

INTEGRATED PROASENSE PLATFORM AND ITS

ASSESSMENT V2

Deliverable nº: D6.3

EC-GA Number: 612329
Project full title: The Proactive Sensing Enterprise

Work Package: WP6

Type of document: Deliverable

Date: 05/10s/2016

Grant Agreement No 612329

Partners: SINTEF, FZI, ICCS, JSI, UNINOVA, NISSA

Responsible: Aleksandar Stojadinovic

Title: D6.3. Integrated ProaSense
platform and its assessment v2

Version: 1 Page: 0 / 22

Deliverable D6.3
Integrated ProaSense platform and its

assessment v2

DUE DELIVERY DATE: M35

ACTUAL DELIVERY DATE: OCTOBER 2016 (M35)

Integrated ProaSense platform and its assessment v2 Page 1

Document History

Vers. Issue Date Content and changes Author

0.1 21.09.2016 TOC Aleksandar Stojadinovic

Dominik Reimer

0.2 27.09.2016 Integration/deployment

content

Aleksandar Stojadinovic

0.3 30.09.2016 UI content Dominik Reimer

0.4 05.10.2016 Integrated version Aleksandar Stojadinovic

1.0 13.10.2016 Reviewed integrated version Aleksandar Stojadinovic

Document Authors

Partners Contributors

NISSA Aleksandar Stojadinovic

FZI Dominik Reimer

Dissemination level: Public

Document Approvers

Partners Approvers

UNINOVA Ana Rita Campos

SINTEF Brian Elvesæter

Integrated ProaSense platform and its assessment v2 Page 2

Executive Summary
This deliverable elaborates on the conclusions drawn from the first integration and deployment cycle

in three aspects:

• The integration approach itself

• Packaging and distribution

• User interface

All of them are assessed separately, mentioning successful solutions we used, but also underlining

points where the system proved suboptimal. Most of them come from the packaging and distribution

segment.

After that, we describe the analysis we took on how to fix the issues for the second release. The analysis

includes a presentation of the state of the art technologies, like containerization, and the reasoning

behind the decision to use them. Finally, we describe the implementation in ProaSense.

Integrated ProaSense platform and its assessment v2 Page 3

TABLE OF CONTENTS

Table of Contents
1. Introduction ... 5

1.1 RELATIONS TO OTHER PROASENSE DELIVERABLES AND TASKS ... 5
1.2 DELIVERABLE STRUCTURE .. 5

2. Conclusions from first iteration .. 6
2.1 INTEGRATION SOLUTION .. 6
2.2 PACKAGING AND DISTRIBUTION .. 6
2.3 UI .. 6

3. Activities in second iteration .. 7
3.1 MITIGATING RISKS FROM FIRST ITERATION ... 7
3.2 DOCKER & DOCKER COMPOSE ... 9
3.3 DOCKER IN PROASENSE .. 12
3.4 UI .. 13

4. Installation and manuals .. 19
4.1 INSTALLATION PROCESS ... 19
4.2 INSTALLATION MANUALS ... 19

Integrated ProaSense platform and its assessment v2 Page 4

Acronyms
Acronym Explanation

CBM Condition Based Maintenance

CBM Condition Based Maintenance

CEP Complex Event Processing

DevOps Development & Operations

DSS Decision Support System

DTO Data Transfer Object

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTP Hypertext Transfer Protocol

MDP Markov Decision Process

OODA Observe, Orient, Decide and Act

Integrated ProaSense platform and its assessment v2 Page 5

1. Introduction

1.1 RELATIONS TO OTHER PROASENSE DELIVERABLES AND TASKS

This deliverable is directly related to Deliverable 6.2 Integrated ProaSense platform and its assessment

v1. That deliverable explains the integration plan and procedure undertaken in the first iteration of the

project. Deliverable 6.3 explains the conclusions we made after integrating the first version of the

platform, what the challenges and pitfalls were, and explains what has been done to rectify the issues.

In addition, the UI developed for the first integrated version was described in a separate document,

Deliverable 6.2.1 ProaSense UI platform v1. The second iteration of the UI is a part of this deliverable.

Deployment shall be elaborated in a separate document, Deliverable D7.3, which explains the

procedure undertaken at the use-case partners’ premises. That deliverable contains the user manuals,

while in the previous iteration they were bundled with the predecessor of this deliverable, Deliverable

6.2.

