobility behavior that emerges in real traces of humanmobility
(Section 4), and in using this information to address two open points in our framework, i.e., how to characterize the way
users visit locations and how to position meeting places in the considered scenario. To this aim, we study three datasets of
human self-reported whereabouts records obtained from the online location-based social networks (LBSNs) Gowalla [15],
Foursquare [16], and Altergeo [17]. LBSN applications, where people can check into places (e.g., restaurants, offices) and
share their location with friends, have become incredibly popular with the widespread diffusion of smartphones. From
the check-in records we study the time sequences of individual user arrivals at places, and reveal that, for the majority of
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user–place pairs, i.e., from 66% to 54% of the pairs, depending on the dataset, they are well approximated by a Bernoulli
process, for which the intervals between consecutive arrivals follow a geometric distribution. Similarly, we show that the
contact sequences between the majority of user pairs, i.e., from 78% to 87% of the total number of pairs, depending on the
dataset, can be approximated by a Bernoulli process. Aswe show later in the paper, this finding is important, as the Bernoulli
process features a number of properties that significantly simplify the mathematical analysis of the framework. We also use
the check-in records to study the correlation between the distances between locations and the number of regular visitors
they share. This property, to the best of our knowledge, has not been studied in the literature before. We find that locations
that share many common users that visit them frequently tend to be located close to each other. We use this result to
realistically position meeting places in the area of the modeling scenario.

The third contribution of the paper lies in showing that the proposed framework is at the same time flexible and
controllable. More specifically, in Section 5, we show that SPoT is able to accurately reproduce the features of aggregate
inter-contact times observed in the Gowalla dataset. This highlights the fact that the framework can be instantiated to a
desired general mobility configuration by just changing its input parameters. On the other hand, in Section 6, we focus on
the controllability of the framework, i.e., on its capability to generate a predictable output. Building upon the results of the
analysis of real mobility data, we represent theway users arrive at locations as Bernoulli processes. Then, first we prove that,
when the arrival processes are Bernoulli processes, the contact process between users is also a Bernoulli process, which
is well aligned with the corresponding results of the data analysis (see Section 4). Finally, we mathematically derive the
conditions under which heavy-tailed and exponentially-tailed aggregate inter-contact times emerge starting from simple,
but heterogeneous, Bernoulli arrival processes for user visits to locations. This advances the knowledge on the dependence
between aggregate and pairwise mobility statistics (explored for the first time in [18]), and confirms the main result in [18],
i.e., that heterogeneity in pairwise statistics can lead to aggregate statistics that are very distant in distribution.

Please note that in this paper we focus on the ability of SPoT to produce a realistic output in terms of inter-contact
times. As discussed above, inter-contact times are extremely important for the evaluation of opportunistic networks. For
this reason, most network simulators, either public platforms [19] or custom simulators [20,21], are designed to work with
contact-based traces as input. Alternatively, especially outside the opportunistic networks domain, network simulators can
take as input information about node movements. This spatial output is not the main focus of the paper but, due to its
relevance, in Section 7 we discuss how SPoT can be extended to generate a movement-based output. However, we leave the
complete evaluation of the properties of this spatial output for future work.

2. Related work

A comprehensive overview of the state of the art in mobility modeling was presented in [22]. The work points out that
the main findings in human mobility research can be classified along the three axes of spatial, temporal, and connectivity (or
social) properties. Spatial properties pertain to the behavior of users in the physical space (e.g., the distance they travel),
temporal properties to the time-varying features of human mobility (e.g., the time users spend at specific locations), and
connectivity properties to the interactions between users. One of the first significant findings in human mobility, which
highlighted the difference between our movements and random motion, was documented by Brockmann et al. [3], who
analyzed a huge dataset of records of banknote circulation, interpreting them as a proxy of humanmovements. They showed
that the travel distances, frequently called the jump sizes, of individuals followapower-lawdistribution. This fits the intuition
that we usually move over short distances, whereas occasionally we take rather long trips. Studying data collected tracing
mobile phone users, Gonzalez et al. [2] extended the previous finding, showing that the distribution of jumps was that of a
power law up to a certain point, after which the decay was exponential. In addition, they showed that individual truncated
power-law trajectories co-exist with population-based heterogeneity. Thus, it was shown that the distribution of the radius
of gyration – a measure which depicts the characteristic distance traveled by a user – can be approximated by a truncated
power law. This suggests that themajority of people usually travel in close vicinity to their home location, while few of them
frequently make long journeys.

As for the temporal properties of human movements, Gonzales et al. [2] detected the tendency of people to return to a
previously visited location with a frequency proportional to the ranking in popularity of the location with respect to other
locations. The authors also computed the return time probability distribution (probability of returning at time t to a selected
place) and concluded that prominent peaks (at 24, 48, 72, . . . , h) capture the tendency of humans to return regularly (on a
daily basis) to a location they visited before.

Connectivity properties have been extensively studied in the context of opportunistic networks research. In fact, as we
have already discussed, the way users interact and get in touch with each other is crucial for message delivery. In particular,
the time between two consecutive contacts of two devices contributes to the overall delay, while the duration of the contact
bounds the size of the data that can be exchanged at each encounter. Typically, user interactions are measured through
human-carried mobile devices, which are assumed to be proxies of real users. However, despite great efforts, a consensus
has not been reached yet on how to exactly characterize the connectivity metrics in probabilistic terms.

From a taxonomy standpoint, the three dimensions of human mobility (spatial, temporal, and social) described above
can be mapped into three different approaches to modeling human mobility: maps of preferred locations, personal agendas,
and social graphs. The models of the first group account for the properties characterizing the regular reappearance of users
at a set of preferred locations. Their general approach is to store the maps (i.e., the sets) of preferred places for each user,
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Fig. 1. Framework overview.

and to explore them while deciding on the next destination for his/her walk. The main representatives of this group are
SLAW [10] and the model proposed by Song et al. [4]. These models are able to satisfy the main spatial properties of human
mobility trajectories, but they do not pay enough attention to the social and temporal aspects of human movement.

The second class of models focuses on reproducing realistic temporal patterns of humanmobility explicitly including re-
peating daily activities in human schedules. Themost comprehensive approach of this group is presented in [12]. Themodel
incorporates detailed geographic topology, personal schedules, and motion generators defined for more than 30 different
types of activity. Although the model gives an extremely thorough representation of human movements in some specific
scenarios, it does not explain the main driving forces of human mobility, and it is too complex for analytical tractability.

The most recent and most rapidly evolving trend in modeling human mobility is based on incorporating sociality into
models, thus considering human relations as themain driver of individual movements. Themain idea is that the destination
for the next movement of a user depends on the position of people with whom the user shares social ties. The first models
of this class of approaches were CMM [23] and HCMM [13], although others have recently been developed.

A recent work that is orthogonal to the above classifications is the work by Hossmann et al. [24]. They have found that,
regardless of themodeling approach to humanmobility, the contact graph (i.e., the graphwhose vertices are the nodes of the
network andwhose edgeweights are givenby a combination of contact frequency and aggregate contact duration) generated
bymost synthetic models differs from that obtained frommobility traces. More specifically, traces tend to generate bridging
links (only few strong edges connecting communities) in the contact graph,while syntheticmodels tend to generate bridging
nodes (nodes linked to many other nodes). In addition to this result, Hossmann et al. found that contacts happening outside
a community location are typically synchronized. In this paper, we do not consider synchronized meetings, in order to keep
the framework mathematically tractable. Due to lack of space, we also do not verify whether bridging links are generated.

With respect to the related literature, SPoT covers and links together all the three dimensions of human mobility using
a flexible and controllable framework, which can be instantiated to the desired mobility scenario and which is naturally
suited for mathematical analysis. This work is an extended version of our previous paper in [25]. Specifically, here we have
added the analysis of three relevant datasets extracted from the location-based online social networks Gowalla, Foursquare,
and Altergeo. Results from trace analysis provide a strong case for Bernoulli arrivals, which are then used as the reference
assumption in the mathematical analysis of the framework. In addition, we use these datasets to test the flexibility of the
SPoT framework, showing that the latter is able to reproduce the mobility behavior observed in traces. With respect to [25],
we also extend the mathematical analysis of the framework with the derivation of the settings under which exponentially-
tailed aggregate inter-contact times (a case frequently encountered in traces) can be obtained. Finally, here we also discuss
how SPoT can be extended for producing movement-based output.

3. The proposed mobility framework

In this section, we introduce our SPoT mobility framework, designed around the three main dimensions of human mo-
bility, i.e., social, spatial and temporal (see Fig. 1). The social dimension is explicitly captured in the framework by taking
a graph of human social relationships as an input parameter. This graph can be any well-known graph, such as a random
graph [26] or a scale-free graph [26], or it can be extracted from real traces. Then, the framework adds the spatial dimension
to the social ties by generating an arrival network, which is a bipartite graph that connects users and meeting places. A
link between a user and a meeting place in the arrival network implies that the user visits that place during his/her move-
ments. We exploit the fact that the structure of communities in the social graph has a significant impact on humanmobility,
and thus we assign users to meeting places such that communities of tightly connected users (cliques, in complex network
terminology) share meeting places.

In order to add the temporal dimension to themodel, we describe theway users visit themeeting places towhich they are
connected in terms of stochastic point processes [27]. A stochastic point process is a stochastic process that characterizes
how events (arrivals at a location, in our framework) are distributed over time. By sampling from the random variables
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Table 1
Algorithm for building the arrival network—Input: social graph G and removal probability α.

1. Divide input social graph G into a set of overlapping cliques, such that the sizes of the cliques are maximum and each link is assigned to
exactly one clique. To this aim, the Bron–Kerbosch algorithm [32] can be used.

2. To each clique assign a separate meeting place, i.e., create a new meeting place and a set of links between this place and each member of the
clique in the arrival network.

3. Remove randomly each link in the social graph with probability α, inducing emergence of new nested cliques.
4. Proceed to the next round starting from the first step, until there are no links left in the input graph.

representing the time between consecutive arrivals, we obtain the time sequences of the visits of a user to a given location.
Then, the contact network, i.e., the network describing the contacts between nodes, can be obtained by assuming that two
nodes are in contact with each other if they happen to be at the same time in the same meeting place.

3.1. The social and spatial dimensions of human mobility

Social interactions between users have emerged as one of the key factors defining humanmobile behavior, because indi-
viduals belong to social communities and their social ties strongly affect their movement decisions [28,29]. As anticipated, in
our analysis we consider proximity-based communities, i.e., communities whose members share a common meeting place
(e.g., offices, bars, apartments). Since all members of the community visit a shared meeting place, this implies that users are
socially connectedwith all othermembers of the community, and, therefore, form fully connected components (i.e., cliques)
in the social graph.

Such cliques in realistic social networks exhibit overlapping and hierarchical structure [30,31]. Each user belongs to several
overlapping cliques, representing different social circles (e.g., friends, relatives, colleagues). On the other hand, each clique
is itself composed of a number of nested cliques, which share additional meeting places that are not common to all the users
of a parent clique. For example, a company shares a set of offices visited by all its employees, while each subdivision has its
own working places.

As anticipated, we represent the relation between the spatial and the social dimension of human mobility by means of
a bipartite graph of users and meeting places, which we call the arrival network. In the algorithm (summarized in Table 1)
for generating the arrival network starting from the input social graph we mainly need two components: a clique-finding
algorithm (which also detects overlapping cliques) and a way of reproducing hierarchical cliques.

The first component corresponds to steps 1 and 2 in Table 1. In each round, the social graph is divided into a set (called
the cover) of overlapping cliques, such that each link of the social graph is assigned to exactly one clique. To this purpose,
we use the Bron–Kerbosch algorithm [32]. The cover of each round tries to capture the biggest possible cliques. For each
of the newly identified cliques, we create a new meeting place and assign all members of the clique to that meeting place.
In other words, we create a new meeting place vertex in the arrival network, and we add links between this vertex and all
members of the community. As an example, we describe in Fig. 2 how cliques identified in the social graph are reflected into
corresponding meeting places.

The second component (step 3 in Table 1) of the algorithm for generating the arrival network allows us to generate nested
cliques. More specifically, our algorithm tries to identify cliques of lower size nested into those identified in the previous
round. To do so, cliques are split according to a very simple randomprocess, according towhich every link in the social graph
is randomly removed with a constant configurable probability α (the removal probability). This leads to the emergence of
smaller cliques, which are indeed nested into the original ones. This simple strategy also has the advantage of allowing for
a fine control of the number of meeting places shared by users. In fact, each link participates in a geometrically distributed
(with parameter α) number of rounds of meeting place assignments. As each link is assigned to at most one clique per
round, also the number of cliques that includes that link will be geometrically distributed. This implies that the pair of users
i, jwithwhich this link is associatedwill share a number Lij of cliques (and thus ofmeeting places) that is itself geometrically
distributed with parameter α.

The algorithm for generating the arrival network stops (step 4 in Table 1) when there are no more links in the social
graph to be removed.

3.1.1. From meeting places to geographical locations
The analysis of the algorithm in Table 1 reveals that the number of meeting places generated grows with the number of

cliques. Thus, the more cliques in the input social graph, the more meeting places are required. The proliferation of meeting
places is not of great concern, as meeting places might correspond to very small geographic areas (e.g., offices). However,
in order to improve the realism of the generated scenario, we combine these meeting places into a fixed number L of wider
physical locations (e.g., this is equivalent to combining offices into a business center).

To assign meeting places to geographical locations, we explore the observation that, intuitively, the places that share
many common frequent visitors should be located geographically close to each other, like in the case of different buildings
of a university campus or different offices in a company building. In Section 4.4, we validate and confirm this observation
using our datasets extracted from location-based online social networks. In order to quantify the closeness between two
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Fig. 2. A round of assigning social cliques to meeting place; cliques are marked with different line styles.

meeting places, we define the strength Fij of ties between a pair of meeting places i and j as the summary co-appearing
frequency across all the users the two places share. More formally, we can write Fij as follows:

Fi,j =


u∈Ui,j

f iu × f ju, (1)

where f iu is the frequency of user u’s visits to location i and Ui,j is the set of all users shared between place i and j. The higher
the arrival frequency of user u to both places i and j, the higher the strength between the two places. We anticipate here that
the result of the analysis of realistic traces in Section 4.4 suggests that the mean and the median of the distance between
two places i and j decreases with the strength Fij. This validate our observation and allows us to exploit it for aggregating
meeting places.

Our goal now is to distribute meeting places on the two-dimensional (2D) plane such that pairs of places with stronger
ties in terms of shared visitors would be located closer. To this aim, we use a variation of the energy model for graph
drawing described in [33,34]. In thismodel, the places are represented as particles, and particles connectedwith a link attract
each other proportionally to the power of the strength of the link and inversely proportional to the power of the distance
between the particles. Similarly, particles that are not connected with a link repulse each other. The final spatial positioning
of the meeting places is achieved through simulation, in which the initial positions of the places are selected randomly in a
rectangle of sizew ×h. As a result of applying attractive and repulsive forces to the nodes, the system eventually reaches an
equilibrium state inwhich tightly connectedmeeting places are situated close to each other, thus achieving our desired goal.

3.2. The temporal dimension of user visits to meeting places

The arrival network that we have built in the previous section tells us which are the meeting places visited by each user.
Here we add the temporal properties of such visits. To this aim, we assign to each link in the arrival network a discrete
stochastic point process Al

i that describes the arrivals of user i at a meeting place l over time. In this work, we consider only
discrete point processes, leaving the continuous case for future work. In a discrete point process, the time is slotted. During
a time slot, each node visits a set of locations, and this set is determined by the evolution of the arrival processes.

In this paper, we assume that the processes Al
i are independent, i.e., that nodes arrive at locations independently of each

other. This implies that also the resulting contact processes are independent. In real traces, contacts canbe synchronized [24],
but coordination1 between nodes may drastically complicate the mathematical analysis of mobility frameworks. For this
reason, keeping in mind our target of controllability, we decided to limit the scope of the paper to independent arrival

1 Aweaker coordination involving only pairs of nodes has been sometimes assumed in the literature for modeling purposes.With pairwise coordination,
pairs of nodes can still meet on purpose, but independently of the other pairs. However, since the tractability of our analytical frameworkwould not benefit
from this assumption, we decided to use the strongest independence condition.
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processes. The comparison with traces (where these assumptions in general do not hold) presented in Section 5 shows that
the accuracy of the model is good, nevertheless.

Once we have characterized the time at which users visit their assigned meeting places, we can build the contact graph
of the network (Fig. 1). In fact, a contact between two users happens if the two users appear in the same meeting place at
the same time slot. A contact duration is measured as the number of consecutive time slots in which two users have at least
one commonly visited location. The contact graph can be fully mathematically characterized (we provide an example of this
characterization in Section 6 for the case of arrival processes being heterogeneous Bernoulli processes) or it can be obtained
from simulations.

4. Analysis of real user movements

As discussed in the previous section, the SPoT framework takes as input the social graph of the network users and the
arrival processes describing how users visit locations. While the properties of the user social graph have been extensively
studied in the literature [35,36], thusmaking their configuration easy, the statistical characterization of user arrivals has been
little explored, especially in terms of the individual user-pair behavior. In order to address this open point in the framework
(i.e., which arrival process is best indicated to describe how users visit places in reality), in this section we consider three
datasets of real user movements, extracted from the location-based online social networks Gowalla [15], Foursquare [16],
and Altergeo [17]. In location-based online social networks, users check into places (e.g., restaurants, offices) and share their
location with their friends. Thus, the concept of check-ins is very similar to the arrivals considered in the SPoT mobility
framework. In fact, both notions represent records of the time at which users visit particular venues. For this reason, we
chose to take check-ins as proxies for user arrivals at places, and to use them to measure the temporal characteristics of
arrival sequences.

In this section,we also use the three datasets for studying the features of pairwise inter-contact times in this real scenario.
The pairwise results we will be later compared against the mathematical results in Section 6, showing that the data and
model predictions are totally in agreement. Finally, we also study the geographic distribution of the meeting places sharing
common visitors, whose results we used in Section 3.1.1 when defining the algorithm for aggregating meeting places into
locations.

4.1. Collecting data

Here, we consider the datasets of check-ins collected from the three online location-based social networks Gowalla,
Foursquare, and Altergeo. Each check-in record is stored as a tuple ω = (U, V , T ) ∈ Ω , where U represents the user,
V the venue, and T the time of the check-in. For a pair of user Ui and place Vl we consider a sequence of check-ins
Ω l

i = {(U, V , T ) ∈ Ω : U = Ui and V = Vl}, and denote the number of check-ins in a sequence as nl
i (n

l
i = |Ω l

i |). We denote
the total number of user–place pairs in the dataset with Q . We use venues as proxies of meeting places without performing
any aggregation. Even in the case when two venues have similar coordinates, we treat them as two different meeting places.

4.1.1. Gowalla
The first dataset used in this paper comprises check-ins of Gowalla users collected via public API [24]. Launched in 2007,

Gowalla was a pioneer location-based social network available via a mobile app for most of the major platforms (Android,
iPhone, etc.). The Gowalla servicewas bought by Facebook in December 2011 and eventually shut down in 2012. The dataset
considered in this paper accounts for |ΩGO| = 27M check-in records collected from |UGO| = 619k users at |VGO| = 2.4M
venues in the period of time from 21 January 2009 to 7 July 2011.

4.1.2. Foursquare
Foursquare was launched in 2009, and it has quickly become the most popular location-based service, with more than

35 million users as of January 2013 [16]. Similarly to Gowalla, Foursquare users receive bonuses for check-ins at places.
Recently, Foursquare has become increasingly focused on being a tool for exploring nearby places, e.g., finding a restaurant,
hotel, nightclub etc. Per user Foursquare check-in data are not directly accessible. However, users can opt to share their
check-ins publicly on Twitter. Using Twitter’s streaming API, it was possible to crawl publicly available check-ins [37]. Note
that we can only access those check-ins that users explicitly choose to share on Twitter, although users have the possibility
to set this option as default. In this paper,we consider a dataset of |ΩFS| = 23Mcheck-in records collected from |UFS| = 494k
users at |VFS| = 2.3M venues across the United States in the period of time from 16 November 2010 to 19 September 2011.

4.1.3. Altergeo
Altergeo is an alternative online location-based social networking service focused on Russian-speaking countries.

Launched in 2008, Altergeo has recently reported the audience of 1M+ users, mostly from big cities of Russia and
Ukraine [17]. Similarly to Foursquare and Gowalla, the Altergeo service is available to its users as a check-in app. The service
also explores check-in data for personalized food recommendation in a mobile phone app called Gvidi [38]. In this paper,
we explore the dataset of |ΩAG| = 700k check-ins that we collected from |UAG| = 49k Altergeo users at |VAG| = 94k places
in the period of time between 12 February 2010 and 12 February 2012.
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Fig. 3. Distribution of number of check-ins nl
i per user–place pair for the three considered datasets.

Table 2
Statistics for the three considered datasets.

Characteristic Gowalla Foursquare Altergeo

Check-ins, |Ω| 27M 23M 0.7M
Users, |U| 619k 494k 49k
Places, |V | 2.4M 2.3M 94k
User–place pairs, Q 15M 13M 0.3M
Arrival sequences, Q ′ 94k 90k 2.4k
Contact pairs, C 46k 34k 998

4.2. Data preprocessing

In Fig. 3, we plot the distribution of the number nl
i of check-ins per user–place pair across all considered datasets. As

the plot suggests, the distribution of the number of check-ins for individual user–place pairs is extremely heterogeneous:
while 80% of check-ins in places are never repeated, i.e., nl

i = 1, there exist user–place pairs with a number of repeated
check-ins higher than 800, i.e., nl

i > 800. In order to deliver a reliable analysis from the statistical standpoint, we discarded
those pairs with a small number of check-ins. Thus, we explore the datasets of Q ′

GO = 94k,Q ′

FS = 90k and Q ′

AG = 2.4k
user–place pairs each containing at least 20 check-in records, i.e., nl

i ≥ 20. We note that the resulting datasets account
for CGO = 46k, CFS = 34k and CAG = 998 contact pairs correspondingly. The summary statistics for all three considered
datasets are given in Table 2.

In order to be able to obtain results that can be applied to a discrete-timemobility framework like the onewehave defined
in Section 3, we need to fix the duration of the time slot we consider. Since it has been shown [2,9] that users tend to appear
at previously visited locations with a period of about 24 h, we decided to focus on time slots of 24 h length. This choice
allows us to capture daily dynamics of user movements: people regularly commuting between home and work, working
out at the gym, etc. The interested reader can refer to [39] for a detailed analysis under different granularities (8 h, 12 h). It
suffices tomention here that in all cases the geometric hypothesis is not rejected for around 50% of pairs for arrivals and 75%
of pairs for inter-contacts. As a general finding, the match between the model and traces tends to worsen with the reduced
granularity. This effect is probably due to the lack of stationarity of user movements within the same day. In fact, while the
days tend all to be similar to each other (apart from some deviations registered during weekends [9]), the different parts
of the day tend to differ significantly (e.g., morning versus evening activities), even if the same user usually visits the same
location at about the same time [2].

