

Project co-funded by the European Commission within the ICT Policy Support Programme

THIS IS A PRELIMINARY VERSION OF THE DELIVERABLE
AND SHOULD BE CONSIDERED AS WORK IN PROGRESS

Key Information from the DoW

Due Date 15-October-2015

Type Report

Security Public

Description:

This deliverable is a compilation of the coaching experiences in ReAAL, providing a
monitoring and evaluation concept for the adaptation of products and services to the
universAAL platform.

Lead Editor: Alvaro Fides (UPVLC) Internal Reviewer:

 D3.3 – universAAL compliance guidelines

 Page 2 of 26

Versioning and contribution history

Version Date Author Partner Description

0.1 24-Jul-2015 Pilar Sala UPVLC Structure of the document and task
assignments

0.2 28-Sep-
2015

Álvaro Fides UPVLC Aggregated all draft content so far

0.3 29-Sep-
2015

Álvaro Fides UPVLC Added all available contributions.
Rewritten common sections.

0.4 30-Sep-
2015

Pilar Sala UPVLC Finalized Executive summary, Section 1
and XX. Preliminary release for Review

0.5 30-Sep-
2015

Saied Tazari Fh-IGD Intermediate version for project review

Statement of originality:

This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of
others has been made through appropriate citation, quotation or both.

 D3.3 – universAAL compliance guidelines

 Page 3 of 26

Executive Summary

This document is the result of the work in task T3.3 Coaching of application
providers by platform experts. Within this task the platform technical experts have
accompanied the application porting process providing training and technical support
to the application providers and pilot investors with the aim of ensuring that the
porting is done with good quality. The ultimate goal is that both the related
knowledge is spread more widely and failure risks during deployment and operation
are minimized.

To facilitate this process, platform technical experts have been assigned to each
pilot site according to several factors, such as the proposed piloting concept, the
geographical proximity or the shared idiom to facilitate communication.

Coaching basically rely on technical partners having a frequent communication with
pilots and their technical staff, through many different means, such as
teleconferences, physical meetings or asynchronous support; and it can be
originated either by the technical expert, to support basic training or discuss project
strategies, or by the application provider, to solve issues encountered during
development.

The experiences in coaching have been quite different, due to the fact that each pilot
site has its own context and particularities, some have multiple providers that need
coaching, others only one provider, some have more complex deployments than
others, etc.

The lessons learned through this process have been useful to derive development
patterns and best practices that will be shared with the community of developers to
support anyone interested in creating universAAL compliant applications and
services.

IMPORTANT NOTE: The current version is a preliminary version compiled for the
purpose of the Intermediate Review to be held on October 8th. There is still work in
progress related to the analysis of experiences, improvement and refinement of
universAAL compliance guidelines, as well as the compilation of FAQs, that will
benefit from work done in supporting Associated Pilots and importing applications
process, as well as conclusions from Lab tests and evaluation of adaptation phase
(both process still on-going).

 D3.3 – universAAL compliance guidelines

 Page 4 of 26

Table of Contents

1. About This Document .. 5

1.1. Deliverable context .. 5

2. Coaching process in ReAAL ... 7

2.1. Methods and tools for coaching ... 7

2.2. Lessons learnt ... 9

2.2.1. AJT – SL 9

2.2.2. AJT – WQZ 9

2.2.3. BSA 11

2.2.4. BRM 12

2.2.5. IBR 12

2.2.6. ODE 12

2.2.7. PER 13

2.2.8. PUG 14

2.2.9. RNT 16

2.2.10. TEA 17

2.2.11. Associated Pilots 18

3. universAAL compliance guidelines ...19

3.1. universAAL – The open platform for open distributed systems of
systems a la IoT and Ambient Intelligence ...19

3.2. universAAL value proposition ...21

3.3. universAALization, what does it mean? ..21

3.3.1. Using universAAL “Manager” components (platform services) 23

3.4. Development patterns and best practices ..23

3.5. Frequently asked questions and most common mistakes26

 D3.3 – universAAL compliance guidelines

 Page 5 of 26

1. About This Document

This document is reporting on the process and progress of task T3.3 Coaching of
application providers by platform experts. Within this task the platform technical
experts have accompanied the porting process from T3.2 by providing training and
technical support to the application providers and pilot investors with the aim of
ensuring that the porting is done with good quality. The ultimate goal is that both the
related knowledge is spread more widely and failure risks during deployment and
operation are minimized.

The document provides first, information about how the coaching process in ReAAL
has been established, reporting on the methods and tools used by the different pilots
and platform experts as well as the lessons learnt from the process. From that
information, compliance guidelines in the form of development patterns and best
practices have been derived and are provided together with FAQs and most
common mistakes.

IMPORTANT NOTE: The current version is a preliminary version compiled for the
purpose of the Intermediate Review to be held on October 8th. There is still some
work in progress related to the analysis of experiences, improvement and refinement
of universAAL compliance guidelines, as well as the compilation of FAQs, that will
benefit from work done in supporting Associated Pilots and importing applications
process, as well as conclusions from Lab tests and evaluation of adaptation phase.