1.2 DELIVERABLE STRUCTURE

This deliverable is divided in three main parts: conclusions from the first iteration related to integration

and user interface, activities to rectify issues observed in the first iteration and, finally, a description

of the installation process and manuals.

In chapter 2, we look back at the integration process in the first version and lessons learned from it.

This chapter has three distinct parts, first one related to the integration solution itself, second related

to the packaging and distribution of ProaSense to the use case partners and the third one, which

describes the conclusions about the UI.

Chapter 3 states the actions done in the second iteration to fix issues explained in chapter 2. It explains

possible solutions we researched, which we chose and why. We explain Docker and Docker Compose

as chosen solutions, their application in ProaSense and also the UI revamp.

Chapter 4 describes the planned installation progress and references the installation manuals.

Integrated ProaSense platform and its assessment v2 Page 6

2. Conclusions from first iteration

2.1 INTEGRATION SOLUTION

The first iteration of the integrated platform is described in D6.2, section 3 – Integration Details. In

practice the solutions chosen there showed satisfying stability, were not too complicated to maintain

(although ProaSense has an inherently complex architecture) and acceptable performance. With those

conclusions, we did not have too much work during the second iteration on changing the architecture,

message structure or redefining the integration plan.

2.2 PACKAGING AND DISTRIBUTION

Previous packaging and distribution solutions were good enough to serve the purpose, but we had too

optimistic expectations in the quality that those solutions provided.

First of all, the components were packaged in separate ways (Docker images, zipped binaries,

installers) and installed using different tools, like using bash scripts, Ansible automation scripts,

Docker-compose and so on.

Heterogeneous packaging of separate components introduced unnecessary “friction” while installing.

That means each of the installation methods needs some requirements that should be supplied for it

to work. Docker-compose needs network ports open, Ansible needs some in-place configuration for it

to run properly, other solutions need firewall or proxy reconfiguration, and so on. Overly complex

installation, although feasible, leaves a sense of an unfinished product and is a general UX issue.

Secondly, transparent component connections, which should be configured at installation potentially,

can lead to misconfigurations, which in return waste time and lead to debugging session.

Taking all of the above into account, the development team sought out for a way to rectify the

situation.

2.3 UI

In the first version of the integrated system, the ProaSense user interface consisted of a web page

containing links to other ProaSense components that also provide a user interface. For the second

iteration, this user interface was improved in terms of usability in order to better reflect the purpose

of each component related to the user’s current role. In addition, a central authentication system was

added that, on the one hand, allows users to log in to the ProaSense system from a single system and,

in addition, allows other ProaSense components to receive user details from the authentication

system.

Integrated ProaSense platform and its assessment v2 Page 7

3. Activities in second iteration

3.1 MITIGATING RISKS FROM FIRST ITERATION

Since we already used a variety of packaging and deployment techniques throughout the work

packages, it was most sensible to first look among them, which performed best. All are a part of present

day software development practices (often dubbed DevOps1), which research confirmed.

We had three main approaches for executing the installation: Shell script2 for components in work

package 2, Docker3 for components in work package 4 and Ansible4 for work package 6.

• Shell scripts are a simple way of writing utility programs and tools available on Linux, Mac OS,

and in recent time, partially, no Windows. They are designed to be run with a command-line

interpreter. Shell scripts are typically written as a series of simple commands mixed in with

control-flow structures that are generally not available in pure command-line interfaces. They

are massively used for administration and other uses in almost any part of computing.

However, we have to put them in perspective of the problem we are trying to solve:

o Advantages:

 Omnipresent, they can be found in any operative system (even new releases

of Windows)

 Simple to read and to write

 Nicely documented

o Disadvantages:

 Complex operations become lengthy

 If not being careful, program complexity can increase and become hard to

manage

 Parametrization and modularization can look “messy”.

 Hard to debug

 They only solve the automatization part of the installation, not the software

packaging part and it’s complicated to effectively control multiple machines (a

cluster) through one script.