4.3. Analysis of individual inter-arrival times and inter-contact times

We now describe the methodology that we exploit to characterize the distribution of individual inter-arrival times and
individual inter-contact times. From a preliminary analysis, we observed that across a significant population of user–place
pairs the distribution of inter-arrival times has the shape of a straight line in lin–log scale, which roughly corresponds to a
geometric distribution in the discrete case. Similarly, a preliminary observation of the pairwise inter-contact time yielded
again a geometric distribution. We aim to validate this hypothesis by fitting individual inter-arrival time and inter-contact
time distribution to a geometric distribution and evaluating the goodness of fit across all user–place pairs and user–user
pairs, respectively, in the dataset.
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Fig. 4. Individual inter-arrival time distribution from traces (blue) versus geometric fitting (red) (a), (b) for the cases when the assumption of geometric
distribution is not rejected (c) for the case when that assumption is rejected.

The fitting is performed using maximum likelihood estimation [40], which, in the case of a geometric distribution with

success probability ρ, yields an estimator ρ̂ =
nlinli

k=1 τk

(where τ1, τ2, . . . , τnli
are the ni

l observations in the sample). Once

we have fitted our data to a geometric distribution, we test whether it is plausible that our data come in fact from such
fitted distribution. To this aim, we rely on one of the most popular goodness of fit tests, Pearson’s chi-squared test [40],
which works well for discrete distributions. In Pearson’s chi-squared test, the test statistic TS is calculated as the sum of
differences between observed and expected outcome frequencies (that is, counts of observations), each squared and divided
by the expectation:

TS =

n
k=1

(Ok − Ek)2

Ek
, (2)

where n is the number of observations, Ok is an observed frequency for a bin k of values, and Ek is an expected frequency
for a bin k. The test statistic TS follows, approximately, a chi-squared distribution with K = (n − c − 1) degrees of freedom
(i.e., TS ∼ χ2

K ), where n is the number of non-empty bins and c is the number of estimated parameters for the distribution.
In the case of a geometric distribution, c = 1; thus it follows that K = n − 2. If we denote with qχ2

K ,1−α the 1 − α quantile

of χ2
K , then the test rejects the geometric hypothesis at level α when TS > qχ2

K ,1−α . In our analysis, we set α to 0.01 (similar
to reference works in the literature [18,41]), which corresponds to a 0.01 probability of making a Type I error (i.e., rejecting
the hypothesis when it is actually true). However, for the sake of completeness, we also report the results for α = 0.05
and α = 0.001 (Tables 3 and 4). Please note that, with all significance levels, for all datasets the percentage of pairs for
which the geometric hypothesis is not rejected remains above 49%. For each pair, the number of bins is computed as the
maximum number of bins that allows us to have at least five expected occurrences in each bin (the standard rule of thumb
used with the chi-squared test). To estimate the goodness of fit across the population of individual inter-arrival times and
inter-contact times, we calculate the percentage Q geom of the user–place pairs and user–user pairs, respectively, for which
the hypothesis of geometric distribution is not rejected.

4.3.1. Characterizing individual inter-arrival times
In Fig. 4, we plot the inter-arrival time distribution (blue dots) for three characteristic user–place pairs along with the

corresponding fitted geometric distributions (red crosses) as estimated with the methodology described above. In the first
two cases, the chi-squared test brings no evidence against the assumption of a geometric distribution of the inter-arrival
times, as the calculated chi-squared statistics TS(a) = 14.76 and TS(b) = 0.11 are smaller than the corresponding quantiles
for the chi-squared distribution qχ2

K(a)
,1−α = 18.48 and qχ2

K(b)
,1−α = 9.21, with K(a) = 7 and K(b) = 2 degrees of freedom

and statistical significance level α = 0.01. In contrast, in the latter case, the assumption is rejected, since TS(c) = 72.43 is
bigger than the corresponding quantile qχ2

K(c)
,1−α = 9.21 for the chi-squared distribution with K(c) = 2 degrees of freedom.

We further calculate the percentage of user–place pairs for which the assumption of a geometric distribution of inter-
arrival times is not rejected at different significance levels (Table 3). Thus, we observe that, for themajority of pairs across all
datasets, i.e., Q geom

GO = 60%,Q geom
FS = 66%,Q geom

AG = 54%, the inter-arrival time distribution follows a geometric distribution.
This result is important, as a geometric distribution of inter-arrival times can be modeled with a simple Bernoulli arrival
process, which, as we discuss in Section 6, is very convenient for mathematical analysis. The implication behind Bernoulli
arrivals is that users tend to visit places with a fixed rate. This matches the common finding [9] that users tend be quite
regular in their movements.



28 D. Karamshuk et al. / Pervasive and Mobile Computing 11 (2014) 19–40

Table 3
Percentage of pairs for which the geometric distribution hypothesis
for arrivals is not rejected, at different significance levels.

α Gowalla (%) Foursquare (%) Altergeo (%)

0.001 0.71 0.77 0.57
0.01 0.60 0.66 0.54
0.05 0.50 0.51 0.49

Table 4
Percentage of pairs for which the geometric distribution hypothesis
for inter-contact times is not rejected, at different significance levels.

α Gowalla (%) Foursquare (%) Altergeo (%)

0.001 0.89 0.94 0.84
0.01 0.80 0.87 0.78
0.05 0.51 0.74 0.56

4.3.2. Characterizing individual inter-contact times
We now analyze the pairwise inter-contact time sequences measured between consecutive contacts of the users in our

datasets. In order to have statistically reliable results, we discarded pairs that have fewer than 20 contacts. Themain obstacle
in computing inter-contact times in our datasets is that there are no check-out records, i.e., no records of the timewhen users
leave places. For this reason, we have tomake some assumptions about the duration of the sojourn time at a location. In [24],
the inter-contact times for the Gowalla trace (the exact same trace that we consider in this work) were measured assuming
that a contact between two users happen if they have checked in less than 1 h apart at the same place. The rationale for this
choice lies behind the nature of location-based online social networks like Gowalla, Foursquare, and Altergeo. In fact, these
applications capture mostly users going out for eating or entertainment, for which the 1 h choice appears reasonable. Thus,
in this work we also keep the 1 h assumption.

The plots for three significant pairs (blue dots) and the corresponding fitted geometric distributions (red crosses) are
shown in Fig. 5. As we can guess from the plot, in the first two cases the assumption about geometric distribution of the
inter-contact times is not rejected. In fact, in this case the chi-squared statistics TS(a) = 5.91 and TS(b) = 0.51 are smaller
than the corresponding chi-squared distribution’s quantiles qχ2

K(a)
,1−α = 20.09 and qχ2

K(b)
,1−α = 9.21, with degrees of

freedom K(a) = 8 and K(b) = 2 and statistical significance α = 0.01. In the third case (Fig. 5(c)), instead, the assumption of
a geometric distribution of individual inter-contact times is rejected, since TS(c) = 107.46 is bigger than the corresponding
quantile qχ2

K(c)
,1−α = 21.67 from the chi-squared distribution with K(c) = 9 degrees of freedom. Summarizing, the chi-

squared test does not reject the geometric hypothesis for Q geom
GO = 80%,Q geom

FS = 87%, Q geom
AG = 78% of pairs in our datasets.

4.4. Relative positioning of meeting places sharing common visitors

We now study the relationship between the relative positions of meeting places and the frequency of user visits to
those places. More specifically, we investigate whether places that share many common users that visit them frequently
happen to be located close to each other. To this end, we measure the social strength between pairs of meeting places
in our dataset, exploiting the definition of social strength that we provided in Section 3.1.1. Please recall that the social
strength betweenplaces i and jmeasures the co-appearing frequency across all users the twoplaces share, and it is defined as
Fi,j =


u∈Ui,j

f iu× f ju, where f iu is the frequency of user u’s visits to location i andUi,j is the set of users shared between places
i and j. Intuitively, the social strength is higher if two places share a lot of common users that frequently visit both places.

In Fig. 6we plot themedian andmean values of the geographic distance for different values of social strength Fi,j between
venues in the biggest cities of each dataset, i.e., Austin for Gowalla, New York for Foursquare, and Moscow for Altergeo. As
we can see from the plot, the distances between places tend to decrease with the strength, therefore suggesting that the
places that share a lot of frequent users tend to be located close to each other. For instance, half of the venues with social
strength between 23 and 24 are situated more than 6 km away from each other in Austin and Moscow and more than 4 km
away in New York, whereas half of pairs of venues with very high social strengths of 215–216 are placed not farther than
1–2 km away from each other across all datasets.

5. Testing the framework flexibility

While in previous sections we have introduced the SPoT framework and we have used real data from location-based
online social networks to address the open points in the framework, in this section we start the evaluation of SPoT. More
specifically, here we study the flexibility of SPoT, i.e., its capability to reproduce a desired, general, mobility behavior, while
in Section 6 we test its controllability.



D. Karamshuk et al. / Pervasive and Mobile Computing 11 (2014) 19–40 29

Fig. 5. Individual inter-contact time distribution from the data traces (blue) versus geometric fitting (red) (a), (b) for the cases when the assumption of
geometric distribution is not rejected (c) for the case when that assumption is rejected.

Fig. 6. Median and mean values of the geographic distance between venues in the city for different values of social strength Fi,j grouped in logarithm bins
for Gowalla, Austin (left), Foursquare, New York (center), and Altergeo, Moscow (right) datasets.

Our goal in this section is to show that the framework, once configured for the settings observed in a real mobility trace,
generates the same aggregate characteristics (aggregate inter-contact times, specifically) as those seen in traces. We chose
the aggregate over the pairwise statistics in this case because, from the mathematical characterization of the framework
(Section 6), we know that SPoT, once configured with Bernoulli arrivals, will generate geometric inter-contact times. Since
wealso know from trace analysis (Section4.3.2) that inter-contact times in the dataset canbe approximatedwith a geometric
distribution for a large fraction of pairs, amatch between the inter-contact times generated by the framework and those seen
in traces would be quite expected. Less obvious, however, is the capability of also reproducing a realistic aggregate behavior
starting from pairwise controlled parameters. Please note that in the following we are not validating those aspects that we
directly derived from traces (e.g., Bernoulli arrivals). Instead, we aim to evaluate if the proposed generative algorithm based
on the creation of the arrival network is able to produce an output that matches the distribution derived from traces.

Aggregate inter-contact times are an important metric often used in the related literature [5,2]. While it has been
shown [18] that their relation with pairwise inter-contact times might not always be as straightforward as was thought
initially (i.e., in general, aggregate and pairwise inter-contact times do not follow the same distribution), aggregate inter-
contact times are useful for several reasons. First, as discussed in [18], while it is true that in several cases the aggregate
distribution does not contain enough information to assess the performance of opportunistic networks (which always
depends on the pairwise distribution), there are other cases where looking at the aggregate distribution is sufficient to
assess some performance aspects. For example, in addition to the cases where the aggregate and individual distributions
belong to the same family, highlighted in [18], we have also shown in [42] that, when the aggregate distribution does not
present a heavy tail, we can be sure that no pairwise distributionwill have a heavy tail and thus, for example, no convergence
problems will arise for randomized opportunistic routing protocols. Moreover, due to the increasing privacy concerns that
are emerging in relation to collecting datasets with potentially sensitive information about people, in the future we can
reasonably expect that it will be easier to find and distribute datasets with samples of the aggregate distribution rather than
of pairwise distributions, as the former in general do not disclose the behavior of the individuals. So, aggregate information
might be the only information available to researchers. In this case, having a mobility framework able to control not only
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Fig. 7. Distribution of arrival rates in the Gowalla, Foursquare, and Altergeo traces.

the pairwise but also the aggregate statistics will be important. Finally, for any possible dataset, the statistical confidence of
fitting the aggregate distribution is (much) higher than for the individual pairwise distributions (due to the greater number
of samples available, by definition, for the former). Therefore, considering the aggregate distribution may be the only way
to obtain statistically relevant fittings.

In order to use the framework, we need to configure the following quantities: the social graph G, the removal probability
α, and the arrival processes Al

i for each user i visiting location l. We extract this information from the data traces themselves,
relying on the same subset of users (those with at least 20 check-ins) that we have used in Section 4. We take users and
friendship records from the dataset to construct the social graph G. In order to estimate the removal probability α from the
trace, we recall that this probability is the reciprocal of the average number of places Lij shared between a pair of users i and
j, i.e., α =

1
E[Lij]

(see Section 3 for more details). From the analysis of the traces we compute the samplemean: Ê[LGOij ] = 1.22

for Gowalla, Ê[LFSij ] = 1.60 for Foursquare, and Ê[LFSij ] = 1.64 for Altergeo. From these we calculate the corresponding
removal probabilities α̂GO = 0.82, α̂FS = 0.63, and α̂AG = 0.61. In order to configure the arrival processes Al

i we exploit the
result from Section 4, andwe set them to be Bernoulli processes.We configure the rates of such processes so that theymatch
the empirical rate distribution derived from the trace (Fig. 7). More specifically, the rate distribution in Fig. 7 is obtained by
aggregating the arrival rates for each user–location pair extracted from the traces. The use of these rate distributions allows
us to maintain the statistical properties of the arrival process, regardless of the actual number of users or locations that we
actually simulate.

In Fig. 8, we show the aggregate inter-contact time generated by SPoT against those observed in the traces. As we can see
from the plot, the aggregate behavior observed in the traces (red squares) is in good agreement with the corresponding
results from the simulation (blue crosses). This confirms the flexibility of the framework to capture a desired realistic
behavior seen in real traces.

6. Testing the framework controllability

In this section, we show mathematically how the SPoT framework is able to produce different controllable outputs de-
pending on its initial configuration. To this aim,we exploit the data analysis results andwe focus on Bernoulli arrivals, which
we have shown in Section 4 to represent the behavior of the majority of user–place pairs. Using the Bernoulli assumption,
in this section we fully characterize the pairwise dynamics of the framework and we also analytically derive the conditions
under which heavy-tailed and exponentially-tailed aggregate inter-contact times, two cases often observed in real traces,
emerge.

In our analysis we use the term contact process to describe how users meet with each other. Assuming that two users Ui
and Uj can meet at Lij distinct meeting places, the contact process between users i and j comprises all contacts happening at
all Lij shared meeting places. The time between consecutive contacts in the contact process defines the inter-contact times
between the pair of nodes. In the following, we also characterize the single-place contact process, as the contact process
between users Ui and Uj limited to a specific meeting placeMl.

As anticipated, in this analysis we model arrival processes as Bernoulli processes, since they feature geometric inter-
arrivals like those seen in traces (Section 4.3.1). In a Bernoulli process, the probability of an arrival (a success, in Bernoulli
processes terminology) in a given time slot is constant and corresponds to the rate of the process, defined as the expected
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Fig. 8. Aggregate inter-contact times obtained from traces (red squares) and from simulations (blue crosses).

frequency of arrivals.2 Hence, in the following we will use the terms probability and rate interchangeably. We show that, if
the individual arrival processes are Bernoulli processes, then the contact process and the single-place contact process are also
Bernoulli processes for any pair of users. As the inter-arrival times for a Bernoulli process follow a geometric distribution, we
obtain that from geometric inter-arrival times at specific meeting places (corresponding to Bernoulli arrivals) a geometric
distribution of pairwise inter-contact times follows, exactly as seen in the traces.

Additionally, we show that the rates of the contact processes depend on the rates of the arrival processes. Starting from
this dependence, we are able also to derive analytically the aggregate inter-contact times as a function of the arrival rates

2 It is straightforward to prove the equivalency between the rate ρ and the success probability p of the Bernoulli process. The rate can in fact be computed
as the expected number of successes in n trials divided by the number of trials. Since the expected number of successes in n trials can be computed as the
expectation of the binomial distribution with parameters p and n, we get that ρ =

np
n = p. Please note also that the rate of the Bernoulli process takes thus

values in [0, 1].
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Table 5
Table of notation.

N Number of users in the arrival network
L Number of meeting places in the arrival network
Ui User i
Ml Meeting place l
Lij Number of shared meeting places between users Ui and Uj
Al
i Arrival process of user Ui at meeting placeMl

C l
ij Single-place contact process between users Ui and Uj at meeting placeMl

Cij Contact process between users Ui and Uj
ρAli

Rate of arrival process Al
i

ρC l
ij

Rate of single-place contact process C l
ij

ρCij Rate of contact process Cij
E[P] Expectation of the rate of pairwise inter-contact times
Fρ(τ ) CCDF of individual inter-contact times τ between a pair of nodes whose rate is equal to ρ

fP (ρ) PDF of the rates of individual inter-contact times
F(τ ) CCDF of the aggregated inter-contact times

Fig. 9. The single-place contact process as an intersection of arrival processes.

of users at meeting places. Although this dependence is not trivial in the general case, we show that different shapes of
the aggregate inter-contact distribution can be obtained starting from simple Bernoulli arrival processes. More specifically,
we focus on the two cases frequently reported in the related literature, namely, when the aggregate inter-contact time
has a power-law or an exponential tail. We show that the latter emerges in homogeneous networks when all the rates of
individual Bernoulli processes are equal, and the former when the rates follow a specific distribution.

Before proceeding to the details of our analysis, we first introduce the notation used throughout the section.We consider
an arrival network made up of N users and L meeting places. We assume that each user Ui visits place Ml according to a
Bernoulli process Al

i with rate ρAli
. For each meeting placeMl, and for each pair of users Ui and Uj, we characterize the single-

place contact process C l
ij (of rate ρC l

ij
) and the contact process Cij of rate ρCij , aggregated over the Lij shared meeting places.

The latter defines the distribution of pairwise inter-contact times. We denote the complementary cumulative distribution
function (CCDF) of the pairwise inter-contact times of rate ρ with Fρ(τ ), and that of the aggregate inter-contact times with
F(τ ). F(τ ) is obtained as a function of the probability density function (PDF) of the rates of individual inter-contact times
fP(ρ). The notation is summarized in Table 5. The complete proofs for the results shown in this section, when not provided
inline, can be found in the associated technical report [39].

6.1. Contact process for a pair of users

In this section, assuming Bernoulli arrivals at locations, we analytically characterize the contact process between a pair
of users. To this aim, consider two Bernoulli processes Al

i and Al
j, describing arrivals of users Ui and Uj at a shared place Ml.

For a Bernoulli process, the probability 0 < ρ ≤ 1 of an arrival in a time slot τ is constant (i.e., does not depend on τ ), and is
called the parameter or the rate of the process. Moreover, the time intervals between arrivals are independent geometrically
distributed random variables.

We assume that individual arrival processes are independent, and that a contact between two users happens if both
decide to visit place Ml in the same time slot. Thus, the single-place contact process C l

ij between user pair Ui,Uj at meeting
place Ml can be obtained from the intersection of the individual Bernoulli arrival processes of users Ui and Uj at meeting
place Ml. An example of the intersection of individual arrival processes is provided in Fig. 9. In the following lemma, we
prove that the single-place contact process C l

ij is also a Bernoulli point process.
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Fig. 10. The compound contact process as a merging of single-place contact processes.

Lemma 1 (Single-Place Contact Process). The single-place contact process C l
ij resulting from independent Bernoulli arrival

processes Al
i and Al

j, of rates ρAli
and ρAlj

respectively, is a Bernoulli process of rate ρC l
ij

= ρAli
× ρAlj

.

Proof. The probability of a contact at meeting place Ml is equal to the probability that both users are at meeting place Ml
in the same time slot. This can be obtained as the product ρAli

× ρAlj
, recalling that, for a Bernoulli process, the rate of the

process is equal to the probability of an arrival in a time slot. A discrete stochastic process in which arrivals happen with
constant probability ρC l

ij
= ρAli

× ρAlj
is again a Bernoulli process of rate ρC l

ij
. �

In the following, we focus on the contact process between a pair of users Ui,Uj, i.e., on their contacts in the Lij shared
meeting places. A contact happens between the two users in a given time slot if they meet in at least one of the Lij meeting
places that they share. Thus, the contact process between users Ui and Uj can be obtained by merging (as shown in [27])
their single-place contact processes (Fig. 10). In the following theorem, we show that, if the single-place contact processes
are Bernoulli processes, then the contact process is also a Bernoulli process.

Theorem 1 (Contact Process). The contact process Cij between contacts resulting from a number Lij of individual place contact
processes C l

ij, which, in their turn, emerge from Bernoulli arrival processes Al
i and Al

j of rates ρAli
and ρAlj

, is a Bernoulli process of

rate ρCij = 1 −
Lij

l=1(1 − ρAli
× ρAlj

).

Proof. The probability of at least one contact in a time slot can be computed as one minus the probability of no contact
in that time slot. The probability of no contact in the time slot is equal to the probability that the two users do not meet
in any of their shared meeting places. As follows from Lemma 1, the probability of a contact in a single shared place is
constant and equal to ρAli

× ρAlj
. Therefore, the probability of at least one contact in a time slot is also constant and equal to

ρCij = 1 −
Lij

l=1(1 − ρAli
× ρAlj

). It then follows that the sequence of time slots with at least one contact forms a Bernoulli
process of rate ρCij . �

The contact process described in Theorem 1 also defines the time intervals between consecutive contacts of a pair of
users. Specifically, for a Bernoulli process the distribution of inter-contact times is geometric. We summarize this result in
the following corollary.

Corollary 1 (Pairwise Inter-Contact Times). The inter-contact time distribution between a pair of users Ui and Uj, meeting at a
number Lij of meeting places, and whose arrivals at these meeting places are described as Bernoulli arrival processes Al

i and Al
j of

rates ρAli
and ρAlj

, is geometric, with the following rate:

ρ = 1 −

Lij
l=1

(1 − ρAli
× ρAlj

). (3)

Please note that the above result is perfectly in agreement with what we have seen in traces (Section 4).

6.2. Aggregate contact process

In this section, we describe how to derive the aggregate inter-contact times starting from pairwise inter-contact times
featuring a geometric distribution. More specifically, we solve two cases by providing the conditions on the Bernoulli arrival
processes of users at locations such that the resulting aggregate inter-contact time distribution is either heavy tailed or
exponential. The two cases are important, as they have often emerged from the analysis of real mobility traces [5,7]. Our
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derivation shows how these different aggregate behaviors can result from simple heterogeneous Bernoulli arrival processes,
which are very convenient to deal with for mathematical analysis. This result also confirms the main finding of [18]: very
different aggregate statistics can emerge from the heterogeneity of simple pairwise statistics.

In order to derive the aggregate inter-contact times, we exploit the result in [18], which describes the dependence
between the aggregate inter-contact time distribution and the inter-contact time distributions of individual pairs of users.
Specifically, the authors consider a heterogeneous scenario, in which the pairwise inter-contact time distributions are all
of the same type (e.g., exponential), but whose parameters (the rates, in the exponential example) are unknown a priori.
The rates of the individual contact sequences are drawn from a given distribution, which, therefore, determines the specific
parameters of each pair’s inter-contact times. The model described in [18] shows that both the distribution of the rates and
the distributions of pairwise inter-contact times impact on the aggregate distribution. For the convenience of the reader we
recall this result in Theorem 2.