1.1. Deliverable context

Project item Relationship

Objectives Contributes to the following project objectives:
O1: deploy at least 7 universAALized applications and services
O3: an initial universAAL ecosystem
O5: knowledge sharing
O8: sustainable exploitation

Work plan The deliverable D3.3 universAAL compliance guidelines is an
outcome of T3.3 Coaching of application providers by platform
experts. The relationship with the other parts of the work plan is as
follows:

Milestones Contributes to the achievement of the following project milestones:

MS4 – Final corrective actions

uAALization
in T3.2

α / lab tests

in T3.4

D3.3
Coaching

in T3.3
Evaluation

in T5.3

 D3.3 – universAAL compliance guidelines

 Page 6 of 26

Deliverables This is a single deliverable, however it receives input from the
experiences in several tasks in addition to T3.3, such as T3.4 Lab
Tests, or T5.3 Evaluation execution

Exploitable
results

Contributes to the following exploitable results of the project:

Res 6: Guidelines for monitoring and evaluating the adaptation of
products and services to the universAAL platform

Risks Contributes to the clearance of the following project risks:

Rk3: Difficulties and delays in the integration with the platform
Rk4: Interoperability problems between different subsystems.
Rk5: universAAL runtime platform failure during pilots

 D3.3 – universAAL compliance guidelines

 Page 7 of 26

2. Coaching process in ReAAL

Coaching process in ReAAL was established with the goal of supporting application
providers in their way toward successfully porting selected applications to work on
top of universAAL platform.

To facilitate this process, platform technical experts have been assigned to each
pilot site in order to provide training and technical support to the application
providers and pilot investors in all the matters related to the adaptation work, with a
twofold aim, from one side to ensure the good quality of the porting and on the other
side to widely spread the knowledge about the platform.

The matching of platform experts and pilots have been done according to several
factors, such as the proposed piloting concept, the geographical proximity or the
shared idiom to facilitate communication. The assignments are as follows:

Pilot site Platform expert

AJT - SL Fh-IGD

AJT - WQZ Fh-IGD

BSA UPV

BRM SINTEF

IBR UPV

ODE MEDCOM, (UPM)

PER TRIALOG

PUG CNR

RNT SmH

TEA UPM

Associated Pilots TRIALOG, (UPV)

Selection of different modalities for such coaching activities have been done
according to the concrete needs of each pilot site, and in case of need a backup
coach have been assigned to complement the expertise.

2.1. Methods and tools for coaching

Coaching basically consisted on technical partners having a frequent communication
with pilots and their technical staff, through many different means. There are two
types of events in which coaching was performed, identified by the originator of the
communication:

 Coaches would arrange meetings with coached during the “initial steps”, in
order to introduce pilots to the technicalities of the platform, but also during
any generic update on the strategies of the project, like for instance a
revision of used ontologies to enhance the adaptation to universAAL.

 D3.3 – universAAL compliance guidelines

 Page 8 of 26

 Coached would arrange meetings with coaches whenever a technical
problem appeared during the adaptation, or when further explanations or
support were needed after one of the coach-triggered meetings.

Meetings were conducted through several means:

 Teleconferences: These would take place between individual coaches and
their assigned pilot staff, or all together (although the latter was less usual).
This was the most common type of coach session. The tools used were
mostly Skype and GoToMeeting, often using the screen-sharing features.

 Physical meetings: Whenever needed coaches would take advantage of
physical presence of pilots in the regular project meetings, be it plenary
meetings or training events.

 Asynchronous support: Not actual meetings, but asking for help and
getting response, through emails, issue trackers or support forums, making
use of collaborative documents or sharing source code.

The archetypical process by which a coach would assist a pilot to perform the
adaptation to the universAAL platform usually followed these steps:

1. Get in touch with the pilot representatives, which would point the coach to the
staff and developers responsible of the actual adaptation.

2. Point the developers to the universAAL documentation and have them read
the basics to understand the platform. Then have them try to run the
examples.

3. Proceed to designing an adaptation scheme and strategy. The adaptation is
explained in detail in section 3. One of the first outcomes of this design is the
adaptation schemes, available in Livelink.

4. At this point developers would start implementing the adaptation. At any point
in time if they found any trouble they could ask the coaches for help. This
could include:

a. Explain, if needed, how to turn existing code into universAALizable
components (OSGi bundles/Android apps).

b. Assist in designing and developing ontologies if needed. Check that
the ontologies designed by pilots (if any) are correct and compliant
with the principle of the platform.

c. It may be necessary to assist in code development, especially with
the Service Bus. To check that wrappers work as expected (received
events, matching calls…)

5. Assist with any advanced manager that may be used (CHE, R-API, GW,…),
pointing to the right documentation, providing examples or helping with the
code.

 D3.3 – universAAL compliance guidelines

 Page 9 of 26

2.2. Lessons learnt

2.2.1. AJT – SL

The Smart Living German pilot site has been coached by the Fraunhofer IGD. In this
context, the following activities can summarize the coaching actions

 Initial meeting to well understand the Smart Living system
architecture

 Initial discussion with Smart Living concerning the universAALization
schema

 F2F meeting to

o Discuss the uAAlization Schema

o Technical training concerning: R-API, ontologies, ASOR,
Context bus…

o Brain storming to create the SL services ontology

 universAALization of the first service to be taken as a service for SL

 Continuous support the entire development and deployment phase

 Meeting concerning recommendation of the imported application

From our close cooperation with Smart Living, we have learned

 The importance of a common Brainstorming for an expressive and
generic ontology that fit the pilot needs

 The area of uAALization is too generic, where it is not easy to specify
how an application should be ported to the platform. This must
depends on the application architecture, but more on the
interoperability perspectives.

Suggestion for improvement

 The needs to ease/customize the uAAL applications development
environment to maximize its acceptance from the developer side.