1 https://newrelic.com/devops/what-is-devops
2 http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
3 https://www.docker.com/
4 https://www.ansible.com/

Integrated ProaSense platform and its assessment v2 Page 8

• Ansible is a software for automatization, managing and configuring multi-node setups. It

executes commands via SSH on remote computers, and with a powerful command

descriptions (specified in YAML) and node inventory system it is capable of setting up and

maintaining a complete cluster. It is a part of a new generation of DevOps tools like Puppet5

or Chef6, but is commercially free to use. It should be noted that in some scenarios Ansible is

used not as a substitute for other technologies as shell or Docker, but as a complement, to

take over any possible step that the administrator must do by hand. However, we will not use

this approach since we would rather trade a few manual steps for easier overall system

understanding.

o Advantages:

 Expressive and easy to read language

 Easy to split instructions from parameters from inventory (server list)

 Easy to test

 No need to install dependencies on cluster member

o Disadvantages:

 Needs to be installed on the “managing” computer, the one that is managing

the cluster, which may conflict with firewalls

 Still does not provide a way to package or distribute software, “only” to

execute distributed commands on machines

 Not so well known among administrators (although the whole field is relatively

new)

• Docker is a technology for packaging Linux application within containers. In a simplified way

of speaking, containers hold the software and its dependencies in a single package, which is

easily portable and runnable on separate machines or clusters. Docker uses some advanced

virtualization technology, and the containers run in lightweight virtual machines. Each

container running on one machine is isolated from any other container, and the applications

on the host OS. Details will be explained in the next chapter, however main advantages will be

listed here

5 https://puppet.com/
6 https://www.chef.io/chef/

Integrated ProaSense platform and its assessment v2 Page 9

o Advantages:

 Provides a way of packaging software (Docker builds)

 Provides a way of orchestrating containers (Docker-compose)

 Containers can be run on single machines or in a cluster (multiple cluster

implementations exist: Swarm, Google Kubernetes, Mesos…) and containers

run with cloud providers

 System could be installed by running one script only with simple inputs from

the user

o Disadvantages:

 All hosts need to have Docker installed

 Docker is still a technology in development, some updates can cause backward

incompatible changes so it is important to care about the Docker version the

image is built and the target one.

 There is a lot of things involved behind the scenes so inexperienced system

administrators can be overwhelmed

 Building images might be slow (which is an issue in development, not

production).

Considering everything, we chose to package all of the components into Docker, or colloquially,

“dockerize” them. The details of Docker are explained in the next chapter.

3.2 DOCKER & DOCKER COMPOSE

As we previously roughly described, Docker is technology built on Linux operating system level

virtualization. Operating system level virtualization presents is a way of “sharing” a Kernel between

multiple isolated user spaces. Docker uses these features to create packages of applications, settings

and dependencies. Those packages are called images. Instantiated images (images put into work) are

called containers. In other terminology, containers to images are what objects are to classes in object

oriented programming.

Containers do not contain an operative system, but they use the underlying host kernel functions.

What they do include is a “base image”, created from a Linux distribution that includes additional

binaries, and file system settings which differ from distribution to distribution. Usually Docker images

are created with very lightweight base images. This is shown in the right side of Figure 1.

Integrated ProaSense platform and its assessment v2 Page 10

Figure 1 - Docker/VM comparison (source: docker.com)

On the figure, the bin/libs on the right side actually represent the base image. The left represents a

classical virtual machine organization, like the one we used in Proasense earlier. A host operating

system with a hypervisor runs other virtual machines with a complete OS, and then atop of that, we

can see binaries, libraries and the application.

It is important to say that the base images can be extended and repackaged to create new base images.

For example, Alpine Linux7 is a simple, Linux distribution which has only basic features over the kernel.

It is used for creating the Alpine8 base image. The image can be used for creating a new image by

installing Java. That way we got alpine-java 9 , which is a base image created for running Java

applications atop of them.

New images are created using Dockerfiles. A Dockerfile is a textual file with instructions on how to

build the image. It starts with a declaration of the base image used followed with commands to copy

files to the image from the machine on which the image is created, extracting them, which commands

to run after a container is created from the image, which ports should be opened and so on. There are

numerous commands, and they are available in the Docker documentation10.