Theorem 2. In a network where the rates of pairwise inter-contact times are distributed according to a continuous random
variable P with density fP(ρ), the CCDF of the aggregate inter-contact time is as follows:

F(τ ) =
1

E[P]


∞

0
ρfP(ρ)Fρ(τ )dρ, (4)

where Fρ(τ ) denotes the CCDF of the inter-contact times between a pair of nodes whose rate is equal to ρ .
Please note that, while originally derived for inter-contact times featuring a continuous distribution, Theorem 2 can be used
also for discrete inter-contact times. In fact, the integral in Eq. (4) depends on ρ, which was continuous in [18], and it is
still continuous here. Thus, discrete inter-contact times do not change the expression for F(τ ), except that now Eq. (4) only
holds for discrete values of τ .

In Corollary 2, we extend the finding in Theorem 2 to our network of interest, where pairwise inter-contact times depend
on their corresponding arrival processes. We have shown in Corollary 1 that, for the case of independent Bernoulli arrival
processes, the distribution of individual inter-contact times is geometric. In other words, the shape of the pairwise inter-
contact time distribution Fρ(τ ) is fixed in our model and, thus, the resulting aggregate inter-contact time characteristic is
controlled by the distribution of the rates of individual inter-contact times fP(ρ). This distribution, in turn, depends on the
distribution of the corresponding arrival rates. This dependence may not be trivial in the general case.

In order to apply Theorem 2 to our case of pairwise inter-contact times featuring a geometric distribution, we note that
a discrete random variable X featuring a geometric distribution with rate ρ can be expressed in terms of a discrete random
variable Y featuring a discrete exponential distribution. More specifically, the CCDF3 of the geometric distribution of the
pairwise inter-contact times, i.e., Fρ(τ ) = (1 − ρ)τ , τ ∈ {1, 2, 3, . . .}, can be rewritten in a discrete exponential form, i.e.,
Fλ(τ ) = e−λτ , τ ∈ {1, 2, 3, . . .}, by substituting ρ = 1 − e−λ, where λ ∈ (0, ∞). Variables X and Y are thus exactly the
same, but written in a different form. Using this substitution, we derive the following corollary of Theorem 2.

Corollary 2. In a network in which the pairwise inter-contact times follow a geometric distribution with rate ρ , or, equivalently,
a discrete exponential distribution with parameter λ = − ln(1− ρ), the CCDF of the aggregate inter-contact time is given by the
following:

F(τ ) =


∞

0 (1 − e−λ)e−λτ fΛ(λ)dλ
∞

0 (1 − e−λ)fΛ(λ)dλ
. (5)

In the above equation, function fΛ(λ) denotes the density of the parameters of pairwise inter-contact times.
In the remainder of this section, we show under which arrival rate distribution it is possible to obtain heavy-tailed and

exponentially-tailed aggregate inter-contact times, two specific cases frequently reported in the literature.

6.2.1. Modeling a heavy-tailed distribution of aggregate inter-contact times
In this section, we study under which arrival rate distribution heavy-tailed aggregate inter-contact times are obtained.

To this aim, using Corollary 2, we first derive in Lemma 2 the pairwise contact rate distribution that leads to heavy-tailed
aggregate inter-contact times.

Lemma 2. In a network in which the pairwise inter-contact times have a discrete exponential distribution of the form Fλ(τ ) =

e−λτ , τ ∈ {1, 2, 3, . . .}, and the parameters λ are drawn from an exponential distribution with rate a, the aggregate inter-contact
time distribution is as follows:

F(τ ) =
a + a2

(τ + a)(τ + a + 1)


x → ∞ ⇒ F(τ ) ∼ 1/τ 2 . (6)

The complete proof for the above lemma and for all results introduced below can be found in [39].

3 Please note that the corresponding probability mass function is given by e−λτ

1 − e−λ


and adds up to one, thus showing that the discrete exponential

is a properly defined distribution.



D. Karamshuk et al. / Pervasive and Mobile Computing 11 (2014) 19–40 35

Lemma 2 says that the aggregate inter-contact time distribution decays proportionally to the power γ = −2 of τ , i.e.,
F(τ ) ∼ 1/τ 2, if the distribution of the parameters λ of the individual inter-contact times is exponential. In the rest of this
section we develop this case, and show how the exponential distribution of the parameters of the individual inter-contact
times emerges in an arrival network with independent Bernoulli arrival processes.

Aswe have already shown, the distribution of the parameters of pairwise inter-contact times depends on the distribution
of the corresponding arrival rates. This dependence is described by Eq. (3), which, after substitution of ρCij with λ, according

to what we discussed above, takes the form λ =
Lij

l=1 − ln(1 − ρAli
× ρAlj

). From this dependence, we find a distribution of
arrival rates ρAli

such that the conditions of Lemma 2 are satisfied, i.e., the distribution of the parameters λ of the individual
inter-contact times is exponential. To this aim, we prove the following lemma.

Lemma 3. If the individual arrival processes are independent Bernoulli point processes, the rates ρAli
of the processes are drawn

such that ρAli
= e−

1
2 Y

2
, where Y is a standard normal random variable, and the number of shared meeting places Lij between

pairs of users is a geometric random variable with parameter α, then the resulting pairwise inter-contact time parameters λ are
exponentially distributed with parameter α.

A condition for Lemma 3 to be applicable is that the number of shared meeting places between pairs of users is
geometrically distributed. Recall that this type of distribution is secured by the arrival network generating algorithm
described in Section 3. Therefore, the result of Lemma3 can be applied to the networks generated by themobility framework.
Finally, we combine the results of Lemmas 2 and 3 in the following theorem.

Theorem 3 (Heavy-Tailed Aggregate Inter-Contact Times). If the individual arrival processes are independent Bernoulli point
processes, the rates ρAli

of the processes are drawn such that ρAli
= e−

1
2 Y

2
, where Y is a standard normal random variable, and

the number of shared meeting places Lij between pairs of users is a geometric random variable with parameter α, the CCDF of the
aggregated inter-contact times is given by Eq. (6).

6.2.2. Modeling an exponential distribution of aggregate inter-contact times
In this section, we show that the aggregate inter-contact time distribution has an exponential decay if the arrival pro-

cesses are homogeneous. To this end, we first consider the case when the number of sharedmeeting places Lij between pairs
of users is constant, and prove that in these conditions the aggregate inter-contact times result in a discrete exponential (i.e.,
geometric) distribution. Formally, we get the following result (the proof can be found in [39]).

Theorem 4 (Exponential Aggregate Inter-Contact Times). If the individual arrival processes are independent Bernoulli point
processes with homogeneous rates ρAli

= β and the number of shared meeting places Lij between pairs of users is constant, i.e.,
Lij = L, then the aggregated inter-contact times follow a discrete exponential (i.e., geometric) distribution with CCDF

F(τ ) = e−γ τ , (7)

where γ = −L ln(1 − β2).

In the above case, we have shown that an exponential inter-contact time distribution emerges if we put additional
constraints on the number of shared meeting places Lij, i.e., we assume that Lij is constant across all pairs of users. Below,
we consider a more general scenario in which the number of shared meeting places Lij between pairs of users is a geometric
random variable with parameter α. Recall that this case is secured by the arrival-network-generating algorithm described
in Section 3. In the following theorem (the proof can be found in [39]), we show that for this case the aggregated statistic
also has an exponential decay in the tail of the distribution.

Theorem 5 (Exponentially-Tailed Aggregate Inter-Contact Time). If the individual arrival processes are independent Bernoulli
point processes with homogeneous rates ρAli

= β and the number of sharedmeeting places Lij between pairs of users is a geometric
random variable with parameter α, then the CCDF of the aggregated inter-contact times has an exponential tail, i.e.,

F(τ ) ∼ e−δτ , τ → ∞, (8)

where δ = − ln(1 − β2).

In this section, we have studied arrival networks in which the links between users and places correspond to Bernoulli
processes. We have shown that the pairwise contact sequences in such networks are described by Bernoulli processes, for
which the inter-contact times follow a geometric distribution. We have also shown that the rate of the resulting inter-
contact times distribution can be derived from the rates of the arrival processes. Thus, the pairwise inter-contact times
in such networks, first, follow a geometric distribution, and second, have rate distributions that are controllable by the
distribution of arrival rates. As both components, i.e., the individual inter-contact time distribution and the distribution of
inter-contact time rates, have been shown [18] to have an impact on the aggregate inter-contact time distribution, we were
able to derive different forms of the latter from different distributions of the arrival rates.
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(a) n = 500m = 50α = 0.5. (b) n = 500m = 50α = 0.2.

(c) n = 1000m = 30α = 0.5. (d) n = 1000m = 30α = 0.2.

Fig. 11. The aggregate inter-contact time distributions for different arrival networks.

6.3. Validation

In this section, we support the results obtained above by comparing analytical predictions against simulation results.
Please note that this validation is needed since Theorems 3 and 5 provide an approximation for the tail of the distribution
of inter-contact times, not an exact analytical prediction.

In order to instantiate the proposed framework, we need to define its input parameters: the social graph G, the removal
probability α, and the arrival processes Al

i for each user i visiting location l. We use the state-of-the-art Barabási–Albert
model [43] to generate input social graphs with realistic characteristics (e.g., scale-free degree distribution, short average
path length). Thus we consider the two graphs Gn1,m1 and Gn2,m2 of n1 = 500 and n2 = 1000 users and growth parameters
m1 = 50 and m2 = 30. The graph-generating algorithm starts with m randomly connected nodes and adds nodes to the
network one at a time. Each new node is connected tom existing nodes with a probability that is proportional to the number
of links that the existing nodes already have. As a result, heavily linked nodes tend to accumulate even more links, while
nodes with only a few links are unlikely to attract a lot of new links. This mechanism of ‘‘preferential attachment’’ has been
shown to govern the evolution of realistic social networks [43].

We evaluate both graphs Gn1,m1 and Gn2,m2 when the removal probability used by the algorithm for generating the arrival
network is α1 = 0.5 and α2 = 0.2. These settings correspond to an average number of locations shared by a pair of users
(which are geometrically distributed) equal to 1/α1 = 2 and 1/α2 = 5, correspondingly. As a result, we obtain four arrival
networkswith different structural parameterswhichwe explore in simulations. For each of these arrival networks, we study
the resulting inter-contact times obtained by changing the characteristics of the arrival processes Al

i of users at meeting
places. More specifically, we focus on two cases discussed in the previous sections, namely, when the arrival processes are
homogeneous and when the arrival rates feature a specific distribution that leads to heavy-tailed aggregate inter-contact
times. Simulations are run for 10000 time units of simulated time, and results are shown with a confidence level of 99.9%.

We assign rates ρAli
of the Bernoulli arrival processes such that ρAli

= e−
1
2 Y

2
, where Y is a standard normal random

variable. These settings correspond to the case which we mathematically characterized in Section 6.2.1. Fig. 11 depicts the
result of simulations for each of the arrival networks. For instance, Fig. 11(a) depicts simulation results for the network with
parameters n = 500, m = 50, and a = 0.5. As we can see from the figure, the resulting aggregate inter-contact time CCDF
for this network decays as a power law with exponent γ = −2, i.e., F(τ ) ∼ τ−2. In the other arrival networks we observe
similar results, which are in agreement with the theoretical predictions from Theorem 3.

In the second experiment, we simulate arrival networks in which the arrival processes are Bernoulli processes, like in
the first experiment, but this time with identical rates. These settings correspond to the case which we mathematically
characterize in Section 6.2.2. More specifically, we model two networks with the same parameters {n = 500,m = 50, a =

0.5}, in which all the rates of the arrival processes are identical and equal to ρ
(1)
Ali

= 1/2 for the first network, and ρ
(2)
Ali

= 1/3
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(a) ρ = 0.5. (b) ρ = 1/3.

Fig. 12. The aggregate inter-contact time distributions for an arrival network with identical arrival rates.

for the second. Recall that the rate of the arrival process is the reciprocal of the average of the inter-arrival times. Therefore,
the first case corresponds to a network in which the average inter-arrival time for all processes is equal to 1/ρ(1)

Ali
= 2

time units, and the second case to a network with average inter-arrival time for all processes equal to 1/ρ(2)
Ali

= 3 time

units. From Fig. 12, we can see that the resulting distribution of the aggregate inter-contact times decays as an exponential
function with exponent δ(1) = 0.29 in the first case and δ(2) = 0.12 in the second. This result is in agreement with the
theoretical prediction (δ = − ln(1 − ρ2), where ρ is the rate of the arrival process) from Theorem 5.

7. Extending SPoT to generate a spatial output

The main focus of the previous sections was on the ability of SPoT to produce a realistic output in terms of inter-contact
times. As previously discussed, inter-contact times are extremely important for the evaluation of an opportunistic network
and, for this reason, most network simulators (general simulation platforms [19] or custom simulators [20,21]) are designed
to work with contact-based traces as input. Outside the opportunistic networks domain, network simulators [44] often take
as input information about node movements instead of (inter-)contact times. In order to make SPoT more general, in this
sectionwe discuss how it can be extended to generate amovement-based output.We do not intend to provide an exhaustive
analysis of the problem, but just to sketch the main steps for generating a movement-based output. Due to lack of space, we
leave the complete evaluation of the properties of this spatial output for future work.

7.1. Generating user trajectories from arrival sequences

In order to obtain a movement-based output, we need to derive trajectories from arrival sequences. To explain the
mechanism of transformation, we consider a scenario in which a user Ui visits a set of places {M1,M2, . . . ,Ml} in a time slot
T . The order inwhich userUi visits individual locationsMj can be defined through a sequence of arrival times {T1, T2, . . . , Tl},
where Tj is the time inside time slot T when the user arrives at location Mj. Then, the trajectory of user movements can be
reconstructed by connecting places in the order defined by the sequence of arrival times {Tj}.

Clearly, there are many possible orders in which Ui can visit places {Mj} and, therefore, many possible instantiations of
the sequence {Tj}. By design, the SPoT framework assumes that all pairs of users who arrive at time slot T at a place Mj
meet with each other. This means that all visitors to Mj should be at Mj during a common time interval. The problem of
scheduling the meetings such that everyone attends but also visits other places on their agendas can be transformed into
a graph-coloring problem [45]. There are numerous algorithms available in the literature to solve graph-coloring problems
efficiently [46–48]. Here, we consider a graph as composed of meeting places and links between those pairs of places that
appear in the agenda of at least one user (see Fig. 13). The goal of a graph-coloring (or meeting-scheduling) algorithm is
to assign a color to each vertex, i.e., an arrival time Tj at a place Mj, such that the vertices at the ends of each edge are
assigned different colors, i.e., meetings do not overlap in time. In this way, meetings at places with the same colors must
be scheduled at the same time, whereas meetings at places with different colors (i.e., sharing common visitors) must be
scheduled at different times. More schematically, the trajectory-generating algorithm proceeds as described in Table 6.

Please note that the coloring process does not include any notion of ‘‘sequence’’, i.e., taking for example two places with
different colors, the coloring algorithm does not tell us anything about whether the first place should be visited before the
other one, or vice versa. One possible option is to preserve the same order of visits across all time slots, thus producing
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Table 6
The steps of the trajectory-generating algorithm.

1. The pairs of places that are on the agenda for time slot T (an example is shown on the left in Fig. 13) of at least one common user are
connected with links in the graph of places (on the right in Fig. 13).

2. A graph-coloring algorithm assigns different colors to vertices that share a common link.
3. Arrival times Tj are assigned to placesMj , such that meeting places with the same color are assigned the same Tj .
4. Individual trajectories are generated by connecting places on individual user agendas according to the order defined by the sequence {Tj}.

Fig. 13. An example of the transformation from arrival sequences generated by the framework to trajectories of movements. The bipartite graph on the
left describes user arrivals at places at a time slot T . The resulting trajectories of users are shown on the right with different arrow styles: P2 → P3 → P1
for user U2 , P2 → P1 for user U1 , and P2 → P4 for users U3 and U4 .

repeating sequences in the way people visit different locations (a property that has been observed in real traces [49]). This
can be simply achieved by tagging all meeting places in the arrival network with numeric IDs, and ordering colors at each
time slot T in increasing (or decreasing) order of IDs. Clearly, this is just one of the possible ways for assigning visiting times
to meeting places, and we leave to future work a more extensive evaluation of the problem.

7.2. Discussion

The realism of the movements generated by the approach proposed in this section to a large extent depends on the
parameters of the arrival network. For instance, the number of places that a user visits per time slot depends on the number
of places he/she is connected to and on the arrival rates at those places. The former, in turns, depends on the structure of
the initial social graph, whereas the latter depends on the distribution of arrival rates fP(ρ). In general, a user cannot visit
all meeting places of the network (unless he/she is a member of all the cliques identified when running the algorithm for
generating the arrival network, an event that is extremely unlikely in realistic scenarios), but only a subset. When selecting
the locations to be visited in a time slot, each user takes a subset of the set of meeting places he/she can visit (according to
the outcome, for example, of the Bernoulli selection process). The size of this subset depends on the arrival rates defined for
users in the arrival network, since, the higher the rates, the greater the number of places selected to be visited in a time slot.
We note that the majority of rates in the real traces which we have considered in Section 5 have small values (i.e., less than
0.4 for more than 80% of user–place pairs) and, thus, in general, each user visits a small number of places in each time slot.

The fact that users are bound to visit in a time slot all the selected meeting places introduces a consistency problem:
at what speed should the users move to visit all these meeting places, and is this speed realistic? There are two main
parameters that can be tuned to guarantee realistic user movements: the duration of the time slot T and the size of the
scenario considered. As for the latter, it is clear that in a city-wide area visiting multiple locations does not pose great
challenges as these multiple locations can be reached, in the worst case, at bus speed in quite a short time (e.g., an hour or
so). For larger scenarios (which are typically not considered for opportunistic networks), obtaining realistic movements can
be more challenging, and further investigation is required to address this point. The time slot T can also be helpful. In fact,
the larger the time slot, the higher the chances that multiple meeting places can be reached using a realistic speed.

8. Conclusion

In this paperwe have proposed SPoT, amobility framework that incorporates the spatial, social, and temporal dimensions
of humanmobility. The social and spatial dimensions are added imposing that people belonging to the same social commu-
nity are assigned to the same location, which is where the people of that communitymeet. Then, theway users visit their as-
signed locations over time (corresponding to the temporal aspects ofmobility) is described bymeans of a stochastic process.

In order to provide a realistic instantiation of two building blocks of the framework, namely, the arrival process of users
at meeting places and the aggregation of meeting places into larger locations, we have analyzed three datasets containing
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traces of human check-ins at real locations, extracted from the online location-based social networks Gowalla, Foursquare,
and Altergeo. The analysis of these datasets has revealed that human arrivals at places can be reasonably approximated,
for the majority of user–place pairs, by Bernoulli processes. In addition, we have found that meeting places sharing a lot of
common users visiting themwith high frequency are typically located close to each other (thus, they should be aggregated).

In the third part of the paper we have focused on the flexibility and controllability of the framework. First, we have
shown that the SPoT framework can be easily instantiated to accurately reproduce themobility behavior seen in theGowalla,
Foursquare, andAltergeo traces. Second, as far as the controllability is concerned,wehave analytically derived the conditions
under which aggregate heavy-tailed and exponentially-tailed inter-contact times emerge, and we have shown that these
analytical predictions are totally in agreement with simulation results.

SPoT produces as output a contact-based trace, which can be fed to the vast majority of simulators for opportunistic
networks. In the last part of the paper we have discussed how SPoT can be extended to generate a movement-based trace,
which can be useful for using SPoT together with simulators such as NS3. In the future, we plan to fully investigate the
properties and constraints of this spatial output.
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Abstract—Portable mobile devices like smartphones and
tablets are the enablers for communications in mobile ad hoc
networks. In order to optimise their energy usage, one of the most
popular techniques is to implement a duty cycling policy, which
periodically puts the user device in a energy saving mode (e.g.,
Bluetooth inquiry scan phase or turning off the WiFi interface)
for a certain amount of time. Clearly, this strategy increases the
battery lifetime, but it also has the net effect of reducing the
number of usable contacts for delivering messages, increasing
intercontact times and delays. In order to understand the effect
of duty cycling in opportunistic networks, in this paper we
propose a general model for deriving the pairwise intercontact
times modified by a duty cycling policy. Then, we specialise this
model when the original intercontact times are exponential (an
assumption popular in the literature), and we show that, in this
case, the intercontact times measured after duty cycling are,
approximately, again exponential, but with a rate proportional
to the inverse of the duty cycle. Once we have the distribution of
the intercontact times after duty cycling, we use it for analysing
how duty cycling affects the delay of message forwarding and the
network lifetime.

I. INTRODUCTION

The widespread availability of smart, handheld devices
like smartphones and tablet has stimulated the discussion and
research about the possibility of extending the communication
opportunities between users. Particularly appealing, towards
this direction, is the opportunistic networking paradigm, in
which messages arrive to their final destination through con-
secutive pairwise exchanges between users that are in radio
contact with each other. Thus, user mobility, and especially
user encounters, are the key enablers of opportunistic commu-
nications. This networking paradigm reverses the approach of
traditional Mobile Ad Hoc Networks: where user mobility was
previously seen as an accident, it is now one of the enablers
of message circulation.

One aspect that is hindering opportunistic communications
from being widely implemented is the lack of technologies
allowing for transparent and efficient ad hoc communications
in off-the-shelf smartphones. Severely critical are particularly
the energy requirements of such protocols. In fact, it is a well-
known problem [1] that WiFi in ad hoc mode is extremely
energy hungry, even if idle, and also Bluetooth, generally con-
sidered energy-efficient, suffers from high energy consumption
during the inquiry phase. Clearly, no user will be willing to
participate to an opportunistic network if they risk to see their
battery drained in a few hours. Due to the energy issues of all
the ad hoc communications technologies available, there have
been some attempts in the literature to improve the energy
efficiency of opportunistic communications. To the best of

our knowledge all power saving schemes designed for oppor-
tunistic networks focus on contact probing (or, equivalently,
neighbour discovery) mechanisms, for two main reasons. First,
as discussed in Section II, the neighbour discovery phase is
energy hungry for both WiFi and Bluetooth. The second reason
is that, in opportunistic networks, nodes are typically not in
contact with anyone for a large fraction of time. This implies
that, while detecting contacts is crucial and has to be done
for the whole network lifetime, continuously scanning without
interruptions can be not only energy inefficient but also a waste
of time, since often no contact would be detected. Thus, the
contact probing phase lends itself to many improvements from
the perspective of designing a strategy that misses just a few
contacts but provides a high energy gain.

While research on other aspects of opportunistic commu-
nications (e.g., routing, data dissemination) has been thriving
in the recent years, energy issues in opportunistic networks
have still to be fully addressed. Even worse, while there are
some works discussing new smart power saving strategies for
opportunistic networks, there are very few contributions that
study the effect of power saving mechanisms on intercontact
times, which are the prominent metric of user contact dynamics
and therefore one of the key elements determining forwarding
performance. The intercontact time is defined as the time
interval between two consecutive encounters between the same
pair of nodes. Intercontact times are considered to be the
main bottleneck in opportunistic communications, as they are
typically one or two orders of magnitude greater than contact
times [2]. Being messages exchanged between nodes when
they meet, it is clear that the main contribution to message
delay is determined by intercontact times. For this reason, we
believe it is of paramount importance to understand how power
saving techniques, which may effectively reduce the number
of usable contacts, affect the intercontact time.