2.2.2. AJT – WQZ

Concerning the WQZ pilot side, it has coincided that the technical partner and the
supplier of AJT are the same (FhG). Moreover, the coaching process has well taken
place internally between the “FhG coachers” who present the main developers of the
uAAL platforms and the “FhG-WQZ developers” who have universAALized the home
management and the Capfloor applications. In this context, the main coaching
activities can be summarized as follow:

 D3.3 – universAAL compliance guidelines

 Page 10 of 26

1- Common meeting with WQZ pilot site and its original technical supplier
(inHaus) to discuss the original system architecture

2- 1 day internal meeting to agree on the uAALization schema and the
uAAL system architecture

3- F2F discussion to extend the original ontology, thus to fit the WQZ
“world” requirement: addition of the Posture and the activity ontologies,
same extension of the Phisical word and the AAL space ontologies.

4- Support for the conception and design of the WQZ created rules as an
extension of the original system

5- Support of the system extension with 2 new protocols (SIP and SMTP)
add to the original PLC one

6- Continous support in case of bugs during the whole lifecycle of the WQZ
pilot site

Lesson learned and exprience:

1- It is easier to learn about the platform while being in touch with a core
member of the uAAL developer teams.

2- It is very important to learn about the platform and the related component
before starting any (pre)development steps

3- Training is a pillar toward a successful use of the Platform and its
component

4- The use of the platform at the beginning need some effort to learn the
basics. In the meantime, the ability of developing applications on the top
of the platform will quickly evolve… As the platform is very rich in number
of features and help methods, the technical team must well learn about
the platform and looks for the available features before deciding
developing his owns.

5- The other very important lesson learned was mainly related to the
required level of development to be able to experience the Platform
advantages. In fact, while developing the initial modules based on the
platform in order to satisfy the minimum requirement of the services, the
developer experiences very small advantages compared with the original
development environment. Once the minimum set of applications is
created, the service provider, same the developer experience a huge
advantage in using the platform to extend, adapt, adjust and transfer the
created application.

Suggestion for improvement

 The re-activation of the uStore and the uCC as main two components
for facilitating the marketing and the deployment of uAAL based
solutions

 D3.3 – universAAL compliance guidelines

 Page 11 of 26

2.2.3. BSA

The coaching was performed by UPV to the company subcontracted by BSA, which
was in charge of actually developing the applications and their adaptation to
universAAL. This company (TSB) already had certain experience on dealing with
universAAL. At the same time, TSB had to deal with the technical staff of BSA
remotely when it came to deployment of the actual applications and maintenance.
There were several particularities and special considerations to take into account in
this pilot, which made the adaptation to universAAL, and as a result the effort
needed for coaching, a bit more demanding.

Ontology design has to be careful due to being like the “API” in universAAL, which
means that critical changes in the ontologies may require changes in the apps using
them. This is particularly crucial given the imposed inability of updating one of the
applications (NOMHAD) once it was deployed at end-users’ homes. This adapted
application has to remain the same regardless of released versions of the platform
due to a limitation in the remote updating functionality of the original commercial
application – no changes can be made after it was initially deployed unless technical
support people goes to end-users’ homes to do it manually.

It was the first pilot to attempt the combination of universAAL on Android devices in
the user side connecting to universAAL in the server side through the Remote API.
This means it was also the first to discover bugs in the operation of the systems
involved. It must be noted that the Remote API was created by request of the
ReAAL project and had not been tested before.

A consequence of the above is the divergence in versions and even codebase (for
universAAL Android App) in the pilot against the official trunk. Bug fixes can only be
promptly provided through SNAPSHOT versions, but SNAPSHOTS are prone to
introduce failures and should not be used in deployment. But the pilot still uses early
SNAPSHOTS because of the limitation in the app explained above.

The particularities of the Android version of the middleware make it, apparently,
more difficult to adapt existing applications to universAAL. But not because of
universAAL itself: Even if adapting an Android app can be a tricky task, some
Android apps being used in this pilot were already adapted or developed precisely
by universAAL project: the Help When Outdoor and the Oximeter/BloodPressure
drivers of NOMHAD.

In the case of the Agenda application, it was developed by TSB from scratch for
ReAAL, designed from the ground up to be universAAL-based. The fact that it is a
new application increased the number of bugs encountered during its development
and deployment which cannot be, when discovered, identified as being of either the
application logic or universAAL platform.

In all cases the adaptation of the Android apps was assisted by UPV in order to
speed up the process – especially taking into account that UPV created the Android
version of universAAL. But this in turn was detrimental to the coaching of the pilot in
that the partners didn’t undergo the same level of self-learning other pilots went
when dealing with the Android version.

Another obstacle deploying in Android is the particularities of the OS itself, regarding
libraries, cloud messaging (used by Remote API), packaging, publication or updates.
The Android version of universAAL was designed to be an independent application
that works as a hub for the apps in the device, but to facilitate the deployment it was
turned into a library and embedded into one of the applications (the Agenda).

 D3.3 – universAAL compliance guidelines

 Page 12 of 26

2.2.4. BRM

The coaching of BRM pilot site was performed by SINTEF. Before withdrawing from
the project, BRM pilot site decided to import two of the applications from BSA, Help
when Outdoor and Agenda, changing them to be tailored to BRM context and
complement it with an additional application for monitoring users at home.

As the application provider was the same as in BSA case, the technical coaching
that SINTEF performed was in supporting the pilot in defining the needed changes
required to tailor the applications to the piloting context as well as in the
requirements of the technical infrastructure needed to set up the deployment
environment.