 # A basic apache server. To use either add or bind mount content under /var/www
FROM ubuntu:12.04

MAINTAINER Kimbro Staken version: 0.1

RUN apt-get update && apt-get install -y apache2 && apt-get clean && rm -rf /var/lib/apt/lists/*

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data

7 https://alpinelinux.org/
8 https://hub.docker.com/_/alpine/
9 https://hub.docker.com/r/anapsix/alpine-java/
10 https://docs.docker.com/engine/reference/builder/

Integrated ProaSense platform and its assessment v2 Page 11

ENV APACHE_LOG_DIR /var/log/apache2

EXPOSE 80

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

Figure 2 - Dockerfile example

The Dockerfile in Figure 2 creates an image with from a Ubuntu 12.04 base image. It also declares:

• A maintainer with the MAINTEINER keyword

• What to run during image build with the RUN keyword (installs apache2 in this example)

• Setting environment variables with ENV keyword

• The container, after being run, should open port 80 for the application it contains (in this case

apache2)

• At the end, with the CMD keyword we define which application should run along with the

container. It is important for this application to run in the foreground. When it shut downs,

the container exits as well, and the application exit status is reported to the Docker daemon.

Often enough multiple containers need to be orchestrated for one application to run. That is a modern

tendency with microservices and event driven architectures. That is why Docker-compose exists. It is

important to say that Docker-compose is not the only way to orchestrate containers. There are other

orchestration solutions like Kubernetes or Mesos. Docker-compose is the official Docker orchestration

tool. Docker-compose runs on one machine, with a Docker Swarm cluster (the official Docker clustering

tool) or Rancher Cattle cluster. Kubernetes, for example, does not have anything in common with

Docker-compose. It is an “opinionated” system that means it reimplements the Docker orchestration

process from the ground up.

A Docker Compose file is a YAML file defining services, networks and volumes. The default path for a

Compose file is ./docker-compose.yml. An example is shown in Figure 3.

es:
 image: elasticsearch
 container_name: es
web:
 image: salex89/sf-foodtrucks
 command: python app.py
 ports:
 - "5000"
 links:
 - es

Figure 3 - Docker Compose example

Integrated ProaSense platform and its assessment v2 Page 12

This is a simple Docker Compose file which orchestrates two images. The first one is with elasticsearch

and the other one is with a simple Python app. The image names are, if not configured otherwise,

searched on Docker Hub (https://hub.docker.com/). When the author of the image builds it, they can

upload it to the main Docker image repository for others to use. Referencing it from a Docker Compose

file means it should be pulled from the repostitory. In the case of the web image, we can see that port

5000, exposed by the container by default, will just be exposed as port 5000 on the host machine. In

other cases we would maybe forward the container’s port 80 to port 4347 on the host machine (to

avoid port clashing) and so on.

The links portion is especially interesting. Using it, we can link two containers, like connecting them

through a network. In the background Docker puts an entry into the HOSTS file of the linked container,

which points to the target container, and that hostname can be referenced from applications in that

container.

Among other important settings, through the Docker-compose file we can set environment variables

to be injected into the containers. Those environment variables can be used for runtime

parameterization.

It is not necessary to use the Docker Hub to host Docker images. Self-hosted, 3rd party implementations

exist which can be secured and used for private purposes only. Before building a Dockerfile or Docker-

compose script the user can specify another repository to be used, with credentials if needed.

3.3 DOCKER IN PROASENSE

The overall usage of Docker in ProaSense is straightforward. We decided to use Docker in ProaSense

to package all of the components. Partners are instructed to package their components into Docker

images, in the way they find it suitable. The Docker images should be pushed to a private Docker

repository maintained by FZI (https://laus.fzi.de:8201/).

Partners are expected to provide a Docker-compose file per component, which transcribes a Docker-

compose file per partner, and parametrize the connections to other components through the

environment variables.

The files can be used separately, to install the components independently of ProaSense. It is also

possible to “merge” the Docker-compose files into one, and to be able to install the complete

ProaSense platform in one run. This can be done in place, when the installation is planed.