In light of the above discussion, the contribution of this
paper is threefold. First, we derive an analytical model of the
actual inter-contact times between nodes after duty cycling
is factored in, i.e. by taking into account that some contacts
may be missed because at least one of the devices may be
in a low-energy state that does not allow it to detect the
contact. In the following, we refer to this figure as detected
intercontact times. While deriving an exact characterisation
of the detected intercontact times is in general too complex
from an analytical standpoint, we are able to derive their
first two moments. As it is well-known, this is sufficient to
approximate the distribution of the detected intercontact times
using hyper- or hypo- exponential distributions, using standard
techniques [3]. Thus, using this model, we are able to obtain



an approximated representation of intercontact times measured
when a duty cycling policy is in place under virtually any
distribution.

The second contribution of the paper is the solution of the
above model for the case of exponential intercontact times,
which is a popular assumption in the related literature [4] [5]
(even if a general consensus on which is the best distribution
for representing realistic intercontact times has yet to be
achieved). With exponential intercontact times, the proposed
model can be solved approximately in closed form and, under
a specific condition that we derive, the detected intercontact
times are still exponential, but with a rate proportional to
the inverse of the duty cycle. In addition, we show that the
condition under which our approximation holds is satisfied by
the most popular traces available in the literature. This result
tells us that models (e.g., of the delay) that assume exponential
intercontact times (that are typically tractable and thus very
popular in the literature) can still be used when a duty cycling
policy is in place, as long as the original rates are scaled
proportionally to the inverse of the duty cycle. So far, this
aspect (i.e., the fact that duty cycling can affect the detected
pairwise contacts) has been largely ignored in the literature.
In fact, while periodic probing is implemented in almost all
contact datasets available in the literature [6] [7] [8], both when
studying the statistical properties of intercontact times in the
datasets and when using the rates estimated from these traces
in order to validate analytical models, the effect of the periodic
rather than continuous duty cycling has been ignored.

The third and final contribution of this paper lies in
studying how the detected intercontact times affect the delay
experienced by messages and network lifetime. As expected,
we find that the delay (both first and second moments) in-
creases, but no additional variability is introduced (i.e., the
coefficient of variation remains unchanged). Also the network
lifetime (i.e., the time until nodes run out of battery, given a
certain energy budget) evidently increases. Being the network
lifetime longer, a larger volume of traffic is handled by the
network when a duty cycling policy is in place. Finally, we
focus on the problem of finding an optimal duty cycle value
that would allows us to minimise the loss from the delay
standpoint and maximise the gain in terms of traffic handled
by the network. We show that, when intercontact times are
exponential, it is not possible to achieve both goals at the same
time and the operator has to decide whether delay or volume
of traffic (or equivalently, network lifetime) is of concern.

II. RELATED WORK

Ad hoc communications in opportunistic networks typ-
ically go through either the WiFi or Bluetooth interface.
While for 802.11 cards used in infrastructure mode energy
consumption in the idle state (previously comparable to that
used in the transmitting/receiving state) has been drastically
reduced by the introduction of the Power Saving Mode (PSM)
[1], ad hoc 802.11 is still highly inefficient [1] and PSM for
ad hoc is typically not implemented in smartphones’ 802.11
interfaces. Thus, in the ad hoc case, it is still true that the
energy for being idle is comparable to the energy consumed
for sending and receiving messages, hence turning off the
network cards when possible is the simplest yet the only viable
approach for increasing battery lifetime. Measurements of

Bluetooth energy consumption are more consistent across past
and recent studies. Of all Bluetooth phases, scanning is found
to be the most energy hungry across different studies [1], [9].
For this reason, it is often advised to reduce the scanning
frequency in order to save battery. The Bluetooth discoverable
state is generally considered energy cheap (as stated in [10],
[1]) but keeping the phone in the discoverable state indefinitely
in the long run incurs in a significant energy consumption
as well. In a recent work, Trifunovic et al. [10] directly
compare Bluetooth and two innovative WiFi-based ad hoc
communications modes, namely, WiFi Direct [11] and WLAN-
Opp [12]. As far as neighbor discovery is concerned, Bluetooth
is found two times more energy efficient than WLAN-Opp
and about five times more energy efficient than WiFi Direct.
As expected, the energy consumption for all three protocols
heavily depends on the scanning interval, i.e., how often they
scan their neighbourhood for new devices. For scanning inter-
vals smaller than ∼ 100s, the power consumption increases
drastically. Looking at energy consumption at a finer detail,
we see that, as discussed before, in Bluetooth discovery, the
higher amount of energy is consumed during the scanning
phase. Instead, for WLAN-Opp both being discoverable (i.e.,
when the device acts as AP) and discovering are expensive
operations. In WiFi Direct the situation is even worse, since
for detecting each others both devices have to be scanning at
the same time.

A taxonomy proposed by Jun et al. [13] for traditional
MANETs classifies duty cycling policies into four categories.
With the synchronous mechanisms (the most popular of which
is 802.11 Power Saving Mode) nodes all wake up/go to sleep
at the same time. The drawback of this approach is that it
requires a global synchronisation among nodes and a fully con-
nected network[13]. In asynchronous strategies, neighbouring
nodes select their wake-up slot so that they overlap with one
another. In cell-base schemes the network is divided into non-
overlapping cells, within which only a few nodes are awake
at a given time. In on demand strategies nodes are equipped
with an additional low-power radio interface that is used for
signalling wake up or sleep commands. Unfortunately, all the
above strategies were designed for a dense and connected
network, which is quite different from the typical conditions
in which opportunistic networks operate.

As discussed in Section I, all papers dealing with power
saving issues in opportunistic networks have focused on the
contact probing phase. There are quite a few papers in the
literature aiming at designing smart contact probing strategies
for DTN/opportunistic networks. Contact probing schemes can
be classified into fixed, when the ON/OFF duration of the
duty cycle is established at the beginning and never changed
[13], or adaptive, when the frequency of probing is increased
or decreased according to some policy [14]. Both fixed and
adaptive strategies can be context-oblivious [13], if they do
not exploit information on user past behaviour or position, or
context-aware [15], [16] otherwise. In order to address the lack
of duty cycling mechanisms in sparse networks, [13] proposes
three schemes based on different availability of information at
nodes. In the oracle case, nodes can predict their meetings,
so they are able to wake up and get to sleep exactly at the
beginning and end of a contact. This strategy is clearly used
for benchmarking only, since real nodes are not omniscient.
At the opposite range, the authors identify the zero knowledge



strategy, in which nodes have no means to estimate their future
contacts, so basically enter a periodic, fixed, beaming period
in which neighbour discover is performed. Between these two
extremes, the authors propose the partial knowledge strategy,
in which they assume that nodes are able to estimate the mean
and variance of the intercontact times and the contact times,
information that is used in order to predict when to scan more
intensely for neighbours (intuitively, not right after a contact
has ended).

The work by Choi et al. [14] considers a DTN in which
nodes wake up at synchronised intervals and sends beacons
in order to discover new neighbours. If no neighbour is
discovered, the next beaconing period is set at double the
previous interval and nodes sleep until then. This exponential
increasing is performed until a maximum value is reached. The
main contribution of the paper lies in designing an algorithm
(AEB) in order to compute this maximum value in order
minimise power consumption and maximise the probability
of detecting a contact. This is done exploiting the CDF of
contact duration. Unfortunately, this algorithm is targeted at
random mobility models (in which contact and intercontact
times are i.i.d.), hence it is arguable whether it is applicable
to real networks.

An energy-efficient variation of Bluetooth discovery mode
is proposed in [15]. This work starts from the observation
that wherever a neighbour is encountered, other contacts are
likely to happen as well. So the authors propose two schemes:
one in which the discovery mode is triggered by indications
of recent activities and one in which previous contacts at a
specific location (access to a positioning system is assumed)
are used to switch the device to a more aggressive scanning
mode.

Wang et al. [16], assuming that nodes scan their sur-
roundings every T and that contact duration for a pair of
nodes is stationary and i.i.d. are able to prove that among
all social-oblivious strategies with the same average contact
probing interval, the strategy exploiting fixed probing intervals
is optimal for minimising the probability of missing a contact.
This is an interesting result, supporting the use of simple fixed
contact probing strategies over more elaborate ones. Then, the
authors propose some heuristic social-aware adaptive probing
algorithm, of which the STAR algorithm, which adapts to the
contact arrival process exploiting a self-similar argument, is
shown to outperform the others.

The work in [17] is a theoretical work that extends the fluid
model of two-hop forwarding with the fact that nodes, with a
certain rate, go from the inactive state to the active state (in
which they start beaconing until they receive a message copy)
and use this model to solve the optimal activation problem. The
model is tailored to a homogeneous environment (i.e., nodes
with contact process i.i.d.) and, as discussed by the authors
themselves, cannot be used as it is to describe the hetero-
geneous environments seen in real mobility traces. Moreover,
the model is not directly applicable to duty-cycling-style power
saving, since node activation is considered monotone, i.e., once
activated nodes remain active until their battery is depleted or
the deadline is reached.

All the above contributions aimed at deriving a power
saving strategy for DTNs, be it fixed [13] or adaptive [14],

social-oblivious [13] or social-aware [15], [16]. This is not our
goal. Instead, in this paper, we assume that a fixed contact
probing scheme is given (whether social-oblivious or social-
aware is not important, as long as its parameters are kept
constant). Our goal is to investigate the effects of such duty
cycle in neighbour discovery as far as intercontact times are
concerned.

In the literature, the works closest to ours are [18] [19].
Zhou et al. [18] focus on the RWP mobility model and
show how the number of contacts detected is affected when
neighbour discovery is performed every T seconds and what
is the effect on the energy consumption (defined as 1/T ). Our
contribution is more general, as it is not bound to the RWP
model but it can be applied to any well known distribution
for intercontact times, if numerical solutions are sufficient,
or it can be solved in closed form for the exponential case.
In addition, we also provide an analysis of how the delay is
affected by the duty cycling. Moreover, despite its simplicity,
our duty cycling function allows for more flexibility than the
simple scanning every T seconds, as discussed in the next
section.

Qin et al. [19] perform a study that is exactly orthogonal
to this work. In fact, they evaluate how link duration (or
contact duration, in our terminology) is affected by the contact
probing interval. Assuming a fixed, social-oblivious probing
scheme similar to the one that we consider, Qin et al. study
the effective duration of a contact given that the contact is
not discovered immediately when it starts due to the contact
probing process in place. They provide a formula for the PDF
of the link duration under generic contact duration and study
the trade-off between energy (in terms of probing frequency)
and throughput. The focus of our work is exactly the opposite.
We investigate the effect of contact probing (which can be
easily translated into a duty cycling problem) on the inter-
contact time rather than on the contact time. The motivation
for this choice is that intercontact times are typically much
larger than contact times in real human mobility, thus the
delay in opportunistic networks is mainly determined by the
intercontact time. Intercontact times are larger when contacts
are not detected immediately or missed and thus it is important
to understand how they increase and how this affects the delay
experienced by messages.

III. PROBLEM STATEMENT

We use duty cycling in a general sense here, meaning
any power saving mechanism that hinders the possibility of a
continuous scan of the devices in the neighbourhood. So, we
assume that nodes can be either in the ON or OFF state. In the
ON state, nodes are able to detect contacts with other devices.
The semantic of the OFF state depends on the scenario that we
want to represent and we will discuss it later in this section. We
hereafter focus on a duty cycling technique in which a generic
node A is ON for τA seconds and OFF for the other TA − τA
seconds, where TA is the period of the duty cycling scheme.
This duty cycling model closely approximates typical duty
cycles used in the literature (neglecting the small random back-
off time introduced in practice after nodes wake up in order to
avoid contention, see e.g., [6]). For example, the proposed duty
cycling model is able to model approximately the scanning
processes of Bluetooth and WLAN-Opp discussed in [10].



Assuming that the network wakes up at t = 0, the first ON
interval can be placed anywhere between [0, TA). We denote
with s

(A)
0 and s

(A)
1 the time instants at which the ON interval

starts and ends, respectively, for which s
(A)
1 −s

(A)
0 = τA holds.

The duty cycling policy for node A is thus represented by the
following function:

dA(t) =

{
1 if t mod TA ∈ [s

(A)
0 , s

(A)
1 ]

0 otherwise,
(1)

where mod denotes the modulo operation.

Starting from this duty cycling policy on single nodes, the
semantic of the discovery process depends on the specific
scenario under study. For example, in the case Bluetooth,
assuming that nodes alternate between the inquiry and inquiry
scan phase (corresponding in our model, respectively, to the
ON and OFF state) as described in [20], and that ON intervals
do not overlap1, we have that each node is able to detect
a contact with nodes in radio range when it is in the ON
state. Vice versa, for all scenarios in which for contacts to be
detected and used for communications both nodes A and B
must be ON at the same time (e.g., as in WiFi Direct), we
have to consider the joint duty cycling function2 d, defined as
dA ∗ dB (we assume that all nodes have the same period T ).
The first ON interval of d starts at s0 = max{s

(A)
0 , s

(B)
0 } and

ends at s1 = min{s
(A)
1 , s

(B)
1 }. We denote the fraction of time

nodes spend in the ON period as ∆ (= τ
T , where τ = s1 − s0

is the length of the ON interval under d and T the period of
d).

d(t) =

{
1 if t mod T ∈ [s0, s1]
0 otherwise. (2)

If the ON intervals of nodes A and B never overlap, the two
nodes will not be able to communicate, because they never see
each other. In order to avoid this trivial case, we assume that
duty cycles preserve the ability of nodes to communicate with
each other. In the best case, nodes are synchronised, so they
are able to fully exploit the length min{τA, τB} of their ON
intervals. In the following we will use notation d to generically
denote the duty cycling function, be it the single function dA
when only node A needs to be in the ON state for detection
or the joint function d.

Function d determines the way contacts are discovered. In
the following, we focus on the intercontact process between
a generic pair of nodes, and, to make the analysis more
tractable, we assume that a contact event is detected only if
it starts during an ON period. This assumption is reasonable
when the duration of a contact is smaller than the duration
of the OFF interval. In fact, in this case the probability of
the contact lasting until the next ON interval is negligible.
While it is difficult to verify whether this assumption holds
for the datasets in which duty cycling is implemented (because
the measured contact durations already factor in the duty
cycle effect), the work in [2], which relies on special devices
with extremely short scanning intervals of 1s, states that for
more than 50% of contact duration samples the duration is

1Please note that with Bluetooth two nodes inquiring at the same time do
not detect each other. In a real implementation, overlapping inquiry intervals
are avoided by means of the random backoff time.

2When unambiguous, we drop the subscript indicating the specific node
pair considered, as in this case.
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Fig. 1. Contact process with duty cycling

smaller than 48s. Trifunovic et al. [10] have derived that,
with Bluetooth and WiFi, scanning intervals greater that 100s
perform significantly better energy-wise. Actually, typical duty
cycling policies used to collect traces have a period of several
minutes (e.g., 5 minutes in the Reality Mining dataset [8]),
with ON periods in the order of few seconds. Therefore, we
can consider this assumption as reasonable.

We now focus on the contact process. We assume that the
time between two consecutive contacts between the same pair
of nodes can be modelled as a continuous random variable
S, and that intercontact times between a given pair of nodes
are independent and identically distributed (while they can
follow different distributions for different pairs). Hence, the
contact process can be modelled as a renewal process, where
Si ∼ S denotes the time between the i-th and the (i + 1)
contact event. Similarly, we denote with S̃ the random variable
representing the detected intercontact times, and with S̃i ∼ S̃
the time between the i-th and the (i + 1) detected contact
event (Figure 1). In the following, without loss of generality,
we assume that there is a contact event at t0 during the first
ON period after t = 0. Consider the case in which i − 1
contacts are missed after the one happening at t0 and the i-th
is detected. If we neglect contact duration (recall that this is
reasonable, since it is typically one-two orders of magnitude
smaller than the intercontact time [6] [2]), it is clear that the
time between the two detected events is given by the sum of
the interarrival times of the events up to the i-th. Thus, for S̃,
the following definition holds.

Definition 1: The detected intercontact time S̃ can be
obtained as S̃ =

∑N
i=1 Si, where N is the random variable

describing the number of contacts needed to get one detected.

Therefore, S̃ is a random sum of i.i.d. variables. This sum
has some nice properties, which we will exploit in Section V
in order to derive the first two moments of S̃. Please also
note that Definition 1 is general, i.e., holds for any type of
continuous intercontact time distribution and for any type of
duty cycling policy. In the next sections we show how the duty
cycling model and the contact process can be studied together
in order to uncover the features of the detected intercontact
times. For the convenience of the reader, the notation used
throughout the paper is summarized in Table I.

IV. DERIVING THE DISTRIBUTION OF N

In this section we study the probability distribution of N ,
defined as the number of contacts needed in order to detect
the first one. We aim, in particular, at deriving its first two
moments, which are essential, as we will see later in the paper,
for the computation of S̃. The rationale behind its derivation
is pretty intuitive. In fact, N = 1 corresponds to the case of
a detection right after the last detected contact. So, if the last



TABLE I. NOTATION

fX , FX PDF and CDF of random variable X
S intercontact time
S̃ detected intercontact time
N number of ICTs taking places before the next contact is detected

T , τ period of duty cycle and duration of the ON period
∆ fraction of time nodes are in ON
t0 time of the last detected contact
d duty cycle function

s0 , s1 start and end time of the first ON period (s1 − s0 = τ )
λij rate of intercontact times between nodes i and j

D, D∆ delay without duty cycling and delay with duty cycling ∆
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Fig. 2. Example for case N = 1 and N = 2 (red for missed contact, green
for detected contact)

detected contact took place at t0, with N = 1 the next contact
can happen in any of the ON intervals after t0. For case N = 2
to happen, the first contact after the one detected at t0 has to
fall in any of the OFF intervals after t0 ad the second contact
in any of the ON intervals after the OFF interval in which the
first contact has been missed. The derivation of the PDF of N
quantifies the probabilities of each of these events.

Before moving into the detail of the derivation, we first
introduce the notation that we use in this section. Let us assume
that the last detected contact (we refer to it as the zero contact)
took place at time t0. Starting from t0, we denote the i-th ON
interval after t0 as Ii and the i-th OFF interval after t0 as Ji.
All ON intervals but the first one are of type [s0+iT, s1+iT ],
while all the OFF intervals are defined as [s1 + iT, s0 + (i +
1)T ]. The first ON interval is special, because it is constrained
to start after t0, thus we define it as (t0, s1]. Figure 2 describes
this scenario. Then, when N=1, In1 denotes the ON interval
in which the first contact is detected, when N=2 In2 denotes
the ON interval in which the second contact is detected, and
so on. We do the same for OFF intervals, thus Jnj denotes
the OFF interval in which the j-th contact is missed. We will
often use ON and OFF intervals shifted by a time t, which we
denote as Ii − t and Ji − t. Moreover, we assume that the time
t0 at which the zero contact happens within interval [s0, s1] is
described by random variable Ŝ0. Finally, we denote with fSi

the PDF of Si.

Using the above notation, the PDF of N can be computed
as described in Theorem 1 below (the proof can be found in
Appendix A). Theorem 1 provides an accurate approximation
of the PDF of N when the probability of two undetected
contacts falling in the same OFF interval is very low. In Section
IV-A we derive the conditions under which this assumption is
reasonable and we show that these conditions are satisfied by
the most popular traces of human contacts.

Theorem 1 (Distribution of N ): The discrete probability

density of N can be approximated by the following:

P{N = 1} =
∞∑

n1=0

∫ s1

s0

fŜ0
(t0)

∫

In1−t0

fS1(t1)dt1dt0 (3)

P{N = 2}=
∞∑

n1=0

∞∑

n2=n1+1

∫ s1

s0

fŜ0
(t0)

∫

Jn1−t0

fS1(t1) ·

·
∫

In2−t0−t1

fS2(t2)dt0dt1dt2 (4)

...
P{N = k} =

=

∞∑

n1=0

· · ·
∞∑

nk=nk−1+1

∫ s1

s0

fŜ0
(t0)

∫

t1∈Jn1−t0

fS1(t1) ·

. . .

∫

tk−1∈Jnk−1
−t0−···−tk−2

fSk−1
(tk−1) ·

∫

tk∈Ink
−t0−···−tk−1

fSk
(tk)dtkdtk−1 . . . dt1dt0. (5)

Finding a closed form for the distribution of N in Theo-
rem 1 might be prohibitive in the general case, and we have
been able to obtain only numerical solutions. However, when
intercontact times are exponential, a closed form solution is
available (Corollary 1 below, proof available in Appendix A)
and the first two moments of N can be computed (Ap-
pendix A).

Corollary 1 (N with exponential intercontact times):
When real intercontact times Si are exponential with rate3 λ,
the probability density of N is given by:




P{N = 1} = 1 + e−λτ−1
λτ + eλτ (1−e−λτ )2

λτ(eλT−1)

P{N = k} = eλτ (1−e−λτ )2

λτ(1−e−λT )

[
λ(T−τ)
eλT−1

]k−1

, k ≥ 2

(6)
A. Quantifying the error

In Theorem 1 we have provided a general formulation for
the distribution of N which holds when the probability of two
consecutive contacts happening during the same OFF period is
small. We now discuss under which settings the approximation
introduced is reasonable, taking as reference the exponential
case. Exploiting the result in Corollary 1, it is possibile to
compute the error function, as follows.

Definition 2: The error E (defined in [0, 1]) introduced by
the approximation in Corollary 1 can be expressed as:

E(τ, T, λ)=
1 − e−λτ

λτ
− eλτ (1 − e−λτ )2

λτ(eλT − 1)
+

−eλτ (1 − e−λτ )2

1 − e−λT

T − τ

τ(eλT − 1 − λT + λτ)
. (7)

The above expression can be simply obtained as the difference
between 1 and

∑
k P{N = k}, after noting that in our

approximation we are neglecting events that belong to the
sample space, hence the total probability that we obtain is

3Again, for ease of notation, we omit subscript A,B for λ, since it is
unambiguous that we are referring to the tagged node pair A,B. Please note,
however, that the network model we are referring to is still heterogenous.
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Fig. 3. E varying λ (logarithmic scale for the x-axis)

less than 1. The distance between
∑

k P{N = k} and 1 thus
gives us the quality of our approximation, in which the closer
E to 0 the better.

Intuitively, from a physical standpoint, our approximation
holds when the average intercontact time is significantly larger
than the duration of the OFF interval. Under this condition,
the OFF interval is, on average, too short to accommodate
two intercontact times. Thus, the condition when we expect
that our approximation is very precise is E[S] ≫ T − τ , or,
equivalently, 1

λ ≫ T − τ . The worst case for this condition
happens when τ is very small. In fact, when τ → 0 the OFF
interval can be as big as possible (i.e., occupying almost all T )
and, consequently, the probability that two undetected contacts
fall into it maximum. Thus, if we ensure that 1

λ ≫ T our
condition will hold. We have proved mathematically this result
in Appendix A, which is summarised in the following lemma.

Lemma 1: When λT ≪ 1, the error E introduced by the
approximation of Corollary 1 approaches zero.