2.2.5. IBR

UPV coached the Ibermática without major particularities, following the steps
described in the first section as usual. Several telcos where held whenever needed,
with the developers and representatives of the pilot, concerning the following topics:

 A general introduction to how universAAL works, and how applications can
be made to run in the same environment and interface with the buses.

 How to design ontologies – in particular studying which exact ontologies to
use, and how to extend them. As a consequence, Ibermática identified
existing ontologies that could be reused, with a minor extension to cover the
data model of one of the applications.

 Since the device used at the client-side (Assisted Person’s home) was a
Raspberry Pi, Ibermática needed particular support for running OSGi and
universAAL in its Operative System. Feedback from this issue helped refine
documentation.

 Other application runs in Android, so the same support was needed for
running the Android version of universAAL. Adapting the application to
universAAL in this context is a bit trickier, so help was provided to adapt the
code. It also helped that it was UPV the partner that had developed the
Android version of universAAL.

After the initial phases of adaptation to universAAL, when it was requested that pilots
should enhance such adaptation to be more compliant to universAAL development
principles, some discussions took place to agree on possibilities for improvements.

During the process of determining imported applications, the technicalities of
importing were discussed and a set of applications was determined that would be
compatible with the existing pilot infrastructure.

As a minor side note, it was necessary in some cases to share “diagram-like”
information. A tool would have been useful – instead the discussions relied on
screen sharing and using whatever tool at hand.

2.2.6. ODE

Coaching for ODE pilot have been performed by MedCom, however, as it had no
previous experience with universAAL, UPM has been assisting in the more complex

 D3.3 – universAAL compliance guidelines

 Page 13 of 26

topics, such as the ontology design, what has been translated in a coaching more
difficult from a managerial point of view.

An on-site two days training event was organized and carried out by universAAL
experts, to support the application providers in setting up the development
environments and understanding the basics of the platform.

From that moment on, the coaching was performed according to the usual methods
described in the first section. Whenever a more complex issue has arisen that the
main coach was not able to provide support, the backup coach was involved to
speed up the solving process. In particular, additional support has been requested to
setup uAAL server and environment, and showing how to use the platform without
using Eclipse, as well as modelling ontologies for the pilot applications.

ODE managed to achieve adaptation by developing preliminary ontologies, however
after the expert coachers reviewed these ontologies many changes were proposed.
Preliminary ontologies were very technical, falling the category of data models rather
than full semantic framework for the system. Common mistakes included the direct
translation of interfaces to ontological concepts, this method is not always the most
advisable, as normally interfaces represent a very specific interaction between two
components rather than the description of the interaction it self or the context in
which the interaction takes place. One way to pick up the ontologies where not
correct was the presence of strings encoded in an object serialization standard (in
this case JSON) which is indicative that the objects contained could be modelled by
the ontology itself. Another give away was the use of fixed length arrays, where each
index had different meaning, this is not an ontological model as it can not assign
different meaning to each index; the correct way to do this would be to model
independently each index as its own concept and then grouping them in another
container concept (if needed). Typical mistakes also included the disregard of
existing ontologies that could help develop a more complete modelling of the
solution.

ODE was always opened for suggestions and changes, in fact the new ontologies
were developed using all experts' suggestions; they modelled two types of step
counters (something it was challenging even for experts), and included existing
ontologies such as the device or health profile ontologies. The new model helped
developers and managers in the ODE pilot appreciate the value of universAAL, as
their system is now compatible with other applications. The new model made the
use of the platform far easier, as the lower level details where hidden on top level
business logic.

ODE development was very proactive, and required little assistance in the
implementation phase. Probably due to previous experience, but fundamentally due
to the new ontological model.

One important lesson learned is that coaching needs to be done by a universAAL
expert, otherwise common mistakes and pitfalls translate into the final product.

2.2.7. PER

Perche pilot site is the new addition after BRM withdrawal on June 2015. They have
started the process of importing the two applications from BRM tailoring them to their
specific needs. The technical partner that has been assigned to coach them and
support their adaptation process is TRIALOG.

 D3.3 – universAAL compliance guidelines

 Page 14 of 26

As TRIALOG had no experience with universAAL previous to ReAAL project, a back
up coach, UPV, is available for support in case of need.

Due to the late arrival of this pilot, the adaptation process is still on-going, so the
report of the experience and lessons learned will be incorporated in the final version
of this document.

2.2.8. PUG

Introduction to the Italian Pilot Site

The Italian pilot site is hosted in the Puglia region. It represents one of the most
articulated pilot sites joining the ReAAL project for two main reasons:

 Number of involved companies

 Number of AAL applications available in the ReAAL portfolio.

Differently from other countries in Italy we did not have one single company
developing one or more universAAL-based applications, rather the Italian procedure
for selecting the application providers had to be achieved with a public procurement.

The procurement has been published during 2014 at the end of which 6 different
companies answered to the public call and now they are joining the ReAAL
consortium as associate vendors. The companies are:

 Ingel

 SteelMinds

 Virtech

 Cupersafety

 eResuls

 BioResult

Moreover, the applications (or modules) developed by the companies have been
clustered in three main areas of interest: Safety-at-Home, Home Activity Monitoring
and Easy Home Control. The following table reports the name of the modules
developed by each of the companies:

Area Module Company

Safety-at-home Safehome Ingel

 Electrosafe Steel minds

 iHelp Virtech

Home Activity
Monitoring

Indoor Monitoring System ERESULT SRL

 Environmental Monitoring
System

ERESULT SRL

http://www.ingeltech.com/en/
http://www.ingeltech.com/en/
http://www.steelminds.it/
http://www.steelminds.it/
http://www.virtech.it/
http://www.virtech.it/
http://www.cupersafety.it/
http://www.cupersafety.it/
http://www.eresult.it/it-it/
http://www.eresult.it/it-it/
http://www.bioresult.it/it-it/
http://www.bioresult.it/it-it/

 D3.3 – universAAL compliance guidelines

 Page 15 of 26

 Omniacare Health Check BIORESULT SRL

Easy Home Control NewDom CUPERSAFETY SRL

Coaching Experience

The number of companies involved as well as the number of modules developed led
CNR-ISTI to approach the coaching activities with a structured approach as shown
in Figure X.