One part that is slightly more complicated to dockerize is the Storm cluster. That is why a separate

Docker-compose file is provided to deploy a Storm production-ready multi-node cluster (“docker-

compose-production.yml”). With that deployment scheme it is necessary to manually deploy the

topology to the cluster.

https://hub.docker.com/

Integrated ProaSense platform and its assessment v2 Page 13

3.4 UI

The overall objective of the ProaSense user interface is to provide a common entry point to the whole

ProaSense system. As ProaSense consists of various modules containing multiple user interfaces

targeted at different roles, the choice of an appropriate technology suitable for the provision of a

unified UI is a challenging task. Therefore, an evaluation of possible technologies needed to be

conducted in order to fulfil the requirements of all involved parties. In general, two different

opportunities exist to develop an integrated user interface. The first option is to develop a single user

interface that implements the full feature set provided by all components. In this scenario, required

interfaces are provided by the backend implementations of all ProaSense components. However, the

disadvantage of such a solution is that it requires an agreement on a single technology used for the

frontend implementation. As several ProaSense components are built to provide an extensive user

interface (e.g., the pipeline editor of the WP3 component and the KPI modeller of the WP5

component), this solution would require different components to be based on the same technology.

Therefore, we decided to build a lightweight integrated user interface that, on the one hand, provides

a single point of entry to the ProaSense system, but on the other hand does not make any assumptions

on the individual frontend technology used by a component.

This solution also better supports individual exploitation of single ProaSense components, for instance,

standalone version of these components can be provided to users that do only require a subset of the

full ProaSense platform. Therefore, instead of a monolithic architecture our approach allows the

integration of technically independent ProaSense components under one roof. As already mentioned,

each component can be either provided as a set of Docker images provided as a Docker-compose file,

or as a whole system consisting of all components and the integrated user interface in a single cocker-

compose file.

The integrated ProaSense user interface is based on a component written in AngularJS and can be

configured in order to integrate the various ProaSense components depending on the actual

installation. In the following sections, we describe the configuration, navigation and authentication

mechanisms provided by the integrated user interface.

3.4.1 CONFIGURATION

The configuration dialog allows users to setup and configure the system. It is provided automatically

at the first time the ProaSense system is initialized and can be accessed via the “Settings” dialog within

Integrated ProaSense platform and its assessment v2 Page 14

the left main navigation bar. Figure 4 shows the main settings dialog. For each ProaSense component

that has a user interface, a link targeting at the main entry point of the component’s UI can be

provided. This includes the following components:

o StreamStory: Allows users to analyse event streams and to configure models that are used to

create predictions.

o StreamPipes: Allows users to define stream processing pipelines in an ad-hoc manner.

o PANDDA: Allows users to access the ProaSense descision dashboard.

o Business Improvement Analyzer: Allows to model and analyse key performance indicators.

o Inspection report: A simple user interface (HTML form) to submit an inspection report to the

ProaSense system.

o Maintenance report: A simple user interface (HTML form) to submit a maintenance report to

the ProaSense system.

Furthermore, additional settings can be provided such as connection settings of the Kafka broker used

for communication between individual ProaSense components. These settings can be retrieved by all

involved ProaSense components using a specified REST interface. If the configuration dialog is called

for the first time, an initial admin user has to be provided additionally.

Integrated ProaSense platform and its assessment v2 Page 15

Figure 4: Setup Dialog

The REST API of the configuration interface returns a JSON document that includes currently

configured settings. In order to access the configuration, a component needs to be registered with the

central authentication system (further explained in section 3.4.2). Table 1 shows an example message

returned by the configuration endpoint.

Integrated ProaSense platform and its assessment v2 Page 16

Table 1: Configuration REST API

 "couchDbProtocol": "http",
 "couchDbHost": "localhost",
 "couchDbPort": 5984,
 "sesameUrl": "http://localhost:8080/openrdf-sesame",
 "sesameDbName": "rdfstore",
 "hippoUrl": "",
 "panddaUrl": "",
 "streamStoryUrl": "",
 "humanInspectionReportUrl": "",
 "humanMaintenanceReportUrl": "",
 "kafkaProtocol": "http",
 "kafkaPort": 9092,
 "kafkaHost": "ipe-koi04.fzi.de",
 "jmsProtocol": "tcp",
 "jmsPort": 61616,
 "jmsHost": "ipe-koi04.fzi.de",
 "zookeeperProtocol": "http",
 "zookeeperPort": 2181,
 "zookeeperHost": "url",
 "couchDbUserDbName": "users",
 "couchDbPipelineDbName": "pipeline",
 "couchDbConnectionDbName": "connection",
 "couchDbMonitoringDbName": "monitoring",
 "couchDbNotificationDbName": "notification",
 "appConfig": "ProaSense",
 "marketplaceUrl": "",
 "podUrls": [
 ""
]
}

3.4.2 AUTHENTICATION

In order to allow users to log in to the ProaSense system, a central authentication interface is required.