Let us now explore the parameter space τ , T , λ in order to
characterise how E goes to zero when the condition introduced
above is satisfied. At first we set τ = 5 and T = 15 (as in
the RollerNet experiment – see Section V-A) and we plot E
varying λ (Figure 3(a)). As 1

λ represents the mean intercontact
time E[S], the smaller λ the bigger the mean intercontact time.
And in fact, the error goes to zero as λ ≪ 1

T−τ = 1
10 and our

condition is confirmed. We now keep the same τ value and
increase T , setting it to 120s, which is the value used for the
Infocom experiment (Section V-A). We expect from condition
(i) that the error increases for small λ values with respect to
the previous case, and this is confirmed in Figure 3(b).

V. THE DUTY CYCLING EFFECT ON EXPONENTIAL
INTERCONTACT TIMES

Exploiting the results derived in the previous section, here
we discuss how to compute the first and second moment of
the detected intercontact time S̃ for a generic node pair A, B.
The relation between S and S̃ is stated by Definition 1, i.e.,
S̃ =

∑N
i=1 Si. Thus, S̃ is a random sum of random variables,

and we can exploit well-known properties to compute compute
its first and second moment (in Appendix A we specialise this
result for the exponential case).

Proposition 1: The first and second moment of S̃ are
given by E[S̃] = E[N ]E[S] and E[S̃2] = E[N2]E[X ]2 +
E[N ]E[X2] − E[N ]E[X ]2.

While the above formula holds in general, in the case of
exponential intercontact times it is possible to derive an even
stronger result, described in Theorem 2 below. This result is the
key derivation of this work, and it tells us that, under condition

λT ≪ 1, exponential intercontact times are modified by duty
cycling only in terms of the parameter of their distribution but
they still remain exponential.

Theorem 2: When λT ≪ 1, the detected intercontact times
S̃ follow approximately an exponential distribution with rate
λ∆.

Proof: We can calculate the moment generating function
(MGF) of S̃ using the expression described at the beginning of
the section, i.e., MS̃(s) = MN (MS(s)). First of all, we have
to calculate the MGF of N , that we can obtain from Equation
(6). In fact, recalling τ = T∆, we have

MN (s) =

∞∑

k=0

sk · P{N = k} =

= s

[
1 − 1 − e−λT∆

λT∆
+ eλT∆ (1 − e−λT∆)2

λT∆(eλT − 1)

]
+

+
∞∑

k=2

sk
eλT∆(1 − e−λT∆)2

λT∆(eλT − 1)

[
λT (1 − ∆)

eλT − 1

]k−1

= s

[
1 − 1 − e−λT∆

λT∆
+ eλT∆ (1 − e−λT∆)2

λT∆(eλT − 1)

]
+

+s2
eλT∆(1 − e−λT∆)2

∆(eλT − 1)

1 − ∆

eλT − 1 − λTs(1 − ∆)
.

As we are in the hypothesis λT ≪ 1, we can use the Taylor
expansion to find that MN (s) = s∆+ s2 ∆(1−∆)

1−s(1−∆) + o(1). As
the MGF of an exponential distribution S is given by MS(s) =
λ

λ−s , we obtain the following:

MS̃(s)=MN(MS(s)) =

=
λ∆

λ − s
+

λ2

(λ − s)2
· ∆(1 − ∆)

1 − λ
λ−s (1 − ∆)

+ o(1) =

=
λ∆

λ∆ − s
+ o(1). (8)

Since the above equation corresponds, approximately, to the
MGF of an exponential random variable with rate λ∆, we
conclude that S̃ can be approximated as an exponential random
variable with rate λ∆. A longer version of this proof is
provided in Appendix A.

A. Validation

In this section, we consider the average rate measured in
real datasets of human mobility and we verify whether our
assumption λT ≪ 1 is reasonable and whether our model
correctly predicts the distributions of the detected intercontact
times. For opportunistic networks, there are several publicly
available datasets obtained from experiments monitoring con-
tacts between device pairs. Pairwise contacts are typically
detected through Bluetooth [6], [7], [8] by means of special
devices like iMotes. As we have discussed in Section IV, our
model is suitable for this kind of scenarios. Here we consider
four popular datasets often used in the related literature:
Infocom05 [6], Infocom06 [6], RollerNet [7], and Reality
Mining [8]. In Table II we report the average pairwise rate
[21] extracted from these traces (corresponding to λ̃, i.e., to
rates after duty cycling) and the associated λ values obtained
applying Theorem 2, under the assumption that ICT are
exponential. While this assumption is very strong in general,



TABLE II. QUALITY OF APPROXIMATION IN POPULAR DATASETS

Dataset T τ λ̃ λ λT

Infocom05 120 5 3.2 · 10−4 7.7 · 10−3 0.92
Infocom06 120 5 1.13 · 10−4 2.7 · 10−3 0.33

RollerNet 15 5 4.07 · 10−3 1.2 · 10−2 0.18

Reality 300 5 1.2 · 10−6 7.2 · 10−5 0.02

Tournoux et al. [7] have shown that it is acceptable for a
significant percentage of pairs in some of these datasets. In
addition, in Table II we also highlight the duration of the ON
period used (corresponding to the duration of the Bluetooth
phase in which a device scans for neighbours) and the period
of the contact probing process. Using these parameters, we
are able to compute λT and check whether our approximation
holds (due to space reasons, here we perform an average
analysis. A pairwise analysis is provided in Appendix A). As
it can be seen in Table II, λT is smaller than 1 in all cases.
Clearly, the farther from 1 the better, since we require λT ≪ 1.
Thus, we expect the approximation that we make to be quite
good for all datasets except for the Infocom05.

In order to complement the theoretical analysis in Sec-
tion V, here we verify that our prediction for the distribution of
S̃ actually matches simulation results exploiting the parameters
of real experiments. Specifically, we take a tagged node pair
and we assume that the meeting rate of this pair corresponds
to the average meeting rate (average across all pairs of nodes
in the traces) measured from the traces in Table II. With
this approach we are able to represent the behavior of the
average node pair. Then, we draw 10000 samples (100000 for
the Reality Mining case, due to the long duty cycle period
which led to fewer detections) from an exponential distribution,
configured with the parameters λ in Table II. The sequence
of these samples corresponds to the contact process between
the tagged node pair. To this contact process we apply a
duty cycling function with ∆ = τ

T , where τ and T are
taken again from Table II. Then we measure S̃ after each
detected contact and we plot its CDF for all the four datasets
in Figure 4. As expected, for the Infocom06 scenario, there
are discrepancies between the actual and predicted values. For
the other scenarios, in which the product λT is closer to zero,
model prediction are very close to simulation results.
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Fig. 4. CDF of S̃ in the different scenarios

VI. THE EFFECT OF DUTY CYCLING ON THE DELAY

In this section we exploit the results on the detected
intercontact times derived above in order to compute the
first two moments of the delay for a set of representative
forwarding strategies designed for opportunistic networks. The
first step in this direction is to use the first two moments
of the detected pairwise intercontact times for approximating
the distribution of the intercontact time itself. Please note that
while the analysis in the previous section focused on a tagged
pair of nodes, in this section we study the whole network.
So, assuming exponential intercontact times, we denote their
rates as λij for node pair i, j. We have shown that, when
assumption λT ≪ 1 holds, the detected intercontact times
follow approximately an exponential distribution. Using this
approximation, in the following we solve the analytical model
proposed in [22] for both real intercontact times and detected
intercontact times. The goal of this evaluation is to study how
the first two moments of the delay are affected by energy
saving techniques.

The forwarding model that we exploit represents the for-
warding process in terms of a Continuous Time Markov Chain
(CTMC)[23]. The chain has as many states as the nodes of
the network and transitions between states depend both on the
meeting process between nodes (i.e., their intercontact times)
and on the forwarding protocol in use. Denoting the delay of
messages from a generic node i to a tagged node d as Di, and
using standard Markov chain theory, it is possibile to derive
the first two moments of Di as in [22]. We report this result
below for the convenience of the reader.

Lemma 2 (Delay’s first and second moment): The first
and second moment of the delay Di for a message generated
by node i and addressed to node d can be obtained from
the minimal non-negative solutions, if they exists, to the
following systems, respectively:

∀i 6= d : E[Di]=
1∑

j∈Ri
λij

+
∑

j∈Rs−{d}

λij∑
z∈Ri

λiz
E[Dj ]

(9)

∀i 6= d :

E[(Di)
2]=

2

[
∑

j∈Ri
λij ]2

+
∑

j∈Rs−{d}

λij∑
z∈Ri

λiz
E[D2

i ] +

+2
∑

j∈Rs−{d}

λij∑
z∈Ri

λiz

1∑
j∈Ri

λij
E[Di] (10)

where we denote with Ri the set of possible relays towards
destination d when the message is on node i (this set depends
on the forwarding strategy in use). Please note that this model
(as most analytical models in the literature) assumes buffers
and bandwidth large enough for accommodating all messages.

In [22], we have defined a set of abstract policies able to cap-
ture significant aspects of popular state-of-the-art forwarding
strategies. In the following we will focus on tthese policies.
Under the Direct Transmission (DT) forwarding scheme, the
source of the message is only allowed to hand it over to
the destination itself, if ever encountered. With the Always
Forward (AF) policy, the message is handed over by the



source, and the following relays to the first nodes encountered.
Both DT and AF are social-oblivious (also known as context-
oblivious or randomized) policies, i.e., they do not exploit
information on node social relationships and contact behavior.
In [22] two social-aware policies were also defined. In social-
aware policies, each intermediate forwarder hands over the
message to nodes that have a higher probability of bringing
the message closer to the destination, according to some
predefined forwarding metrics. The first of these policies is
Direct Acquaintance (DA), in which the forwarding metric
is the contact rate with the destination ( 1

E[Sid]
): a better

forwarder is one with a higher contact rate with respect to
the node currently holding the message. The second policy is
Social Forwarding (SF), for which the forwarding metric is
β 1

E[Si,d]
+ (1 − β)

∑
j∈Pi

wij
1

E[Sjd]
, where wij =

λij∑
j∈Pi

λij
.

With respect to the DA policy, which only captures direct
meetings with the destination, SF is also able to detect indirect
meetings, allowing nodes to select relays that not only meet
the destination frequently but also meet nodes that meet the
destination frequently.

In the following we assume that nodes intercontact times
are exponential. The fitting analysis presented in [23] has
shown that contact rates in the traces already considered in
Section V-A follow a Gamma distribution. Below, we focus on
the distribution parameters for the RollerNet scenario reported
in [21], i.e., shape ξ = 4.43, rate r = 1088. We consider a
network made up of 25 nodes and we solve the forwarding
model described above in the case of duty cycle equal to 5

15 ,
10
15 and 1 (no duty cycling). Figures 5-6 show the CDF of
the moments of the delay in this case. As expected, both the
first and second moment become larger as we reduce the ON
interval in the duty cycle. In fact, as discussed before, the neat
effect of duty cycling is to effectively reduce the number of
usable contacts to only those happening during an ON period.
The shorter the ON period, the fewer the usable contacts every
T , the longer the delay.
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Fig. 5. CDF of the first moment of the delays for the different forwarding
algorithms

Let us now see what happens to the coefficient of variation
of the delay (Figure 7). For all pairs, all forwarding strategies
and all duty cycling values, the coefficient of variation is bigger
than one. This means that the delay can be approximated with
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Fig. 6. CDF of the second moment of the delays for the different forwarding
algorithms

an hyper-exponential distribution. In the next section, we will
use this representation of the delay in terms of the hyper-
exponential distribution in order to compute the volume of
traffic carried by the network. Another interesting observation
from Figure 7 is that the coefficient of variation does not
depend on the duty cycle ∆ (in fact, all curves overlap).
This means that, in the case of exponential intercontact times,
the duty cycle does not introduce variability in the delay
experienced by messages.
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Fig. 7. CDF of the coefficient of variation of the delay with different ∆

VII. ENERGY, TRAFFIC, AND NETWORK LIFETIME

In this section we investigate the benefits of implementing a
duty cycling policy on the nodes of the network. These benefits
are in terms of energy saved by nodes and, consequently,
increased network lifetime. In fact, assuming that nodes have
an energy budget L (expressed as the amount of time they can
be on when no duty cycling is implemented), by definition
nodes’ lifetime is extended to L

∆ when energy saving strategies
are in place4. At the same time, however, as we have seen in the

4We consider only the part of the energy budget related to networking
activities.



previous section, the gain in terms of energy is counterbalanced
by a loss from the delay standpoint. In fact, the expected delay
increases as ∆ decreases, so the network lifetime is longer but
nodes also need more time to deliver messages.

In the following we want to study the following three
aspects. First, what is the relationship between the energy
consumed with and without duty cycling. Second, what is the
volume of traffic carried by the network with and without duty
cycling. Third, whether there exists an optimal duty cycle value
for which the loss in terms of delay is minimum and the gain
in terms of traffic carried by the network is maximum.

A. Energy with and without duty cycling

We first assume that messages are all generated at time
t = 0 and that L is very large. The goal here is to under-
stand how much energy is saved by duty cycling, without
considering the limited network lifetime, i.e., just taking into
account the delivery of standalone messages without temporal
limitations. Throughout the section we use a simple energy
model in which nodes consume a certain power w (measured
in watts) during ON intervals and zero otherwise. In reality,
depending on the semantic of the OFF interval, nodes may or
may not consume energy. If, for example, the OFF interval
corresponds to the inquiry scan state of Bluetooth (when the
devices listens and responds to inquiries but do not issues
inquiries itself) some energy is used (though quite low, see
Section II), if it corresponds to devices actually turned off
there is instead no consumption. In addition, real devices also
consume a significant amount of energy during transmission
and reception. Here, however, we have chosen to neglect the
consumption due to tx/rx phases for the following reason.
Under our approximation, the intercontact rates after duty
cycling are equal to the rates before duty cycling scaled by 1

∆ .
This means that the relative ranking between rates remains the
same, and hence the forwarding decisions will remain the same
as well. This implies that the number of hops that messages go
through with or without duty cycling, in the exponential case,
are statistically the same. Since tx/rx energy is associated with
each hop, the amount of tx/rx energy consumed with or without
duty cycling is the same. Being this amount of energy constant
and independent of ∆ we have chosen to neglect it and focus
instead on the variable consumption.

Below we focus on the expected delay across the whole
network, for having a compact representation. Please note
however that the behaviour is the same for the single pairs
of nodes. We measure the energy consumed as the product
between power w and the length of the time interval for which
the network is ON. Without duty cycling, the network is ON
for the whole time it takes to deliver a message (hence, for
E[D]), while in case of duty cycling, the network is ON only
for a fraction ∆ of the time (E[D∆], where we denote with
D∆ the delay under duty cycling ∆) it takes to complete the
delivery. In order to measure the relationship between the two
quantities, we study the following:

R∆ =
wE[D]

w∆E[D∆]
=

E[D]

∆E[D∆]
. (11)

If the above ratio is around 1, it means that when a duty
cycling policy is in place the amount of energy spent is the
same but instead of being used all at once it is fractioned

and alternated with intervals in which none is used. When the
above ratio is greater than 1 we have that the energy required
without duty cycling is higher. Vice versa, when the ratio is
smaller than 1, the energy needed with duty cycling is higher.

Figure 8 (derived for the same parameters of the RollerNet
scenario used above) tells us that the ratio stays around 1
independently of the specific duty cycle value ∆. This result is
very interesting, because it shows that under exponential inter-
contact times the energy consumed for a standalone message is
the same, regardless of the value of ∆. With ∆ = 1 the energy
budget needed for sending the message is simply used all at
once, while with ∆ < 1 this budget is spread across different
intervals of duration T , during which the nodes of network
are partially turned off. This is consistent with the assumption
of unlimited network lifetime and standalone messages (all
generated at t = 0) that we have made in this section. In
the next section, we discuss instead what happens when nodes
have a limited energy budget L and messages are continuously
generated by nodes.
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Fig. 8. R∆ varying ∆ in the different forwarding algorithms

B. Traffic carried by the network

For a more realistic evaluation, we hereafter assume that
messages are generated according to a Poisson process with
rate µ. By definition, the number of messages created in
disjoint timeslots are independent [23]. Thus, the number of
messages arriving during a time interval of length dt is given
by µdt. When ∆ = 1 these messages keep arriving until L,
after which the network has exhausted all its energy budget and
turns off indefinitely. Instead, when ∆ < 1 the network takes
longer to consume all its energy budget, thus stays on until L

∆ .
In the following we study the volume of messages delivered
by the network with and without duty cycling, measured as
the number of messages delivered in L

∆ . Then, the following
result holds, whose proof can be found in Appendix A.

Theorem 3: The volume N∆ of messages delivered by the
system under duty cycling ∆ is given by:

N∆=µL
∆ −µE[D∆]


1− 1

2 e
−L

E[D∆]∆


e

(
1+

√
c2−1

c2+1

)

+e

(
1−
√

c2−1

c2+1

)



,

(12)
where c is the coefficient of variation of the delay.



Basically, N∆ is given by the number of messages gen-
erated during the network lifetime (the first term in Equa-
tion (12)) minus the number of messages that are not delivered
before the energy budget is depleted. The latter quantity is
a function of the expected value of the delay and of its
variability. We now exploit Theorem 3 in order to study N∆.
Specifically, in Figure 9 below we show how N∆ varies
with different duty cycles, where we assume that each node
generates 1 message every 10 minutes (so µ = 1

600 ). The plot
is drawn for a tagged node pair for the sake of readability,
but the same results hold for the other pairs. We see that
the volume of traffic carried by the network (i.e., the number
of messages delivered on average during network lifetime)
increases as the duty cycle ∆ decreases. So, as expected,
increasing the network lifetime more messages get a chance
of being delivered but the price to pay, as seen in Section VI,
is a larger expected delay.
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Fig. 9. N∆ varying ∆ with different forwarding algorithms

C. Trade-off between delay and volume of traffic

In the final part of our evaluation, we study whether it
exists an optimal working point that minimises the expected
delay and maximises the volume of messages exchanged.
We borrow the definition of power of the network (which
we denote with W) from traditional queueing theory [24].
Quantity W measures the trade-off between the traffic N∆

carried by the network (function of the message injection rate
µ) and the expected delay E[D∆]. The power is then defined
as W = N∆

D∆
. In traditional queueing systems, the above

trade-off was regulated by contention. In fact, under limited
resources, we could not increase indefinitely the quantity of
messages successfully delivered without affecting the resulting
expected delay (because, e.g., under heavy traffic, packets start
to be discarded from buffers). In our case, we do not have
contention, since we assume that there are no limitations on
buffers and bandwidth. Our knob is instead the duty cycle.
When ∆ approaches 1, delays are as short as possible given
the underlying mobility, but a lot of energy is consumed and
the network lifetime is shorter. If we want to increase network
lifetime, we have to sacrifice the expected delay.

Figure 10 shows how W varies depending on ∆. It can be
clearly seen that W remains practically constant, which implies
that whatever one gains in network lifetime is immediately
lost in expected delay. Thus, under exponential intercontact
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Fig. 10. W varying ∆ in the different forwarding algorithms (µ = 1
600

)

times, there is no optimal choice of ∆ and all working points
are equivalent. When configuring a duty cycling policy, the
operator can thus only maximise one metric at a time. Note,
anyway, that if the total number of messages to be delivered
is of primary concern, at the cost of additional delay, then
reducing the duty cycling is clearly effective.

VIII. CONCLUSION

In this work we have investigated the effects of duty cycling
on intercontact times, delay, and energy consumption in oppor-
tunistic networks. To the best of our knowledge, this is the first
contribution that evaluates the actual effects of duty cycling
on the forwarding opportunities between nodes. To this aim,
we have provided a general formula for the derivation of the
intercontact times under duty cycling, and we have specialised
this formula obtaining a closed-form expression for the case
of exponential intercontact times. Surprisingly enough, under
condition λT ≪ 1 satisfied by most popular contact datasets,
the intercontact times after duty cycling can be approximated
as exponentially distributed with a rate scaled by a factor
1
∆ . Exploiting this result, we have then studied the first two
moments of the delay under duty cycling, showing that these
moments both increase as ∆ becomes smaller. Finally, we
have focused on how the network lifetime is impacted by duty
cycling, highlighting the fact that a larger volume of traffic
is handled by the network when a duty cycling policy is in
place, because the network lifetime is increased even if at the
expense of the delay experienced by messages. In addition,
we have found that it is not possible to derive an optimal duty
cycle value that maximises the network lifetime while at the
same time minimally impacting the expected delay.

As future work, two main different directions can be
pursued. First, we plan to extend the analysis to intercontact
times featuring a distribution different from the exponential,
e.g., the Pareto intercontact times case, which also represents a
popular hypothesis for the intercontact times considered in the
literature [25]. Second, we also plan to evaluate different duty
cycling policies, e.g., some in which the duration of ON and
OFF intervals is not fixed but varies according to a specified
distribution.
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APPENDIX A
PROOFS AND FURTHER RESULTS

Theorem 1 (Distribution of N ): The discrete probability
density of N can be approximated by the following:

P{N = 1} =

∞∑

n1=0

∫ s1

s0

fŜ0
(t0)

∫

In1−t0

fS1(t1)dt1dt0

P{N = 2}=
∞∑

n1=0

∞∑

n2=n1+1

∫ s1

s0

fŜ0
(t0)

∫

Jn1−t0

fS1(t1) ·

·
∫

In2−t0−t1

fS2(t2)dt0dt1dt2

...
P{N = k} =

=

∞∑

n1=0

· · ·
∞∑

nk=nk−1+1

∫ s1

s0

fŜ0
(t0)

∫

t1∈Jn1−t0

fS1(t1) ·

. . .

∫

tk−1∈Jnk−1
−t0−···−tk−2

fSk−1
(tk−1) ·

∫

tk∈Ink
−t0−···−tk−1

fSk
(tk)dtkdtk−1 . . . dt1dt0.

Proof: Let us start with event {N = 1}. As discussed
above, it occurs when the time of the first contact event falls
in an ON interval (Figure 2). Recalling that S1 denotes the
interarrival time between the zero and first contact, we require
that t0 + S1 ∈ [t0, s1] ∪⋃∞

n1=1 In1 , i.e, that t0 + S1 belongs
to any of the ON intervals starting from t0. Forcing a bit the
notation in order to have a compact formula, we define I0 =
(t0, s1], which corresponds to the usable portion of the first
ON interval after t0. From this consideration we can obtain
the following:

P{N = 1|Ŝ0 = t0} =
∞∑

n1=0

P (t0+S1 ∈ In1 ) =
∞∑

n1=0

∫

In1−t0

fS1
(t1)dt1.

Then, applying the law of total probability, we get P{N =
1} =

∫ s1
s0

P{N = 1|Ŝ0 = t0} ∗ fŜ0
(t0)dt0, from which

Equation (3) immediately follows.



Event {N = 2} occurs when the first contact happens
during an OFF period and the second contact during an ON
period (Figure 2). For the first contact to be in an OFF period,
we need that t0+S1 ∈ ⋃∞

n1=0 Jn1 . For the second contact to be
in an ON period we require that t0+S1+S2 ∈ ⋃∞

n2=n1+1 In2 ,
i.e., that the second contact happens in any of the ON periods
after the OFF period in which the first contact has been missed.
Conditioning on t0 we can derive P{N = 2|Ŝ0 = t0} as
follows:

P{N = 2|Ŝ0 = t0} =
∞∑

n1=0

P (t0 + S1 ∈ Jn1)·

· P (t0 + S1 + S2 ∈
∞⋃

n2=n1+1

In2 | t0 + S1 ∈ Jn1 ) =

=
∞∑

n1=0

∫

Jn1−t0

fS1
(t1)

∞∑

n2=n1+1

∫

In2−t0−t1

fS2
(t2)dt1dt2 =

=
∞∑

n1=0

∞∑

n2=n1+1

∫

Jn1−t0

fS1
(t1)

∫

In2−t0−t1

fS2
(t2)dt1dt2.