Figure 1 Training steps

The coaching is split in three phases closed in a loop (the description of the
coaching procedure is available here in Italian language):

1. Off-line training: during this phase the companies started learning the
universAAL basic concepts including the available tutorials, examples and
the API documentation. Such resources have been mostly prepared in the
context of the universAAL project. CNR-ISTI collected in one single start-up
document a step-by-step procedure for getting ready with universAAL.

2. On-line training: during this step CNR-ISTI prepared a simple mechanism to
allow the companies to ask for questions, suggestions and requesting for live
seminars. In particular, we adopted the following mechanism:

a. A company first opens a ticket on the Italian tracker hosted on the
GForge platform. The tracker collects the tickets only from the Italian
companies. For every new ticket, CNR-ISTI receives an email
notification so that it is possible to understand the kind of question,
get ready with the proper documentation and (hopefully) to group
together different tickets concerning the same topic.

b. After the reception of the email notification CNR-ISTI answers to the
companies posting a message on tracker or, if necessary, via skype
calls. This last option (Skype calls) has been the most useful and
practical mechanism to provide support to companies.

c. In addition, CNR-ISTI has prepared two live seminars concerning the
some basic concepts of the universAAL platform as well as some live
demos to better explain how to use the universAAL API.

off-line
training

on-line
training

seminar

http://www.universaal.org/reaal/mod/page/view.php?id=14
http://www.universaal.org/reaal/mod/resource/view.php?id=13
http://forge.universaal.org/gf/project/support/tracker/?action=TrackerItemBrowse&tracker_id=261
http://www.universaal.org/reaal/mod/resource/view.php?id=26

 D3.3 – universAAL compliance guidelines

 Page 16 of 26

After such training steps, each company had still the possibility of requesting for
further support.

During the coaching the activities we received 5 tickets as shown in Figure 2, that
requested different level of support:

 Email exchange

 Skype calls

 Coding of specific examples

 On line seminars

Figure 2 Tickets opened during coaching

The coaching activities are still in progress, however it is possible to draw two
conclusions and lessons learned:

 Developers approaching to a new platform such as universAAL need first an
off-line phase during which they can read and test the platform. This phase
allows to the developers to become familiar with the universAAL APIs and
terminology to be used.

 On line seminars and Skype calls are the most effective tools for answering
to questions from companies. Email exchange are helpful only if short and
concise.

 The quality of the documentation is the key-factor for the success of the
diffusion of a software artefact such as a library or an execution platform.

2.2.9. RNT

Smart Homes (SmH) was RijnmondNet's (RNT) coach for this project. RNT is not a
technical party itself and were not able to comprehend the complexity of the
platform. This was solved by inviting the supplier Almende to the coaching meetings.
Although none of the six suppliers had any experience with universAAL, Almende
took the lead in trying to understand universAAL and was able to setup a test
environment and getting familiar with universAAL. The other suppliers were:

 MedicineMen

 Netmedical

 D3.3 – universAAL compliance guidelines

 Page 17 of 26

 Mibida

 MindDistrict

 Curavista

During this period the coaching of Smart Homes consisted on sharing experience
during meetings, which we had on regular basis. The feedback from these meetings
were reflected through SmH in the technical workshops and technical
teleconferences that were organized by WP2 lead.

This resulted for example in better, understandable documentation and a quick-start
guide for every new developer who wants to setup a universAAL developing
environment. At a later stage, the forum of the platform was used to answer
questions directly by the main developers of universAAL, which in most cases are
members of WP2.

The corrective actions that were assigned to RNT by the management of the Make it
ReAAL project made a more intense appeal to SmH as coach. During this period a
strict time-schedule was created and a document with 4 milestones. Due to the strict
time limitations RNT and SmH had at least weekly teleconference meetings in order
to make sure all milestones were reached in time and good quality. SmH was
responsible to setup meetings for discussing the ontologies with all suppliers
amongst others. Every week a fixed timeslot was allocated for an open question
round between suppliers and developers.

Lessons learned and experience

The forum of the platform is vital for knowledge sharing, however in a lot of cases
this was seen as overhead and the path of e-mailing directly from supplier to
developer was used as it was quicker and more easy. This resulted, in most cases,
that SmH as coach was not involved in heavy discussions over any issue's that
occurred.

RNT, SmH and all six suppliers had no experience in or with universAAL. Almende
and SmH started to investigate the possibilities of the platform when the project
started. The task of SmH was not to implement any applications and thus had the
theoretical knowledge and no the hands-on knowledge. Almende quickly gained
hands-on knowlegde as they were in fact implementing universAAL. This resulted in
the fact that questions asked were highly technical and could only be answered by
main universAAL developers. The role of SmH as coach changed gradually from a
highly technical knowledgeable role, towards more organizational role, e.g. keeping
track of deliverables that needed technical input from the suppliers, etc.