This authentication system should be able to support a centralized login mechanism by integrating

distributed, standalone components. The integrated UI provides a login page as illustrated in figure 5.

In addition, the system can be configured so that users are able to register themselves, which is

especially important for demo purposes. In this settings, users can also select a role they would like to

evaluate. If the system is used in a more production-oriented environment, the self-registration

feature can be turned off, so that only users that have an administrator role are able to add new users

to the system.

The architecture of the authentication system is shown in Figure 6. In order to use the centralized

authentication server, the individual components needs to embed an iframe into their own user

interface. The URL of the iframe links to a RESTful interface of the authentication server. If the user is

already authenticated, a cookie is transmitted to this server. Afterwards, this cookie is verified. If the

cookie is considered valid, another REST endpoint of the requesting ProaSense component is called.

The authentication server submits a token to this component. This token can be used in order to get

user credentials as illustrated in Table 2. This message contains information on the currently logged in

Integrated ProaSense platform and its assessment v2 Page 17

user along with further information such as the email address. In order to support multiple views of

the ProaSense system for multiple user roles, a set of roles assigned to the user and permissions are

submitted within the authentication message.

In cases where the user is not authenticated successfully, the login screen is shown to the user.

Figure 5: Login Screen

Integrated ProaSense platform and its assessment v2 Page 18

Figure 6: Architecture of the Authentication System

Table 2: Authentication message

{"info":{"authc":{"principal":{"email":"user@proasense.eu","apiKey":""},"credentials":{"n

ame":"user@proasense.eu"}},"authz":{"roles":["USER_DEMO","SYSTEM_ADMINISTRATOR"],"permiss

ions":[]}},"success":true}

Integrated ProaSense platform and its assessment v2 Page 19

4. Installation and manuals

4.1 INSTALLATION PROCESS

The installation plan is very similar to the one from the first installation, only executed much quicker

due to the simplified packaging.

The reference platform installation will be executed on the Nissatech servers. Also the MHWirth

evaluation is slightly complicated to execute on MHWirth’s servers since the lack of a reliable data

sources and influences out of the project scope. However, MHWirth staff will execute the ProaSense

installation on Nissatech servers and evaluate ProaSense on them.

At Hella it is possible to install ProaSense and test it in practice, and the evaluation for Hella will use

that instance.

At Nissatech each partner has its own machine for each work package. Therefore, at Nissatech we will

try to install each component separately, and distribute on multiple servers, while at Hella we will

execute the installation with one composite Docker-compose file, and the scaling will be handled with

the underlying infrastructure.

4.2 INSTALLATION MANUALS

Installation manuals are generally prone to changes after the finalization of this deliverable. For this

reason, they are hosted on the ProaSense website, on the URL: http://www.proasense.eu/manuals/ .

http://www.proasense.eu/manuals/

Integrated ProaSense platform and its assessment v2 Page 20

5. Conclusion

As we described, most of the work for WP6 in the second integrated version was related to the

packaging and UI.

During development we immediately noticed a big improvement in the proposed way of standard

packaging. Migrating, restarting, modifying and redeploying parts of ProaSense was massively simpler

and we had far less installation and configuration bugs. The use case partners also expressed great

relief when they were presented with the simplified installation process.

On the other hand, the centralized authentication made the system introduced a higher level of

security, which is always necessary in industrial systems. It also made the system to feel as a

homogenous, compact product.

	1. Introduction
	1.1 Relations to other ProaSense Deliverables and Tasks
	1.2 Deliverable structure

	2. Conclusions from first iteration
	2.1 Integration solution
	2.2 Packaging and distribution
	2.3 UI

	3. Activities in second iteration
	3.1 Mitigating risks from first iteration
	3.2 Docker & Docker Compose
	3.3 Docker in ProaSense
	3.4 UI
	3.4.1 Configuration
	3.4.2 Authentication

	4. Installation and manuals
	4.1 Installation process
	4.2 Installation manuals

	5. Conclusion