Then, if we apply the law of total probability, we get that
P{N = 2} =

∫ s1
s0

P{N = 2|Ŝ0 = t0}fŜ0
(t0)dt0, from which

Equation (4) follows.

Let us now consider case {N = k} with k ≥ 3, in
which there are k − 1 consecutive failures (i.e., contact events
happening during an OFF period) before the first success. Two
consecutive undetected contact events can fall in the same OFF
interval (i.e., ni = ni+1), or in two different OFF intervals. If
we neglect the case of more than one undetected contacts in the
same OFF period5, the complexity of the problem significantly
diminish. For this reason, in the following we assume that
this is the case in the scenario under study, and in Section
IV-A we derive the conditions under which this assumption is
reasonable and we show that these conditions are satisfied by
the most popular traces of human contacts. So, assuming that
the probability that two consecutive missed contacts fall into
the same OFF interval is negligible, the probability of event
{N = k} can be obtained reasoning in the following way:

1) the first contact event (undetected) happens at time t0 +
S1 ∈ Jn1 ;

2) assuming S1 = t1, the second contact event (undetected)
happens at time t0 + t1 + S2 ∈ Jn2 , with n2 > n1;

...

3) assuming Sk−2 = tk−2, the (k − 1)-th contact event
(undetected) happens at time t0+t1+· · ·+tk−2+Sk−1 ∈
Jnk−1

, with nk−1 > nk−2;
4) assuming Sk−1 = tk−1, the k-th contact event (detected)

happens at time t0 + t1 + · · · + tk−1 + Sk ∈ Ink
, with

nk > nk−1.

Translating the above into a mathematical formula, following
the same line of reasoning used for cases N = 1 and N = 2,
we obtain Equation (5).

Corollary 1 (N with exponential intercontact times):
When real intercontact times Si are exponential with rate λ,

5Please note that this implies that we also neglect multiple contacts detected
in the same ON interval.

the probability density of N is given by:





P{N = 1} = 1 + e−λτ−1
λτ + eλτ (1−e−λτ )2

λτ(eλT−1

P{N = k} = eλτ (1−e−λτ )2

λτ(1−e−λT )

[
λ(T−τ)
eλT−1

]k−1

, k ≥ 2

Proof: In this proof we show to how solve Theorem 1
when intercontact times feature an exponential distribution.
We use the fact that fSi(t) = λe−λt for the exponential
distribution and the following algebraic relation:

∞∑

n1=0

∞∑

n2=n1+1

· · ·
∞∑

nk−1=nk−2+1

∑

nk=nk−1+1

xnk =
xk−1

(1 − x)k
,

(A1)
that is true for every |x| < 1. We omit the proof for P{N = 1}
and P{N = 2} since it is straightforward to solve them once
substituting into Equations (3)-(4) fSi(t) = λe−λt and fŜ0

(t0)
that we discuss below.

So, let us focus on P{N = k}. P{N = k|Ŝ0 = t0} can
be obtained from Equation (5) as described below:

P{N = k|Ŝ0 = t0} =

=

∞∑

n1=0

· · ·
∞∑

nk=nk−1+1

∫

t1∈Jn1

λe−λ(t1−t0)

∫

t2∈Jn2

λe−λ(t2−t1) . . .

. . .

∫

tk−1∈Jnk−1

λe−λ(tk−1−tk−2)

∫

tk∈Ink

λe−λ(tk−tk−1)dtkdtk−1 . . . dt1

= λk−1(s0 + T − s1)
k−1eλt0

(
e−λs0 − e−λs1

)
∞∑

n1=0

∞∑

n2=n1+1

· · ·
∞∑

nk−1=nk−2+1

∞∑

nk=nk−1+1

e−λnkT

= λk−1(T − τ)k−1eλ(t0−s0)(1 − e−λτ )
e−(k−1)λT

(1 − e−λT )k

= eλ(t0−s0)
1 − e−λτ

1 − e−λT

[
λ(T − τ)

eλT − 1

]k−1

.

In the above derivation we have used Equation (A1)
whith x = e−λT , which can be applied as e−λT is positive
and smaller than 1. In order to derive P{N = k} as∫ s1
s0

fŜ0
(t0)P{N = k|Ŝ0 = t0}dt0, we have to determine the

distribution of Ŝ0. Recall that Ŝ0 describes the arrival time
of the zero event in its ON interval [s0, s1]. Since we are
focusing on exponential intercontact times, the contact process
is a Poisson process, hence the probability of an arrival in an
interval [s0, s1] is uniform over the interval. Thus, we can



easily compute P{N = k} as follows:

P{N = k} =

∫ s1

s0

1

s1 − s0
P{N = k|Ŝ0 = t0}dt0 =

=

∫ s1

s0

1

s1 − s0
eλ(t0−s0)

1 − e−λτ

1 − e−λT

[
λ(T − τ)

eλT − 1

]k−1

dt0 =

= eλτ
(1 − e−λτ )2

λτ(1 − e−λT )

[
λ(T − τ)

eλT − 1

]k−1

Lemma A1 (First two moments of N ): When intercontact
times are exponential, the first two moments of N are given
by the following:

E[N ] = 1 − 1−e−λτ

λτ + eλτ (1−e−λτ )2

λτ(eλT−1)
+

+(T − τ)eλτ (1−e−λτ )2

τ(1−e−λT )
·

·−λ(T−τ)+2eλT−2

(eλT−1−λ(T−τ))2

(A2)

E[N2] = 1 − 1−e−λτ

λτ + eλτ (1−e−λτ )2

λτ(eλT−1) +

+(T − τ)eλτ (1−e−λτ )2

τ(1−e−λT )
·

·λ
2(T−τ)2−3λ(T−τ)(eλT−1)+4(eλT−1)2

(eλT−1−λ(T−τ))3

(A3)

Proof: Using the formula in Equation (6) we can calculate
the first and the second moments of N , using the properties
of the geometrical series. In fact the first moment can be
computed, from standard probability theory, as follows:

E[N ]=

∞∑

k=1

kP{N = k} =

=1 − 1 − e−λτ

λτ
+

eλτ (1 − e−λτ )2

λτ(eλT − 1)

+

∞∑

k=2

k
eλτ (1 − e−λτ )2

λτ(1 − e−λT )

[
λ(T − τ)

eλT − 1

]k−1

.

If we are able to show that
∣∣∣λ(T−τ)
eλT−1

∣∣∣ is smaller than 1 we

can apply identity
∑∞

k=2 kxk−1 = x(2−x)
(x−1)2 , which holds when

|x| < 1. To this aim, we can rewrite λ(T−τ)
eλT−1

as λT (1−∆)
eλT−1

and observe that this quantity is always greater than or equal
to zero. Hence, we can study inequality λT (1−∆)

eλT −1
< 1 and

investigate whether it is satisfied or not. The above can be
rewritten as eλT−1−λT (1−∆)

eλT−1
> 0. The denominator is by

definition greater than or equal to zero, so we can focus
on the enumerator. Function g(y) = ey − y(1 − ∆) − 1
is increasing for y > 0 and such that g(0) = 0. So g(y)
is positive for every positive y, from which follows that
identity

∑∞
k=2 kxk−1 = x(2−x)

(x−1)2 can be applied. After simple
mathematical substitutions we then obtain Equation (A2).

The second moment can be obtained as
∑N

k=1 k2∗P{N =
k}, from which the equation below follows:

E[N2]=

∞∑

k=1

k2P{N = k} =

=1 − 1 − e−λτ

λτ
+

eλτ (1 − e−λτ )2

λτ(eλT − 1)

+

∞∑

k=2

k2 eλτ (1 − e−λτ )2

λτ(1 − e−λT )

[
λ(T − τ)

eλT − 1

]k−1

We have proved above that λ(T−τ)
eλT−1

is positive and less than
1. Exploiting this results, we apply identity

∑∞
k=2 k2xk−1 =

−x(x2−3x+4)
(x−1)3 , holding for every |x| < 1, and we obtain

Equation (A3).

Lemma A2: The first and second moment of S̃ are given
by:

E[S̃]=
1

λ
− 1 − e−λτ

λ2τ
+

eλτ (1 − e−λτ )

λ2τ(eλT − 1)
+

+(T − τ)eλτ
(1 − e−λτ )2

λτ(1 − e−λT )
· −λ(T − τ) + 2eλT − 2

(eλT − 1 − λ(T − τ))
2

(A4)

E[S̃2]=
1

λ2

[
2 − 2(1 − e−λτ )

λτ
+

2eλτ (1 − e−λτ )2

λτ(eλT − 1)
+

+2(T − τ)eλτ
(1 − e−λτ )2

τ(1 − e−λT )
·

·λ(T − τ)[3 + λ(T − τ) − 3eλT ] + 3e2λT − 6eλT + 3

(eλT − 1 − λ(T − τ))
3

]

(A5)

Proof: Exploiting the properties of the random sum of
random variables, it is easy to derive ([26] p. 241) that
E[S̃] = E[N ]E[S] and σ2

S̃
= E[N ]σ2

S + E[S]2σ2
N . For the

exponential random variable S of parameter λ the first two
moments are given by E[S] = 1

λ and E[S2] = 2
λ2 . The

moments of N are given by (A2)-(A3). Substituting these
results into E[S̃] = E[N ]E[S], σ2

S̃
= E[N ]σ2

S + E[S]2σ2
N ,

we obtain Equation (A4).

Lemma 1: When λT ≪ 1, the error E introduced by the
approximation of Corollary 1 approaches zero.

Proof: Assuming that condition λT ≪ 1 holds true, we
can use the Taylor series for the exponential function to obtain
the following:

E(τ, T, λ) =
1 − e−λτ

λτ
− eλτ (1 − e−λτ )2

λτ(λT + o(λT )
+

− eλτ (1 − e−λτ )2(T − τ)[
λT − λ2T 2

2 + o(λ2T 2)
]
τ [λτ + λ2T 2

2 + o(λ2T 2)]

=
1 − e−λτ

λτ
− eλτ (1 − e−λτ )2

λτ(λT + o(λT ))
+

− eλτ (1 − e−λτ )2(T − τ)

τ [λ2Tτ − λ3t2τ
2 + o(λ2T 2)]



Observing that τ = ∆T and again using the Taylor series for
the exponential function, we approximate the errors as below:

E(τ, T, λ)=
λT∆ + o(T∆)

λT∆
+

− (1 + λT∆ + o(λT ))(λT∆ + o(λT ))2

λ2T 2∆ + o(λ2T 2)
+

− (1 + λT∆ + o(λT ))(λT∆ + o(λT ))2T (1 − ∆)

T∆[λ2T 2 + o(λ2T 2)]
=

=1 +
λ2T 2∆2 − o(λ2T 2)

λ2T 2∆ + o(λ2T 2)
+

− [λ2T 2∆2 + o(λ2T 2)](1 − ∆)

∆[λ2T 2∆ + o(λ2T 2)]
+

=1 + ∆ − ∆2(1 − ∆)

∆2
+ o(1).

From the above, we have that the error goes to 0 when λT
is much smaller than 1.

Theorem 2: When λT ≪ 1, the detected intercontact times
S̃ follow approximately an exponential distribution with rate
λ∆.

Proof: We are going to extend here the proof of Theorem
2 given in the body of the paper, analysing the domains of
the MGFs that we previously neglected. In fact, to prove that
S̃ can be approximated by an exponential distribution with
parameter λ∆, we should demonstrate that for λ∆ −→ 0 both
the expressions of the MGFs (i.e. what we proved in the body
of the paper) and the domains (i.e what we want to study here)
are identical.
Observing the equation of MN (s) of the proof in the body of
the paper, we see that MN(s) is the result of a power series of
functions, and, for this reason, it is defined only in the domain
D given by the following:

D =

{
s ∈ R :

∣∣∣∣
sλT (1 − ∆)

eλT − 1

∣∣∣∣ < 1

}
=

=

{
s ∈ R : |s| <

eλT − 1

λT (1 − ∆)

}
.

As MS̃(s) = MN(MS(s)) = MN

(
λ

λ−s

)
, we have that the

MGF of S̃ is defined for all λ
λ−s ∈ D. Observing that λ

λ−s is
a positive number (because s < λ), MS̃ is defined for all s
such that:

λ

λ − s
<

eλT − 1

λT (1 − ∆)
, ⇐⇒ s < λ − λ2T (1 − ∆)

eλT − 1
. (A6)

When λT ≪ 1, the relation (A6) tells us that the domain of
MS̃ tends to the domain:

{s ∈ R : s < λT },

that is the domain of an exponential random variable with rate
λ∆. This completes the proof.

Theorem 3: The volume N∆ of messages delivered by the
system under duty cycling ∆ is given by:

N∆ =
µL

∆
− µE[D∆] ·

·
[
1 − 1

2
e

L
E[D∆]∆

(
e
−
(
1+

√
c2−1

c2+1

)

+ e
−
√

c2−1

c2+1

)]
,

where c is the coefficient of variation of the delay.

Proof: Every message generated in the network experi-
ence a delay that, as we have already seen, has a coefficient
of variation that is bigger than 1. For this reason the delay of
every message can be approximated with an hyper-exponential
random variable with parameters given by the following:

{
p1 = 1

2

(
1 +

√
c2−1
c2+1

)

λ1 = 2p1

E[D∆]

{
p2 = 1 − p1
λ2 = 2p2

E[D∆]
(A7)

Let us denote with Tg the random variable characterising
message generation time. If a message is generated at time
Tg = 0, it is delivered if its delay is less than L

∆ . When the
message is generated at the time Tg = t > 0, it arrives at the
destination if the delay is less than the remaining time L

∆ − t.
For this reason its probability to be delivered is given by

P
{
Tg + D∆≤ L

∆

∣∣∣∣∣Tg = t
}

=

= 1 −
(
p1e

−λ1(
L
∆−t) + p2e

−λ2(
L
∆−t)

)
,

exploiting the CCDF of the hyper-exponential distribution.
As in a Poisson process of rate µ, in a time interval dt
are generated µdt messages, the total number of messages
delivered in the network lifetime L

∆ is given by:

N∆=

∫ L
∆

0

P

{
Tg + D∆ ≤ L

∆

∣∣∣∣∣Tg = t

}
µ dt

=

∫ L
∆

0

µ
[
1 −

(
p1e

−λ1(
L
∆−t) + p2e

−λ2(
L
∆−t)

)]
dt

=
µL

∆
− µ

[
p1
λ1

(
1 − e−λ1

L
∆

)
+

p2
λ2

(
1 − e−λ2

L
∆

)]

=
µL

∆
− µ

[
E[D∆] − E[D∆]

2

(
e−λ1

L
∆ + e−λ2

L
∆

)]
,

(A8)

where we used that p1

λ1
= p2

λ2
= E[D∆]

2 from Equation (A7).
This concludes the proof.

A. Validation: pairwise analysis

In this section we discuss whether the condition λT ≪ 1 at
the basis of our approximation holds true for the pairs of nodes
in the datasets that we have studied in Section V-A, where,
due to lack of space, we have only performed an average
study. In Figure 11 we have plotted the CDF of quantity λT
across all pairs in the datasets. Please note that we have only
considered contacts between internal devices (i.e., only those
that were explicitly taking part to the experiments). For the
Reality Mining datasets, we have neglected contacts during
the summer break, as done in previous studies [21]. From
Figure 11, it is clear that the results that we have obtained for
the average case are able to accurately represent what happens
at the level of individual pairs. For the RollerNet and Reality
Mining experiments, the vast majority (> 90%) of pairs satisfy
the condition for the approximation. In Infocom06 there is still
a large fraction of pairs satisfying the approximation, while for
Infocom05 the approximation seems to hold for ∼ 60%−70%
of pairs. These pairwise results confirm what we have derived
in Section V-A.
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Abstract—Most disruption-tolerant networking protocols avail-
able have focused on mere contact and intercontact character-
istics to make forwarding decisions. We propose to relax such
a simplistic approach and include multi-hop opportunities by
annexing a node’s vicinity to its network vision. We investigate
how the vicinity of a node evolves through time and whether such
information is useful when routing data. By analyzing a modified
version of the pure WAIT forwarding strategy, we observe a clear
tradeoff between routing performance and cost for monitoring
the neighborhood. By observing a vicinity-aware WAIT strategy,
we emphasize how the pure WAIT misses interesting end-to-end
transmission opportunities through nearby nodes. Our analyses
also suggest that limiting a node’s neighborhood view to four
hops is enough to improve forwarding efficiency while keeping
control overhead low.

Index Terms—Opportunistic networks, disruption-tolerant net-
works, contact, intercontact, vicinity.

I. INTRODUCTION

As our urban society lives on, the more technologically
nomadic its citizens get. During their daily commuting, peo-
ple carry electronic devices like smartphones, portable game
stations, or laptops. Previsions show how there will likely be
more than 1 billion smartphones in 2016 [1]. Common devices
embed wireless interfaces and important storage abilities trav-
eling with their owners. The penetration of such technology
on our daily life leads to new and increased mobile usages
as well as new potential networking paradigm like disruption-
tolerant networking (DTN) also known as opportunistic net-
working [2]. Devices like smartphones are ideal actors of
DTN, they leverage people’s mobility to carry information
toward new places or new persons without requiring any help
from an infrastructure, therefore avoiding the payment of a
subscription to any provider.

Opportunistic networks rely on user mobility to store and
forward information. Unlike usual wired or MANET networks,
nodes in opportunistic networks inherently lack global network
knowledge, as they are only aware of what they learned
via encounters (aka contacts) [2]. Routing in DTN is thus
challenging by nature. There are two solutions that bound the
performance of routing strategies in such networks. On the one
hand, the most efficient solution in terms of communication
costs consists in waiting until the source meets the destination
to transfer the message (at the cost of longer delays) [3]. On
the other hand, full epidemic forwarding (flooding) yields the
shortest delay but generates the costliest traffic overhead [4]. In
between, other solutions such as PRoPHET or Spray-and-Wait

employ a wiser strategy [5], [6]. Nodes choose their next hops
based on probabilistic likeliness of meeting the destination or
through distributed flooding.

All the solutions listed above share a common character-
istic – they consider that whenever nodes are not in contact
they are in intercontact. As we will see later on, this leads
to suboptimal results as nodes are likely to miss transfer
opportunities when the destination of a message is nearby
but not in direct contact. In this paper, we provide elements
toward the adoption of a node’s close vicinity as a more
appropriate mean to help deliver messages in DTN. The idea is
to leverage short-length, multi-hop paths whenever possible to
achieve immediate message delivery while keeping signaling
overhead low. The motivation behind our work is that nodes
that show interest to communicate are likely to occupy similar
geographic areas, even if not within direct communication
range [7]. We provide the following contributions:

• We propose and evaluate the interest of extending vicinity
knowledge beyond one hop. To this end, we analyze both
real-world and synthetic mobility traces.

• We show the perks of using short-length multi-hop paths
in the WAIT protocol and validate the strategy of annex-
ing a node’s vicinity as a routing asset.

• We investigate if there is any empirical tradeoff in terms
of vicinity knowledge that allows better waiting times
while constraining monitoring costs.

In the remainder of this paper, we first clarify the problem in
Section II. Then, we define the notion of vicinity in DTN and
enunciate the metrics used for our evaluation in Section III.
We analyze the gains of vicinity annexation and its optimal
setting in Section IV. In Section V, we list how our work
relates to previous analyses and finally, we conclude the paper
in Section VI.

II. CONTACT-BASED VS. DEEPER VICINITY VISION

Currently, DTN protocols deduce their transmission oppor-
tunities using contact observations. We consider the traditional
definition that a contact happens between two nodes whenever
they are within each other’s wireless range.

A. The WAIT protocol

In the WAIT protocol, the source stores the message until
it meets the destination. The main criticism on this approach,
although its minimal communication cost, is that the source
may wait for a quite long time before being able to deliver the
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A

B

(a) t0

A

B

(b) t1

Fig. 1. A motivating example where A wants to send a message to B.
Fig. 1(a): at t0, nodes A and B are at a 2-hop distance but not in contact.
Fig. 1(b): at t1, B moves away without ever coming in contact with A.
A missed the opportunity to send its message while B was nearby. In this
situation, vicinity annexation could help A. If A had known B was so close,
it could have used the existing end-to-end path.

message or, worst, to completely fail delivering it. As we will
see in Section IV, we observe reduction of delivery delays
of up to 80% in average by extending of only one hop the
vicinity knowledge; in some cases, delays can be reduced by
several hours. This means that a simple variation of the WAIT
protocol can be now applied in contexts that could not be
considered previously. The WAIT protocol is also known as
Direct Transmission.

B. The pros and cons of monitoring contacts only

In a node-centric scheme, gathering contact information
comes naturally. Any device can sense its surrounding and feel
whenever other nodes are around through appropriate probing
tactics. The application of contact knowledge in the WAIT
protocol is straightforward: the source delivers a content to
the destination when they get in contact with each other. In
practice, a node may be collocated with many other nodes but
it is not always or ever in direct contact with some of them.
An example is illustrated in Fig. 1. At a given time t0, A is at
a 2-hop distance from B. Then at time t1, B decides to leave
and breaks any existing contemporaneous path from A to B.
Let us consider that A knew the network topology at t0. If
A had known the path to destination B at t0, it could have
considered sending the message to B using multiple hops (in
this example, only two), instead of waiting until meeting B
(or trying some other non-deterministic strategy), which might
take forever.

PRoPHET uses delivery predictabilities (preds) to evaluate
the utility of using one node as a relay toward the destination.
The protocol updates these preds only when the node comes
in contact with other nodes and ages them as long as they
move away (even if nearby). PRoPHET also uses a transitivity
property to update its preds but mellows its impact via a β
factor that can be quite low. Moreover, it does not give any
freshness insights on this “transitive proximity”. Concerning
Spray-and-Wait, the distributed flooding approach sends L
copies of a message to L different nodes, in somehow a “first
in contact first served” fashion. As in the case of PRoPHET,
Spray-and-Wait only uses knowledge about nodes that get

A

(a) 1-vicinity

A

(b) 2-vicinity

Fig. 2. Node A’s κ-vicinity illustration, here, κ = {1, 2}. In Fig. 2(a), we
represented node A’s 1-vicinity. When κ = 1, A only knows nodes in contact
with him. In Fig. 2(b), we have node A’s 2-vicinity (κ = 2). A knows all
nodes within a 2-hop distance and so on. A has an end-to-end path, of at
most length κ, to any member of its κ-vicinity.

in direct contact, without considering vicinity information
beyond one hop that could be helpful.