2.2.10. TEA

UPM was the assigned coach for TEA pilot site. Being located in the same city made
it easy to follow up on the progress and profit from physical meetings to provide a
more effective support.

In the case of TEA, the coaching proceeded without major issues according to the
usual steps described in the first section. After the initial phases of adaptation to
universAAL, suggestions for improvement were discussed and adopted in the
context of the importing application process.

 D3.3 – universAAL compliance guidelines

 Page 18 of 26

When dealing with developers that have a good understanding of how to model
ontologies, it is easier to convey all the semantic functionalities of the platform. It is
particularly useful to explain the intricacies of how services may or may not be
matched, and how to use ontological modelling to the advantage of the design of the
application.

Sometimes concepts have to be particularly agreed, sometimes the good
understanding of the trainee leads to misunderstandings. For example, instead of
reusing existing concepts, by adding properties, TEA had made a copy to customize
of these concepts, effectively duplicating concepts unnecessarily. Thankfully, and
yet again, the semantic features of mapping ontological concepts can be used to
unite once again the duplicated concepts.

During Training it is critical to convey a broader understanding of the platform.
universAAL is very complete and some trainees will pick some key concepts they
feel the platform can be used for, and disregard the rest of the properties of the
platform.

For example, the most important lesson in this regard, is to show that platform can
be used as a tool for developing within application and not just between applications.
This concept of using universAAL as base for the system architecture of the
application will also be useful in both cases: a) it will help optimize the design of the
application itself by being able to use the features of the platform b) inner links are
“exposed” for other applications to use and exploit the first application to different
degrees.

Another misconception, which thankfully was identified early on, is about security.
Without careful explanation trainees may understand that the busses of the platform
operate at universal scale (probably confused by the name of the platform), where
privacy and security concerns take them back from counting with the platform
features for many application areas (especially those sensitive to privacy issues).

Generally, the most efficient way to coach a team which requires platform
knowledge is using continuous communication. Being open to questions and
participation on the application design, in most cases, helps trainees to get insight of
the process of how to get the most advantage of the platform. It is also important to
keep a look on the updates on the development, especially during the ontology
implementation, as ontologies are the basis of the whole universAAL platform, their
optimization is critical to the success of the universAALization and for the capability
of implementing the different showcases correctly.

2.2.11. Associated Pilots

In April 2015, four Associated Pilots joined ReAAL project with the goal of
complementing, and extending, the experience of the member pilots and providing
additional users. For them, also TRIALOG is acting as their coaching partner,
backed up by UPV.

In this case also the adaptation process is still on-going, so the report of the
experience and lessons learned will be incorporated in the final version of this
document.

 D3.3 – universAAL compliance guidelines

 Page 19 of 26

3. universAAL compliance guidelines

3.1. universAAL – The open platform for open distributed
systems of systems a la IoT and Ambient Intelligence

With its worldwide unique implementation of semantic interoperability for SoA at the
level of communication protocol (existing since 2008), universAAL provides an open
horizontal service integration layer at the highest abstraction layer, across all
possible verticals. By avoiding domain-specific APIs (reduction of all possible
syntactical dependencies to one single message brokerage API), universAAL has a
unique future-proof contribution to managing the IoT complexity.

The open source software – distributed with the Apache Software License 2.0 –
consists of:

 the distributed implementation of three "group-level" brokers (the context, service
and UI buses) that ensure integration and semantic interoperability while hiding
distribution and heterogeneity,

 a fourth broker supporting configuration management at node level (the control
bus),

 a set of "managers" on top of that (providing for shared mechanisms for security,
user interaction & accessibility1, system memory, intelligent & adaptive system
behaviour2, remote and inter-group (also multiple with or without hierarchies)
interoperability, and configuration management),

 a set of concrete ontologies,

 a set of development, deployment, and administration tools,

 example applications,

 documentation, wiki pages and training material.

Major features of universAAL can be summarizes the following way:

1
 The user interaction framework is specifically designed and developed for smart environments and

already has an internationally recognized status [IEC/PAS 62883 Ed. 1.0] as an open approach with
considerable potential to become an important standard in near future.
2
 Architecturally, the framework supporting context-awareness and profiling has a very open

approach that enables to achieve an intelligent and adaptive system behaviour.

 D3.3 – universAAL compliance guidelines

 Page 20 of 26

With its 30+ applications, 100+ services offered by these applications to 6000+
users in 13 pilot sites in eight countries, ReAAL is serving as stress-tester of
universAAL in real life. The socio-economic impact of universAAL is being evaluated
in the first half of 2016 during operation in real life. In other words, universAAL as a
mature domain-independent integration platform is, through ReAAL, getting ready
for mission-critical deployments.

Available resources:

 The universAAL project in GitHub <https://github.com/universAAL/>: Holding the
current source code and documentation wikis, including:

o The main wiki of the 'platform' repo
<https://github.com/universAAL/platform/wiki>

o The Developer Handbook
<https://github.com/universAAL/platform/wiki/Developer-Handbook>
(previously known as Reference Documenation)

o The Quick Developer Guide
<https://github.com/universAAL/platform/wiki/Developer-Guide>

o The Quick Setup & Start guide
<https://github.com/universAAL/platform/wiki/DG-Quick-setup-and-start-
guide> for use with the downloadable package below

 The universAAL depot <http://depot.universaal.org/>: The main website for
developers who want to develop applications on top of universAAL or contribute
to its maintenance.