C. Why not taking a look around?

DTN protocols rely on contacts as they are easy to gather,
while extended neighborhood knowledge is more costly. Due
to the DTN nature, offering nodes a consistent and full knowl-
edge of the network topology is unrealistic. An alternative
would be to make nodes have information on the connected
component they are in. This would allow each node knowing
with whom it has a contemporaneous path. However, as nodes
do not know a priori the size of the connected component, it
becomes difficult to limit the control overhead. Still, by limit-
ing the scope of a node vision (to nodes up to a few hops, say
two or three), we also limit the signaling overhead. Localized
vicinity knowledge can be an important asset for DTN nodes.
However, the main challenge in providing extended vicinity
knowledge to nodes is how to find a good balance between
efficiency and probing costs. In fact, we can wonder how far
a node should probe its vicinity for surrounding knowledge.
The more information about the network, the better decisions
we can make but the higher the costs induced.

III. WAITING LESS WITH VICINITY KNOWLEDGE

We evaluate how the vicinity knowledge can help improve
the responsiveness of a routing scheme for DTN. In this paper,
we consider the particular case of the WAIT protocol because
of its specific properties: upper bound in terms of delay and
lower bound in terms of signaling overhead. We leave the
evaluation with other protocols for future work.

A. The κ-vicinity

We define how nodes see their vicinity with the κ-vicinity.
We assume that nodes monitor the presence of other nodes up
to a distance of κ hops [7]:

Definition 1. κ-vicinity. The κ-vicinity of a node A, noted κA,
is the set of nodes with a contemporaneous end-to-end path of
at most κ hops to A. All other nodes are considered outside
κA.

In Fig. 2, we show an example of node A’s κ-vicinity for
κ = 1 and κ = 2. The traditional definition of a contact
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corresponds to the case of κ = 1. Now, whenever node A
wants to send a message to node B, A scans its neighborhood
up to κ hops. If B arrives within A’s κ-vicinity, A can send the
message to B via a multi-hop contemporaneous path, avoiding
unnecessary waiting periods.

B. The WAIT protocol with extended knowledge

To observe the impact of vicinity awareness, we investigate
the effects of neighborhood knowledge in the WAIT protocol
by focusing on the waiting parameter – the time a node waits
before being able to send a message straight to the destination.
The secret, which is application-dependent, is how to balance
delay and signaling cost. Recall that in the case of the WAIT
protocol, the waiting time only stops when the source meets
the destination (no intermediate relays), which is the worst
case in terms of delay. The waiting time has a particular
meaning as it is related to the user experience – any user
notices the duration before its message gets delivered (if it
gets delivered at all) and judges a service accordingly. Instead
of analyzing delivery percentage, we chose to focus on wait-
ing delays which is a direct representation of neighborhood
observation raw advantages.

C. Costs

To take into account the costs of multi-hop messaging and
neighborhood monitoring, we identified two main sources of
overhead. We use the message as the unit of comparison.

Data Overhead (Do): represents the total cost to deliver a
message. Clearly, any protocol with extended neighborhood
knowledge is costlier than its simple version. Whenever the
source switches to multi-hop transmission mode, the message
follows a contemporaneous end-to-end path to the destination
and has to sustain several store and forward processes. The
“extra” cost of such a communication, in terms of additional
messages sent, is the number n of hops between A and B
minus one:

Do = n− 1. (1)

Neighborhood Knowledge Overhead (No): represents the
signaling overhead to gather information about the neighbor-
hood. Node A broadcasts a discovery message (DM) to its
contacts with a TTL set to κ. All nodes receiving the DM

rebroadcast this message with a TTL set to κ − 1, and so
on. We assume that each transmission is acknowledged (see
Fig. 3 for a detailed example). This leads to a cost of:

No = ||κA||+ ||(κ− 1)A||+ 1, (2)

where || · || stands for cardinality. No does not depend on the
path length that DMs have to cross. With little aggregation,
No only depends on the number of neighbors in a node’s
connected component.

1

0 0

0 1

1 0

1 1

1 1

1 1

2 1

2
A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

t2 - 3 messagest1 - 1 message t3 - 4 messages t4 - 6 messages

Fig. 3. Neighborhood knowledge discovery technique. At t1, A ignites the
discovery by broadcasting a message with a TTL set to 2. Its contacts, B
and C receive the message. At t2, they broadcast a message with a TTL set
to 2− 1 = 1. At t3, D received discovery messages with a TTL of 1, then
broadcasts its reply. At t4, B and C aggregate all replies they received and
send their knowledge to A. In the end, we obtain 6 sent messages.

IV. PERFORMANCE ANALYSIS

To evaluate the performance gains enabled by neighborhood
awareness, we simulate the WAIT protocol for different values
of κ (recall that κ = 1 corresponds to the basic WAIT
protocol) using various mobility data.

A. Datasets

We performed our study with a wide range of datasets
both synthetic and real-life based. Real-life experiments all
involved devices (iMotes, T-Motes) carried by participants.
These Motes logged the presence of other devices within a
10-meter range unless specified. Researchers derive contact
intervals from these presence logs. We chose the following
scenari captured during various experiments. As all these
experiments are available to the community, we also provide
the downloading links.

• Infocom05 measurement was held during the Infocom
2005 conference [8], [9]. Researchers gave iMotes to 41
attendees. We study a 12-hour interval with the highest
activity. Each iMote probes its environment every 120
seconds. Infocom05 represents conference environment.

• Rollernet had 62 participants during a 3-hour dominical
rollerblading tour in Paris [10], [11]. Motes probed their
surrounding every 30 seconds. This dataset illustrates a
dynamic sport event.

• Unimi involved 48 people among the students, faculty
members, and staff from the University of Milano for two
weeks in 2008 [12], [13]. Devices probed their surround-
ings every second. Unimi provides a longer academic and
working situation.

We also generated scenari from two well-known mobility
models:

• Random Trip is an improved Random-Waypoint mobil-
ity model [14], [15]. We generated the patterns of 20
nodes on a surface of 50 x 60 m2 with speed between 0
and 7 m/s.

• Community is a mobility model reflecting human ten-
dencies to aggregate in specific locations [16], [17]. We
created 50 nodes with a 10m wireless range on a 1,500
x 2,500 m2 plane during 9 hours.
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TABLE I
AVERAGE NUMBER OF NEIGHBORS IN A NODE’S κ-VICINITY (WHOLE

DATASET DURATION).

κ
Dataset 1 2 3 4 5 6 7 8+

Community 2.0 4.0 4.6 4.7 4.7 4.7 4.7 4.7
RandomTrip 2.0 3.2 4.7 5.7 6.3 6.7 6.9 7.1
Infocom05 1.5 3.8 5.3 6.0 6.4 6.4 6.4 6.4
Rollernet 1.4 3.2 4.7 5.7 6.3 6.7 6.9 7.0

Unimi 0.3 0.7 0.9 1.1 1.1 1.2 1.2 1.2

TABLE II
NEIGHBORS κ-DISTRIBUTION IN A NODE’S κ-VICINITY.

κ
Dataset 1 2 3 4 5 6 7 8+

Community 2.4 2.3 0.7 0.1 0.0 0.0 0.0 0.0
RandomTrip 2.3 2.3 2.0 1.4 0.8 0.4 0.2 0.1
Infocom05 3.0 4.4 3.0 1.4 0.7 0.2 0.1 0.0
Rollernet 2.0 2.5 2.1 1.5 0.9 0.6 0.3 0.2

Unimi 1.5 1.0 0.7 0.4 0.2 0.1 0.0 0.0

B. Threshold Optimization

Neighborhood monitoring is an expensive process in oppor-
tunistic networks. To lower its costs, we investigate the optimal
κ threshold. First, we consider the amount of people needed
in the vicinity then we observe the difference between a static
and a dynamic κ setting.

For each node, we analyze the average number of neighbors
in their κ-vicinity. Table I shows this value for the whole
dataset duration. We understand that above a certain threshold
κt, a node’s κ-vicinity does not expend much (except for the
RandomTrip dataset, which has a random movement pattern
and a high density). In Community or Infocom05, a node’s κ-
vicinity does not grow significantly anymore above κt = 4.
The same phenomenon appears with Unimi but with lower
figures. The Unimi dataset is longer (two weeks) than other
datasets. As we chose to analyze the average number of
neighbors for the whole experiment duration, Unimi’s length
lowered the expected average number of nodes.

In the next table, we focused on instants where nodes had
at least one close neighbor. For each dataset, we analyzed
all nodes’ inner κ-vicinity distribution. Whenever a node
had at least one neighbor, we observed the average number
of neighbors located at a κ-hop distance (see Table II). In
Infocom05, we see that on average within a non void κ-
vicinity, a node could find 3.0 nodes in contact, 4.4 at 2
hops, 3.0 at 3 hop, 1.4 at 4 hops etc. For Community and
Unimi, the number of nodes at κ > 2 falls below 1. For
RandomTrip, Rollernet and Infocom05, the fall occurs after
κ = 4. Above the threshold κt = 4, there will rarely be
nodes at higher distances. Moreover, these distributions are
linked to each datasets average diameter. All datasets average
distributions are concentrated on shorter distance with κ ≤ 4.
For instance, Community does not have components larger
than 4-hop distance. Unimi has components of at most 6-
hop length. But within Unimi’s components, most neighbors

contact
κ = 2
κ = 3
κ = 4
κ = 5
κ = 6
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Fig. 4. Averaged waiting times according to the threshold κ. For all traces,
there is a clear improvement between the first and second bar (contact only
vs. 2-vicinity). Being aware of a node’s κ-vicinity can lead to divide waiting
times by 4 like in Community. The higher the κ, the better the waiting delays,
yet, above κ > 4, gains become negligible. Note that, for the Unimi* dataset
we focused on its top values. The average waiting time in contact is 18,232
seconds while in the 2-vicinity, it is 17,792 seconds. These high values come
from the dataset length (two weeks).

appear in contact or at a 2-hop distance. The κt represents
a high enough threshold so as to capture most of a node’s
surroundings. As a result, one would conclude that setting up
a 4-vicinity monitoring for each node is optimal.

C. Routing Effects

1) Loss & Delays: For each mobility trace and each pair of
nodes, we randomly generated 10 messages at different time
instants. We chose to generate sparse messages for waiting
times to better reflect the impact of neighborhood monitoring.
The most symptomatic situation arises when a pair of nodes
never come into contact, but once and a while they belong to
the same connected component. In this situation, the WAIT
protocol drops the message whereas the neighborhood-aware
variant can manage to forward it correctly.

As scarce as this situation may sound, it happens for
10% of pair of nodes in Infocom05, 12% of Unimi nodes,
53% in Community, and around 55% of Rollernet nodes. If
these nodes try to send a message using the WAIT protocol,
they will simply fail. These fractions of nodes have infinite
waiting delays when WAIT is in use. Otherwise, with the
neighborhood-friendly version, they manage to deliver mes-
sages with bounded waiting times.

For these nodes with bounded waiting delays, we analyze
to which extent neighborhood knowledge helps lower their
waiting times. In Fig. 4, we show the averaged pairwise
waiting times for each dataset. Each bar represents the average
waiting delay we obtain with κ-vicinity probing. For every
dataset, between the first and second bars, we notice significant
reduction in the waiting times: 40% in Infocom05 and Roller-
net, 57% in RandomTrip, and around 80% in Community.
The Unimi dataset stands out because of its time scale. The
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Fig. 5. Neighborhood Knowledge Overhead (No) in terms of message sent by
the discovery technique Reg for a node in the Infocom05 dataset. On average,
probing κ-vicinity with κ > 4 costs as much as probing the 4-vicinity. This
version of neighborhood probing is very expensive. Note the logscale on the
y-axis.

experiment lasting two weeks, the random message generation
process may choose values during weekends or nights. Even
though, the relative difference between the first and second
bar is more limited, the time reduction is still present between
the first two bars.

For all datasets we observe that, although we keep reducing
the waiting delays, the gains for κ > 4 are much smaller. This
corroborates our first feeling that localized knowledge should
be enough and suggests that we can, in practice, keep κ small.

2) Overheads: Supporting vicinity knowledge monitoring
does not come for free. Any node needs to probe its vicinity
and create a flow of messages around.

Impact of neighborhood knowledge overhead. There are
many strategies for connected component gathering, from link
state-like solutions to flooding techniques. For our study, we
chose to compare two naive behaviors:

• Nodes keep monitoring their κ-vicinity at regular time
intervals (called Reg hereafter).

• Nodes monitor their κ-vicinity when they have a message
to send and stop when it expires (called OnD for “On
Demand”).

With Reg probing every 30 seconds, we quantified the
volume of generated messages for different values of κ.
Monitoring only contacts induces fewer overheads than any
deeper neighborhood monitoring. For κ = {2, 3}, we have
larger volumes of No. Beyond κ = 4, there are no noticeable
differences for No. Overall behaviors are quite alike and
depend on the surrounding density.

In Fig. 6, we plot No of the same source node as before.
This time, we use the OnD method for neighborhood analysis.
The reason we have noticeable jumps in all curves is, when the
destination comes into the source’s κ-vicinity, this latter stops
monitoring its surroundings. Contact monitoring drops all but
one message and is only plotted for the reader’s information.
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Fig. 6. Neighborhood Knowledge Overhead (No) using OnD for a pair
of node in Infocom05. Contact monitoring drops 9/10th of messages and
keeps monitoring its contacts without being able to deliver any messages.
For 7 delivered messages, sensing 3-vicinity (or beyond) ends up cheaper
than observing 2-vicinity. κ ≥ 3 leads to shorter waiting delays and shorter
probing periods than with 2-vicinity. Note the logscale on the y-axis.

As a result, the OnD technique appears more efficient than
the naive Reg. In Fig. 6, we see how No evolves with time.
With a simple probing technique OnD, we manage to constrain
message overheads and deliver more messages than with the
WAIT protocol. Also, an interesting result is how, for the same
number of delivered messages (7), probing the 3-vicinity and
beyond gives better results than probing only the 2-vicinity in
terms of No. The faster the source finds the destination, the
shorter the waiting delay and the lower the No.

Impact of data overhead. No seems to be the most expensive
in terms of messages sent, yet, we also have to consider
Do (i.e., the number of messages over an end-to-end path).
Do adds an insignificant number of messages to No. It is
important to underline that having a large Do (i.e., a long path
between the sender and the destination) can lead to undelivered
messages. This is why one would prefer smaller κ.

V. RELATED AND FUTURE WORK

Concerning DTNs, researchers have found various ways to
leverage a node’s neighborhood. Some techniques choose to
use the social behavior of the participants. As in a city people
tend to cluster into communities around different points of
interests, Ött et al. presented a protocol leveraging end-to-end
and multi-hop DTN paths [18]. End-to-end paths occur among
connected components whereas DTN ones happen between
these temporary components. Sarafijanovic-Djukic et al. made
a similar observation in the VANET environment [19]. Later,
Heimlicher and Salamatian laid their study over the ground-
work that mobile wireless networks tend to have connected
crowds [20]. The main punch line for all these studies is: for
each node, there are immediate neighborhood structures to use.

Other analyses preferred another point of view towards the
vicinity in DTN. Instead of considering a node’s instantaneous
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vicinity, they considered a node’s “reachable” vicinity in terms
of nodes we can reach during a given time window. Chain-
treau et al. analyzed spatio-temporal clusters diameter in a
network [21]. Tang et al. focused on the nature of these spatio-
temporal paths to better understand how to use them [22].
Whitbeck et al. proposed an interesting way to capture a
node’s reachable vicinity through a new graph type [23].

In our work, the κ-vicinity reflects the existing topology and
uses it to lower transmission delays. The κ-vicinity leverages
immediate neighborhood structure further than techniques
mentioned in the first paragraph and considers reachability in
a node’s connected component. We do no wait for potential
contacts appearing later, we use existing links beyond mere
contacts. As an additional example of use, in their latest paper
Diana et al. applied a similar vicinity notion to satellite com-
munications [24]. By leveraging neighboring stations, their
proposal allowed valuable routing performance gains.

In Section IV-B, the recommended threshold of κ = 4 is
static. Deploying a strategy with a dynamic κ threshold may
be another alternative. As seen in Section IV-C, adapting your
vicinity vision according to your needs allows considerable
overhead gains. Determining the accurate policy for vicinity
sensing may be linked to applications needs as well as per-
formance requirements. As a future work, we would like to
investigate the relationship between vicinity probing policies
and local densities to provide

VI. CONCLUSION

In this paper, we examine the impact of vicinity awareness
on the waiting time in a variation of the pure WAIT protocol.
Most DTN techniques only focus on sensing direct contacts
and do not inquire about their nearby neighbors. This strategy
is the most straightforward and rational. However, we cannot
deny the sociological nature of DTNs. People do not wander
randomly in a city. They gather around specific persons
or locations. To our opinion, ignoring a node’s immediate
neighborhood results in a loss of useful information.

Our findings show that neighborhood probing significantly
improves performances of the WAIT protocol in terms of
waiting delays. When delays used to be infinite, they are now
bounded. When delays were high, they are now lowered by
a factor up to four in our scenarios. Yet, neighborhood mon-
itoring ignites messaging overhead. But, by limiting a node’s
vicinity knowledge to a threshold κ of four is an optimal
setting. We constrain costs and still enhance performance.
According to our observations, we have now enough moti-
vation to consider potential performance gains that vicinity
knowledge could bring to more elaborated DTN schemes.
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Abstract—When studying and designing protocols for mobile
opportunistic networks, most works consider only direct con-
tact patterns between mobile nodes. Tracking these contacts
is important for end-to-end communications but relying only
on this kind of information provides a limited view about
transmission possibilities. Mobile users are often in intercontact,
but still separated by only a few hops, which translate into
effective communication opportunities between nodes. In this
paper, we focus on such a type of communication opportunities
and investigate to what extent they can be predicted. Using real-
world datasets, we provide evidences about the predictable nature
of nodes’ proximity and evaluate the benefits of these results
compared to direct contact predictions.

Index Terms—Opportunistic networks, intermittent connec-
tions, support vector machine, link prediction.

I. INTRODUCTION

The delay-tolerant network (DTN) paradigm has developed
over the last few years [1]. Its growth comes from the de-
mocratization of recent mobile technologies like smartphones,
laptops, tablets, or game stations. These devices allow each
person to carry wireless technologies and enables them to
collect and disseminate data on the go. During the day, people
encounter each other at random locations in the street, the
public transportation system or at work. By coming close to
one another, these persons are able to transmit information to
each other via short range wireless technologies like Wi-Fi
Direct or Bluetooth.

The design of efficient communication protocols in DTNs
depends in great part on the capacity to understand and
predict human mobility patterns. Thus, over the last years,
several studies have revealed important insights about contact
durations between mobile users [2], the periodicity of human
encounters [3], or the network structures created by human
meeting patterns [4]. Uncovering these mobility patterns can
then be used to design measures that facilitate the prediction of
contacts between nodes. This includes the use of frequency of
contacts to identify similarities in mobility characteristics [5],
or in finding strongly-connected mobile users that could serve
as message carriers [6]. While these metrics are used as good
heuristics to the contact prediction problem, they provide only
a limited view on the future contact opportunities. A more
advantageous but laborious approach to this problem is to
predict the contact patterns.

Recent studies have addressed the problem of contact
prediction – predict if two nodes are going to be in direct
transmission range – and have revealed that, under the right
prediction method and predictive features, contacts between
mobile users are to a certain extent predictable [7]. This result
is valuable as it allows one to predict the evolution of the
network of human interactions that can be used to design more
effective DTN communication protocols.

But contacts between nodes are not the only type of
relationship between mobile users. Often, users may find
themselves not in direct transmission range but still in the
nearby vicinity. Thus, to have a broader view on the available
communication opportunities, the extended notion of contact,
namely κ-contact, has recently been proposed [8]. Previous
analyses showed that considering only contacts between nodes
ends up in a biased suboptimal network understanding while
studying κ-contacts provides a more complete understanding
on the available end-to-end communication opportunities.

In this work, we study the predictability of extended contact
opportunities in DTNs. Using data from three human-based
contact traces, we show that κ-contact opportunities are more
predictable than direct contact relationships. To measure the
possible impact of this finding in a real-world application, we
propose an experimental setting that supports the idea that
κ-contact prediction has an interesting potential usage. Our
contributions in this paper can be summarized as follows:

• We provide insights on the κ-contacts relationships be-
tween mobile nodes and show that considering only
direct contacts covers a limited part of the end-to-end
transmission possibilities. We reveal the instability of
periods of time nodes stay at the same distance, and that
κ-contact intervals display better predictability character-
istics: intervals frequency and length.

• Using a supervised prediction framework, we study the
predictive nature of κ-contacts and compare it with the
traditional case of predicting contacts between nodes. Our
results indicate that, in highly dynamic mobile settings
(e.g. rollerblading scenario), predicting that nodes will
remain at a distance of at most two hops from one
another, can attain twice the performance of a direct
contact prediction.

• Through simulations, we evaluate the impact of κ-contact
prediction in a service that would benefit from predicting
contacts between mobile users. The experimental results978-1-4799-4937-3/14/$31.00 c©2014 IEEE
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Fig. 1. Sig09 example: current vision versus vicinity awareness.
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Fig. 2. Sig09 end-to-end transmission opportunities.

show that there is a higher potential on relying on κ-
contact prediction compared to the traditional contact
case.

The remainder of this paper is structured as follows: Sec-
tion II details the κ-vicinity notion as well as κ-contact and
the datasets used in our study. Sections III exposes interesting
facts about κ-contacts relationships while Section IV describes
the prediction framework and reports the prediction perfor-
mance. Finally, we link our work to the existing literature in
Section VI and conclude our study in Section VII.

II. VICINITY AND DATASETS

A. Is contact enough?

Current DTN approaches only consider network knowledge
coming from nodes in contact. While this approach may be
simple, it has proven to be efficient in making decisions to
forward data in DTNs. However, we realize that there is more
at hand than simple contact information. In Fig. 1, we repre-
sent some interesting facts about two nodes from Sig09 dataset
(see Section II-C for more details on this dataset).

In Fig. 1(a), we plot the proportion of time nodes spend
in contact and in intercontact (not in contact) according to
the traditional approach. They stay around 6% of the time
in contact and the remaining 94% in intercontact. However,
when we observe the same situation under a vicinity-aware
point of view (see Fig. 1(b)), we see that these nodes stay 6%

i i

1-vicinity 2-vicinity

Fig. 3. Example of κ-vicinity. The 1-vicinity consists in only node i’s contacts
(1-hop distance). The 2-vicinity consists in all i neighbor’s whose shortest
distance is inferior to 2 hops.

of their time in contact but they also remain at a 2-hop distance
around 20% of the time and at a 3-hop distance around 10%
of the time. The time that the nodes spend without any end-
to-end path linking them (∞) is only 57% of the experiment
duration; far below the 94% intercontact time illustrated in
Fig. 1(a). Considering only the time spent at a 2-hop distance
improves our understanding of the duration that the two nodes
are linked by an end-to-end path by a factor of 3.

At a network-wide level, we observe that contacts also rep-
resent a minor part of end-to-end transmission opportunities.
In Fig. 2, we represent the number of connected pairs by their
shortest distances for the beginning of the Sig09 dataset. The
bottom layer indicates the number of nodes that are in contact,
the yellow layer shows nodes connected by 2-hop paths and so
on. It becomes clear that most end-to-end opportunities come
from 2-hop paths and not from contacts. Therefore, ignoring
such opportunities results in a waste of connectivity assets.

B. κ-vicinity, κ-contact, and κ-intercontact

To characterize a vicinity in DTN, we use the concept of
κ-vicinity [9]. We discriminate a node i’s vicinity according to
the number of hops between i and its surrounding neighbors.
Note that in our definition, we assume that connectivity is
bidirectional, as a result κ-vicinity relationships are symmetric.

Definition 1. κ-vicinity. The κ-vicinity Vi
κ of node i is the set

of nodes with shortest paths of length at most κ hops from i.

Clearly, Vi
κ−1 ⊂ Vi

κ. In Fig. 3, we illustrate the 1-vicinity
and 2-vicinity for node i. The κ-vicinity’s relevancy comes
from the proximity of nodes. The shortest distance is one of
the easiest characteristics to gather in opportunistic networks.
We need to extend the notion of contact and intercontact to the
κ-vicinity as from now on, they represent our point of view
in the network.

Definition 2. κ-contact. Two nodes are in κ-contact when
they dwell within each other’s κ-vicinity, with κ ∈ N∗. More
formally, two nodes i and j are in κ-contact when {i ∈ Vj

κ} ≡
{j ∈ Vi

κ}. In other words, a contemporaneous path of length
at most κ hops links i and j. Note that, 1-contact represents
mere contact.

Definition 3. κ-intercontact. Two nodes are in κ-intercontact
when they do not belong to each other’s κ-vicinity (there is
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TABLE I
DATASETS CHARACTERISTICS.

Dataset # Duration Probing Type
Infocom05 41 12h 120s Conference

Sig09 76 1 day 120s Conference
Rollernet 61 1h30 15s Sport

TABLE II
DISTANCE AVERAGE DURATION (IN SECONDS).

κ
Dataset 1 2 3 4 5 6 7

Infocom05 399 296 224 175 131 154 212
Sig09 149 83 41 25 18 13 11

Rollernet 48 65 76 89 105 114 129

no path of length κ or less linking the two nodes). Note that,
1-intercontact represents simple intercontact.

C. Datasets

We consider several real-world contact traces throughout
our experiments.
Infocom05 measurement was held during a 5 days conference
in 2005 [2]. 41 attendees carried iMotes collecting information
about other iMotes nearby within a 10m wireless range.
We study a 12-hour interval bearing the highest networking
activity. Each iMote probes its environment every 120 seconds.
Infocom05 represents a professional meeting framework.
Sig09 was taken during the first day of a conference in
Barcelona [10]. The experiment recorded 76 users relation-
ships using Bluetooth-based smartphones. Each phone logged
contacts every 120 seconds.
Rollernet had 62 participants measuring their mutual connec-
tivity with iMotes during a 1 hour and a half rollerblading tour
in Paris [11]. These iMotes sent beacons every 15 seconds.
This experiment shows a specific sport gathering scenario.

In Table I, we recapitulate all datasets characteristics. # is
the number of participating nodes. Duration indicates the
dataset duration. Probing shows the probing intervals of the
measuring devices.

III. PAIRWISE INTERACTIONS UNDER THE κ-CONTACT
CASE

Given the new definitions of contact and intercontact we
analyze different characteristics of the pairwise interactions.
For more detailed information concerning κ-contact and κ-
intercontact, please refer to [9].

A. Pairwise minimum distance

We begin by studying the pairwise minimum distance, i.e.,
how close nodes come to each other during the duration of a
trace. For instance, if two nodes meet at least once, we mark
this distance as 1. If they come as close as 3 hops, we consider
the minimum distance to be 3. For nodes that never come in
κ-contact, we consider this distance as ∞.
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Fig. 4. Pairwise minimum distance for Infocom05, Sig09, and Rollernet.

TABLE III
κ-CONTACT AVERAGE DURATION (IN SECONDS).

κ
Dataset 1 2 3 4 5 6 7

Infocom05 399 322 274 247 230 224 224
Sig09 149 101 72 60 54 51 50

Rollernet 48 61 68 75 81 86 90

We represent the results in Fig. 4. In terms of pairs of nodes
that come in direct contact, we observe that in conference
settings, characterized by a high number of nodes in restricted
physical spaces, the number of connected pairs is reasonably
high: 49% for Sig09 and 73% for Infocom05. Rollernet on
the other hand shows a lower network connectivity, with only
33% of nodes coming in a direct contact. But the analysis
of contact alone yields an incomplete picture as there is a
considerable amount of nodes who come close to each other
but never in direct contact. For example, the percentage of
pairs that come at a distance of 2 is 5% for Infocom05, 16%
for Sig09, and 41% for Rollernet. For Rollernet the percent of
nodes that come at a 2-hops distance is even higher than the
nodes that come in direct contact and one can observe that a
non negligible amount of nodes advance up to a distance 3
(6%) and 4 (16%).

B. Average distance duration

In Table II, we present the average duration of an interval
during which nodes remain at a distance of κ-hops from
one another. For Infocom05 and Sig09, we observe that close
connections are more stable, with smaller average durations
as the distance between nodes increases. This shows how for
conference settings, network stability comes from the core of
the κ-vicinity. However, we observe the opposite phenomenon
for Rollernet dataset. With larger κ we have an increase of
the average duration that nodes spend at a certain distance
from one another. Thus, due to nodes’ movement in a highly
dynamic scenario, meeting between users lasts for very short
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TABLE IV
κ-CONTACT NUMBER OF INTERVALS (×1, 000).

κ
Datasets 1 2 3 4 5 6 7

Infocom05 3.7 14.7 28.9 40.0 46.7 50.3 51.9
Sig09 13.3 49.7 96.9 131.6 152.2 163.4 168.8

Rollernet 2.6 9.4 18.4 27.5 35.2 41.3 45.7

periods of time but nodes spend a significant amount of time
in the nearby vicinity.

C. Average κ-contact duration

We also study the average κ-contact durations (see Ta-
ble III), i.e., we observe the average duration of any κ-contact
interval. Following our logic, since we cover a wider spatial
range with our κ-vicinity, nodes coming closer are likely to
be in κ-contact earlier and leave the κ-contact later, therefore
we should obtain longer κ-contact intervals. With Rollernet,
we observe that the greater the value for κ, the longer the
durations. Surprisingly for Infocom05 and Sig09, this is not the
case, we actually notice the opposite phenomenon. With larger
κ, we seem to have smaller κ-contact intervals. So does that
mean that increasing our network vision with the κ-vicinity
reduces the duration of end-to-end transmission possibilities?

Table IV shows how wrong this conclusion may be. In this
table, we show the actual number of κ-contact intervals for
each κ and each dataset. For all of them, the greater the value
of κ, the greater the number of κ-contact intervals. So, with
higher κ values, we multiply the possibility of observing a
κ-contact interval. They may be on average of shorter length
(for Infocom05 and Sig09) yet we multiply the possibility of
having pairwise end-to-end paths. In addition, the cumulated
κ-contact duration grows with larger κ. A similar observation
as well as an explanation has been made in a companion
paper [9].

IV. PREDICTING κ-CONTACT ENCOUNTERS

A. Dynamic graph representation

The mobile traces analyzed in this paper represent dynamic
networks composed of a set of mobile users that sporadically
come in contact. We represent this network using a dynamic
graph structure, G0,T = (V, E0,T ), with V the set of mobile
users observed during a finite period of time [0, T) and
E0,T the set of temporal edges between them. We consider
an edge euv ∈ E0,T if any two users u, v ∈ V have
been at least once into contact during the period [0, T). To
analyze the evolution of this network over time, we split
time into fixed time-windows of duration w and represent the
dynamic network as a time series of network snapshots Gt1 ,
Gt2 , ..., Gtn , with n = ⌈T

w ⌉. Gti represents the aggregate
graph Gti−1,ti that records the contacts between mobile users
during the period [ti−1, ti). In a dynamic network, the future
changes of the network may depend not only on the most
recent state of the network but also on older ones. To model
the dynamic evolution and catch possible periodicities in

human encounters, the data used as input in the prediction
process is represented as a successive series of static snapshots
Gti−m , ..., Gti−2 , Gti−1 . Thus, given data from the previous m
time-windows our objective is to predict the κ-contacts during
the next target period Gti . We will later discuss how the choice
of w and m affect the prediction performance.

B. κ-contact prediction problem

We formulate the prediction task as a binary classification
problem where, given past data recorded until a moment in
time ti−1, the goal is to predict if any two mobile nodes will
be in κ-contact during the subsequent period [ti−1, ti).

We rely on two types of information in the prediction model:
the frequency of κ-contact occurrences and the structural prop-
erties of the connectivity network. The first type of information
measures the strength of κ-contact relationships, quantified
by the duration and the number of times any pair of nodes
has been in κ-contact in the past. A longer duration and a
greater number of κ-contacts can provide stronger evidence
that two nodes will be in κ-contact in the future. For the second
type of information, to quantify the structural properties of the
network, we extract various features that capture the proximity
between nodes in the graph of past interactions. These fea-
tures showed predictive power in various applications such as
collaborative filtering and link prediction problems [12], [13],
[14]. In this work we use four common proximity measures:

• Common neighbors (CN). For each pair of nodes u, v ∈
V , CN represents the number of common neighbors:

CN(u,v) = | Vu
1 ∩ Vv

1 |. (1)

• Adamic Adar [15]. This measure extends the notion of
common neighbors by weighting each neighbor by the
inverse logarithm of its degree centrality:

AdamicAdar(u,v) =
∑

x∈{Vu
1 ∩Vv

1 }

1

| Vx
1 | . (2)

• Katz [16]. This feature counts all the paths between any
pair of nodes, giving a higher weight to shorter paths. If
pathl

u,v represents the set of paths of length l between
two nodes u and v, and β is a damping factor (set to 0.05
in our evaluation), the Katz score is calculated using the
following formula:

Katz(u,v) =
∞∑

l=1

βl × | pathl
u,v |. (3)

• Preferential attachment [17]. This feature is built on the
premise that the probability of a new contact is correlated
with the product of nodes’ degree.

PA(u,v) = | Vu
1 | × | Vv

1 | (4)

The two types of features provide complementary informa-
tion about nodes’ contact patterns. The frequency of interac-
tions catches the persistence of κ-contact relationships but its
predictive power is conditioned by the past contact occurrences
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Fig. 5. Prediction performance for different time-window durations and by varying the number of training time-windows (past intervals).

TABLE V
NOTATION FOR THE BINARY CLASSIFICATION CONFUSION MATRIX

Predicted value
predicted = 1 predicted = 0

Actual value actual = 1 TP FN
actual = 0 FP TN

(using these features one can only predict the reoccurrence of
a κ-contact). Topological features, on the other hand, allow
us to capture complex data patterns about the structure of
the network of interactions. We build the prediction model
and report the results using the entire set of features as we
observed that taking these features together achieves a higher
performance than using them separately.

We adhere to a supervised learning procedure in our evalu-
ation. Each mobile trace is split in two equal-sized temporal
parts: the first period is used as the training set and the
remaining part serves to report the prediction performance. We
examined two classification algorithms: SVM (using LIBSVM
library [18]) and logistic regression, under different parameter
settings and used a validation set to avoid overfitting. We
report the quality of the prediction using the F1 score (also
called F -measure), expressed as the harmonic mean between
precision ( TP

TP+FP ) and recall ( TP
TP+FN ) as defined by the

confusion matrix (Table V).

C. The effect of time-window duration and past data

The prediction performance is influenced by the duration
of the time-window. Aggregating data over longer durations
may lose useful temporal information about the structure of
the dynamic network. Another important aspect is given by the
number of training time-windows. Including more information
from the past may capture important temporal patterns but also
increase the computational cost.

To evaluate the impact of past information in the predic-
tion performance we vary the amount of data used in the
prediction model and include information from the previous
{1, 3, 5, 7, 9} time-windows. We illustrate the results for the
1-contact case as we observed that the remarks made on this
value are consistent with other κ values as well. For the
size of the time-window we select the most granular duration
(the scanning rate used in the mobile trace) and two other

values that represent 5× and 10× this duration. Thus, we
consider time-windows of duration {120, 600, 1200} seconds
for Sig09 and Infocom05 and use {15, 75, 150} seconds for
Rollernet (which has a more granular frequency).

The results are presented in Fig. 5 by means of 3D plots
that represent the F1 score as a function of the time-window
duration and the number past time-windows used in the
prediction model. On the x-axis we examine different time-
window durations and the y-axis (labeled past intervals in
Fig. 5) denotes the number of time-windows used in the
prediction model. For example, a past interval of length 9
for a time-window of 1200 seconds means that, based on
the contacts recorded during the previous 9 intervals of 1200
seconds, we predict contacts during the next time-window.

The figure illustrates that the most recent information plays
the most important role in the prediction performance. For
all three datasets, using data from the latest three time-
periods achieves the highest performance and older informa-
tion has little predictive power. This indicates that the most
recent interactions are the most important in predicting the
immediate future. We can also observe that the longer the
duration of the time-window, the less accurate the prediction
performance. This suggests that aggregating data over longer
durations is prone to larger errors. Taking the example of
Infocom05 (Fig. 5(a)), the results show that predicting the
contact opportunities during the next 2 minutes shows an F1

score of 0.8 and the performance drops with 50% when trying
to predict what will happen during the next 20 minutes. For
Rollernet, which represents a more dynamic scenario, the drop
of performance is even higher with a 70% decrease when
trying to predict the contacts during the next 150 seconds
compared to a 15-seconds time-window.

D. κ-contact prediction results

Based on the previous observations of the optimal number
of past intervals we assess the performance of predicting κ-
contact relationships. We vary the value of κ from 1 to 7
and consider three durations for the time-window: {120, 600,
1200} seconds for Infocom05 and Sig09 and {15, 75, 150}
seconds for Rollernet. The results are illustrated in Fig. 6.
First, we observe that predicting that two nodes will be in
direct communication range shows particularly poor results in
very dynamic mobile settings (e.g. Rollernet that describes a
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Fig. 6. The efficiency of predicting κ-contact relationships for different durations of the time-window. On the y-axis we represent the prediction performance
and on the x-axis we vary the value of κ-contact from 1 to 7.

rollerblading activity) and for longer durations of the time-
window. Thus, in situations that involve important changes in
the network topology, predicting that nodes will be in direct
contact is prone to large errors.

Relaxing the prediction objective beyond direct contact
relationships reveals more accurate predictive power. Overall,
the greater the value for κ the more effective the prediction
performance. On average (for all mobility traces and different
time-window durations) predicting that nodes will be at most
at a distance 2, 3, and 4 shows an improvement of 7%, 10%,
and 11% compared to the case where we want to predict direct
meetings between mobile users. While the improvement is
important for small values of κ we notice that there is little
benefit in extending the prediction for a κ greater than 3.
The most significant increase, compared to the direct contact
case, can be observed for κ = 2 with an average increase
of 10% for Rollernet, 7% for Infocom05, and 6% for Sig09.
The benefit is negligible when trying to predict the network
change in the immediate horizon but it becomes significant
when trying to make predictions over longer periods of time.
Taking the case of Infocom05 for a time-window of 1200
seconds and Rollernet for 150 seconds, predicting that nodes
will be separated by at most two nodes (κ-contact = 3)
reveals an improvement of 60% for Infocom05 and 74% for
Rollernet compared to the direct contact prediction case.

While we leave a more detailed analysis of these findings
for future work, we give two plausible explanations for these
results. First, as we showed in Fig. 4, a non-negligible number
of nodes, although never in direct contact, they come at a 2-
hop distance. By extending the prediction objective to 2-hop
contacts, we include these potential events into consideration,
which appear to have a more predictable nature. Then, as
showed in Section III direct contacts between mobile users
are scarce and short-lived, which makes them more difficult
to predict in very dynamic scenarios and for longer time hori-
zons. This explains the low prediction effectiveness observed
with Rollernet and for longer time-windows for Sig09 and
Infocom05. Thus, extending the notion of contact to κ-contact
gives us access to more stable connections (nodes leave direct
connectivity but remains in κ-contact for longer durations) that
reveal a more predictable nature.

V. PRACTICAL IMPLICATIONS

To capture the possible benefit that κ-contact prediction
would bring in practical scenario we propose and evaluate the
following use-case example.

We consider a content producer, located on the Internet, that
regularly publishes content for a known group of collocated
mobile users that communicate with the server using the
cellular infrastructure. Content is categorized in topics. Users
subscribe to these topics and content is pushed to users upon
creation. We also consider that, in order to reduce the amount
of cellular traffic caused by content delivery, the content
producer collects data about the mobile contact traces and
relies on a κ-contact prediction functionality when transmitting
information to users. More specifically, at the publication of
a content, instead of individually transmitting the content to
each subscriber, the content producer optimizes the delivery
process based on the predicted κ-contact opportunities. For
example, if the server predicts that two users, interested in the
same content, will be in κ-contact, a message is sent to only
one of these nodes which will opportunistically forward the
message to the other node when they will be κ-contact. We
also assume that nodes are capable of sensing their κ-vicinity
and can detect when a targeted user is in κ-contact. To collect
nearby topological knowledge, we assume the existence of a
link-state protocol gathering nearby knowledge under the form
of a connectivity graph. The implementation itself is beyond
the scope of our study, yet a previous analysis studied the
impact of monitoring overhead [8].

We design the experimental setting using ONE simulation
environment [19]. In our experiments we set the number of
topics to 100. Each mobile node randomly subscribes to 20
up to 100 topics. For the prediction module, we use a time-
window of 75 seconds for Rollernet, and 600 seconds for
Infocom05 and Sig09. Content is uniformly created throughout
the duration of the experiments (that covers the duration of a
mobility trace) and the results are averaged over 10 simulation
runs. We also consider an infinite cache size at the user
side and assume that the content is small enough to fit into
one message in the communication between content producer
and the users and between the mobile users. To measure the
impact of κ-contact prediction we report the reduction in
the number of messages in the communication between the
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Fig. 7. The percent of traffic with the infrastructure that can be reduced through κ-contact prediction and mobile opportunistic communications. On the y-axis
we represent the traffic reduction compared to the case where content is sent to mobile users using only the infrastructure. On the x-axis we present different
values for κ-contact.

content producer and the mobile users when using κ-contact
prediction module compared to a case where the content is
individually sent to each user using the cellular infrastructure.

The results are presented in Fig. 7. First, we observe that
the greater the value of κ-contact, the greater the potential
of traffic reduction. The biggest improvement of predicting
beyond direct neighbors is noticed for κ = 2, that shows an
improvement of 6% for Sig09, 7% in Infocom05, and 30%
for Rollernet. The potential traffic reduction is directly af-
fected by the characteristics of the traces: κ-vicinity properties
(presented in Fig. 4) and prediction performance (presented
in Fig. 6). Taking the example of Sig09, even if the effec-
tiveness of the prediction showed little improvement for κ =
2 compared to κ = 1 the potential reduction is nevertheless
important (6%). This is explained by the significant number
of nodes located at a 2-hop distance detected with the κ-
contact prediction. The benefit is even more substantial in
the case of Rollernet. By counting on the pairs of nodes
connected at a 2-hop distance (that exceed the number of
direct contact opportunities), the traffic reduction attains a
performance of 33% compared to 5% when using only direct
contact prediction.

VI. RELATED WORK

The DTN community used different ways to benefit from
a node’s neighborhood. Some relied on the social behavior
of users. In urban areas, where people tend to form com-
munities around points of interests, Ott et al. presented a
protocol leveraging end-to-end and multi-hop DTN paths [20].
Sarafijanovic-Djukic et al. made a similar observation for
VANET [21]. Heimlicher and Salamatian demonstrated that
mobile wireless networks tend to have connected crowds [4].
The transient notion between all these studies is that there
are immediate neighborhood structures to use but none of
them actually defined a notion of vicinity for DTN. Similar
principles have also been considered even in other contexts,
such as wireless mesh networks [22].

In the latest years, analyzing human mobility to detect
useful patterns and to derive accurate prediction models has
been well studied. Song et al. observed that, despite the
many decisions influencing our daily routines, there is a 93%
potential in predicting user mobility [23]. Clauset and Eagle

revealed strong periodicities in contact periods between mobile
users that may depend on the environment under study (the
physical place and the type of user activity) [3]. Zayani et
al. studied the problem of predicting contact opportunities
between mobile users [7]. Using a tensor-based link prediction
technique, they provide evidence about the predictive power
of various features that capture both the topological distance
and the physical proximity between users. In this work we
focus on one specific aspect of human mobility, i.e. predicting
if two nodes will be in each other κ-vicinity. Our analysis is
close to the work of Zayani et al. but differs in the prediction
goal (we extend the contact prediction to the κ-contact case),
the mobility traces under study, and the prediction framework
(we use a supervised learning framework compared to the
unsupervised setting used in their paper).

From a general point of view, our prediction objective is
related to the link prediction problem in complex networks.
This topic is an important research direction in several do-
mains that define relationships between different entities. This
includes predicting the co-authorship of research publications,
hyperlinks between web pages, or human communication pat-
terns [13], [14], [24], [25]. Liben-Nowell and Kleinberg have
studied the predictive power of various topological features
and observed that the Katz measure performs consistently
well. While analyzing the predictive power of non-topological
attributes Al Hasan et al. observed that the frequency of
interactions (e.g. co-authorship of scientific papers) is an
efficient predictive variable [26]. We build on this knowledge,
and we analyze the predictive powers of different features
(topological measures and the frequency of users encounters)
in predicting the κ-contact relationships between mobile users.

VII. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of predicting κ-
contact opportunities between mobile users – predict if users
will find themselves at a distance of at most κ-hops from
one another. By analyzing three real-world contact traces,
we observed that one can obtain better performances when
predicting 2+-contacts compared to the direct contact case. To
assess the impact of these findings in a real-world application,
we proposed a simulation experiment in which, by combining
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mobile opportunistic communications with κ-contact predic-
tion one can reduce the amount of traffic used in the commu-
nication of mobile nodes with the infrastructure. Our results
suggest that services benefiting from contact predictions can
efficiently exploit the predictable nature of κ-contacts.

Research in the area of κ-contact prediction and its ap-
plications is an open subject with many possible extensions.
First, as the observations made in this paper are based on
specific mobility settings (conferences and rollerblading) more
work is needed in order to understand to what extend these
observations can be generalized to other mobility scenarios.
The quality of the prediction shows promising performances,
yet not optimal, and suggests there is still room for im-
provement. One way to increase the prediction performance
is to consider additional features in the prediction model.
This includes information about the geographical co-location
patterns of nodes (not available in the traces used in this paper)
that showed strong predictive power in the link prediction
problem [7], [14]. Then, in this study, we only consider a one-
step ahead prediction problem (we use information received
in the previous m time periods to predict what will happen
during m+1 period). To cover a larger range of situations the
prediction objective can be extended to further time periods,
i.e. predict contacts during subsequent time periods m + 1,
m+2, ..., m+n. This can be particularly favorable in situations
where collecting and processing data adds a significant delay,
for which immediate prediction can be considered outdated.

Finally, the current evaluation of the applicability of κ-
contact prediction in real-world scenarios considers some
simplifying assumptions and more work would be needed to
assess the benefit of κ-contact prediction in practice. This
includes an evaluation of the additional cost of collecting data
about nodes’ mobility and the feasibility of implementing a
mechanism capable of detecting the κ-contact communication
opportunities.
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