 The universAAL GForge website <http://forge.universaal.org/>: The old project
management website for universAAL software, which still holds the issue tracker,
including

o The "support" issue tracker, the main entry point for general issues
<http://forge.universaal.org/gf/project/support/tracker/>

o The public forum called for "help" issues
<http://forge.universaal.org/gf/project/support/forum/?action=ForumBrows
e&forum_id=8>

 compact overviews: http://tinyurl.com/future-proof-AAL-spaces and
http://www.cip-reaal.eu/about/the-platform/

 Mailing-List <http://universaal.aaloa.org/mailman/listinfo/universaal-dev>: The
universAAL mailing list for both users and contributors

 universAAL demo <http://universaal.org/index.php/en/demo-corner>: Demos
produced at the end of the universAAL EU project

 Maintenance sponsors <http://universaal.org/index.php/en/consultancy-
services>: Organizations contributing to the universAAL maintenance and
providing support, training, and consulting services with regard to
universAALization processes and the development of specific versions of
universAAL, either for specific runtime environments or for any other specific
requirements.

 D3.3 – universAAL compliance guidelines

 Page 21 of 26

3.2. universAAL value proposition

3.3. universAALization, what does it mean?

universAALization is a term used in ReAAL to refer to the integration of all functional
components to be deployed with the universAAL software platform prior to their
deployment. Goal of universAALization is to resolve the dependencies between
these components for the exchange of data and functionality based on an open
platform in order to achieve future-proof interoperability, adaptability, and
extensibility to a wider extent.

 D3.3 – universAAL compliance guidelines

 Page 22 of 26

universAALization consists of two major steps: (1) selection and completion of a set
of application-related ontologies, and (2) using the application programming
interface (API) of the universAAL middleware together with the selected ontologies
for the actual integration of the components.

With the version of universAAL used in the ReAAL project, the following checklist
could be used for creating a universAALization plan:

General approach
<please check-mark the applicable options (multiple choices possible)>

☐ Using universAAL runtime with the Java-OSGi API of the middleware

☐ Using universAAL runtime with the Java-Android API of the middleware

☐ Using universAAL runtime with ASOR (Java from within JavaScript)

☐ Using other runtime with the Java Remote-API of the middleware

Usage of the middleware buses
<please check-mark the applicable options (multiple choices encouraged)>

☐ Context bus (for publishing events and / or subscribing to events)

☐ Service bus (for calling and / or providing services)

☐
User Interaction bus (for using universAAL’s UI description package and leaving the
rendering to situation-aware UI handlers)

Additional middleware features planned to be used
<please check-mark the applicable options (multiple choices possible; the first two
are encouraged to be used)>

☐ Multi-language support

☐
Configurability API (mainly management of config parameters and config home
directories for storing files and resources)

☐ Logging mechanisms

☐
Multi-tenancy support (server-based usage of universAAL to connect to and serve
several homes)

☐

Functional Manifest (each module can contain a digitally signed “functional manifest”
that is used for getting user consent – similar to the Android permissions system that
gets active when you decide to install a new app, then Android lists the permissions that
the app claims to need and you decide if you will install the app or not)

☐
The AAL Space Management API (info about the available middleware instances,
installed modules, etc.)

☐ Serialization and parsing API (currently only for RDF Turtle syntax)

 D3.3 – universAAL compliance guidelines

 Page 23 of 26

3.3.1. Using universAAL “Manager” components (platform services)

<please check-mark the applicable options (multiple choices encouraged)>

☐ Context History Entrepôt services (querying data gathered in the home)

☐ Profiling services including saving and querying info describing users, objects, locations

☐

Resource Manager (important only if you plan to use the UI bus at the middleware level;
in that case, you can achieve a higher level of adaptability if you let the Resource
Manager store your media objects that you want to be used when interacting with the
user)

☐

Situation Reasoner services (the SR can store SPARQL CONSTRUCT-queries as rules
to automatically generate new context events whenever certain conditions hold; this can
be used to recognize situations; e.g., if you want that a context event is published
whenever the user is sleeping, a solution could be to tell the SR to publish this event
whenever in the night the user is in the sleeping room in the bed and the lights are off)

☐ The Drools Engine (a second reasoning engine using the JBoss rules)

☐
ASOR Scripting (ASOR stands for AAL Space Orchestrator; with ASOR scripts, you can
create composite services – combinations of existing services)

3.4. Development patterns and best practices

Analysis and design

The universAAL platform supports both local and server-based (cloud) scenarios, or
a combination of these. The first analytical step of a deployer will be to identify which
of these options corresponds to its initial architecture.

 Client-based: All logic is run in devices deployed at the client side, whether
that is fixed or mobile devices at the user’s home or in mobile device he
carries around.

 Server-based: All significant logic is run in a server run by the deployer. It
may be the case that some amount of processing is done at devices in at the
client-side, but only for the purpose of sending the information to the server
(e.g. Sensors sending data), not performing any processing on it.

 Client-Server: Some data processing or business logic is performed in
devices at the client side, while other happens in a server. This may be
working in conjunction or separately in independent solutions (e.g. deploying
together client-based applications and server-based applications).

Identifying which scenario is being considered will help answer the following
questions about the deployment of universAAL-aware nodes (devices that can run
universAAL):

 Where do applications run? Identify in which devices and execution
environments the applications (business logic) are run.

 Where can universAAL run? Right now the universAAL platform can be
executed in devices running Android 2.3 or above, and in Java Virtual
Machines (JDK 7) through an OSGi Container. In the latter case the
hardware requirements are as low as mini-computers like the Raspberry Pi,

 D3.3 – universAAL compliance guidelines

 Page 24 of 26

while for servers the requirements will depend on the number of clients to
service.

 Can applications be universAALized? In cases where universAAL can be
run in the same device like the deployed applications, consider if it would be
possible to universAALize these applications. The “unviersAALization” (or
“uAALization”) consists on having the applications communicate with a
universAAL instance, whether through “native” interfaces (Android apps and
OSGi bundles can do this) or through alternative methods (universAAL’s
Remote API).

 How are universAAL instances connected? If universAAL instances can
be deployed in more than one node, determine if and how this
communication will happen. Instances in the same network can communicate
directly to each other. In different networks (or through the internet) they can
communicate with Gateways or Remote API. Or not be connected at all.

Answering these questions does not yet provide the right choice for universAALizing,
but will help taking the final decision on which of the 4 common universAALization
options, and how to implement it. These uAALization options provide value to the
deployer in different ways, it is how the deployer benefits from having universAAL. It
is possible to combine more than one. What options to take will depend on the aim
of the deployer, the client/server scenario identified above, and the restrictions
identified by the previous questions.

 Decouple devices from applications: Instead of hardwiring devices to
applications, the communication is abstracted thanks to uAAL, which allows
to connect newer devices from other technologies without modifying the
applications, and allow other applications to benefit from existing devices.

 Decouple applications from each other: Instead of hardwiring the
communication between applications, it is performed through universAAL,
which allows to connect new or different applications providing or consuming
the same type of information, without having to change them.

 Decouple applications from servers: Instead of hardwiring the
communication of client-side applications towards the server side, the
communication is performed by universAAL, so for the client application it is
like the server application is being run locally.

 Virtualize applications in the server: If universAAL cannot be run in the
client side, an instance of universAAL run in the server can virtualize this
client, allowing client applications to benefit from universAAL even if it is not
run locally.

To consider that a solution (application, service or a combination) has been
uAALized, at least one of the options must be implemented.

Implementation

Once it is known where to run universAAL and how and what to connect its
instances to, it will be clear which application modules have to be uAALized
(understanding application modules as pieces of executable business logic, not the
overall application, which can be comprised of many).

 D3.3 – universAAL compliance guidelines

 Page 25 of 26

The process of uAALizing an application module involves making it run in a uAAL-
compatible container (Android, OSGi) and perform/allow some interaction through
uAAL buses. When an application module cannot be run in those containers but still
has to be uAALized, the Remote API has to be used. In any case, it is imperative
that the interaction with uAAL is made in terms of ontologies.

Design ontologies.

Ontologies are the data model in universAAL. In order to communicate with
universAAL the data exchanged must be represented by ontologies. Deployers must
analyse the original data model of the application, and extract the basic information
needed for the business logic, to a bare minimum, need-to-know basis. This helps
identify the meaningful parts of the data that need to be shared (the “semantics”).

Ontologies are application- and hardware- agnostic, which means they should not
model things like raw values of sensors, application-specific constants and the like,
nor used to stream data (even at low frequencies). It must always be taken into
account that other deployers should be able to understand the data model to work
with it without knowing anything about how the application or hardware work (even if
nobody else will use it in the end). Deployer should aim at having an ontology that is
as future-proof as possible to reduce later needs of updates.

Once it has been identified what kind of data the application is going to handle, it is
necessary to inspect existing uAAL ontologies to see if there is one that can already
be used. It could be that:

 There already is an ontology that covers all the needs of the application: Use
that one.

 There is one that covers the needs of the application but would need more
concepts: Use that one and create an extension for it. Ontologies allow
extensions: additional modules that can define new concepts that “inherit” or
“extend” existing concepts in other ontologies.

 There is none that covers the needs of an application: Create a new ontology
specifically for the application, but trying to also make it as generic as
possible so that other applications in the future can benefit from reusing it.

There are links on how to make onts form scratch or extending existing ones (which
is practically the same). If planning to use the Service Bus, a service ontology must
be included (if an existing one cannot be reused, which is recommended).

Modifying application modules

When all needed ontologies are identified and ready, the application module must be
modified to make use of them and the universAAL APIs for connecting to the buses.
This process depends on the type of universAAL-compatible container the
application module will be run in:

A) OSGi Container

1) Application code must be turned into an OSGi bundle (or set of bundles
depending on application module architecture). Bundles contain an Activator
that starts up the logic. UniversAAL tools and documentation are based on
Maven projects. In these, POM files configure the project and dependencies.
Dependencies should be taken from existing bundles (like Maven repository
or uAAL Nexus) or else provide them in an alternative way. POM file can be

 D3.3 – universAAL compliance guidelines

 Page 26 of 26

standalone, extend its own parent, or extend a uAAL parent (not
recommended unless for special cases or ontologies).

2) If possible deployers should make sure the app still works as expected when
packed as a bundle and run in OSGi, before trying to uAALize the code.

3) Import dependencies as needed from uAAL bundles and the right ontologies.

4) Create the needed uAAL wrappers (SCee, SCer, Csub, Cpub, UICaller).
Make sure you use the right ontologies in the right way.

B) Android container

1) Choose whether to run uAAL app separately, or embedded in your app

2) Decide if modifying uAAL app with default configuration and onts, or set it up
from your app

3) UAALize the app following the instructions in the wiki.

Once the application modules are uAALized, perform tests to check that works
properly, checking logs looking for expected messages.

3.5. Frequently asked questions and most common mistakes

Work in progress. A compilation of most frequent questions received as well
as most common mistakes detected by the coachers will be provided

